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Abstract
In perception systems for object recognition, the advantage
of multiple modalities, of combining approaches, and several
views is emphasized, as they improve accuracy. However, there
are great variances in the implementation, suggesting that there
is no consensus yet on how to approach this problem. Nonethe-
less, we can identify some common features of the methods and
propose a flexible system where existing and future approaches
can be tested, compared and combined. We present a modular
system in which perception routines can be easily added, and
define the logic of making them work together based on the
lessons learned from different experiments.
Index Terms: robotics, multi-cue vision, machine learning

1. Motivation
Autonomous agents working in human environments have a
huge variety of objects to deal with, and some of them present
special problems (texture-less, transparent, etc). There are mul-
tiple approaches that have been shown to be able to segment, de-
tect, categorize and/or classify some of the objects such robots
might encounter. There are, however, inherent limitations in
these approaches, and there is no robust and large-scale solu-
tions yet [1]. As each perception method captures only some
aspect of the objects, the situation is similar to the old story
about the six blind men trying to describe an elephant based on a
single touch. Clearly, a correct combination of different sensor
modalities, segmentations, features, classifiers would improve
results. Additionally, in [2] it is argued, that a cognitive agent
needs to be embodied to gather experiences, and presents differ-
ent paradigms on how to approach the learning and grounding
of new information. Similar ideas are discussed in [3] as well,
where the task and environment adaptation of a robot improves
its capability to perceive objects.

In this work, we focus on taking advantage of exploration
capabilities of the robot, and the fact that a high-level task spec-
ification is typically available. Therefore we propose a system
that can take advantage of the fact that only some objects are
probable to be at different places in the close surrounding of the
robot, and of these ones, only some are relevant for the task at
hand. Different perception methods can then be activated (or
tuned) and combined, in order to improve detection rates. Ad-
ditionally, multiple observations over time can be incorporated
to obtain higher quality results. In short, the main propositions
of this paper for a perception system are as follows:

• common input-output defined for segmentation and de-
tection methods,

• support for consecutive or parallel methods to correct or
support each-other in a probabilistic framework,

• enable the specialization of each method to a subset of
objects and to group objects into categories,

• incorporating information from multiple views to disam-
biguate complex cases.

To support our approach, we evaluate these principles, and:
• show the advantage of combining different cues,
• evaluate different ensemble methods and discuss their

benefits and drawbacks,
• describe our practical solutions to increase the robust-

ness and accuracy of perception systems,
• present proof-of-concept experiments.
After an overview of the related work, we will outline the

basis for our proposal in Section 3, followed by the details of a
multi-cue perception system in Section 4. As it will be detailed,
the modular combination of task-adapting perception routines
performing spatio-temporal integration of multiple modalities
holds great potential for the development of robust computer
vision. We argue that a deep integration of various levels of a
cognitive architecture will be required, and present the connec-
tions we found to be most important in our experiments.

2. Related Work
Inspired by earlier work based on developmental psychology,
object categorization using multiple modalities is explored in
[4] and the advantage of accumulating information over time
is shown. While sychological findings do suggest that a single
sensory modality is often not enough, they leave out the most
descriptive modality, vision, and focus on proprioceptive and
auditory feedback [5].

In [6] the authors validate the use of different visual modal-
ities, showing that color-based cues are more important for in-
stance recognition, while geometric ones are better suited for
categorization, and that their combination improves on both.

Existing perception systems that use multiple modalities for
object detection, either combine these in a fixed feature [7] or
use them in a fixed framework [8]. Selecting only relevant fea-
tures for a specific task was explored in [9], but in a sequen-
tial framework with a fixed order of features/modalities. Here
we propose a parallel architecture with a heuristic decision on
which perception primitives should be applied to identify dif-
ferent objects, and with an incremental merging and verification
step to provide the final result.

Systems that use validation of the detections through geo-
metric consistency relied on a single modality so far [10, 11],
however the advantage of scoring or voting for different solu-
tions is an important lesson that we incorporated in the system.

There is growing evidence that human vision combines top-
down (concept driven) and bottom-up (data driven) approaches
[12], thus extending classification systems with context infor-
mation is a natural way of increasing performance. In our
framework we use the prior distribution over the possible ob-
jects/locations (and the known object models) as the context.
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Most of the perception systems rely either on
color/black&white camera (e.g. SIFT [13]) or 3D (e.g.
VFH [14])information, although image processing techniques
can be applied on different image sources as well (e.g. thermal
cameras). There are approaches that combine geometry and
color descriptors, but properly balancing these two is not
straightforward as discussed in [15].

3. Experimental Support
Some aspects of the proposed solution have been verified al-
ready in different experiments. The following subsections give
details on the evaluation of some of the natural ways how object
perception results can be improved.

3.1. Multi-Modal Perception

Combining multiple sensor modalities to improve detection can
be done in general either by combining multiple features in a
single classification pipeline or by separate processing pipelines
for each modality, whose results are combined. The former ap-
proach is pursued in [6], where a combination of visual and
depth cues is used. We explored the latter approach in [9], high-
lighting the limitations of the different sensors, and exploiting
that not all features need to be check if there is a subset of them
that uniquely describes the object. In this work, we present
our approach for combining the results of different modules by
forming ensembles, as discussed in the following subsection.

3.2. Ensemble Learning

We evaluated the accuracy of standard off-the-shelf classifiers,
trained on image-based and 3D features, and ensembles of such
classifiers on the large RGB-D object dataset from [16]. As vi-
sual features we used SURF [17] and Opponent SURF with a
Bag of Features approach and VFH [14] and GRSD-, the geo-
metric part of VOSCH [15], as geometric features. Our interest
lies predominantly in simple, non-parametric ensemble meth-
ods, since such simple ensembles can endow the proposed sys-
tem with the required modularity. Hence, the goal was to inves-
tigate how simple, non-parametric ensemble methods compare
to more sophisticated but parametric classifiers and ensembles.

As a benchmark we considered the the task of identifying
the category to which an object belongs for all of the 300 ob-
jects and 51 categories in the dataset. All the objects are seen
during training time and half of the over 200,000 scans in the
dataset are used for training the classifiers. A quarter is used for
evaluation and another quarter as hold-out data to estimate the
accuracy of the ensemble methods.

We tested SVM and boosted decision trees (AdaBoost) as
classifiers, and different voting based methods and stacking for
merging their results, as these were suggested in the literature as
promising approaches [18, 19]. Classifiers trained on the con-
catenation of all the features are used as a baseline to which the
performance of the ensembles is compared (see Table 1).

Table 1: Error rates for single features and the concatenation
of all features – linear SVM (top) and AdaBoost (bottom).

VFH GRSD- SURF O.SURF All
0.133 0.409 0.281 0.301 0.031
0.149 0.435 0.360 0.361 0.0991

After trying several weightings for the voting methods, the

best one was found to be the weighting with the estimated class
accuracy. For stacking we used real AdaBoost as level-0 classi-
fiers and real AdaBoost, LogitBoost and Gentle Boost as well as
linear SVM and SVM with Radial Basis Function kernel as the
level-1 classifier, and found Gentle Boost to give best results.

Table 2: Voting vs tacking for ensembles of single features

Base classifier Voting er-
ror rate

Level-1
classifier

Stacking
error rate

SVM-Linear 0.100 GentleB 0.054

As shown in Table 2, combining different cues is advanta-
geous, and (while more tests could be made) it seems that con-
catenating the features outperforms the simple weighted voting
and the learning based stacking approach. Nonetheless, both
approaches improve the result over those of the best single fea-
ture, and we found that using pairwise concatenations of fea-
tures the error rates can be lowered even below that of the clas-
sifiers trained on the concatenation of all the features (see Ta-
ble 3). This suggests that with the right feature combinations
and weighting factors, voting could be a great solution as well
– increasing the modularity of the perception system.

Table 3: Stacking with classifiers of single + double features.

L-SVM RBF-SVM AdaB LogitB GentleB
0.031 0.065 0.02 0.019 0.019

3.3. Spatio-Temporal Integration
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Figure 1: As the camera is moved (left), multiple frames can be
captured that cover different parts of the objects in the scene
(right), increasing the overall classification accuracy (bottom).

We showed the advantage of merging the object detection
results from multiple 3D scans in a voting framework previ-
ously in [11]. There, we also proposed the use of multiple seg-
mentations of the same input to be merged in the same man-
ner. This approach is employed for image segmentation as well,
showing improved results. In Figure 1 the same idea is applied
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Figure 2: Basic setup of the proposed system for iterative re-
finement of object hypotheses by multiple methods according to
a task specification.

for detecting 6 commonly occurring shapes of household ob-
jects (a grouping of data from [16] based on [9]), where 3D
volumes obtain votes from scans taken from different angles.

3.4. Class Hierarchies

In order to match the perception capabilities of humans, the au-
thors in [20] advocate that searching for predefined templates
is not enough, and that recognition of new exemplars of known
categories have to be facilitated. On this premise, in [9] we
used geometric cues for categorization and visual cues for in-
stance classification. We also reported on the improvement in
accuracy of over 10% when the geometric categorization is al-
lowed to work with “internal” categories. This suggests that
an unsupervised classification level followed by a mapping to
human-defined labels, as in [11], enables the classifiers to tune
themselves to the specific feature space used.

4. Proposed Solution
Our proposed solution to integrate the approaches supported in
Section 3 for a modular, multi-cue perception system that takes
advantage of the robot’s exploration capabilities is exemplified
in Figure 2 (as a generalized extension of the system presented
in [9]). It builds on the lessons learned form previous experi-
ments by the authors and others, and on many discussions from
people involved not only in perception, but also high-level plan-
ning, manipulation and knowledge engineering for example.

4.1. Regions of Interest and Poses

Most related systems from literature are either doing segmen-
tation or classification (or both at once), but in both cases a re-
gion of space is observed, and hypotheses are given about what
objects it, or parts of it, contains. A segmentation routine for
example breaks large regions up into smaller ones, and assigns
to each of them a non-informative prior, i.e. from the point of
view of the method each segment can contain anything. Sub-
sequent processing (classification) steps then refine these possi-
bilities. Template matching methods for example do both steps
at once, by returning possible (scored) positions in which an
object could be in the scene.

Therefore, we propose the use of volumes of space, or re-
gions of interest (ROIs) as the basic input and output data for
object perception methods. These can be for example the hulls

Figure 3: Feature vector length vs. Training Time (20 classes)

of clusters for 3D data, or the estimated volumes of image pix-
els. These, and the associate probabilities of given objects be-
ing contained in it, are received and updated by the perception
methods, and can be used to merge information coming from
different sensors, and different views.

4.2. Task-adapting Perception Primitives

Initially, the system would start off with the complete
workspace of the robot as its region of interest, with the dif-
ferent priors for the occurrence of the possible objects assigned
to it. The list of these objects and their prior probability can then
be considered by the different methods, and when summarizing
their results.

We call all the segmentation, detection, fitting and classifi-
cation methods perception primitives, as they are the different
modules the system is build of. They can use different sensors,
extract various features, apply different recognition methods,
and have only to respect the aforementioned input and output in
order to be part of the “ensemble”. Classification methods such
as those based on nearest neighbors, are easy to be re-trained,
and this allows simple integration of new data as well. How-
ever, with the addition of more and more classes, the accuracy
can drop – this can be avoided by taking advantage of the known
task specification (i.e. list of possible objects and list of sought
objects). Similarly, the accuracy of other classifiers deteriorates
with the increase in the number of classes (see Tables 4,5 and
those in Section 3.2), something that can be alleviated by task
and environment specialization.

Table 4: Error rate for single/concatenated features, 20 classes.

Classifier VFH GRSD- SURF O.SURF All
SVM-linear 0.081 0.270 0.154 0.163 0.0188
SVM-RBF 0.050 0.202 0.098 0.105 0.0172
AdaBoost 0.087 0.293 0.254 0.202 0.0544

Table 5: Stacking with classifiers trained on single + double
features, for 20 classes.

L-SVM RBF-SVM AdaB LogitB GentleB
0.013 0.013 0.014 0.014 0.012

Not all classes are as fast to be re-trained as nearest neigh-
bors though, as shown in Figure 3, but methods like locally
weighted logistic regression [21] could be used to avoid re-
training by adjusting only the weighting of the examples.
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4.3. Combining Cues

Since each perception primitive refines the result of its input,
the ROIs are trimmed down (if necessary) and the class prob-
abilities accumulated. In the merging step all the results can
be united through ROI unification, and a decision can be made
by an ensemble method. Subsequent sensor readings can be
accumulated using the same procedure, and the object hypothe-
ses and their poses can then be verified if they match the data
as in [11]. Accumulating or comparing object poses is more
complicated, but a scored list of poses can also be maintained,
and checked against the accumulated data in the given volume.
Another approach to obtain 6DOF pose directly from camera
images is to project CAD models of objects to the image and
search for good edge responses. However it is unclear how these
methods scale to handling very large number of objects.

5. Initial Demos and Discussion
Proof-of-concept demonstrations of the presented approach
were made during the 2nd BRICS Research Camp “From 3D
sensing to 3D models” (www.best-of-robotics.org/
2nd\_researchcamp/MainPage) and the public 2011
CoTeSys Fall Workshop (www.youtube.com/watch?v=
DTaeWITW1kI). Here, a region of interest is provided by the
task executive using the known environment model along with
the list of possible objects to be detected. The different detec-
tion, classification and model fitting methods decide for each
request to activate or not based on the objects to be detected
and if they have models for those. Different 2D and 3D meth-
ods are chained in order to produce the final result, i.e. list
of object locations and locations/poses/models. The task ex-
ecutive then interprets the results, decides on the next action
to be taken (which could be repeating a failed procedure) and
triggers a new task if necessary (e.g. using the bounds of the
detected cutter board to detect the slice of bread). As the num-
ber of integrated perception primitives increases, and multiple
routines for performing the same task become available, the the-
oretical consideration presented in this paper become more and
more important. The presented approach for taking advantage
of multiple sources of information by a modular system proved
to be useful and scalable in our initial experiments implemented
in ROS (ros.org). We are confident that the robustness sug-
gested by the supporting experiments will be of great use for
integrating our perception system into a cognitive architecture
with similar design philosophy, e.g. based on [22].
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