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Abstract 

Most microbes on our planet remain uncultured and poorly studied. Recent efforts to catalog their genetic 
diversity have revealed that a significant fraction of the observed microbial genes are functional and 
evolutionary untraceable, lacking homologs in reference databases. Despite their potential biological value, 
these apparently unrelated orphan genes from uncultivated taxa have been routinely discarded in metagenomics 
surveys. Here, we analyzed a global multi-habitat dataset covering 151,697 medium and high-quality 
metagenome assembled genomes (MAGs), 5,969 single-amplified genomes (SAGs), and 19,642 reference 
genomes, and identified 413,335 highly curated novel protein families under strong purifying selection out of 
previously considered orphan genes. These new protein families, representing a three-fold increase over the 
total number of prokaryotic orthologous groups described to date, spread out across the prokaryote phylogeny, 
can span multiple habitats, and are notably overrepresented in recently discovered taxa. By genomic context 
analysis, we pinpointed thousands of unknown protein families to phylogenetically conserved operons linked 
to energy production, xenobiotic metabolism and microbial resistance. Most remarkably, we found 980 
previously neglected protein families that can accurately distinguish entire uncultivated phyla, classes, and 
orders, likely representing synapomorphic traits that fostered their divergence. The systematic curation and 
evolutionary analysis of the unique genetic repertoire of uncultivated taxa opens new avenues for 
understanding the biology and ecological roles of poorly explored lineages at a global scale.  
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Introduction 

Over the last decades, the sequencing of environmental DNA by metagenomics surveys has unveiled a great 
level of microbial biodiversity. These efforts have not only led to the discovery of new bacterial and archaeal 
lineages, most of which have not yet been isolated and cultured, but also uncovered an enormous amount of 
unknown prokaryotic genes whose significance is still largely unexplored.  

Recent large scale microbiome studies covering human gut1, ocean2 and multi-habitat samples3, consistently 
report that a large proportion (27%–47%) of the observed metagenomic genes are functional and evolutionary 
untraceable (i.e., no homologs in reference databases). The lack of both functional information and 
evolutionary links to known organisms makes these supposedly orphan genes difficult to interpret, curate, and 
integrate into comparative metagenomic pipelines, being usually discarded from most analysis. As a result, the 
unique genetic repertoire of uncultivated microbial lineages has not yet been incorporated into reference 
databases of protein domains, orthologous groups (OGs) or microbial gene families4. Thus, despite the 
astonishing amount of data generated by metagenomics sequencing, their study still rely on reference resources 
that are heavily biased towards the genetic pool of fully sequenced microorganisms, leaving a gap in our 
knowledge base and impeding our ability to investigate the true diversity of microbially encoded genes on 
Earth5,6.  

The distinctive genetic repertoire of uncultivated bacteria and archaea might be key to understanding the 
biology and evolution of new microbial lineages7,8. Recent examples of novel molecular functions discovered 
out of unknown genes from uncultivated taxa include new enzymes9,10, antibiotics11, and thousands of 
putatively functional small peptides12. Similarly, the cultivation and genomic analysis of poorly explored 
organisms (e.g., Asgard archaea13 or Planctomycetes8) has led to the discovery of new metabolisms and 
unusual biology14. However, at a global scale, our current view of the genetic repertoire of uncultivated 
organisms remains anecdotal. Not only the function of many of their genes is ignored, but also their potential 
evolutionary links with other uncultured species, their selective pressures and ecological significance. 

Here, we argue that recent methodological advances have unlocked most important impediments at the 
technical and computational level to perform de novo comparative genomics analyses of uncultivated taxa at 
a global scale. Firstly, hundreds of high-quality metagenome-assembled genomes are publicly available1,3,15 
and can be taxonomically classified16. Secondly, it is now possible to use sensitive homology sequence 
searches and clustering algorithms on huge genomic catalogs17,18. This has allowed recent metagenomic 
surveys to employ the concept of protein families —  rather than individual gene entries19 — to identify and 
quantify genetic novelty15,20, contributing to the annotation of distant homologs and reducing the number of 
putative orphan genes. Most importantly, these advances have laid the foundation for the systematic analysis 
of thousands of uncultured organisms under a common phylogenomic framework, which allowed us to address 
long-standing questions on the extent and biological value of their seemingly unrelated orphan genes. 
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Results 

A curated catalog of unknown protein families specific from uncultivated taxa  

We used a comprehensive comparative genomics approach to identify novel protein families in a large multi-
habitat metagenomic dataset covering 151,697 medium and high-quality metagenome assembled genomes 
(MAGs), 5,969 single-amplified genomes (SAGs), and 19,642 reference genomes (i.e., from fully sequenced 
species). This set includes over 400 million gene predictions and was assembled by unifying five data sources 
spanning 82 habitats: two MAG collection spanning thousands of samples from diverse origins (GEM3 and 
GMGC15), a comprehensive human gut catalog (UHGG)1, a global ocean catalog (OMD)21,  and the GTDB 
r95 reference database22 (Table S1).  

Considering that the large pool of unknown metagenomic sequences is typically enriched in incomplete genes, 
assembling artifacts, distant homologs and potential pseudogenes, we applied strict quality and novelty filters 
to our protein family discovery approach (summarized in Fig. 1A), aiming at compiling a collection of high-
quality novel protein families from uncultivated taxa. First, we used deep homology clustering at the amino 
acid level to group all genes into sequence clusters, each serving as a proxy for a different protein family. Next, 
to ensure the detection of unknown protein families specific of uncultivated species, we selected clusters 
lacking sequence members belonging to any of the known reference genomes included in our dataset, and 
excluded entries with significant hits against the latest versions of PFAM-A/B23, eggNOG24, and RefSeq25. 
This allowed us to identify clusters composed exclusively of proteins without known homologs. Moreover, to 
ensure the identification of functionally and evolutionarily relevant protein families, we only selected protein 
clusters containing at least three sequences from three different uncultivated species, and with a conserved 
aligned region of at least 20 contiguous amino acids. This allowed us to discard clusters inferred from barely 
overlapping sequence segments, as well as to build a unique genomic signature for each protein family (i.e., 
putative novel protein domains). To avoid pseudogene-based and viral-specific protein families, we also 
excluded clusters matching either the AntiFam26 or pVOGs27 databases. Finally, we required genes covered by 
the selected novel families to be under purifying selection (dN/dS < 0.5, Fig. 1B) as expected for functional 
coding sequences28, and to be expressible, either based on in silico prediction methods or by empirical evidence 
(i.e., with significant hits against recent metatranscriptome surveys2,29).  

Our final catalog includes a total of 413,335 previously unknown and highly conserved protein families, with 
size, length, and species-content distributions comparable to those currently found in global microbial 
databases (Fig. 1D and 1E). This constitutes an almost three-fold increase over the total number of prokaryotic 
OGs described to date (namely 219,934 bacterial and archaeal eggNOG OGs), evidencing the high number of 
putative molecular functions that are commonly neglected in current metagenomic surveys (Fig. 1D)30,31. From 
an evolutionary perspective, the identified protein families are conserved (average identity 63.2%, Fig. S1) 
and all qualify as novel orthologous groups at the bacterial or archaeal level using phylogeny-based orthology 
prediction methods. Compared to global microbial databases, we found that unknown protein families are 
slightly enriched in transmembrane and signal peptide-containing proteins (being 7.6% and 7.9% more 
frequent than in eggNOG, respectively), which suggests that they may play an important role in mediating 
interactions with the environment. Moreover, while we did not specifically target small peptides, we identified 
13,456 families of proteins shorter than 50 residues, 486 of which have been reported previously as novel 
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functional genes12,  257 containing antimicrobial signatures (Table S2). The lack of distant paralogs within the 
inferred protein clusters, together with the strong purifying selection measurements (average dN/dS of 0.15), 
reinforces the idea of each cluster representing an unknown but highly conserved molecular function. In order 
to facilitate the exploration of this large catalog and its integration into future studies, we provide an online 
interactive browser and extensive downloading material at http://novelfams.cgmlab.org.  

Conserved synteny between novel protein families and metabolic and resistance genes 

Intrigued by the biological significance of the identified unknown protein families, we investigated their 
phylogenetic, functional, and ecological significance. Firstly, we inferred their putative functional roles by 
reconstructing their genomic neighborhood and estimating their degree of gene order and functional context 
conservation, which is a method commonly used for prokaryotic genome analysis32. Our results yielded 74,356 
(17.98%) novel protein families in phylogenetically conserved operon regions containing at least one 
contiguous functionally annotated gene in the same DNA strand. Of those, 1,344 families share a genomic 
context with known and highly conserved marker genes related to energy production or xenobiotic compound 
degradation pathways (Fig. 2A, Table S3), indicating that the role of unknown protein families may not be 
limited to accessory molecular functions but could also involve central metabolic processes. As an example, 
we found 5 novel protein families embedded in operonic regions associated with 3 major pathways of the 
nitrogen cycle (Fig. 2B). Additionally, we found 965 unknown protein families in the genomic context of well-
known antibiotic resistance genes, 25 of which are embedded in clear genomic islands with more than 3 
resistance-related neighbor genes (Fig. 2C, Table S4).  Moreover, we mapped the protein family signatures 
derived from our catalog against the set of 11,779 unknown genes recently annotated based on genome-wide 
mutant fitness experiments33, and found 69 matches to genes associated with specific growth conditions (Table 
S5). 

High content of unknown protein families in the genomes of uncultivated taxa  

From a taxonomic point of view, our results reveal that novel protein families are broadly distributed across 
the entire microbial phylogeny (Fig. 3A), comprising an important fraction of the genetic repertoire of 
uncultivated taxa. For instance, recently discovered lineages such as Obscuribacterales (a non-photosynthetic 
sister group to Cyanobacteria34) and Thorarchaeales (sulfur-reducing Asgard archaea35) contain an average of 
616 and 375 unknown protein families from our catalog, per genome, respectively. Even the reduced-size 
genomes from the ubiquitous and host-dependent Patescibacteria phylum contain a total of 29,935 novel 
protein families, 63 per genome on average. The majority of these novel families (56%) carry either 
transmembrane domains or signal peptides, being likely involved in cell-cell or cell-environment interactions 
such as surface attachment to their hosts and the uptake of compounds36,37. Functional predictions based on 
strict synteny analysis support this idea, with 502 novel families from the Patescibacteria group potentially 
involved in molecular transportation, 34 in adhesion, and 13 in cytokinesis. Specific examples include the 
Patescibacteria protein families NOVF69IJ, NOVT9VCK and NOVO6T3T, which were found embedded in 
genomic contexts clearly associated with hydrolysis, competence and endonuclease degradation; all of them 
processes related with the disruption of the host cell wall and the incorporation and degradation of DNA38. 
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Unknown protein families are prevalent across samples and habitats 

In addition to their potential functional relevance, we also investigated whether unknown protein families 
represent rare or widespread traits at a global ecological scale. For this purpose, we estimated the ecological 
distribution of each protein family in our catalog by mapping their genomic signatures against an expanded set 
of 63,410 public metagenomic samples spanning 157 habitats (Table S6). Strikingly, we found that the 
majority of the new protein families (55%) are detected in more than ten samples, span at least two habitats, 
and are found in microbial communities with very different structures (average Bray-Curtis dissimilarity 
among samples containing each protein family is 0.88, Fig. S2). This result contrasts with the habitat-specific 
pattern observed for the majority of individual species-level genes15 and indicates that the protein families 
reported here either represent putative core molecular functions from widespread microbial lineages, or derive 
from promiscuous mobile elements. To quantify the contribution of each scenario, we specifically identified 
protein clusters containing at least one sequence member in a plasmid-like or viral-like contig and studied their 
ecological pattern. Indeed, we found that mobility strongly correlates with the ecological prevalence of the 
protein families (blue and red lines in Fig. 3B, Fig. S3), although cross-habitat protein families are not restricted 
to those linked to putative horizontal transfers. The same pattern was observed when analyzing the taxonomic 
breadth of each individual novel protein family: we found that protein families detected across different high-
level taxonomic lineages (e.g., cross-domain and cross-phylum) are more likely to be part of mobile elements 
(Fig 3C). However, the vast majority of families (90.5%) appeared to be unrelated to obvious events of 
horizontal gene transfer, suggesting a more constitutive role in their host genomes. 

Synapomorphic protein families of uncultivated phyla, classes and orders 

Although all protein families in our catalog could be considered relevant from an evolutionary perspective 
(e.g., are phylogenetically conserved and under purifying selection), we identified a core set of 980 protein 
family clusters synapomorphic for entire uncultivated lineages —that is, present in nearly all MAGs/SAGs 
from a given lineage (90% coverage) but never detected in other taxa. While a similar pattern might be 
expected for accessory functions at narrow phylogenetic ranges (i.e., species- or genus-specific proteins), these 
newly discovered protein families can accurately distinguish 16 uncultivated phyla, 19 classes, and 90 orders, 
involving 179, 104, and 697 novel protein families, respectively. We argue that, despite being unknown and 
originally treated as orphan sequences, these synapomorphic protein families carry great evolutionary 
significance and might represent functional innovations that fostered the ancestral divergence and selection of 
the underlying lineages. Consistent with this idea, synapomorphic protein families show a significantly lower 
dN/dS ratio than other conserved (but not synapomorphic) unknown protein clusters (Fig. 4B), indicating 
stronger purifying selection. Similarly, the rate of unknown synapomorphic protein families was higher on 
uncultivated lineages with poorly understood biology. This is the case of the recently proposed Riflebacteria 
phylum (25 putative synapomorphic detections) or the Thorarchaeia class, where the 12 detected putative 
synapomorphic families may help to understand their radiation from other Asgard. The genomic context of 
these crucial families allowed us to hypothesize about their possible functional role and biological relevance. 
For instance, we found the Thorarchaeia synapomorphic family NOV4IF0P to be embedded in a highly-
conserved genomic context containing eukaryotic-like genes related to protein translation (rpi35a and elp3; 
Figure 4C). Similarly, synapomorphic protein families in other lineages also relate to key processes, probably 
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representing functional innovations accounting for their divergence and radiation. For instance, we found 
synapomorphic families in genomic contexts involved in cytochrome type-c biogenesis (ccmC, ccmE and 
ccmF) in the HRBIN17 class, DNA repair (priA and dskA) in the UBP6 phylum, or chemotaxis (mcp and dgt) 
in the Riflebacteria phylum (Figure 4C), among many others that can be easily explored in our online resource. 

Discussion 

Overall, our work provides a global phylogenomic analysis of the largely uncharted repertoire of unique genes 
from uncultured prokaryotes, serving as a base resource for further investigations on their functional and 
ecological roles. We demonstrate that evolutionary untraceable sequences from metagenomic surveys are not 
necessarily orphan genes, pseudogenes or sequencing artifacts. Often, they can represent highly-conserved 
protein families never observed in cultured organisms but prevalent across unknown lineages and under strong 
purifying selection. By using strict quality filters, we provide a curated set of relevant novel protein families 
likely accounting for the diversification of complete high-rank lineages and/or involved in central processes 
such as energy production, xenobiotic metabolism and microbial resistance. Here, we urge for their 
incorporation into reference databases and future metagenomic workflows, as they might be key for 
understanding the biology of poorly studied bacteria and archaeal groups.  

Moreover, our work describes a general framework for the curation of unknown metagenomics sequences 
using phylogenomic techniques, demonstrating that current computational resources are now sufficient to 
attempt the analysis of unknown metagenomic sequences from a comprehensive comparative genomics 
perspective. However, based on the large number of genes and protein families that we discarded due to quality 
filters and limited sampling depth, the data reported here could only represent the tip of the iceberg. We expect 
that the number of novel protein families inferred from uncultivated organisms using similar frameworks will 
increase exponentially as we advance in the reconstruction of eukaryotic MAGs and the exploration of the rare 
biosphere in understudied microbial ecosystems.   
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FIGURE 1 

 

Figure 1. Protein family discovery pipeline and general statistics. (A) Workflow used to identify high 
quality unknown protein families. (B) dN/dS distribution of the unknown protein families. (C) Average protein 
identity of the unknown protein families. (D) Protein length distribution of unknown families (blue histogram) 
compared to bacterial and archaeal eggNOG orthologous groups (yellow) and novel small peptides reported 
in Sberro et al.12 (red) (E) Number of species distribution of unknown families (blue) compared to bacterial 
and archaeal eggNOG orthologous groups (yellow). 

FIGURE 2 

 

Figure 2. Summary of unknown protein families linked to metabolic marker genes. (A) Presence/absence 
matrix of unknown protein families forming operon-like structures with marker genes involved in energy and 
xenobiotic degradation KEGG39 pathways (rows) across the bacterial and archaeal GTDB phylogeny collapsed 
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at the order level (columns). Taxonomic orders without detections are not shown. The novel protein families 
associated with each KEGG module can be explored at http://novelfams.cgmlab.org (B) Examples of unknown 
protein families tightly coupled with genes for every nitrogen cycling step. (C) Examples of unknown families 
surrounded by antibiotic resistance genes (as predicted by CARD). 

FIGURE 3  

 

Figure 3. Novel protein families are widespread across the microbial phylogeny and cross habitats. (A) 
Phylogenetic distribution of unknown protein families across the GTDB22 bacterial and archaeal phylogeny 
collapsed at the order level. Red bars indicate the number of unknown protein families per genome in each 
taxonomic order. Blue bars represent the proportion of uncultivated species under each collapsed order. 
Branches with more than 400 unknown protein families are indicated. (B) Ecological breadth (measured as the 
number of habitats) of the unknown protein families classified by three levels of rareness (number of samples 
in which they are detected). The blue and red lines indicate the proportion of protein families predicted as 
mobile in plasmids and viral contigs respectively, which correlates with ecological breadth. (C) Number of 
unknown protein families confined to each taxonomic rank. The term genus in the x-axis indicates the number 
of protein families detected in multiple species from the same genus, while the domain bar indicates families 
spanning more than one phylum from the same domain. The blue and red lines indicate the proportion of 
protein families predicted as mobile in plasmids and viral contigs respectively.  
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FIGURE 4 

 

Figure 4. Sample of the 980 unknown protein families highly exclusive and widely distributed 
(synapomorphic) across different phyla and classes. (A) Number of synapomorphic unknown protein 
families found for 16 uncultivated phyla and 19 classes. Individual examples and other synapomorphic protein 
families can be explored at http://novelfams.cgmlab.org (B) Comparison of dN/dS values between 
synapomorphic and non-synapomorphic families (Wilcoxon test, two-sided, p-value < 2.2e-16) (C) Schematic 
overview of four phylum and class-level synapomorphic protein families located in conserved gene clusters 
involved in relevant cellular processes. Gene names correspond to: dys, deoxyhypusine synthase; rpl35ae, 
large subunit ribosomal protein L35Ae; elp3, Elongation Protein 3 Homolog; rbsK, ribokinase; BET3, 
trafficking protein particle complex subunit 3; ccmC, heme exporter protein C; ccmE, cytochrome c-type 
biogenesis protein; ccmF, cytochrome c-type biogenesis protein; dksA, DnaK suppressor protein; priA, 
primosomal protein N'; pdp, pyrimidine-nucleoside phosphorylase; dgt, dGTPase; mcp, methyl-accepting 
chemotaxis protein.  
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Materials and Methods 

Data collection 

We retrieved medium and high quality Metagenome Assembled Genomes (MAGs), Single-amplified 
Genomes (SAGs) and reference genomes from 5 different studies:  i) 51,634 medium and high-quality MAGs 
(>=50% complete, <=5% contamination) from a planetary multi habitat catalog including >10k samples and 
covering diverse habitats (GEM)3, ii) 46,655 high-quality MAGs (>=90% complete, <=5% contamination) 
released by another multi habitat catalog spanning  13,175 samples and 14 biomes (GMGC)15, iii) 31,910 
MAGs from the GTDB-r95 database40 iv) 27,123  medium and high-quality MAGs (>=50% complete, <10% 
contamination), 5,969 Single Amplified Genomes (SAGs) and 1,707 reference genomes obtained from ocean 
samples21,41–43 and v) 4,644 medium and high quality reference human gut MAGs (>=50% complete, <5% 
contamination) from the UHGG human gut catalog1.  

Recalling Open Reading Frames 

We observed that some MAG collections contained genes predicted under an incorrect codon table (for 
instance, genes from the Gracilibacteria or Mycoplasma lineages were predicted under the standard codon 
table). We therefore re-computed ORF predictions for the MAGs in the GEM, GMGC and GTDB catalogs. 
For each MAG, we used PROKKA44 selecting the correct genetic table for each genome based on its taxonomic 
annotation. We further verified that the corrected Gracilis Bacteria and Mycoplasma ORFs were indeed longer 
than the original ones. We obtained 116,208,548, 110,913,525 and 106,052,079 genes for GEM, GMGC and 
GTDB respectively. After combining them with the 56,637,438 and 10,002,521 genes in the oceanic and 
UHGG genomes, MAGs and SAGs, we obtained a final catalog of 399,814,111 genes.  

Taxonomic annotations 

In order to obtain homogeneous taxonomic annotations for all the MAGs in our collection, we re-annotated 
them using GTDB-Tk v1.6.0 (GTDB rev202 version)16.  

Deep homology-based protein clustering 

For computing gene family clusters, we used MMseqs218 with relaxed thresholds: minimum percentage of 
amino acids identity of 30%, E-value < =1e-3, and minimum sequence coverage of 50%. The parameters used 
were --min-seq-id 0.3 -c 0.5 --cov-mode 1 --cluster-mode 2 -e 0.001. We discarded clusters with less than 3 
sequences. We computed Multiple Sequence Alignments for each gene family with Clustal Omega45 using the 
translated version of the genes; and subsequently reconstructed their phylogeny with FastTree246. We 
calculated alignment statistics (mean identity, most unrelated pair, most distant sequence) on each protein 
family alignment using Alistat47. 

Detection of protein clusters specific from uncultivated taxa  

To identify genes/proteins without homologs in current genomic databases, we mapped the members of each 
protein family cluster against: i) EggNOG v524 with eggNOG-mapper v248  searches on all the protein 
sequences of each family. Hits with an E-value < 1e-3 were considered significant; ii) PFamA49 with 
HMMER50 hmmsearch against all the protein sequences of each family.  Hits with an E-value < 1e-5 were 
considered significant.  iii) PFamB23 with HMMER hmmsearch searches against the representative protein 
sequences (longest sequences) of each family.  Hits with an E-value < 1e-5 were considered significant. iv) 
Refseq51  with DIAMOND52 blastx (sensitive flag) searches against the cds sequences of all the members of 
the family. Hits with an E-value < 1e-3 and query coverage > 50% were considered significant. All protein 
family clusters with a significant hit in any of the above databases were considered non-novel and discarded 
from the study. 

Detection of spurious domains in protein families  
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In order to discard sequencing errors and potential pseudogenes, we mapped our catalog against the AntiFAM 
26 database (HMMER search, --cut_ga parameter, as recommended), and discarded families with E-value < 
1e-5.  We also discarded families with significant hits in the viral PVOG database27 using HMMER and an E-
value threshold < 1e-5 and minimum coverage of 50%.  

Conserved Domain Detection 

We generated Multiple Sequence Alignments for each family with Clustal Omega. For each protein family, 
the most conserved domain was considered the longest aligned region in which 80% of the residues were not 
gaps. Protein families whose most conserved domain was shorter than 20 residues were discarded. 

Calculation of dN/dS 

Multiple sequence alignments from each protein family were back-translated into codon alignments, and used 
to reconstruct phylogenetic trees using FastTree2 with default parameters. The whole workflow was executed 
using ETE v353 with options ete3 build --nt-switch-threshold 0.0 --noimg --clearall --nochecks -w 
clustalo_default-none-none-none --no-seq-rename. To calculate selective pressure per family, we ran HyPhy 
with the BUSTED model 54 and default parameters using the nucleotide alignment and tree generated 
previously, and retrieved the dN/dS under the full codon model. We discarded protein families with dN/dS 
values higher than 0.5. 

Detection of protein coding families  

We used back-translated alignments for running RNAcode55. Because the software calculates statistics on the 
longest sequence, we rearranged the alignments so that the longest sequence was the first to appear. We ran 
RNAcode with default options and the --stop-early flag. Protein families yielding RNAcode p-values lower 
than 0.05 were considered coding and retained in our catalog. Protein families without significant p-value were 
discarded from the study, unless they were detected in metatranscriptomics datasets (see next section).  

Mapping to metatranscriptomic datasets 

In order to obtain additional evidence of gene expression, we mapped our protein families against i) TARA 
oceanic metatranscriptomic catalog2 and ii) 756 human gut metatranscriptomic samples56. For mapping the 
sequences of the novel families against TARA v2 protein sequences we used DIAMOND blastp with the 
sensitive flag. We considered any hit with E-value < 1e-3 and query coverage > 50% as significant. For 
mapping reads from the human gut metatranscriptome samples against the sequences of the novel families, we 
used DIAMOND blastx sensitive mode. We considered any hit with E-value < 1e-3 as significant. We 
considered families to be expressible if at least one member had a significant match against the 
metatranscriptomic catalogs.  

Orthology calling 

Protein family clusters were analyzed in order to determine whether they represent basal orthologous groups 
at the bacterial or archaeal level, or, by contrast, contained duplication events leading to several orthologous 
groups within the same family. To do so, we rooted the phylogenetic tree of each family at midpoint and 
taxonomically annotated leaf nodes using GTDB v202. Then, we used ETE53 to identify duplication events in 
the tree topology of each family and date them according to their predicted common ancestry.  
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Comparisons with eggNOG 

We compared the distribution of protein lengths in eggNOG v5 orthologous groups24 and the small peptides 
catalog described in12 with the length of the novel protein families. The length of each family or orthologous 
group was set to the longest protein sequence within each cluster. 

Sequence based predictions 

We ran SignalP-5.057 with gram + and gram - modes on the protein families. Genes predicted to have a signal 
peptide by the gram +, gram - or both modes were considered as secreted proteins. We also ran TMHMM58 
with default parameters to calculate transmembrane domains on the sequences. A protein family was 
considered transmembrane / secreted if at least 80% of the members of the family were predicted to be so. The 
same procedure was followed for measuring the proportion of transmembrane and signal peptide families on 
bacterial and archaeal eggNOG groups.  

Small peptide predictions 

We considered families whose longest sequence was shorter than 50 residues to be small peptides. We mapped 
our set of small peptides against those described by Sberro et al., using DIAMOND (sensitive flag), and 
considered as significant those with E-value < 1e-3 and coverage > 50%. We ran antimicrobial predictions on 
our small peptide novel families using Macrel59.  

Detection of mobile elements 

For detecting families potentially included in plasmids, we ran PlasFlow60 with the --threshold 0.95 flag on all 
the contigs from the 5 MAG collections.  For detecting families with potential viral origin, we ran Seeker 61 
on all the contigs from the 5 MAGs datasets, using a 0.9 threshold for considering a sequence as viral. For 
results shown in Figure 3, we considered protein families as mobile or viral if at least one member of the family 
was predicted so. The reported correlations are also present under more restrictive thresholds where at least 
30% of the protein family members were predicted as mobile or viral sequences (Figure S4).  

Computation of ecological distribution 

For expanding the ecological profile of the novel protein families, we mapped a representative sequence 
member of each family against 63,410 public metagenomic samples using DIAMOND (-sensitive flag). Hits 
with an E-value lower than 10E–3 and target coverage ≥ 50% were considered as significant. We used the 
beta_diversity package from scikit-bio with braycurtis mode to calculate the beta diversity of the samples in 
which each family was detected. 

Taxonomic breadth of protein families 

For estimating the taxonomic breadth of each novel protein family, we calculated the Last Common Ancestor 
(LCA) of their members using GTDB v202 taxonomic predictions as the most lineage specific annotation 
shared by all members of the family. To make sure that our LCA predictions were not artifacts caused by a 
small proportion of missanotated genes masking lineage specific families to very basal levels, we repeated the 
analysis requiring the LCA lineage to be supported by 80% (Figure S5) and 50% (Figure S6) of the members 
of the family, obtaining comparable patterns. 

Taxonomic distribution of novel protein families 

To assess the distribution of novelty across the prokaryotic phylogeny, we estimated the amount of novel 
protein families observed per clade. Figure 2 shows the GTDB bac120_r202 and ar122_r202 phylogenetic 
trees collapsed to the order level (each leaf represents a taxonomic order). For representing the percentage of 
uncultivated genomes per branch in Figure 2, we divided the number of uncultivated genomes per lineage by 
the total number of genomes under that lineage. The final tree image was generated using iTOL62. 
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Synapomorphic protein families 

For identifying synapomorphic protein families at different taxonomic levels, we calculated the clade 
specificity and coverage of each protein family across all GTDB v202 lineages. For each protein family and 
clade, coverage was calculated as the number of genomes containing a specific protein family over the total 
number of genomes under the target clade. Specificity was estimated as the percentage of protein members 
within a family that belonged to the target clade. We considered protein families as synapomorphic if they 
contained at least 10 members (i.e., protein sequences from different genomes) and had a coverage higher than 
0.9 and a specificity of 1.0 for a given lineage. Moreover, to further ensure that our synapomorphic predictions 
were highly specific, we mapped them back against the whole catalog using a more sensitive mapping strategy 
based on HMMER searches50 and excluded families with distant hits to genomes that might compromise the 
strict specificity and coverage thresholds of 1.0 and 0.9 respectively.  

Functional predictions  

In order to infer the functional annotation of the neighboring genes of the novel families, we ran eggNOG-
mapper v248 with default parameters on the 400M proteins in our catalog of MAG, SAGs and reference 
genomes. We also mapped them against the CARD63 database for retrieving their functional annotations, using 
diamond blastp with e-value and coverage threshold of 10E–3 and > 50% respectively.  

For the 5 MAG sets, we built a database with all the neighbor genes and their positions in each scaffold. We 
next measured the functional conservation in a genomic window of +- 3 genes around each targeted novel 
gene. For this, we calculated the prevalence of functional terms (eggNOG orthologous group, KEGG pathway, 
KEGG orthology, KEGG module, PFAM, CAZy and CARD) along the neighboring genes of all members 
within the same protein family.  We obtained a conservation score for each observed functional term as: 
Conservation (position X, annotation Y) = number of genes in position X with annotation Y / number of 
members in the family. We also took into consideration whether the neighboring genes were in opposite 
directions than the novel gene as well as the distance between genes.  Predictions for novel protein families 
were inferred if the conservation score for that pathway was higher than 0.9 and the neighboring genes used 
as functional-term donors were located in the same DNA strand as the unknown genes and at a maximum 
distance of 100 nt. We followed the same procedure for finding families consistently located next to resistance 
genes in the CARD database.  

For locating families putatively involved in relevant processes, we manually selected KEGG orthologous 
groups (KOs) that were highly specific for metabolic pathways involved in energy metabolism and xenobiotic 
degradation. In particular, we selected KOs involved in a maximum of two pathways, therefore discarding 
most promiscuous molecular functions and considering only specific biomarkers. The list of selected KOs is 
provided in Table S7.  To create figure 4, we joined the bacterial and archaeal GTDB phylogenetic trees 
collapsed to the order level, using the ETE toolkit software. Then, we represented the presence/absence matrix 
of novel protein family predictions associated with pathway specific KO across the different taxonomic orders. 
For readability, orders with no predictions are not shown in the figure.   

We also mapped the novel family sequences against the Fitness Browser33 genes 
(https://fit.genomics.lbl.gov/cgi_data/aaseqs) using DIAMOND-blastp with e-value and coverage threshold of 
10E–3 and > 50% respectively. We considered hits with strong fitness changes (t-score > 4 or < -4, see original 
publication) to be potentially associated with certain conditions. 

Data and material availability 

The genomic context, sequence signatures and taxonomic distribution of each gene family can be visualized 
at http://novelfams.cgmlab.org/. This site includes a Downloads section from where the raw sequences, 
alignments and hmm files of all families can be downloaded. The code used for generating these results and 
the supplementary tables were uploaded to https://github.com/AlvaroRodriguezDelRio/NovFamilies.  
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Supplementary Figures 

Figure S1.  

 

Figure S1. Average amino acid identity of the families, stratified by taxonomic breadth.  
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Figure S2.  

 

Figure S2. Distribution of beta diversity values calculated for the novel families.  

 

Figure S3. 

 

Figure S3. Proportion of protein families linked to plasmids or viral contigs with relation to the number of 
habitats they were detected in. R was calculated as the Spearman correlation coefficient.  
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Figure S4.  

 

Figure S4. Equivalent to Fig. 3C but requiring 30% of the members to be present in plasmids (blue) / viral 
contigs (red) for considering the family as mobile.  

 

Figure S5. 

 

Figure S5. Equivalent to Fig. 3B but calculating LCAs as the most basal taxonomic group gathering 80% of 
the members of the family. Red: proportion of families in viral contigs. Blue: proportion of families in plasmids. 
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Figure S6. 

 

Figure S6. Equivalent to Fig. 3B but calculating LCAs as the most basal taxonomic group gathering 50% of 
the members of the family. Red: proportion of families in viral contigs. Blue: proportion of families in plasmids.  
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