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Abstract 

Background:  Multiple sclerosis is a chronic immune-mediated disease of the brain and spinal cord resulting in physi-
cal and cognitive impairment in young adults. It is hypothesized that a disrupted bacterial and viral gut microbiota is a 
part of the pathogenesis mediating disease impact through an altered gut microbiota-brain axis. The aim of this study 
is to explore the characteristics of gut microbiota in multiple sclerosis and to associate it with disease variables, as the 
etiology of the disease remains only partially known.

Methods:  Here, in a case-control setting involving 148 Danish cases with multiple sclerosis and 148 matched healthy 
control subjects, we performed shotgun sequencing of fecal microbial DNA and associated bacterial and viral micro-
biota findings with plasma cytokines, blood cell gene expression profiles, and disease activity.

Results:  We found 61 bacterial species that were differentially abundant when comparing all multiple sclerosis cases 
with healthy controls, among which 31 species were enriched in cases. A cluster of inflammation markers composed 
of blood leukocytes, CRP, and blood cell gene expression of IL17A and IL6 was positively associated with a cluster of 
multiple sclerosis-related species. Bacterial species that were more abundant in cases with disease-active treatment-
naïve multiple sclerosis were positively linked to a group of plasma cytokines including IL-22, IL-17A, IFN-β, IL-33, 
and TNF-α. The bacterial species richness of treatment-naïve multiple sclerosis cases was associated with number of 
relapses over a follow-up period of 2 years. However, in non-disease-active cases, we identified two bacterial spe-
cies, Faecalibacterium prausnitzii and Gordonibacter urolithinfaciens, whose absolute abundance was enriched. These 
bacteria are known to produce anti-inflammatory metabolites including butyrate and urolithin. In addition, cases with 
multiple sclerosis had a higher viral species diversity and a higher abundance of Caudovirales bacteriophages.

Conclusions:  Considerable aberrations are present in the gut microbiota of patients with multiple sclerosis that are 
directly associated with blood biomarkers of inflammation, and in treatment-naïve cases bacterial richness is posi-
tively associated with disease activity. Yet, the finding of two symbiotic bacterial species in non-disease-active cases 
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that produce favorable immune-modulating compounds provides a rationale for testing these bacteria as adjunct 
therapeutics in future clinical trials.

Keywords:  Multiple sclerosis, Shotgun sequencing, Gut microbiota, Gordonibacter urolithinfaciens, Faecalibacterium 
prausnitzii

Background
Multiple sclerosis is a chronic immune-mediated disease 
of the brain and spinal cord, resulting in physical and 
cognitive impairment in young adults [1, 2]. Demyelina-
tion and axonal injury, the histopathology hallmarks of 
multiple sclerosis, are thought to arise from an immune-
mediated attack on myelinated axons and the myelin 
sheath, involving CD4+ T cells, cytotoxic CD8+ T cells, 
B cells, and macrophages [3]. Most cases (about 85%) suf-
fer from relapsing-remitting multiple sclerosis (RRMS) 
having clinical relapses with worsening of existing or 
new neurological symptoms and disease activity in the 
form of white matter brain lesions that can be visualized 
on magnetic resonance imaging (MRI) scans [4]. There 
is still no cure for multiple sclerosis and the long-term 
outcome is unpredictable, but disease-modifying thera-
pies affecting pathogenic immune reactions are available 
for the RRMS subtype [5]. Treatments such as interferon 
beta, glatiramer acetate, teriflunomide, and dimethyl- 
and diroximel-fumarate provide a modest decrease in 
disease activity, whereas treatments such as sphingosine-
l-phosphate receptor modulators (fingolimod, ozanimod, 
ponesimod), natalizumab, anti-CD20 monoclonal anti-
bodies (rituximab, ocrelizumab, ofatumumab), cladrib-
ine, and alemtuzumab are more efficacious but some of 
these can be more burdensome for the patients due to a 
higher risk of severe side effects [5, 6].

The etiology of multiple sclerosis is complex and 
incompletely understood. More than 200 genetic variants 
associated with multiple sclerosis have been identified in 
genome-wide association studies while the heritability for 
multiple sclerosis is estimated to be only 19% [7]. Several 
environmental risk factors, including smoking, Epstein-
Barr virus infection (infectious mononucleosis), obesity 
in childhood and adolescence, and vitamin D deficiency 
have been identified, but the overall contribution of these 
risk factors to absolute disease risk may be rather limited, 
suggesting the existence of additional environmental risk 
factors [8].

The human gastrointestinal tract is a habitat for a large 
number of commensal and mutualistic microbes collec-
tively known as the gut microbiota, and the collective 
genome of microbiota, known as the gut microbiome, 
contains about an order of magnitude more genes than 
the human genome [9]. The gut microbiota is hypothe-
sized to be implicated in the pathogenesis of neurological 

diseases [10] and since disturbances of the gut micro-
biota might lead to a pro-inflammatory activation of the 
immune system, it has been suggested that an altered gut 
microbiota might be an additional disease mechanism in 
multiple sclerosis [11–13].

Experimental autoimmune encephalomyelitis (EAE) 
is an accepted mouse model of multiple sclerosis and 
initial studies in this animal model showed that the gut 
microbiota was essential for activation of pathogenic, 
myelin-reactive CD4+ T cells while germ-free mice were 
protected against disease development [14]. In human 
twin studies, transplantation of fecal samples from twins 
suffering from multiple sclerosis to mice led to a higher 
rate of spontaneous EAE than did fecal samples from 
healthy co-twins [15]. Interestingly, transplantation of 
fecal samples from healthy co-twins were associated 
with higher production of interleukin 10 (IL-10) that is 
a cytokine with multiple effects in immunoregulation 
and anti-inflammatory processes [16]. Blocking IL-10 
in recipients of fecal samples from healthy co-twins 
increased the incidence of EAE [15]. Other studies have 
indicated that treatment with a human commensal—
Prevotella histocola—is as efficacious as the multiple 
sclerosis therapies interferon beta and glatiramer acetate 
in ameliorating disease in the EAE model [17, 18].

It has been suggested that gut dysbiosis might lead 
to an altered balance between short-chain fatty acids 
(SCFAs), which have immunoregulatory, including anti-
inflammatory effects, and long-chain fatty acids with 
pro-inflammatory and disease-promoting effects in EAE, 
but there is no strong evidence that this is also the case 
in multiple sclerosis [19, 20]. In pediatric multiple sclero-
sis, both individual and clusters of various gut microbes 
were associated with longitudinal disease activity, and 
the known functions and metagenomics predictions of 
these microbes suggest an important role of butyrate and 
amino acid biosynthesis pathways [21]. A recent study 
reported that individuals with multiple sclerosis had 
lower serum concentrations of propionic acid and that 
treatment with propionic acid inhibited the development 
of EAE and promoted the expansion of regulatory T cells 
by an effect mediated by changes in the gut microbiota 
[22]. Low serum concentrations of propionic acid or 
other SCFAs have, however, not been found in all stud-
ies of multiple sclerosis [23]. Similarly, a recent system-
atic review and other recent original studies failed to find 
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evidence of a consistent pattern of changes in gut micro-
biota in multiple sclerosis [24, 25].

The objective of our study was to map the intesti-
nal microbiota applying shotgun-sequencing-based gut 
metagenome analyses in a prospectively collected cohort 
of recently diagnosed Danish multiple sclerosis cases 
and matched healthy controls (HC), and relate bacterial 
and viral gut microbiota features to blood biomarkers of 
inflammation, targeted blood cell gene expression, and 
clinical course of multiple sclerosis. Previous studies of 
the intestinal microbiota biomarkers of multiple sclero-
sis and other neurological disorders have largely failed 
to account for effects of various treatment regimens and 
inter-individual variability of bacterial cell load of stool 
sample [20, 26, 27]. These shortcomings are accounted 
for in the present study. Moreover, we monitored disease 
activity in multiple sclerosis cases over a period of 2 years 
and related the clinical course of patients with intestinal 
microbiota features at baseline.

Methods
Study population
Multiple sclerosis cases were recruited from the out-
patient clinic of the Danish Multiple Sclerosis Center, 
Department of Neurology, Rigshospitalet University 
Hospital, Copenhagen, in the period April 2013 to June 
2014. When seen in the outpatient clinic, patients were 
invited to participate in the study. Inclusion criteria were 
RRMS or clinically isolated syndrome (CIS), Danish eth-
nicity, and age 18–60 years; exclusion criteria were other 
autoimmune or known cancer disease or other condi-
tions (gut disorders, metabolic syndrome, psychiatric 
and mental disorders) that might affect the gut microbi-
ota. Multiple sclerosis cases were evaluated at a baseline 
visit where all patients had a neurological examination by 
the same neurologist and delivered fasting blood samples 
and a fecal sample. Clinical data on the patients including 
age, sex, disease duration, expanded disability status scale 
(EDSS), and multiple sclerosis severity score (MSSS) 
were registered. All had a baseline cerebral MRI scan, 
and a follow-up scan 2 years later to evaluate radiological 
disease activity by number of new white matter lesions in 
the brain [4].

A relapse was defined according to the 2017 McDon-
ald diagnostic criteria [28]. Clinical disease activity at 
baseline was evaluated by number of relapses 1 year prior 
to the baseline visit and was dichotomized as clinically 
not active (CNA, no relapse) or clinically active (CA, 
one relapse or more). Number of relapses, worsening in 
EDSS, new white matter lesions on MRI, and NEDA-3 
(no evidence of disease activity, i.e., no relapses, no new/
enlarging white matter MRI lesions and stable EDSS) 
were monitored during the follow-up period of 2 years.

HC subjects who reported no acute or chronic disor-
ders were selected among individuals who were age- and 
sex-matched with multiple sclerosis cases from (1) the 
population-based DanFunD cohort (n = 88), recruited 
among Danish citizens as described by Dantoft et al. [29] 
and (2) individuals phenotyped at Novo Nordisk Founda-
tion Center for Basic Metabolic Research, University of 
Copenhagen (CBMR; n = 60) (unpublished). The CMBR 
cohort was recruited from urban areas in Denmark by 
advertisement in local newspapers, social media, and 
other online resources from November 2013 to Novem-
ber 2014.

Originally, 152 multiple sclerosis patients were 
included in the study, but four individuals were excluded 
from further analyses due to sample mix-up, leading to 
a final sample size of 148 Danish cases and 148 age- and 
sex-matched Danish HC subjects.

Blood was drawn in the morning after an overnight 
fast from a cubital vein into an EDTA tube, centrifuged 
to separate plasma and cells, and immediately stored at 
−80°C until analysis. Collected plasma samples were fur-
ther used for metabolic markers and cytokine measure-
ment (all individuals).

For untreated cases only, whole blood was collected in 
PAXgene tubes with the PAXgene miRNA Blood kit (Pre-
AnalytiX, Qiagen) at the same time as plasma collection 
and was further subjected to microarray gene expression 
measurement.

Stools were collected according to International 
Human Microbiome Standards (IHMS) guidelines (SOP 
03 V1) in kits by multiple sclerosis cases and HC at home 
and immediately stored at −20 °C until they were trans-
ported on dry ice and frozen 4–24 h later at −80°C in 
plastic tubes at the biobanks of Novo Nordisk Founda-
tion Center for Metabolic Research or Glostrup Hospital. 
Stools were further subjected to shotgun sequencing (all 
individuals), bacterial cell counting (all individuals), and 
fecal water estimation (cases only).

Written informed consent was obtained from all study 
participants. The study protocol involving multiple scle-
rosis cases and HC was approved by the Ethical Com-
mittees of the Capital Region of Denmark (Protocol no.: 
H-4-2012-176). The DanFunD study (H-3-2012-015) and 
the CBMR study (H-3-2012-145) were also approved 
by the Ethical Committees of the Capital Region of 
Denmark.

Measurement of plasma cytokines
Plasma cytokines were determined by high-sensitivity 
immunoassays based on electrochemiluminescence 
(Meso Scale Discovery). Samples were pre-diluted two 
times and analyzed according to the manufacturer’s 
instructions, except for sample incubation time, which 
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was performed overnight at 4°C on a shaker to improve 
assay sensitivity. Each plate contained a biomarker-spe-
cific internal standard in duplicate as well as two blank 
wells. Samples were analyzed in duplicates and read on 
a Sector Imager 2400A (Meso Scale Discovery, Gaithers-
burg, MD, USA). Concentrations were calculated using 
8-point standard curves. The lower levels of detection as 
well as the percentage of detectable samples are detailed 
in Additional file 1: Table S1. Undetectable values in the 
low end were set at half the minimum value of the given 
cytokine; all high-end values were detectable due to the 
high dynamic range of the assays.

Microarray gene expression in whole blood
RNA was extracted from whole blood collected in PAX-
gene tubes with the PAXgene miRNA Blood kit (Pre-
AnalytiX, Qiagen) in the fasting state. RNA integrity and 
concentration were analyzed on a 2100 Bioanalyzer (Agi-
lent Technologies, DK). A minimum of 450 ng of total 
RNA with mean RIN values of 8.9 was used as input. 
RNA was amplified and labelled using the WT PLUS rea-
gent kit (Thermo Fisher Scientific, Carlsbad, CA, USA). 
The labelled samples were hybridized to the Human 
Gene 2.0 ST array (Affymetrix, Santa Clara, CA, USA). 
The arrays were washed and stained with phycoerytrin-
conjugated streptavidin using the Affymetrix Fluidics 
Station® 450, and the arrays were scanned in the Affym-
etrix GeneArray® 3000 scanner to generate fluorescent 
images, as described in the Affymetrix GeneChip® pro-
tocol. Cell intensity files (CEL files) were generated in 
the GeneChip® Command Console® Software (AGCC) 
(Affymetrix, USA). The microarray data were modelled 
using the RMA (Robust Multichip Average) approach, 
followed by mean one step probe set summarization giv-
ing each gene a single expression value, all done using the 
software package Partek Genomics Suite 6.

Bacterial cell counting
For bacterial cell counting, 0.08-0.12 g of frozen (−80 
°C) fecal samples were diluted 15 times in pH 7.2 DPBS 
(Sigma-Aldrich), mechanically homogenized using tissue 
lyser (40 min, 12.5 agitations per second; QIAGEN) and 
fixed with 2% paraformaldehyde (10 min, RT; Biotum). 
Then the samples were diluted 120 times in filtered stain-
ing buffer (1 mM EDTA, 0.01% Tween20, pH 7.2 DPBS, 
1% BSA; (Sigma-Aldrich)). To minimize clumps, the 
samples were filtered through a cell strainer (pore size 5 
μm; pluriSelect), pre-wet in the staining buffer. Next, the 
bacterial cell suspension was stained with SYBR Green I 
(1:200,000 (Fisher Scientific), in DMSO (Sigma-Aldrich)) 
and incubated in the dark for 30 min. For accurate deter-
mination of bacterial cell count, a known concentra-
tion of 123count eBeads (Invitrogen) was added to the 

samples prior to the analysis. Measurements were per-
formed using a BD Fortessa LSRII flow cytometer (BD 
Biosciences), and data were acquired using BD FACSDi-
VaTM software. A threshold value of 200 was applied on 
the FITC (530/30 nm) channel. Fluorescence intensity at 
green (530/30 nm, FITC), blue (450/50 nm, Pacific Blue), 
yellow (575/26 nm, PE), and red (695/40 nm, PerCP-
Cy5-5) fluorescence channels as well as forward- and 
side-scattered (FSC and SSC) light intensities were col-
lected. Measurements were performed at a pre-set flow 
rate of 0.5 μL/s. Data were processed in R using flowcore 
package in R Studio. Fixed gating strategy separated the 
microbial fluorescent events from the fecal sample back-
ground (Additional file  2: Fig. S1). Individual bacterial 
cell counts are given in Additional file 1: Table S2.

Fecal water content estimation
For estimating fecal water content in stools from multiple 
sclerosis cases, frozen feces samples were weighed before 
and after freeze-drying. Freeze-drying included a pri-
mary drying performed at 0.1hPa and 23°C for 17h and 
a secondary drying at 0.05 hPa and 23°C for 3h (CoolSafe 
touch 15L, LaboGene, Lilleroed, Denmark). Individual 
data for fecal water content is given in Additional file 1: 
Table S2.

Stool sampling, DNA extraction, and shotgun sequencing
DNA extraction from aliquot of fecal samples was per-
formed following IHMS SOP P7 V2 [30, 31]. DNA was 
quantitated using Qubit Fluorometric Quantitation 
(Thermo Fisher Scientific, Waltham, US) and qualified 
using DNA size profiling on a Fragment Analyzer (Agi-
lent Technologies, Santa Clara, US). Three micrograms of 
high molecular weight DNA (>10 kbp) was used to build 
the library. Shearing of DNA into fragments of approxi-
mately 150 bp was performed using an ultrasonicator 
(Covaris, Woburn, US) and DNA fragment library con-
struction was performed using the Ion Plus Fragment 
Library and Ion Xpress Barcode Adapters Kits (Thermo 
Fisher Scientific, Waltham, US). Purified and amplified 
DNA fragment libraries were sequenced using the Ion 
Proton Sequencer (Thermo Fisher Scientific, Waltham, 
US), with a minimum of 20 million high-quality reads of 
150 bp (in average) generated per library.

Gene count table
To construct a gene count table, METEOR software 
was used [32]: first, reads were filtered for low qual-
ity by AlienTrimmer [33]. Reads that aligned human 
genome (identity > 95%) were also discarded. Remaining 
reads were mapped onto the Integrated Gut Catalogue 
2 (IGC2) [34], comprising 10.4 million of genes, using 
Bowtie2 [35]. The unique mapped reads (reads mapped 
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to a unique gene in the catalogue) were attributed to their 
corresponding genes. Then, the shared reads (reads that 
mapped with the same alignment score to multiple genes 
in the catalogue) were attributed according to the ratio of 
their unique mapping counts of the captured genes. The 
resulting count table was further processed using the R 
package MetaOMineR v1.31 [36]. It was downsized at 12 
million mapped reads to take into account differences in 
sequencing depth and in mapping rate across samples. 
Then the downsized matrix was normalized for gene 
length and transformed into a frequency matrix (FPKM 
normalization). Gene count was computed as the num-
ber of genes present (abundance strictly positive) in the 
frequency matrix.

Profiling and annotation of MetaGenomics Species (MGS)
The IGC2 was previously organized into 1990 MetaGen-
omics Species (MGS) using MSPminer [37, 38]. Rela-
tive abundance of an MGS was computed as the mean 
abundance of its 100 “marker” genes (that is, the genes 
that correlate the most altogether). If less than 10% of 
“marker” genes were seen in a sample, the abundance 
of the MGS was set to 0. For a given sample, cell count 
index was computed as the cell count of this sample nor-
malized by the mean cell count over all measured sam-
ples. Missing values were imputed by 1. MGS relative 
abundance were further corrected by this index to take 
into account difference in bacterial cell count between 
samples. In this way, we estimated absolute abundance of 
bacterial species.

Abundances at higher taxonomical ranks were com-
puted as the sum of the MGS that belong to a given taxa. 
MGS count was assessed as the number of MGS present 
in a sample (that is, whose abundance is strictly positive).

Predicted functional modules of gut bacteriome
Three databases were used to predict gene functions: 
Kyoto Encyclopedia of Genes and Genomes (KEGG) 
[39], eggNOG [40], and TIGRFAM [41]. Genes from the 
IGC2 catalogue were mapped with diamond [42] onto 
KEGG orthologs (KO) from the KEGG database (version 
8.9). Each gene was assigned to the best-ranked KEGG 
orthologs (KO) among hits with e-value < 10e−05 and bit 
score > 60. The same procedure was used with eggNOG 
(version 3.0). The gene catalogue was searched against 
TIGRFAM profiles (version 15.0) using HMMER 3.2.1 
[43]. Then we assessed presence of KEGG modules, gut 
metabolic modules (GMMs) [44] and gut-brain mod-
ules (GBMs) [45] in an MGS. A functional module con-
sists in an ensemble of KOs (or NOGs, or TIGRFAMs). 
Since MGS are pangenomes, their genes are divided into 
“core” genes (which are present in all samples harboring 
the MGS) or “accessory” (which might be absent from a 

sample even if the MGS is detected). Thus, we first con-
sidered a functional module to be present in an MGS if 
at least 90% of its components were present in the “core” 
genes of the MGS. Then we re-affined this assump-
tion sample by sample, by adding to the “core” genes the 
accessory genes detected in a given sample. Finally, we 
measured the potential of a module in a sample by sum-
ming abundances of all MGS found to carry this module 
in this sample.

Analyses of viral gut microbiota
The viral gut microbiota was analyzed using MiCoP [46], 
as this method is optimized to call viruses directly from 
the bulk metagenomics sequencing reads. As a refer-
ence dataset, MiCoP draws upon the NCBI’s RefSeq 
Viral database [47]. We identified a total of 150 viral spe-
cies with prevalence of > 10% and relative abundance of 
> 0.01% for 296 (148 multiple sclerosis cases versus 148 
HC) individuals included in the dataset.

Statistical analysis applied in analyses of bacterial and viral 
gut microbiota
All statistical analysis were performed with R v3.6.0 [48]. 
Contrasts in MGS or functional modules abundances 
were performed using Mann-Whitney test if two groups 
and Kruskal-Wallis if more than two groups. Correla-
tions between variables (either metagenomics variables 
or clinical variables) were performed using Spearman’s 
correlations. All p-values were corrected for multiple 
testing with the Benjamini-Hochberg method. Unless 
stated otherwise, a corrected p-value (q-value) is assessed 
as significant when under the threshold of 0.1. Effect size 
was computed as the Cliff ’s Delta (CD) using the package 
effsize v0.7.4 [49].

Bray-Curtis dissimilarity was computed on the log-10 
transformed MGS table with the package vegan v2.5.7 
[50]. Principal coordinates analysis (PCoA) was per-
formed on the Bray-Curtis dissimilarity with the pack-
age ade4 v1.7.16 [51]. Bray-Curtis dissimilarity variance 
between groups was then analyzed by PERMANOVA 
with the function adonis from the package vegan.

Covariates deconfounding was performed on each 
metagenomics feature with the R package metadecon-
foundR v0.1.5 [52, 53]. Covariates included status (mul-
tiple sclerosis cases or HC, CA, or CNA, respectively), 
BMI, age, sex, fecal water content, and medication. When 
a metagenomics feature is significantly associated with 
at least two covariates, these covariates can be strictly 
deconfounded, ambiguously deconfounded, or con-
founded [52].

For viral gut microbiota analysis only, differences in 
abundance were detected using Microbiome Multivari-
able Association with Linear Models (MaAslin2) [54] and 
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corrected for multiple testing by Benjamini-Hochberg 
method. Unless stated otherwise, a corrected p-value 
(q-value) was assessed as significant when under the 
threshold of 0.1.

Results
Cohort characteristics
Stools from 148 cases with multiple sclerosis and 148 
sex- and age-matched healthy controls (HC) were sam-
pled (Table 1). All study participants were white Danish 
individuals. There were more current smokers among 
cases than among HC (27% and 10%, respectively, P = 
3.5e−06, chi-squared test). The majority (86%) of cases 
had RRMS, according to the 2017 McDonald criteria 
[28], while 14% had a CIS with only one relapse and not 
fulfilling the 2017 McDonald criteria for RRMS (Table 1). 
Cases had various medication profiles: 36% had no 
treatment, while 23 and 41% had first-line and second-
line treatment, respectively (Table  1, Additional file  1: 
Table  S3). We measured a series of cytokines in fasting 
plasma of all study participants and found after account-
ing for covariates (age, sex, BMI, smoking, and drug 
treatment) that the plasma concentration of chemokine 
ligand 2 (CCL2) was higher in cases, whereas plasma 
concentrations of transforming growth factor beta (TGF-
β) and interkeukin-1 beta (IL-1β) were lower (Additional 
file 1: Table S1, Additional file 2: Fig. S2).

Contrasted bacterial taxa and predicted functional 
modules of the bacterial gut microbiota in multiple 
sclerosis cases and healthy controls
Both gut bacterial gene richness and metagenomic spe-
cies (MGS, hereafter termed species) richness were simi-
lar in cases and HC (Additional file 2: Fig. S3A-B). Global 
bacterial microbiota composition (beta diversity) was dif-
ferent between cases and HC (P < 0.001, PERMANOVA, 
Additional file 2: Fig. S3C). Removal of current and for-
mer smokers from analyses did not change the result 
(Additional file  2: Fig. S4). Intriguingly, when comput-
ing pairwise PERMANOVA between treatment-based 

subgroups of cases and HC, we found that each subgroup 
was significantly different from HC apart from the treat-
ment-naïve cases (P < 0.05, Additional file  1: Table  S4, 
Additional file  2: Fig. S5A), suggesting that global dif-
ferences in beta diversity might be due to treatment of 
multiple sclerosis. Regarding species richness, only the 
subgroup of patients treated with Gilenya (n = 17) was 
different from HC (P = 0.036). In particular, species 
richness was similar between HC and treatment-naïve 
patients (P = 0.48, Additional file 2: Fig. S5B).

We found that abundance of 61 species (10% of all 
examined species) was different between HC and cases 
after accounting for covariates. Covariates included 
age, sex, BMI, smoking, and drug treatment. Half of 
them were enriched in multiple sclerosis cases (referred 
to as MS-related species, n = 31), and half of them were 
depleted (HC-related species, n = 30, Fig.  1A). The 
multiple sclerosis-related species included Ruminococ-
cus torques, Dysosmobacter welbionis, Flavonifractor 
plautii, Lawsonibacter phoceensis, Hungatella effluvia, 
Bilophila wadsworthia, Gordonibacter urolithinfaciens, 
Anaerobutyricum hallii, Pseudoflavonifractor capil-
losus, Blautia wexlerae, Blautia massiliensis, Anaer-
otruncus colihominis, Erysipelatoclostridium ramosum, 
Ruminococcus gnavus, Sellimonas intestinalis, Copro-
bacillus cateniformis, and Clostridium innocuum. The 
HC-related species included Haemophilus parainflu-
enzae, Veillonella rogosae, Victivallis vadensis, Bifi-
dobacterium angulatum, and Streptococcus australis. 
Most multiple sclerosis-related species (65%) were 
inversely correlated with species richness, while most 
HC-related species (87%) were positively correlated 
with richness when considering the total cohort (n = 
296 individuals), or specific subgroups (HC, cases or 
treatment-naïve cases, respectively) (Additional file  1: 
Table S5, Additional file 2: Fig. S6).

We analyzed the predicted functional modules of 
the bacteriome issued from three databases: gut-brain 
modules (GBM), gut metabolic modules (GMM), and 
KEGG modules. Comparing cases and HC, we found 
one, five, and zero contrasted modules, respectively, all 

Table 1  Demographic characteristics of the patients with multiple sclerosis and healthy controls

SD Standard deviation
a P-values associated either with Wilcoxon test (quantitative variable) or Chi-squared test (qualitative variable) are displayed

Variable Patients with multiple sclerosis Healthy controls Pa

N 148 148 -

Age (years), mean ± SD 36 ± 8.4 36 ± 8.4 0.48

Sex (Female/Male), n(%) 98(66)/50(34) 98(66)/50(34) 1

BMI (kg/m²), mean ± SD 24 ± 4.3 23 ± 3.4 0.078

Smoking (Never/Previous/Current), n(%) 50(34)/56(38)/40(27) 90(61)/41(28)/15(10) 3.5e-06



Page 7 of 17Thirion et al. Genome Medicine            (2023) 15:1 	

Fig. 1  Contrasting bacterial species (metagenomics species (MGS)) and functional modules. A Barcode illustration of contrasted bacterial species 
after deconfounding for covariates (age, sex, BMI, smoking, and drug treatment). The 50 “tracer” genes are in rows, abundance is indicated by color 
gradient (white, not detected; red, most abundant); individuals, ordered by status (cases or HC) and by increasing species richness, are in columns. B 
Boxplots of contrasted bacterial modules (gut metabolic module (GMM) and gut-brain module (GBM)) after deconfounding for the same covariates. 
P-values associated with Wilcoxon test are displayed. MS = multiple sclerosis patients, HC = healthy controls
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more abundant in cases (Fig.  1B). The only contrasted 
GBM was the inositol synthesis pathway. The five con-
trasted GMM were chondroitin sulfate and dermatan 
sulfate degradation, pentose phosphate pathway (oxi-
dative branch), methanogenesis from carbon dioxide, 
methanol conversion, and lactate consumption.

Contrasted bacterial species correlate with plasma 
inflammation markers and blood cell gene expression
Since markers of inflammation intendedly are influenced 
by multiple sclerosis treatment, we correlated contrasted 
bacterial species with clinical variables, plasma cytokine 
concentrations, and blood cell gene expression in treat-
ment-naïve cases only (Fig. 2A). A cluster of inflammation 
markers (composed of blood leukocytes, CRP, and blood 
cell gene expression of IL17A and IL6) was positively asso-
ciated with a cluster of MS-related species (among which 
Flavonifractor plautii had the highest number of signifi-
cant correlations, P < 0.05, Fig. 2B) while inversely associ-
ated with a cluster of HC-related species. This pattern of 
associations, as well as the specific correlations of F. plau-
tii with markers of inflammation was confirmed in HC 
(Additional file 2: Fig. S7A-B). Moreover, MS-related spe-
cies Clostridium leptum correlated directly with expres-
sion of four type 1 IFN-induced blood cell genes: MX1, 
IFIT1, IFI44L, and IFI27 (Fig. 2C).

Bacterial species richness of treatment‑naïve multiple 
sclerosis cases associate with number of relapses
In treatment-naïve cases (n = 31), species richness adjusted 
for age, sex, BMI, fecal water content (a proxy of constipa-
tion), and smoking status was unexpectedly correlated with 
the number of relapses over 2 years of follow-up (rho = 0.53, 
P = 0.002, Spearman’s correlation, Fig.  3A). Consistently, 
the group of clinically active (CA, i.e., at least one relapse 
during the 2 years of follow-up; n = 12) among treatment-
naïve cases was significantly richer in bacterial species 
than the group of clinically not active cases (CNA; i.e., no 
relapse during the 2 years of follow-up; n = 19) (P = 0.023, 
Wilcoxon test, Fig. 3B). Bacterial gene richness showed the 
same trend (Fig. 3C,D). There was no such relationship in 
the other treatment-based subgroups, including the group 
of cases that was formerly treated (n = 23, rho = 0.2, P = 

0.36, Spearman’s correlation, Additional file  2: Fig. S8). 
Adjusted species richness was not associated with duration 
between baseline and latest relapse before baseline or first 
relapse after baseline (Additional file 2: Fig. S9A-B-C).

CA and CNA cases from the treatment-naïve group 
had similar phenotypic profile, except for BMI (Table 2). 
When contrasting abundance of bacterial species 
between CA and CNA cases, two species were more 
abundant in CNA after deconfounding for covariates 
(P ≤ 0.05): Faecalibacterium prausnitzii and Gordoni-
bacter urolithinfaciens. The same two species were also 
more abundant in CNA cases when comparing these 
to HC but displayed no difference between CA and HC 
(Fig.  4A–C). Apart from G. urolithinfaciens, only two 
species from the HC/MS contrast were found signifi-
cantly different between CA and CNA (an Anaerobutyri-
cum and an unclassified Oscillospirales). In particular, 
F. plautii showed no difference between CA and CNA 
(Additional file 2: Fig. S10).

At the bacterial functional level, acetylneuraminate 
and acetylmannosamine degradation potentials were 
increased in CNA, whereas methanogenesis (methanol 
=> methane) was increased in CA (Fig. 4D,E). Interest-
ingly, other methanogenesis-related features were found 
either ambiguously deconfounded (Methanobrevibacter 
(genus), Methanobacteriaceae (family)), or confounded 
by fecal water content (coenzyme M biosynthesis, F420 
biosynthesis, CO2 => methane) (Additional file  1: 
Table  S6). Consistently, abundance of the genus Metha-
nobrevibacter and fecal water content were inversely 
correlated, considering all MS patients or only those 
carrying the genus Methanobrevibacter (rho = −0.24, P 
= 0.003, n = 146, and rho = −0.29, P = 0.027, n = 57, 
respectively) (Additional file 2: Fig. S11).

Bacterial species more abundant in CA treatment-naïve 
cases were positively correlated to a group of plasma 
cytokines including IL-22, IL-17A, IFN-β, IL-33, and 
TNF-α, while inversely correlated to CRP, and the blood 
cell gene expression of IL6 (Fig. 4F). Species more abun-
dant in CNA treatment-naïve cases showed the opposite 
pattern, though generally not significantly. More specifi-
cally, F. prausnitzii negatively correlated with the cytokine 
IL-10 (rho = −0.39, P = 0.03, n = 31) while G. urolith-
infaciens inversely correlated with lymphocytes counts 

Fig. 2  Associations of contrasted bacterial species (metagenomics species (MGS)) with inflammatory markers. A Spearman’s correlations between 
contrasted bacterial species and fasting circulating inflammatory markers in the subgroup of treatment-naïve patients only. Only features with at 
least one p-value under 0.05 are displayed. Black dots denote correlations with FDR ≤ 0.1, while empty circles indicate correlation with P ≤ 0.05. The 
right side bars indicate the Cliff’s Delta (CD, effect size) of the feature in the cases/HC contrast (red: more abundant in cases; blue: more abundant in 
HC). B Relationships between abundance of Flavonifractor plautii and a group of fasting circulating inflammation markers. C Relationships between 
abundance of Clostridium leptum and expression of selected blood leukocyte genes. Spearman’s correlation coefficients along with the associated 
p-values are displayed. CD = Cliff’s Delta; MGS = metagenomics species. MS = multiple sclerosis patients, HC = healthy controls, EDSS = expanded 
disability status scale; MSSS = multiple sclerosis severity score (0: at baseline; 1: after 2-year follow-up)

(See figure on next page.)
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Fig. 2  (See legend on previous page.)
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Fig. 3  Species (metagenomics species (MGS)) richness and disease activity in treatment-naïve patients. A–C Relationships between A species 
richness or C gene richness adjusted for covariates (age, sex, BMI, smoking status, and fecal water content) and number of relapses during 
follow-up, in treatment-naïve patients only. Spearman’s correlation coefficients along with the associated p-values are displayed. B–D Distribution 
of B adjusted species richness or D adjusted gene richness, according to disease activity in treatment-naïve patients. P-values associated with 
Wilcoxon tests are displayed. CNA = clinically not active; CA = clinically active; MS = multiple sclerosis patients, MGS = metagenomics species

Table 2  Demographicand clinical characteristics of the clinically active and clinically non-activetreatment-naïve patients

CA Clinically active patient, CNA Clinically non-active patient, SD Standard deviation
a P-values associated either with Wilcoxon test (quantitative variable) or Chi-squared test (qualitative variable) are displayed

CA CNA Pa

N 12 19 -

Age (years), mean ± SD 34 ± 9.4 39 ± 8 0.16

Sex (Female/Male), n(%) 8(67)/4(33) 11(58)/8(42) 0.91

BMI (kg/m²), mean ± SD 22 ± 2.3 24 ± 2.7 0.029

Smoking (Never/Previous/Current), n(%) 5(42)/3(25)/4(33) 4(21)/8(42)/7(37) 0.43

Fecal water content (%), mean ± SD 67 ± 12 71 ± 10 0.16

EDSS (baseline), mean ± SD 2.1 ± 1 1.5 ± 1.4 0.17

MSSS (baseline), mean ± SD 5 ± 2.1 3.6 ± 2.8 0.092

EDSS (follow-up), mean ± SD 2.2 ± 1.5 1.8 ± 1.8 0.36

MSSS (follow-up), mean ± SD 4 ± 2.1 3.3 ± 3 0.41

Number of relapses during follow-up, mean ± SD 1.8 ± 1 0 ± 0 1.3e-07
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(rho = −0.43, P = 0.02, n = 31). Of note, only blood cell 
gene expression of IL10 displayed a significant differ-
ence between CA and CNA (P = 0.048) after adjusting 
for covariates. All bacterial species more abundant in CA 
were positively correlated with bacterial species richness 
(rho > 0) in the different sub-cohorts (treatment-naïve 
cases only, all cases, HC or all cohort, respectively). Con-
sistently, abundance of G. urolithinfaciens was inversely 
correlated with species richness in the same sub-cohorts 
(−0.3 < rho < −0.25) whereas abundance of F. praus-
nitzii was inversely correlated with species richness in 
treatment-naïve cases (rho = −0.18), and tended to be 
positively correlated with species richness in other sub-
cohorts (0.06 < rho < 0.09, Additional file 2: Fig. S12).

Interestingly, in HC, the abundance of F. prausnitzii 
was positively correlated to total blood leukocyte and 
neutrophil counts, and to the plasma cytokines CCL2 
and IL-33 (P < 0.05, Additional file 2: Fig. S13).

Considering all CNA and CA cases (n = 100 and n = 48, 
respectively) yielded similar results at the bacterial spe-
cies level: the set of species significantly enriched in CNA 
still included F. prausnitzii and G. urolithinfaciens and was 
further enriched with Anaerostipes hadrus, Gemmiger for-
micilis, and Roseburia inulinovorans. On the other hand, 
absolute abundance of Methanobrevibacter smithii and 
Victivallis vadensis was enriched in CA (Additional file 2: 
Fig. S14). At predicted bacterial functional levels, results 
were different, with propionate degradation increased in 
CNA, while coenzyme M biosynthesis and lysine biosyn-
thesis were enriched in CA (Additional file 2: Fig. S15).

Alterations of the viral gut microbiota in multiple sclerosis
Among the gut viral orders, Caudovirales bacterio-
phages dominated the viral gut microbiota in both 
cases and HC (Fig. 5A and Additional file 2: Fig. S16A). 
The same viral order significantly differed between 
the two groups (Fig. 5B) and was also associated with 
treatment (Additional file  2: Fig. S16B). To explore a 
potential aberration of the viral gut microbiota in cases 
versus HC, we tested the viral alpha diversity indices. 
We found a significantly higher Shannon diversity of 
viral species (P = 0.022, Fig.  5C) and slightly lower 

viral Chao1 richness (P = 0.058, Additional file 2: Fig. 
S16C) in cases compared to HC. In addition, we exam-
ined the beta diversity of gut viral species by principal 
coordinates analysis based on the Bray-Curtis distance 
between individual viromes of the dataset. We found 
that the composition of the viral microbiota of cases 
and HC grouped into two clusters (PERMANOVA, 
P = 0.017), suggesting the composition of viral gut 
microbiota of cases differs from that in HC (Fig. 5D).

In the structure of the viral gut microbiota of treat-
ment-based subgroups of cases, we found a modest 
change in viral richness of the treatment-naïve cases 
subgroup when compared with HC (adjusted P = 0.056, 
Additional file  2: Fig. S16D), whereas there was no sig-
nificant difference in alpha or beta diversity between 
these subgroups (Additional file  2: Fig. S16E-F). When 
compared with findings from the bacterial gut microbi-
ota analyses, this finding may suggest that the viral gut 
microbiota is less responsive to multiple sclerosis treat-
ment than the bacterial microbiota. Additionally, in the 
subgroup comparisons between CA, CNA, and HC, we 
found that gut viral composition of CNA individuals dif-
fers from that of HC group (adjusted P = 0.009, Addi-
tional file 1: Table S7).

Only one viral gut microbiota feature differed 
between cases and HC (Fig.  5E and Additional file  1: 
Table  S8). This feature is annotated as Enterococ-
cus phage EFC-1, the abundance of which was lower 
in cases and inversely associated with drug treatment 
(Fig.  5F) but positively linked to the blood cell gene 
expression of pro-inflammatory markers including IL1B 
and TNF-α (Fig. 5G). This bacteriophage is reported as 
a lytic or temperate phage to its bacterial host, Entero-
coccus faecalis, with a prevalence lower than 10% in our 
dataset (Additional file 2: Fig. S16G). Of interest, multi-
ple Lactococcus viruses were inversely linked to inflam-
matory markers expressed in blood cells (Fig.  5G). 
Another bacteriophage, Enterobacteria phage cdtI, was 
positively associated with multiple sclerosis treatment, 
whereas the abundance of its host bacterium Escheri-
chia coli was not altered in treated cases (Additional 
file 2: Fig. S16H-I).

Fig. 4  Bacterial species (metagenomics species (MGS)) and bacteriome modules related to MS activity. A Bacterial species and D predicted 
bacteriome functional modules that are contrasted between CA and CNA treatment-naïve patients (after deconfounding for age, sex, BMI, 
smoking status, and fecal water content). Along is their effect size (Cliff’s Delta) in the contrasts (1) CA vs CNA, (2) CA vs HC, (3) CNA vs HC. B,C,E 
Distribution of bacterial species or bacteriome functional modules that are more abundant in CNA patients. P-values associated with Wilcoxon 
tests are displayed. F Correlation between contrasted bacterial species and fasting circulating inflammation markers in treatment-naïve patients. 
Only bacterial species with at least one p-value under 0.05 are displayed. Black dots denote correlations with FDR ≤ 0.1, while empty circles indicate 
correlation with P ≤ 0.05. The right side bars indicate the Cliff’s Delta (CD, effect size) of the feature in the CA/CNA contrast (green: more abundant 
in CNA; yellow: more abundant in CA). CD = Cliff’s Delta; CA = clinically active; CNA = clinically not active; HC = healthy controls; MS = multiple 
sclerosis patients; NS = non-significant, EDSS = expanded disability status scale; MSSS = multiple sclerosis severity score (0: at baseline; 1: after 
2-year follow-up)

(See figure on next page.)
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Fig. 4  (See legend on previous page.)
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Discussion
Following full adjustment for inter-individual differ-
ences in age, sex, BMI, bacterial cell counts, and vari-
ous treatment regimens, we found 61 bacterial species 
differentially abundant when comparing all cases with 

HC, among which 31 species were increased in mul-
tiple sclerosis cases (referred to as MS-related spe-
cies). More of these have previously been reported to 
be increased in relative abundance in multiple sclero-
sis, notably Clostridium leptum, Clostridium inocuum, 

Fig. 5  Alteration of viral gut microbiota composition in cases and HC subjects. A Relative abundance of gut viral orders in cases and HC groups. 
B Relative abundance of Caudovirales in cases and HC individuals. C Shannon’s diversity for the viral gut microbiota between patients and HC at 
the virus species level. Statistical significance was determined by Wilcoxon’s rank sum test between two groups. D Principal coordinate analysis 
(PCoA) of the Canberra distance showing the stratification of patients from HC by viral gut microbiota at species level. Statistical significance for the 
Canberra distance was determined by PERMANOVA with permutations done 999 times. E Relative abundance of bacteriophage Enterococcus phage 
EFC-1 in all cases and HC. F Relative abundance of bacteriophage Enterococcus phage EFC-1 in treated or never treated cases compared with HC. G 
Gut viral species associate with blood cell expression of inflammation markers. Statistical significance was determined by Wilcoxon’s rank sum test 
between two groups. Kruskal-Wallis test, followed by Wilcoxon’s rank sum test with Benjamini-Hochberg correction was performed between the 
three groups. HC = healthy controls
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Anaerotruncus colihominis, or Ruminococcus gnavus. 
However, the majority of the here identified MS-related 
species have not previously been linked to multiple 
sclerosis. One of them, Flavonifractor plautii, is of par-
ticular interest since several studies showed that it may 
affect IL-17 or CD4+T cells [55, 56]. As an isoflavone-
metabolizing species, this increase might be due to an 
isoflavone-enriched diet in MS cases [57], which could 
be tested in an interventional clinical trial. Overall, mul-
tiple sclerosis-related species were inversely associated 
with bacterial species richness, while HC-related spe-
cies were positively associated with richness, suggesting 
that processes that reduce species richness are linked 
to the multiple sclerosis gut microbiota. To reinforce 
this hypothesis, multiple sclerosis-related species did 
directly associate with a group of biomarkers of inflam-
mation (plasma concentrations of IL17A, IL6, USP18, 
CRP, and blood counts of total leukocytes, monocytes, 
neutrophils, and basophils) in the sub-cohort of treat-
ment-naïve cases.

At the level of the bacteriome, we found several path-
ways related to methane metabolism enriched in cases. 
This is consistent with other studies, which reported an 
increase in relative abundance of Methanobrevibacter 
smithii or methane in multiple sclerosis patients [58]. 
However, this difference might be an effect of constipa-
tion in multiple sclerosis. Indeed, M. smithii is known 
to associate with lower transit time. Consistently, some 
methane metabolism pathways were in fact confounded 
by fecal water content, a proxy of constipation, in our 
study.

In treatment-naïve cases, we found a strong and posi-
tive relationship between the number of relapses during 
2 years of follow-up and bacterial richness, meaning that 
cases with clinical disease activity (CA) were richer in 
gut bacteria than clinically not active patients (CNA), a 
pattern that did not exist in other treatment-defined sub-
groups of cases. This result is unexpected since a high gut 
bacterial richness is commonly considered as a beneficial 
marker of health [36], even if it was reportedly increased 
in schizophrenia [59]. A longitudinal study should allow 
following dynamics of gut microbiota and thus determine 
possible richness changes in remission and relapses. Our 
observations suggest that richness might be a variable to 
consider in the context of specific disease and might not 
generally indicate the disease severity.

The abundance of two bacterial species were enriched 
in the group of untreated CNA, Faecalibacterium praus-
nitzii and Gordonibacter urolithinfaciens. The former is a 
butyrate-producer well known for its anti-inflammatory 
properties. The latter produces urolithin, a metabolite 
that also holds anti-inflammatory properties which alle-
viates severity of EAE in mice [60, 61]. Both bacterial 

species were also more abundant in the whole multiple 
sclerosis group of CNA cases as compared to CA or HC. 
Whether this finding reflects changes in lifestyle and cor-
responding changes in abundance of a selected gut bacte-
rial species in CNA cases, for example following adoption 
of a diet enriched in plant-based phytochemicals includ-
ing the polyphenol ellagic acid, the precursor of urolithin, 
is unknown.

Intriguingly, the established properties of these two 
bacterial species make F. prausnitzii and G. urolithinfa-
ciens relevant live biopharmaceutical product candidates 
to be tested in future clinical trials aiming to alleviate 
multiple sclerosis by decreasing the number of relapses. 
Our findings are in line with a recent study showing that 
a diet enriched in isoflavones, another type of polyphe-
nol, alleviates EAE in mice [57].

On the contrary, it is also noteworthy that we identified 
a positive correlation between several species of the CA-
associated bacterial microbiota and plasma concentra-
tions of IL-17A, as well as type 17-linked IL-22. Besides 
their linkage to active disease, both cytokines also cor-
relate with active brain lesions in multiple sclerosis [62], 
hence supporting the notion of a gut bacteria-cytokine-
brain axis in multiple sclerosis with possible involvement 
of the identified bacteria.

At the gut bacteriome level, methanogenesis capac-
ity was lower in CNA, which is consistent with a study 
showing a direct association between the presence of 
an Euryarchaeota and a shorter time to relapse [63]. 
However, considering the whole patients cohort and 
following deconfounding for covariates and adjust-
ment for differences in fecal water content, most sig-
nificant links between methanogenesis pathways of 
the gut microbiome and multiple sclerosis were lost. 
Thus, the reduced methanogenesis potential in multi-
ple sclerosis might be secondary to obstipation, which 
is a common complication in multiple sclerosis [64]. 
Indeed, constipation was associated with an altered 
gut microbiota and worsening of disease in the EAE 
mouse model [65].

In the whole multiple sclerosis cohort, we also found 
that propionate metabolism was different between CNA 
and CA following deconfounding of microbiome data. 
Serum concentration of propionic acid is reported to be 
lower in cases compared to HC in several studies [66], 
and supplementation of propionate has been shown to 
alleviate multiple sclerosis symptoms [22].

While these three immune-modulating gut bacterial 
metabolites, butyrate, urolithin, and propionate, may play 
a crucial role in prevention of relapses of multiple scle-
rosis, other recent studies have indicated that additional 
metabolites in blood and cerebrospinal fluid derived from 
gut bacterial modification of food components may exert 
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neurotoxic effects in multiple sclerosis [24, 67]. Thus, a 
complex mixture of immune-modulating gut bacterial 
metabolites triggering disease escalation or de-escala-
tion may be involved in multiple sclerosis pathogenesis. 
A logical next step in exploring potential causal roles of 
a disrupted bacterial gut microbiota in multiple sclerosis 
pathogenesis might therefore be performance of clini-
cally controlled trials combining medical treatment with 
an adjuvant lifestyle intervention focusing on a predomi-
nantly plant-based diet tailored for favoring gut bacte-
rial production of butyrate, propionate, and urolithin. 
Alternatively, F. prausnitzii and G. urolithinfaciens or 
their derived immune-modulating compounds could be 
devised as probiotics or postbiotics.

The outcome of our studies of the viral gut micro-
biota is to be considered preliminary since the analyzed 
metagenomics sequencing reads originated from bulk 
and not from virus-enriched fecal DNA. However, the 
findings suggest that the viral microbiota of cases may 
differ from that of HC. Especially, the finding of a deple-
tion of the Enterococcus phage EFC-1 in cases is of inter-
est. The gut bacterial host of this phage, Enterococcus 
faecalis, is well known as an opportunistic pathogen, 
which may cause severe infections. Therefore, an enrich-
ment of bacteriophage Enterococcus phage EFC-1 might 
be considered a potential target for future explorative 
intervention in multiple sclerosis.

Limitations of our study include lack of fecal and 
plasma metabolomics to directly measure potential dif-
ferences in bacterial metabolites (especially butyrate, 
propionate, and urolithin) in CA and CNA patients. 
Gut mycobiome data would also have been helpful in 
getting the full picture of gut microbiota in MS, as a 
recent study found gut mycobiome altered in patients 
with MS [68].

Conclusions
We demonstrate an aberrant bacterial and viral gut micro-
biota in multiple sclerosis and that an IL-17A-linked bac-
terial gut microbiota increases with disease activity. Our 
studies of non-disease-active cases identify two anti-inflam-
matory bacterial species, Faecalibacterium prausnitzii 
and Gordonibacter urolithinfaciens whose metabolites, 
butyrate, and urolithin, are known to counteract immune 
disruption in animal models of multiple sclerosis. These 
bacterial species or their derived immune-modulating 
postbiotics are candidates to be tested in future clinically 
controlled interventions as a microbiota-based adjunct 
therapy. Alternatively, medical treatment could be com-
bined with a tailored plant-based diet favoring specific 
gut bacterial production of the identified immune-modu-
lating compounds.
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