What are the driving forces behind sound change in Swiss German?

Adrian Leemann, Carina Steiner, Péter Jeszenszky, Beat Siebenhaar University of Bern, University of Leipzig

Switzerland has played a leading role in dialect documentation. Most noteworthy is the worldrenowned *Linguistic Atlas of German-speaking Switzerland* [1, henceforth *Atlas*], documenting Swiss German (SwG) dialects in the middle of the 20th century. In recent decades, studies carried out on a limited set of localities have observed that this documentation is no longer up to date. In terms of phonetic features, [2], for example, reports that the areal distribution of aspirated plosives has expanded since the creation of the *Atlas*. Similarly, /l/-vocalization – originally a feature of Western SwG dialects – has expanded [3, 4, 5]. In the domain of vowels, [6] show that regional distributions of Old Upper German <iu> have changed dramatically when compared to the *Atlas*: the Zürich variant <tüüf> appears to have spread south and west. What is currently missing is a large-scale, multi-locality analysis of sound change on multiple variables over the past decades. And, more importantly, a thorough explanation of the driving forces behind those changes.

In the current study, 1000 speakers from the SDATS database [7] were investigated. Participants came from 125 localities across German-speaking Switzerland. Eight participants per locality were collected, four females, four males – two age cohorts: 500 60+yo and 500 20-35yo. Four items were investigated: two vowels and two consonants. (1) Umlaut before $\langle gg \rangle$ and $\langle ck \rangle$, as in *Rücken*. (2) Old Upper German $\langle iu \rangle$ before a labial or a velar, as in *tief*. (3) 'Staub's Law', where /n/ before a fricative can be omitted and, in the process, lengthens or diphthongizes the preceding vowel (e.g., Zins [tsɪns], [tse:s], [tseis] etc.). And (4) preservation of the geminated realization of MHG $\langle nn \rangle$. Due to the COVID-19 pandemic, data was mostly collected remotely via smartphones and Zoom [7]. Participants saw picture prompts which they were asked to name in their dialect; coding was performed auditorily, and data was compared to the *Atlas* [1]. Linear regressions were used to model the effects of sociodemographic, regional, and personality-related factors on sound change.

The linear regression showed effects of age, region, linguistic mobility, education, as well as identity (dialect pride). Compared to the *Atlas*, the older cohort showed less mean change than the younger cohort (13.5% vs. 24.3%). The canton of Grisons showed the most change (37%), followed by Central Switzerland (24%), Aargau (23%) – least change was found in Northwestern Switzerland (10%) (see Figure 1). More mobile speakers showed more change (F(1, 1.16) = 30.3). Speakers with tertiary education showed less change than those with non-tertiary education (18% vs. 19.5%), and speakers who were proud of their dialect showed less change (F(1, .27)=6.9). Further, there was between-item variation, with Staub's law showing the most change (32.2%), followed by Old Upper German <iu> (27.1%), the Umlaut before <gg> or <ck> (11.2%), and the geminate (5%) (see Figure 2).

There are many potential explanations for these findings. The effect of apparent time change was expected; what is somewhat surprising is the substantial change in the Southeast. Perhaps this is diffusion of the Chur (capital of that region) variant towards these locations – some of which, historically, happen to be locations with Walser dialect spoken. Effects of mobility and dialect pride, too, behave as expected. As for the between-item effects, geminate consonants remain relatively unchanged compared to the *Atlas* – which is surprising, given that geminate realization has been largely abandoned in both standard German and German dialects, even in the South [cf. 8, 9]. By the time of the conference, we will have analyzed additional phonetic variables which – taken together – will provide an even fuller picture of sound change in Swiss German.

Figure 2. Rates of change in the variables by age cohorts, listed in ascending degree of overall change.

References

- [1] SDS: Sprachatlas der deutschen Schweiz. (1962–2003). Bern: Francke (Vols. 1–6), Basel: Francke (Vols. 7, 8).
- [2] Schifferle, H.P. (2010). Zunehmende Behauchung. Aspirierte Plosive im modernen Schweizerdeutsch. In H. Christen, S. Germann, W. Haas, N. Montefiori, & H. Ruef, Alemannische Dialektologie: Wege in die Zukunft. Beiträge zur 16. Tagung für alemannische Dialektologie in Freiburg/Fribourg vom 07.– 10.09.2008 (pp. 43-55). Stuttgart (ZDL-Beiheft 141).
- [3] Haas, W. (1973). Zur l-Vokalisierung im westlichen Schweizerdeutschen. In H. Bausinger (Ed.), Dialekt als Sprachbarriere: Ergebnisbericht einer Tagung zur alemannischen Dialektforschung (pp. 63-70). Tübingen: Tübinger Vereinigung für Volkskunde.
- [4] Christen, H. (1988). Sprachliche Variation in der deutschsprachigen Schweiz. Dargestellt am Beispiel der /l/-Vokalisierung in der Gemeinde Knutwil und in der Stadt Luzern. Stuttgart: Steiner.
- [5] Leemann, A., Kolly, M.-J., Werlen, I., Britain, D. & Studer-Joho, D. (2014). The diffusion of /l/-vocalization in Swiss German. Language Variation and Change 26(2), 191-218.
- [6] Leemann, A. & M.-J. Kolly (2016). Big Data for analyses of small-scale regional variation: A case study on sound change in Swiss German. Proceedings of Phonetik & Phonologie 2016.
- [7] Leemann, A., Jeszenszky, P., Steiner, C., Studerus, M., & Messerli, J. (2020). Linguistic fieldwork in a pandemic: Supervised data collection combining smartphone recordings and videoconferencing. Linguistics Vanguard, 6(s3).
- [8] BSA: Bayerischer Sprachatlas. Robert Hinderling (Hg.), Werner König (Hg.), Ludwig M Eichinger (Hg.), Hans-Werner Eroms (Hg.), Horst Haider Munske (Hg.), Norbert Richard Wolf (Hg.)
- [9] sSSA: Steger, Hugo u.a. (Hg.) (1989 –2012): Südwestdeutscher Sprachatlas (SSA). Marburg: Elwert.