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Introduction 

The aim of the Postgraduate Conference on Robotics and Development of Cognition 
(RobotDoC-PhD) was to bring together young scientists working on developmental 
cognitive robotics and its core disciplines. The conference aimed to provide both 
feedback and greater visibility to their research as lively and stimulating discussion 
were held amongst participating PhD students and senior researchers. The conference 
was open to all PhD students and post-doctoral researchers in the field. RobotDoC-
PhD conference was an initiative as a part of Marie-Curie Actions ITN RobotDoC and 
was organized as a satellite event of the 22nd International Conference on Artificial 
Neural Networks ICANN 2012 held in Lausanne, Switzerland. 

How to cite a paper in these proceedings 

Please follow the example below, presented in the IEEE format: 

[1] J. de Greef, P. Baxter, R. Wood, and T. Belpaeme, “From penguins to parakeets: 
a developmental approach to modelling conceptual prototypes", in Proceedings 
of the Post-Graduate Conference on Robotics and Development of Cognition, 
J. Szufnarowska, Ed., September 2012, pp. 8–11. 
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From Penguins to Parakeets:
a Developmental Approach to Modelling Conceptual Prototypes

Joachim de Greeff, Paul Baxter, Rachel Wood and Tony Belpaeme

Centre for Robotics and Neural Systems
University of Plymouth, United Kingdom

joachim.degreeff@plymouth.ac.uk

Abstract
The use of concepts is a fundamental capacity underlying com-
plex, human-level cognition. A number of theories have ex-
plored the means of concept representation and their links to
lower-level features, with one notable example being the Con-
ceptual Spaces theory. While these provide an account for such
essential functional processes as prototypes and typicality, it is
not entirely clear how these aspects of human cognition can
arise in a system undergoing continuous development - pos-
tulated to be a necessity from the developmental systems per-
spective. This paper seeks to establish the foundation of an ap-
proach to this question by showing that a distributed, associa-
tive and continuous development mechanism, founded on prin-
ciples of biological memory, can achieve classification perfor-
mance comparable to the Conceptual Spaces model. We show
how qualitatively similar prototypes are formed by both systems
when exposed to the same dataset, which illustrates how both
models can account for the development of conceptual primi-
tives.
Index Terms: Concepts, prototypes, typicality, Conceptual
Spaces, Distributed Associative and Interactive Memory

1. Introduction
For a cognitive system to be able to perform at a level that is
comparable to humans, it should be able to form conceptual
structures as part of its knowledge representation capacities. As
concepts are recognised as being important for many aspects of
cognition, it is paramount for an artificial system to be able to
model conceptual knowledge, including the formation of proto-
types.

In this paper we examine two frameworks for modelling
human knowledge; one is based on Conceptual Spaces (CS)
[1] and the other, Distributed Associative and Interactive Mem-
ory (DAIM), is centred around the distributed nature of hu-
man memory and the temporal aspects of its functioning [2, 3].
As they are focussed on different aspects of human knowledge
these frameworks have both virtues and drawbacks. CS in-
herently models knowledge as summary representations which
makes it natural to model some of the more generic properties
of concepts. However, a CS is a rather static structure and from
a developmental perspective it is less clear how well a CS would
capture conceptual learning over time. Also, there are no inher-
ent temporal aspects in the model that could account for some
of the temporal aspects of human memory, thus a conceptual
space is more abstract as a model of human cognition. DAIM
on the other hand takes a more developmental approach and em-
phasises the low level associative and temporal properties of hu-
man knowledge acquisition. The question of reconciliation of

the two approaches thus arises: can the developmental DAIM
perspective be used to account for the structures and functions
hypothesised by CS models? This paper seeks to address this
question by applying both approaches to the same data set, to
assess the compatibility of DAIM with CS.

As an example case, we explore the ability of both frame-
works to model an aspect that is considered fundamental to
human-like knowledge representation, namely the formation
of prototypes which display typicality [4]. The observation
by Rosch that many everyday concepts are prototypical in na-
ture challenged the established notion in cognitive science that
concepts could be modelled using logical definitions1. Rosch
showed that many concepts cannot be logically defined because
they show typicality, that is, people judge certain instances of
a specific concept to be more typical than others. For exam-
ple, for the concept BIRD, a robin is thought to be more “bird-
like” than a penguin, a banana is more typical for FRUIT than
a pomegranate etc. It turned out that instances of a concept
exhibit a graded membership to an idealised prototype, so that
some instances are seen as more typical of the concept than oth-
ers.

Theories advocating this prototypical view of concepts have
been around for quite a while with many different flavours
[5, 6], but the general gist is that concepts are represented as
some kind of idealised version of the specific concept. So, for
the concept BIRD people would have an idea of the idealised
bird, and match any encounters they have in the real world to
this prototype version. The more similar a particular observa-
tion is to the prototype, the more they are inclined to assign this
observation as belonging to the prototype. It may seem unlikely
that all members of BIRD could be represented by one single
prototype, given the wide variety of birds. So a prototype should
be thought of as a summary representation, which specifies the
properties of the concept, where some properties are more im-
portant than others. These properties are not strictly necessary,
but rather they describe what members of the concept tend to
have. The process of identifying an object in the world entails
a matching to known prototypes. This matching takes the form
of a similarity measurement, rather than a logical “does it ticks
the boxes?” type of analysis. A prototypical account provides a
more naturalistic explanation of human data than a definitional
approach.

1The idea that concepts can be represented as a list of logical defi-
nitions which specify necessary and sufficient conditions is commonly
known as the Classical Theory.
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2. Theory of the two frameworks
2.1. Theory of Conceptual Spaces

A conceptual space consists of a geometrical representation in
vector space along various quality dimensions. A CS is a collec-
tion of one or more domains (like colour, shape, or tone), where
a domain is postulated as a collection of inseparable sensory-
based quality dimensions with a metric. Examples of quality di-
mensions are weight, temperature, brightness, pitch, loudness,
and RGB values. For instance, to express a point in the colour
domain using RGB encoding, the different quality dimensions
red, green, and blue are all necessary to express a certain colour
and are therefore inseparable. Other domains may consist of
one or more quality dimensions. In its simplest form, a concept
can be represented as a point in the conceptual space, where the
coordinates of the point determine the features of the concept.
For example, an instance of the concept RED may be repre-
sented as a point (255, 0, 0) in the RGB colour domain.

Crucially to modelling concepts in a CS is the ability to take
a distance measurement. For each of the dimensions involved,
a suitable metric to calculate distance between coordinates on
this dimension must be defined. For a lot of dimensions the
Euclidean distance may be the most appropriate one, but the
Manhattan distance can also be used.

The notion of prototypes comes naturally to conceptual
space modelling, as the inherent distance metric can easily func-
tion as a notion of typicality. Distance dxy between a prototype
x and and an example y takes the general form:

dxy =

(
N∑
i=1

wi|xi − yi|r
) 1

r

(1)

where r denotes the type of metric with r = 1 for the Man-
hattan distance and r = 2 for the Euclidean distance and w an
optional weight of the dimension. To do justice to psychologi-
cal evidence of how people tend to rate concepts [7, 8], we can
convert the distance into a similarity measurement. Similarity
s between i and j is computed as an exponentially decaying
function of distance:

sij = e−cdij (2)

where c is a sensitivity parameter.
Within a conceptual space we can model the learning of

prototypes by exposing the model to examples with associated
labels. After the learning the model is able to classify new ex-
amples as belonging to some known class, and specify how typ-
ical the example is, i.e. to what extent it belongs to the class and
to other learned classes.

2.2. Theory of the Distributed Memory Model

The DAIM system operates on a set of functional principles de-
rived from the operation of memory within biological system,
embedded within the context of a wider cognitive system [9, 3].
These are as follows [3]: (1) memory as being fundamentally
associative; (2) memory, rather than being a passive storage
device, is an active component in cognition through activation
dynamics; (3) memory as having a distributed structure; and fi-
nally (4) activation-based priming as subserved by the first three
points. A DAIM model has been implemented that embodies
each of these principles of operation.

Assuming that this memory system is embedded within a
wider agent cognitive system with multiple sensory and motor

modalities, associations may be formed based on the experi-
ences of the agent, which subsequently form the substrate for
activation dynamics. Prior experience as encoded in associative
networks, i.e. memory, thus play an active role in the genera-
tion of ongoing behaviour through the mechanism of priming,
which is the reactivation of modality-specific representations on
the basis of existing associations. These principles may be used
to provide candidate mechansims for a wide range of cognitive
phenomena, from visual recognition and analogies [10, 11], to
episodic memory, language development and social interaction
[9].

In this study, the notional ‘embodiment’ of the DAIM sys-
tem is modelled by an idealised set of inputs i.e. the properties
given in the dataset. Associations are formed between input
properties, on the basis of activation dynamics (where a high
activation level is assigned to a property that is present). These
associations have a weight value that is manipulated through-
out the operation of the system. This introduces a significant
temporal effect, in that an association is continually subject to
change based on the relative activation levels of the things it
associates, using a Hebbian-like update mechanism. Thus, by
extension, the order of learning also has effect on the behaviour
of the system.

Implementation of the model is based on an extension to
an Interactive Activation and Competition (IAC) model of face
learning [12], and uses an explicit representation for associa-
tions: i.e. an association is encoded as an object2, following
[13]. While details of this implementation are excluded here
due to space constraints, the following description outlines the
primary mechanisms.

The weight update mechanism incorporates both Hebbian
and anti-Hebbian rules, and essentially has the effect of turning
the DAIM implementation into a pseudo-correlation engine, in
which the strength of the weights encoding conjunctions of in-
put features essentially reflects the correlation of those features
based on prior experience. It should be noted that this is not
a correlation in the proper sense, but only an analogue thereof,
given the incremental update nature of the weight adjustment.
Activation dynamics are also at play, with all input properties
having an associated activation level. Activation for a particular
property rises if it is present, and falls in the absence of stim-
ulation (i.e. activation decay, to a negative activation ‘resting’
state). It should be noted that such stimulation can be sourced
either from external stimulation, or from the result of activation
flowing through already existing associations. A new associa-
tion is formed between two properties if an association does not
already exist, and if the activation of both properties is above
zero.

3. Modelling prototypes using the dataset
To examine how both models are able to build conceptual struc-
tures that exhibit prototypes and typicality effects, we use the
Zoo Data Set from the UCI Machine Learning Repository [14]
which is a simple database containing 101 example animals
with 16 different properties (like airborne, aquatic, predator
etc.) divided into 7 classes. All properties are binary, except
for the ‘number of legs’. This property is normalized as to
make it more in line with the other properties. Both models
are exposed to a subset of this data (50 animals), and the result-
ing knowledge structures are compared by using a further non-

2In the context of Object-Oriented Programming.
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Table 1: Typicality ratings of the CS model for the 10 examples
from the test set.

example MA BI FI AM INS INV
moth 0.08 0.12 0.05 0.09 0.49 0.12
newt 0.11 0.14 0.21 0.37 0.09 0.13
octopus 0.06 0.07 0.09 0.13 0.12 0.32
opossum 0.37 0.08 0.08 0.11 0.07 0.06
oryx 0.53 0.07 0.06 0.07 0.07 0.05
ostrich 0.10 0.25 0.08 0.09 0.10 0.08
parakeet 0.07 0.39 0.07 0.07 0.13 0.06
penguin 0.08 0.20 0.11 0.13 0.07 0.10
pheasant 0.07 0.57 0.08 0.09 0.15 0.08
pike 0.08 0.08 0.40 0.13 0.05 0.10

overlapping subset of the data as probes3. For the CS the train-
ing data is provided with an associated word label that specifies
the class, while for the DAIM system the class label and the
class type as a numerical value are supplied in the same fash-
ion as the 16 other properties, thus this system is exposed to
18 properties per example. The test data contains 50 examples,
where the breakdown into classes is as follows: 24 MAMMAL,
7 FISH, 9 BIRD, 4 INVERTEBRATE, 1 AMPHIBIAN and 5
INSECT.

3.1. Assesment

After training the systems are tested with 10 examples that are
not part of the training set. Based on the learned information,
an assessment of which category a newly presented instance be-
longs to is made. To examine the typicality ratings for the dif-
ferent examples the similarity measure from equation 2 is used.

3.2. Conceptual spaces

Using a CS representation, for each item in the test set we obtain
typicality ratings for all classes (see Table 1). All examples
from the test set are classified correctly.

Focussing more on the BIRD class, we can clearly observe
typicality effects, as shown in Figure 1. For the BIRD class, the
pheasant is the most typical example, followed by the parakeet,
the ostrich and finally the penguin. This is in line with human
typicality ratings as for instance reported in [15], [16] and [17],
except for the fact that pheasant is rated as more typical than
parakeet. Upon closer inspection it turns out that the property
‘domestic’, which is true for a parakeet, is somewhat rare for
BIRD and therefore the parakeet is rated as less typical. We
speculate that the contrast with typicality ratings from human
data is due to the fact that a property ‘domestic’ may not com-
monly be very prominent for people when classifying birds.

3.3. Distributed memory model

In order to assess the effects of presentation order, we run the
DAIM system twice with the same dataset; once in alphabetical
order of animal name, and the second in reverse alphabetical or-
der. Because of the inherently temporal dynamics of the system,
for this case study, the properties of each animal instance are
presented for 5 time-steps4 followed by a delay of 10 time-step
in which no input is presented so that all activation can decay

3We chose a subset of the Zoo Data Set because to show the proto-
type effects the full dataset is not necessary. This is an arbitrary choice,
we just choose the first 50 examples from a list in alphabetical order.

4A time-step resolution of 0.2s is used.

Figure 1: Normalised typicality ratings of the CS model for the
four probe trial birds for the BIRD class.

to the resting state. For the probe trials, all of the properties for
the unknown animal instances (except the name and type prop-
erties) are presented for 5 time-steps, with the activation levels
on the type properties read out at the end of this period.

Table 2: Normalised results of the DAIM model for alphabetical
presentation order: all correct.

PROBE MA BI FI AM INS INV
moth 0.01 0.08 0.00 0.22 0.49 0.19
newt 0.12 0.08 0.08 0.52 0.06 0.14
octopus 0.00 0.04 0.07 0.32 0.20 0.34
opossum 0.63 0.00 0.00 0.30 0.02 0.01
oryx 0.78 0.00 0.00 0.16 0.01 0.00
ostrich 0.01 0.58 0.00 0.30 0.08 0.01
parakeet 0.00 0.55 0.01 0.18 0.22 0.02
penguin 0.00 0.50 0.02 0.40 0.02 0.03
pheasant 0.00 0.53 0.01 0.25 0.15 0.02
pike 0.01 0.01 0.42 0.40 0.00 0.14

Table 3: Normalised results of the DAIM model for reverse-
alphabetical presentation order: all but octopus are correct.

PROBE MA BI FI AM INS INV
moth 0.00 0.04 0.01 0.31 0.41 0.21
newt 0.05 0.03 0.25 0.54 0.00 0.13
octopus 0.00 0.04 0.13 0.35 0.09 0.34
opossum 0.56 0.00 0.02 0.36 0.01 0.02
oryx 0.70 0.00 0.02 0.23 0.01 0.00
ostrich 0.00 0.52 0.03 0.39 0.02 0.01
parakeet 0.00 0.54 0.04 0.25 0.08 0.03
penguin 0.00 0.40 0.10 0.39 0.03 0.04
pheasant 0.00 0.48 0.04 0.32 0.06 0.04
pike 0.01 0.02 0.50 0.35 0.00 0.09

The resulting typicality ratings, normalised, are shown in
Table 2 and Table 3, for the two differently ordered data sets.
Even though the typicality values differ for the two different
data set orders, we can observe qualitatively similar results in
terms of how the probe trials are classified. All but the octo-
pus are assigned the same (correct) class and in this case of
misclassification the typicality rating of the correct response is
very close (0.35 and 0.34 respectively). Figure 2 shows typi-
cality ratings for the BIRD class for the four bird examples in
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the probe trials. As can be seen, penguin and ostrich are hardly
considered typical of BIRD, whereas parakeet and pheasant are
rated as being much more typical. This is comparable to the
result from CS, as displayed in Figure 1.

Figure 2: Normalised mean typicality ratings of the DAIM
model for the four birds presented in two probe trials. All four
were classified correctly, but note that penguin and ostrich are
far less typical of the bird concept than parakeet and pheasant.

4. Discussion and conclusions
In this paper we have compared two knowledge representation
frameworks for their ability to model conceptual prototypes.
While Conceptual Spaces are quite suitable for this as they in-
corporate a notion of distance that can very easily be used as
a typicality measure, it is less clear how this should happen in
models that incorporate temporal aspects and are inherently dis-
tributed in nature. Whilst the temporal effects (as encountered
in the order of presentation of the 50 instances to be learned)
have a demonstrable effect on the behaviour of the system, the
approach used in DAIM nevertheless demonstrates a robustness
of ability to correctly classify the newly presented instances.

Furthermore, the DAIM results for the typicality ratings for
the BIRD class exhibit prototypicality effects that are qualita-
tively similar to those obtained using a CS representation and to
those found in human subjects. This shows the feasibility of the
DAIM model, as the prototype effects are deemed important
for conceptual modelling. Being inherently temporal and dis-
tributed, the use of memory models like DAIM can account for
some of the more low-level functioning of the human memory,
within a developmental framework (i.e. the history of interac-
tion of the agent has a material effect on the competencies of
the agent [2, 3, 13]). The comparison of the two memory con-
ditions (normal and reverse order of data presentation) demon-
strates that despite this sensitivity to interaction history (in this
case order of presentation), there is nevertheless a robustness
apparent in the outputs of the two trained systems. The fact
that crucial aspect of modelling concepts, like prototypicality
(which can more easily be modelled in a generic framework like
CS) can be accounted for may be considered as an argument in
favour of a distributed representation perspective; not being able
to account for these aspects would constitute a shortcoming.

However, whilst the results of the DAIM system compare
favourably with the standard CS implementation, it remains to
be seen how such a distributed representation scheme can ac-
count for higher level concept manipulation. For example, the
advantage of the CS representation scheme is the collapsing of
multiple linked dimensions into a single point, that encodes a

single concept or prototype. As such, it is readily available for
further comparative operations with other concepts, and perhaps
even higher-level processing. This property of the CS model is
not so readily envisaged with the DAIM system given the en-
tirely distributed nature of all acquired information.

Nevertheless, this study has demonstrated that some funda-
mental aspects of conceptual modelling can be accounted for in
a distributed system that emphasises associative processes em-
bedded within a complete cognitive system, engaged in ongoing
development.
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Abstract
Our experimental results show that infants while learning to
walk intend to reach for unreachable objects. These distance er-
rors may result from inappropriate integration of reaching and
locomotor actions, attention control and near/far visual space.
Infants during their first months are fairly immobile, their at-
tention and actions are constrained to near (reachable) space.
Walking, in contrast, lures attention to distal displays and pro-
vides the information to disambiguate far space. In this paper,
we make use of a reward-mediated learning to mimic the devel-
opment of absolute distance perception. The results obtained
with the NAO robot support further our hypothesis that the rep-
resentation of near space changes after the onset of walking,
which may cause the occurrence of distance errors.
Index Terms: motor development, space awareness, distance
perception

1. Introduction
Infants discover and learn about their environment and about
their own body through their actions. Space perception, and
distance perception in particular, is action-specific [1]. Dif-
ferent types of actions are possible depending on the distance
away of a given object. For example, if the object of interest
is close to the body (in near/peripersonal space), reaching and
then grasping action may be performed. If the object is be-
yond reach (in far/extrapersonal space), then locomotor action
is needed to reach and finally grasp the object. To accomplish
such a task successfully, the brain must compute the distance of
the object from the agent’s body correctly and activate the maps
for near and far space representations appropriate to the com-
puted distance [2]. The coding of spatial positions may not only
be related to the computation of the absolute distance between
the body and the stimulus, but also related to the execution of
specific actions in space, such as reaching or locomotion.

Considering the problem from a develepmental perspec-
tive, not all actions are available to the infants from the begin-
ning. Although prelocomotor infants may have depth informa-
tion available, such as stereopsis, yet they lack knowledge of
the absolute distance of an object in space beyond reach. Self-
produced locomotion helps to calibrate visual information, re-
sulting in more precise distance estimation of the object [3].
Such an action-based distinction between near and far space
seems to be at the heart of Piaget’s theory of spatial cognition
in the sensorimotor period. According to his theory near space
is the space calibrated by reach, and far space is that calibrated
by self-produced locomotion.

Our empirical studies showed that 12-month-old infants
reach significantly more than 9-month-old for unreachable ob-

jects, and that this momentary disruption in perceived reach-
ability may be related to infants’ walking ability [4]. There
are a number of ways in which walking may affect decisions
to reach. Our previous work focused on motivation as a pos-
sible explanation of older infants’ behavior [5]. More specif-
ically, we suggested that infants in a new upright posture fail
to correctly update the boundaries of their reachable space be-
cause of their decreased ability to learn from the errors. Such
blocked ability to learn from negative outcome was suggested
to be tightly connected to the sense of control and to result from
extremely high level of self-efficacy. Since a primary motive for
walking is to reach for something, such a diminished ability to
learn from the errors may help infants to fine-tune their newly
acquired walking skill. An alternative explanation of distance
errors was also investigated, that is that the processes responsi-
ble for integration of different visual depth cues may reorganize
themselves at the onset of walking so as to incorporate depth
information from self-motion-based depth cues [6]. The devel-
opmental process of distance perception for action was mimic
by using a reward-mediated learning and the results showed an
increase in near/far space confusions after the onset of walking.

This paper investigates in more detail the recalibration pro-
cess of distance information in accordance with new motoric
factors and its relation to the occurrence of distance errors in
infants. We suggest that for a novice walker getting an object
one wants may consist primarily of orienting the body in that
directions with the hands out, and moving until you arrive. At-
tending to the precise distance, in the moment may just not be
as important as it is for younger nonwalking infants. Herein, the
walking experience is indispensible for learning the representa-
tion of far space, and for the proper integration of reaching and
locomotor actions, attention control and near/far visual space.
The results obtained with the NAO robot support further our
hypothesis that the representation of near space changes after
the onset of walking, which may contribute to the occurrence of
distance errors.

2. Distance errors in infants
The main objective of our experiments was to see how infants
recalibrate or scale perceptual information for action, and more
specifically, how their assessment of the reachability of objects
placed at different distances changes as their bodies and mo-
tor skills change. Young infants show an early distinction be-
tween what is and what is not reachable that is evident in their
reaching behavior itself. At or rapidly after the onset of reach-
ing (around 4 months), infants clearly distinguish reachable and
nonreachable distances as they systematically do not to reach
to far objects. The purpose of our experiments was to examine
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Figure 1: Mean percentage of reaches to objects placed at far
distances for 12-month olds: non-walkers, walkers with help,
and independent walkers.

the boundary between distances at which older infants, 9- and
12-month olds, do and do not reach to objects.

In total, 8 9-month-old and 8 12-month-old infants partici-
pated in our first study. Participants were seated in a modified
baby car seat. The chair allowed infants to lean freely forward
without a danger of falling. The balls on dowels were presented
through a colorful display – like a puppet theater – that also
separated the experimenter from the infants. The balls were
presented at distances 30, 37, 47, 60, and 70 cm from the infant.
There was no explicit reward provided to the infants after the
trial for any tested distance. This helped us to avoid situations
where the infants could learn to make reaching movements just
to communicate their interest in obtaining a reward.

The pattern of 9-month-old reaches indicated that infants
decisions to reach – in some way – take into account the rela-
tion between the body size and skill and distance of the target.
For the 9-month olds, attempt reaching and successful reaching
were aligned. The 12-month olds, in contrast, consistently and
persistently reached to objects at distances patently unreachable
showing no adjustment of their behavior with experience in the
task. For the infants in the experiment, it is likely that few
of the 9-month olds were walking or ”cruising” upright while
holding on to a support but it is highly likely that many of the
12-month olds were walking or spending time in some form
of pre-walking activity in an upright posture. Thus, this devel-
opmental decline in the alignment between attempted and suc-
cessful reaching distances could be related to the transition to
walking.

We extended our experiment recruiting more infants with
different walking abilities. A final sample constituted of 24
infants categorized into 3 equal-number groups, that is non-
walkers, walkers with help, and independent walkers. Fig. 1
shows mean percentage of reaches to objects placed at far dis-
tances. As is clearly seen, walkers (with and without help)
reached more for distant distances than non-walkers.

3. Reinforcement learning model
Since a reward-mediated learning have been shown to success-
fully mimic the development of near-optimal integration of vi-
sual and auditory cue in infants [7], a similar approach is taken

Figure 2: General scheme of the reward-based learning model.

here. The outline for proposed model is presented in Fig. 2. The
model is composed of two – not interconnected at the moment
– neural networks for reaching and for walking actions. The
network architectures and neurons connections are the same in
both networks, and thus will be discussed together.

A three-layer neural network is used to approximate the
state-action mapping function. The input layer of the network is
composed of n (in our case n = 62) binary neurons, that cover
the range of distances from 13cm up to 142cm. It is worth
mentioning that the input layer may easily be extended to in-
clude more depth cues, such as stereopsis or motion parallax (as
it was done in [6]). For the sake of simplicity, however, in this
work we use just familiar size depth estimation. The activity of
the neurons xi is one at depth estimated by the corresponding
cue, otherwise zero.

The input neurons are all-to-all connected with weights vi,j
to j neurons in the hidden layer. A sigmoidal transfer function
on the sum of the weighted inputs gives the outputs yj of the
hidden neurons:

yj =
1

1 + e

−
∑
i

vi,jxi
(1)

The hidden neurons are fully connected to output neurons k
with weights wj,k. All weights are drawn from uniform distri-
butions, vi,j between −0.1 and 0.1, and wj,k between −1 and
1.

Each output units represents an action. The representations
of the action and their metric units are different in the both net-
works. While the distances in the network for reaching are rep-
resented in centimeters, the distances in the network for walk-
ing are represented in steps. In case of the network for reach-
ing, kr (r = 62) reaching actions are possible and the binning
size, that is the parameter responsible for discretization of the
action space is set to 1 cm. It is worth mentioning that the
actual boundary for reachable space for the NAO robot is ap-
proximately 21cm, and fewer neurons, in fact, are needed to
encode its reachable space. Nevertheless, we set a larger num-
ber of output neurons to observe how the border of the reachable
space can emerge dynamically during the learning process. In
the case of the network for walking, kw (w = 4) actions are
possible, and the binning size is set to 1 step.
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The activation of the output neurons zk is given by the
weighted sum of the hidden layer activity, representing an ap-
proximation of the appropriate Q-value. Based on the network’s
outputs, one action is chosen according to the softmax action se-
lection rule [8]:

Pt(k) =
eQt(k)/τ∑n
b=1 e

Qt(b)/τ
(2)

where Pt(k) is the probability of selecting an action k, Qt(k)
is a value function for an action k, and τ is a positive parame-
ter called temperature that controls the stochasticity of a deci-
sion. A high value of τ allows for more explorative behavior,
whereas a low value of τ favors more exploitative behavior. We
start with a high temperature parameter τ = τ0 (τ0 = 10),
so that the selection of action is only weakly influenced by the
initial reward expectations. In our experiments, τ decreases ex-

ponentially with time τ(t) = τ
( vτ−t
vτ

)

0 , where τ0 = 10 and
vτ = 50000 in case of the network for reaching and vτ = 5000
in other case.

After performing the selected action k̂ the true reward r(k̂)
is provided. The reward is maximal when k̂ equals the true
object position kt, decaying quadratically with increasing dis-
tance within a surrounding area with radius ρ and zero other-
wise (ρ = 4 in case of the network for reaching, and ρ = 0 in
other case).

r(k̂|X) = max(0, (ρ− |k̂ − kt|))2 (3)

To minimize the error between the actual and expected re-
ward, we make use of gradient descent method which is widely
used for function approximation, and is particularly well suited
for reinforcement learning.

vi,j(t+ 1) = vi,j(t)− ε(rk̂ − zk̂)(−wj,k̂)yj(1− yj)xi (4)

wj,k̂(t+ 1) = wj,k̂(t)− ε(rk̂ − zk̂)(−yj) (5)

Herein, only the output weights wj,k connected to the win-
ning output unit k̂ are updated. The learning rate ε, decreases
exponentially, according to the formula ε(t) = ε0

ceil( t
vε

)
, where

ε0 = 0.05 (for both networks), and vε = 50000 in case of the
network for reaching, and vε = 200 in other case.

4. Experiment with the robot and results
One of the shortcomings of the reward-based methods is the
large number of training examples needed for the neural net-
work to converge. In the case of network for reaching we need
approximately t = 50000 time steps. Such a large number of
repetitions would be extremely time-consuming and unfeasible
for any robotic platform. Therefore, initial weights of the neural
networks are trained offline with the real data collected with the
use of our robot, and then tested online on our robotic setup.

4.1. Robotic platform

Aldebaran’s comercially available humanoid robot NAO with
25 DoF is used as a platform for the examined depth estima-
tion methods. The robot is provided with two identical video
cameras placed in the forehead. Their locations, however, does
not allow the use of stereo vision methods for depth calcula-
tion. Within our framework, we provided the NAO robot with
the reaching module, that is based on a radial basis functions
(for details refer to [9]). For walking behavior, we make use of
the robot built-in functions.

Figure 3: Experimental setup in our study with the robot.

4.2. Experimental setup

Our experimental setup is shown in Fig. 3. Similarly to the in-
fant experiments, the main objective of the robot was to decide
whether to reach or not for the ball. Since the NAO robot is
much smaller than an average 12-month-old infant, we had to
adjust the testing distances to reflect its size. Five different dis-
tances were tested, 2 close distances that easily allow the robot
for reaching and grasping the objects (13 cm and 15 cm), one
distance precisely at the border of reachable space (21 cm), and
two distances clearly outside of the reachable space (23 cm and
26 cm). To account for the factors (others than distance) that
influence the decision to reach, such as motivation or attention,
we introduced some random variation on 20% of the robot’s
decisions.

4.3. Experiment 1: Before the onset of walking

To simulate a developmental path of absolute distance percep-
tion in infants, first we train the network for reaching action,
which basically constitute the near space representation. The
training begins with a high temperature parameter τ , so that the
selection of action is only weakly influenced by the initial re-
ward expectations. The network is trained during 50000 time
steps.

The activation of the output neurons represents a reward
predictions (Q-values) which may be used to distinguish be-
tween reachable and non-reachable space. A high value of re-
ward prediction corresponds to the near and easily reachable
distance, whereas a low Q-value represent far – unreachable –
distance.

The weights of the neural network are trained offline and
then are employed in our robotic setup. The robot is presented
with a ball at one of the five distances. Each test trial is repeated
10 times. The mean reaching attempts of the robot are shown in
Fig. 4(a) along with the mean reaching attempts of 12-month-
old non-walking infants. As it can be seen, the results obtained
with the robot closely match the empirical results with human
infants.

4.4. Experiment 2: After the onset of walking

The training of the network for walking begins with a high value
of τ , so that the selection of action is only weakly influenced
by the initial reward expectations. The weights of the network
for reaching are also trained so that the robot can estimate the
distance of an object before it gets close enough to reach for it.
Simply speaking, the networks estimate the necessary number
of steps for walking and the remaining distance for reaching.
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(b) After the onset of walking

Figure 4: Mean reaching attempts to various distances in the
empirical experiment with infants and the robot experiment.

The weights learned on simulation are once again employed
in our robotic setup. Here, the execution of walking is blocked,
similarly as in our empirical study where the infant was sitting
in a chair with a seatbelt fastened. This trial test is repeated
10 times for each distance. The mean reaching attempts of the
robot are shown in Fig. 4(b). It can be seen, that the repre-
sentation of the near space has changed, and the distances that
previously were unreachable now became reachable. It is worth
mentioning, that when the execution of walking was enabled,
the robot in all cases was able to walk towards and then reach
and finally grasp the object successfully with the distance in-
formation provided by the networks (the error of the reaching
distance was less than 1 cm).

5. Discussion
The representation of space, not only far space, but also near
space changes with the onset of locomotion so that the newly
emerging representation of far space can be integrated into a
coherent space representation. Planning and coordination of
walking and reaching behaviors are only possible when a cer-
tain level of the infant’s walking proficiency has been achieved,
as well as the infant has sufficient cognitive capacity to process
and store the action plan. Novice walkers may reach more fre-
quently for objects at far distances because they are not able to

mentally immobilize the body’s remaining degrees of freedom.
The proper coordination of near and far space, and the locomo-
tion and reaching action is required for successful executing of
actions in far space. Our robot experiment suggest that had not
been fastened by the seatbelt, the infants in our study would ac-
tually walk (possible with an extended hand) to reach and finally
grasp the object at far distances. Further empirical experiment
would be needed to verify this hypothesis.

The proposed mechanism is just one of the possible expla-
nations of the observed distance errors in early development.
Our previous works investigated the role of locomotion in ob-
served changes in infants motivation as well as changes in the
integration of various previously unattended depth-specifying
cues. This paper investigated in more detail the possible mech-
anism for calibration of absolute distance perception that also
alters the representation of near space. Nethertheless, these ex-
planations are not mutually exclusive, and may be overlapping
in underlying mechanisms.

6. Conclusions
This paper presented the phenomenon of distance errors seen
in infants during the transition to walking and suggested that
the calibration of absolute distance perception contributes to the
appearance of these errors. The results obtained with the use of
the reward-mediated approach to learning taken here provided
further support for our hypothesis.
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Abstract
As psychologists considered synchrony as an important param-
eter for social interaction, we hypothesize that in the case of
social interaction, people focus their attention on regions of in-
terest where the visual stimuli are synchronized with their inner
dynamics. Then, we assume that a mechanism able to detect
synchrony between internal dynamics of a robot and external
visual stimuli can be used as a starting point for human robot
interaction. Inspired by human psychological and neurobiolog-
ical data, we propose a synchrony based neural network archi-
tecture capable of selecting the robot interaction partner and of
locating Focus of Attention.
Index Terms: Human Robot Interaction, Synchrony, Focus of
Attention, Partner Selection, Dynamical Systems.

1. Introduction
Human verbal interaction is not only speech dependent. In fact,
many non-verbal behaviors such as facial expressions, pauses
during discussion, hand movements etc. are also involved [1].
An important aspect of these non-verbal communications is
their timing and synchrony according to the partner’s behav-
ior. Psychological Studies of dyadic interactions shows that
synchrony is a necessary condition for interaction between an
infant and his mother [2]. Recently, Dumas et al.[3] revealed,
using hyperscanning, the emergence of inter-brain synchroniza-
tion across multiple frequency bands during social interaction.
Interpersonal motor coordination between people can be ob-
served while walking along with someone [4]. Marin et al. un-
derlined that motor resonance between robots (humanoid) and
humans could optimize the social competence of human-robot
interactions [5]. Qiming Shen et al. also did related experiments
[6].

By the above discussion, it is clear that synchrony is an im-
portant parameter for social interaction as well as largely wit-
nessed in natural dynamical systems. In this paper, we use im-
mediate synchronous imitation as a communication tool. We
present here a neural network architecture for socially interact-
ing robots.

2. Materials and Methods
We used a minimal setup for our experiments as shown in fig-
ure 1. Components includes Nao robot, basic automata (1 de-
gree of freedom), human and cameras. To avoid the frame rate
limitation of the Nao’s camera through the ethernet connection
(limited to 10 Hz), a new camera has been added for Nao’s vi-
sion. The frame rate for our experiments is 30 Hz.

To analyze synchrony, we need to investigate the dynam-
ics of interaction between two signals. To do so, we use the
Phase Locking Value (PLV) which is a practical method pre-
sented by Lachaux et al. [7]. The PLV for two signals is

Figure 1: Setup for our experiments. (a) Nao robot (b) Basic
Automata (made in the lab) (c) and (d) Overall setup for human-
robot and robot-robot interaction.

defined by PLVn,r = 1
T
|
∑T
t=1 exp(i(φn − φr))|, where

T is the number of samples and φn − φr is the phase dif-
ference between two signals. When there is synchroniza-
tion the PLV value is close to 1 otherwise the PLV value ap-
proaches to 0. Videos of our experiments can be found on:
http://www.etis.ensea.fr/neurocyber/Videos/synchro/

3. Human Robot Interaction
Here, we propose a model based on dynamical interactions of
two agents. Agent 1 (Nao robot) dynamically adopts or imi-
tates the behavior of agent 2 (human / automata). Our aim is to
provide to Nao limited capabilities to interact with other agents
by dynamically adopting the frequency and phase of the other
agents. Velocity vectors estimated by an optical flow algorithm
represent the visual stimuli and inputs for our architecture.

The oscillator model is shown in figure 3(a). It is made of
two neurons N1 and N2, fed by a constant signal and multi-
plied by the parameters α1 and α2 (equation 1 and 2). These
two neurons inhibit each other proportionality to the parameter
β.

N1(n+ 1) = N1(n) − βN2(n) + α1 (1)

N2(n+ 1) = N1(n) + βN2(n) + α2 (2)

The frequency of the oscillator depends on the parameters α1,
α2 and β. In addition, a reservoir of oscillators (echo state net-
work) could be used to work with a larger range of frequencies.

As shows in figure 3(a), the oscillator is connected with
Nao’s arm and oscillates normally at its own frequency and am-
plitude. Motion in the visual field of Nao is estimated by an
optical flow algorithm, velocity vectors are then converted into
positive and negative activities. If the perceived movements are
in the upward direction, the oscillator gets the positive activity
and its amplitude increases. On contrary, if the negative activity
is perceived amplitude goes down. When an agent interacts with
a motion frequency close to NAO’s frequency, Nao’s oscillator
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Figure 2: (a) Shows two motion signals (human and Nao). (b)
PLV measurement. (c) Lissajous curve between N(t) (Nao’ os-
cillation) and H(t) (Human’s movements), (d) Lissajous curve
betweenN(t) andN(t+5). (e) Positive and Negative activities
deduced from optical flow. (f) Real image seen by camera.

can be modified within certain limits otherwise it continues to
his default frequency. Mathematical equation of the oscillator
can be rephrased asN1(n+ 1) = N1(n)−βN2(n) +α1 +f ′.
Where f ′ is the induced energy.

As shown in figure 3(a) a modifiable oscillator is connected
with Nao’s arm. When there is no visual input it oscillates nor-
mally but if a human comes and interact with Nao by imitat-
ing him, Nao synchronizes with human by modifying his fre-
quency and phase . Figure 2(a) shows the motion signals of
both NAO’s and the human arm while trying to interact by imi-
tating games. Initially, both are unsynchronized. PLV (indicator
of synchrony) has its lowest value (see figure 2(b)). As shown in
Figure 2(a) and 2(b), during the interaction both Nao and human
are synchronizing little by little similar to a pendulum coupling.
The increasing PLV values also show the emerging synchrony.
Figures 2(a) and 2(b) also clearly illustrate that, after a certain
time, the agents are completely synchronized, the correspond-
ing PLV values are at the highest possible range. Figure 2(c)
shows Lissajous curve between the motion signals of Nao’s (
N(t) ) and human’s movements (H(t)). The elliptic shape of
the curve indicates that both signals are almost identical. Fig-
ure 2(e) is a snapshot taken during experiment illustrating posi-
tive and negative activities in the visual field deduced using the
optical flow velocity vectors. Figure 2(e) shows two moving ob-
jects in the field of view of Nao. One moves upward and induces
positive activities (shown by filled black color pixels) while the
other moves downward and induces negative activities (unfilled
pixels). Figure 2(f) shows the real image seen by the camera.

Interesting facts are observed during experiments, some of
these observations were also made by Pantaleone in his study
of metronomes synchronization [11]. First, if the natural fre-
quency of the two agents (in his case two pendulums) differs
by more than a certain limit, synchronization will not occur.
The range of interacting frequency (that can be synchronized
with Nao) can be expanded by increasing the coupling energy

f ′(by scaling coupling factor) that feeds the Nao’s oscillator.
With low scaling factor both agents can be synchronized if their
natural frequency differs by more than few percents similarly,
higher scaling factor leads to higher range of frequencies. For
this human/robot interaction, the default frequency of Nao’s
oscillator was 0.428 Hz while human’s interacting frequency
(measured by adding the active pixels of motion estimation)
was between 0.4615 Hz to 0.476 Hz (7.8% to 11% higher than
Nao’s frequency) with 0.15 as a scaling factor and 15% as the
corresponding ∆f (difference between the natural frequencies
that can be synchronization). A coupling factor of 0.3 leads to
∆f = 29% with little variations on the amplitude, a scaling
factor of 0.5 results to ∆f = 72% but this higher coupling
introduces amplitude saturation. We also observed that for the
same parametric conditions, if the natural frequencies of both
agents are the same no phase leg was observed but as the ∆f
increases to a certain limit the phase leg increases too. We ex-
perienced 00 to 900 of phase shift in our experiments.

4. Selection of Partner
We propose a neural network architecture (Figure 3(b)) that se-
lects an interacting partner on the basis of synchrony detec-
tion among various interacting agents. Previously, the modi-
fiable Nao’s oscillator controlling the arm movement was di-
rectly connected to the visual stimuli (f ′). Now, the coupling
is made through an oscillator-prediction module (f ′′). The
reason for indirect coupling is to make sure that the architec-
ture will entertain the visual stimuli (optical flow) that is simi-
lar to its own motion (learnt by the oscillator-prediction mod-
ule). Equation of modifiable oscillator can be rewritten as
N1(n + 1) = N1(n) − βN2(n) + α1 + N + f ′′. Where
f ′′ is the energy induced by the Oscillator-prediction module.

The oscillator-prediction block (represented by y′) is linked
to the robot’s oscillator (represented by y) with a non modifi-
able link while the image of visual activities (represented by
X) is linked with a modifiable link. The Oscillator-prediction
(y′) module learns the robot’s oscillation as a weighted sum of
active pixels. The neuron activity in the Oscillator-prediction
(y′) can be computed using X → y′ synapses by : y′i(t) =∑
kεXWXk−y′i

Xk that corresponds to the predicted future
value.The learning of X → y′ synaptic weights can be com-
puted by equation 3 and is based on NLMS (Normalized Least
Mean Square) algorithm (Synaptic learning modulation η is ad-
ditionally added) [8].

WXj−y′i
(t+dt) = WXj−y′i

(t)+αη.
yi(t) − y′i(t)∑
kεX Xk(t)2 + σ1

.Xj(t) (3)

Where y′ stands for the Oscillator-prediction,X for the im-
age of visual activities and y for the NAO’s arm Oscillator, α is
the learning rate and WXj−y′i

represents the synaptic weights
from Xj to Oscillator − prediction neuron i, yi is the activ-
ity transmitted to neuron i by the oscillator, it is a target sig-
nal for the Least Mean Square (LMS) algorithm [9]. To im-
prove the LMS convergence during the learning phase, we in-
troduced the learning modulation η. The normalization term∑
kεX Xk(t)2 + σ1 is specific to the NLMS and σ1 is a small

value used to avoid the divergence of the synaptic weights if the
visual activities (X) values are too small.

Now we consider the complete scenario. For the selection
of partner, the architecture works in two phases: learning phase
and testing phase. During the learning phase, NAO oscillates
according to its default frequency (no visual stimulus). NAO
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Figure 3: (a) Dynamical Interaction model (b) Selection of Part-
ner: select a interacting partner on the basis of synchrony de-
tection. (c) Shows attentional mechanism architecture.

looks at its own hand. It initiates two processes. First the oscil-
lator prediction module which was zero due to non availability
of visual stimuli starts now predicting robot’s modifiable oscil-
lator as a weighted sum of its own visual stimuli. The oscillator-
prediction module learns associations between NAO’s motion
and the visual activities induced by NAO’s arm. As a conse-
quence, it also modifies the NAO’s oscillator (as described in
section 3). This process of modifying, learning and adapting
continues and converge after some time. This adjustment can
be assumed as a basic process by which infants gain self re-
flective abilities as underlined by Rochat [10]. After this phase,
NAO learns to predict oscillatory movements similar to his own
movement. When an agent interacts with a frequency similar
to the learned one, weights (that are already learnt on modifi-
able links) are associated with the visual activities induced by
the human movements and Nao’s modifiable oscillator adopts
the interacting frequency and phase. If the interacting fre-
quency is different from the learnt one, the weights (modifiable
links) could not be associated with the visual stimuli and NAO
continues to move at his default frequency. Same is true for
multiple agents case. Among two interactants only the agent
having a similar frequency as Nao is selected. In this exper-
iment, the coupling factor was 0.07, Nao’s default frequency
was 0.407 Hz, automata synchronized frequency was 0.4318
Hz (6% higher) and human synchronized frequency was 0.36
Hz (11% less). When a subject interacts with a frequency close
to the learnt one, this selection of partner algorithm selects this
agent as a good interacting partner and NAO modifiable oscil-
lator synchronizes with it. Good results are obtained with this
architecture, they are collectively shown in the next section.

5. Attentional Mechanism
Here, we use prediction of synchrony as a parameter to attract
the attention of the robot. If two visual stimuli are presented at
the same time and only one of them has the same frequency as
NAO. NAO will then synchronize with the ”interacting” partner
corresponding to his frequency and select him as a partner (by
selection of partner algorithm). However, NAO will not be able
to locate the good interacting partner in its visual field, because

this algorithm (partner selection) works on the perceived en-
ergy irrespective of the spatial information (agent location). To
locate the correct interacting partner, the proposed FOA algo-
rithm dynamically locate the correct interacting partner (defined
by the selection of partner algorithm) using spatial predictions.
Figure 3(c) shows the architecture of FOA. When a human inter-
acts (using arm / hand), the image-prediction block (X ′′) learns
the image of these movements as a weighted sum of Nao’s syn-
chronized frequency. This makes it possible to predict the cor-
responding human movements. After a short while, an other
agent comes and moves with a different frequency (lower or
higher than Nao), X ′′ which already learnt synchronized rhyth-
mic movements predicts strongly the first synchronized agent
compared to the unsynchronized one. Our algorithm modulates
this predicted synchrony with the current visual stimuli and cal-
culates the average value (acting as short term memory). As the
synchronized image is well predicted its correlation values are
higher than the asynchronous movements. Figure 3(c) shows
that all the pixels of the memory block is projected on y axis
(i.e all pixels in each column are added to find the highest cor-
related column). Then a Winner Takes All (WTA) selects the
highest activated column. This selected column indicates the
location of synchronized movement and the robot can point to
the synchronized region to show the current Focus Of Attention
(FOA). For this experiment the resolution of the predicted im-
age of optical flow is 32× 24 (32 columns or location), these 32
possible locations are realized in 600 (−300 to 300) circular an-
gles. The learning rule of the movement-prediction (X ′′) mod-
ule is almost the same as the oscillator-prediction module and
the weights are normalized to smooth the learning processes.

5.1. Results

we examine our selection of partner algorithm along with FOA
architecture (figure 3(c)) in two situations: one Automata (1-
DoF) and one human (only one of them is synchronized at a
time). Results show that when the Automata moves similarly
to Nao’s movements while human oscillates with a different
frequency, Nao synchronizes with the Automata (selection of
partner) and FOA mechanisms turns towards Automata. If the
human adopts his frequency close to Nao, Nao aligns himself
with the human and FOA moves towards human.

These results of both algorithms are shown in figure 4 by
two sets of graphs. Figure 4(a) shows the onset of the experi-
ment, where the Automata enters in the visual field of Nao from
the left side (about−200) and imitates him. Consequently, both
become synchronized using our selection of partner algorithm.
Figure 4(a1) sketches the signals of Nao modifiable oscillator
and Automata illustrating how they become synchronized. Fig-
ure 4(a3) shows the PLV value (measure of synchrony) of the
two agents. Initially, PLV is low but as the interaction gets
longer it increases to higher value. As the Automata interacts,
FOA moves towards Automata as Shown in Figure 4(a4). Fig-
ure 4(a2) shows signals of Nao and human illustrating that ini-
tially there is no interaction by human from the right side of the
robot. After 700 time units (23.33 seconds) human comes with
a different frequency. He does not succeeded in disturbing the
selection of partner (PLV remains high for Automata) and FOA
remains towards the Automata.

Now, the automata is tuned to a low frequency and human
is instructed to imitate NAO (figure 4(b1) and (b2)). As a re-
sult, Nao switches the synchronized region, from left (−200)
to right side (about 270). The PLV related to human increases
to the highest value while the Automata PLV shifts to a lowest
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Figure 4: Results: (a) shows start of experiment with single agent and then disturbed by the other agent. (b) Different frequency agents
interact with Nao.

one (figure 4(c3)). FOA shifts from the automata to the human
(figure 4(c4)). After 2650 time units (88.3 sec), the Automata
is tuned to its previous frequency again and the human is in-
structed to make different oscillations. Consequently, this in-
duces a switch of the FOA and the recognized interacting part-
ner (figure 4(b)).

6. Conclusion and discussion
We proposed a novel approach for building autonomous robots
that can interact with multiple agents and select an interacting
partner among several on the basis of synchrony detection. We
also showed that synchrony prediction could be used as a way
to establish focus of attention. From the psychological point of
view, we were inspired by the unconscious communications be-
tween humans. The synchronous exchanges during social inter-
actions are directly associated to the sensorimotor information
of the two agents. These inter brain networks are ”symmetric”
in low frequency band while ”asymmetric” in high frequency
bands [3]. This could reflect the different processing levels of
information. In our case, synchronization between two agents
can be assumed as “symmetric” in low frequency band and Fo-
cus of attention can be associated with high frequency carrier.

Actually we are studying three human-robot applications
for synchrony detection. The first and most obvious one is to
extend the model to learn more complex interactions (complex
gestures). Indeed, synchrony detection and selection of part-
ner permit to maintain interaction with a partner moving syn-
chronously with the robot in terms of low fundamental tempo-
ral frequency of interaction. As a result, more complex ges-
tures (higher temporal frequencies) can be imitated and learnt
autonomously by the robot while interacting with the human
partner. Similarly, we aim to use our architecture for naviga-
tion tasks. A mobile robot can choose a synchronous agent to
interact with and consequently learn complex navigation tasks
by keeping synchrony while moving with the selected partner.
Finally and in a global point of view, we question the use of
synchrony detection, focus of attention and selection of partner
in turn-taking games during interaction. In fact, synchrony can

not only be considered as a starting point for social interaction
but also as a way to re-engage the interaction with a selected
partner.
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Abstract

Our humanoid robot learns to provide position estimates of ob-
jects placed on a table, even while the robot is moving its torso,
head and eyes (cm range accuracy). These estimates are pro-
vided by trained artificial neural networks (ANN) and a genetic
programming (GP) method, based solely on the inputs from the
two cameras and the joint encoder positions. No prior camera
calibration and kinematic model is used. We find that ANN and
GP are both able to localise objects robustly regardless of the
robot’s pose and without an explicit kinematic model or camera
calibration. These approaches yield an accuracy comparable to
current techniques used on theiCub.
Index Terms: spatial understanding, object localisation, hu-
manoid robot, neural network, genetic programming

1. Introduction
The majority of robotic systems used nowadays are still mainly
performing pre-programmed automation tasks. In recent years
progress has been made in enabling these robotic systems to
perform more autonomous behaviours. Increasing these capa-
bilities is necessary for future use of robots in interesting set-
tings of daily living, such as, household tasks, grocery shopping
and elderly care. An important step to perform autonomous de-
cisions and actions is to perceive the state of the environment.
Perception though is still a hard problem in robotics.

We are interested in robust approaches to visual perception,
with applications to object localisation while the robot is con-
trolling its torso, head and gaze. The localisation will be used in
combination with on-line motion planning for object manipula-
tion tasks on a real humanoid robot. In this work, we focus on a
machine learning setup that provides the robot with a method to
estimate the location of objects relative to itself in 3D Cartesian
space. Our research platform is theiCubhumanoid robot [1], an
open robotic system, providing a 41 degree-of-freedom (DOF)
upper-body, comprising two arms, a head and a torso. Its visual
system is a pair of cameras mounted in the head in a human-like
fashion (see Fig. 1), providing passive, binocular images.

The problem of localising objects in 3D Cartesian space
given two images from cameras in different locations is widely
known in the computer vision literature as ‘Stereo Vision’. In
the following discussion,CSL andCSRrefer to the local ref-
erence frames of the left and right cameras respectively, the
reference frame of the body isCSBody, but as it is mounted
at a fixed point this is also the reference frame chosen for the
environment. ThereforeCSWorlddenotes the common envi-
ronmental reference frame, in which we seek to express object
locations. Cameras that photograph the same scene from two
different locations provide different 2D projections of the 3D

scene. If the ‘intrinsic parameters’ that specify each camera’s
projection from 3D to 2D, as well as the ‘fundamental matrix’
that is the rigid-body transformation betweenCSLandCSRare
known, and if there are some features of the scene that can be
identified in both images, then the 3D locations of those fea-
tures can be triangulated. For a thorough review of approaches
based on this principle, we refer the interested reader to [2].
While traditional stereo vision approaches, based on projective
geometry, have been proven effective under carefully controlled
experimental circumstances, they are not ideally suited to most
robotics applications. Intrinsic camera parameters and the fun-
damental matrix may be unknown or time varying, and this re-
quires the frequent repetition of lengthly calibration procedures,
wherein known, structured objects are viewed by the stereo vi-
sion system, and the required parameters are estimated by nu-
merical algorithms. Assuming a solution to the standard stereo
vision problem, applying it to a real physical robot to facilitate
object manipulation remains a challenge. In many robotics ap-
plications, it is somewhat inconvenient to express the environ-
ment with respect to a camera. For example, from a planning
and control standpoint, the most logical choice of coordinate
system isCSWorld, the reference frame at the base of the ma-
nipulator, which does not move with respect to the environment.
In order to transform coordinates fromCSLor CSRto CSWorld,
such that we can model objects and control the robot in the same
frame of reference, an accurate kinematic model of the robot is
required. If such a model is available, it must be carefully cal-
ibrated against the actual hardware, and even then its accuracy
may be limited by un-modelled nonlinearities.

We show that localising can be learned without explicit
knowledge of the camera parameters and the kinematic model.

CSR CSL

3-DOF Neck

3-DOF Torso

CSWorld

3-DOF Eyes
vergence

pan/tilt

Figure 1: The coordinate frames relevant for object localisation
ontheiCub. Cameras located at the origin ofCSL/CSRare used
to express the position of objects with respect to theCSWorld.
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Table 1: A typical entry from the dataset and the limits used to scalethe features and locations for the neural network.
ImageL ImageR Neck Eyes Torso Location
X Y X Y 0 1 2 3 4 5 0 1 2 X Y Z

Vector v0 v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12 p0 p1 p2

Example 479 411 503 437 -10.0 0.0 0.0 -19.9 -19.9 0.0 -0.1 -9.9 10.1 0.42 0.27 -0.12

max 640 480 640 480 25 25 10 20 15 5 20 20 50 0.66 0.5 0.55
min 0 0 0 0 -25 -25 -10 -20 -15 0 -20 -20 0 0.00 -0.5 -0.15

2. Previous Work
Several different localisation systems have previously been de-
veloped for theiCub. A popular representation for (stereo) vi-
sion research is based on log-polar transformed images. This bi-
ologically inspired approach first applies a transformation to the
camera images before typical stereo vision algorithms are used.
The available module currently supports only a static head, ie.
it puts the object position in theCSL/Rcoordinate frame. The
‘Cartesian controller module’ provides another basic 3D posi-
tion estimation functionality [3]. This module works well on
the simulated robot, however its performance on the hardware
platform is weak, this is because of inaccuracies in the robot
model and camera parameters. The most accurate, currently
available localisation module for theiCub exists in the ‘stereo-
Vision’ module providing centimeter accuracy. Unlike the pre-
sented log-polar approach, this module employs the entireiCub
kinematic model, providing a position estimate in theCSWorld
coordinate frame. The module requires the previously men-
tioned ‘Cartesian controller’ and uses tracking of features to
improve the kinematic model of the camera pair by estimating
a new fundamental matrix continuously. The precision of all of
these approaches depends upon an accurate kinematic model of
the iCub. A very accurate model, or estimation of the model, is
therefore necessary.

There exists currently no module estimating the kinemat-
ics of the iCub, for other robotic systems this has been done:
Gloye et al. used visual feedback to learn the model of a holo-
nomic wheeled robot [4] and Bongard et al. used sensory feed-
back to learn the model of a legged robot [5], but their method
uses no high-dimensional sensory information (such as images).

In robot learning, especially imitation learning, various
approaches have been investigated to tackle these problems.
Sauser & Billard have investigated the problem of reference
frame transformations from a neuroscience perspective [6].
They were able to imitate gestures from a teacher on a Hoap-2
humanoid robot with external fixed cameras. Though promis-
ing their approach has so far not been extended to systems with
non-stationary cameras.

3. Machine Learning Approach
In this paper we investigate two biologically inspired machine
learning approaches: a feed-forward artificial neural network
(ANN) and genetic programming (GP) approach. These tech-
niques use supervised learning, requiring a dataset including
both inputs and outputs (ground truth). More formally, the task
is to estimate the position of an objectp ∈ R

3 in the robot’s
reference frame (CSWorld) given an input, also called feature
vector,v. Here we definedv ∈ R

13 containing the state of the
robot as described by 9 joint encoder values (ie. the 9 controlled
DOF) and the observed position in both camera images.

A dataset of reference points (RPs) was collected on the
real hardware. A YARP [7] module registering the robot state

and storing the camera images was implemented. To obtain the
position of an object in the images, an object detection algo-
rithm [8] was used to filter the raw stream from the camera.
The hand-measured position of the object in 3D space was then
added as the correlating output. The dataset contains32 RPs on
the table, with more than30 robot poses per point. They lie in
a region where the iCub is able to reach with its arms and were
distributed in a grid with a spacing of6 cm.

3.1. Artificial Neural Network (ANN)

An ANN, more precisely a multi-layer perceptron [9] was
trained applying a standard error back-propagation [9] method
on the dataset collected. The neural network approach requires
a pre-processing step, in which the dataset (input vector) is
scaled using the limits given in Table 1 to get values in the range
[−1,+1]. The limits are based on to the maximum image size
for the first 4 values, and the joint limits ( range of motion in the
stochastic controller) of the robot, for the encoder values. The
output of the neural network is in the same limited range and
needs to be un-scaled.

For training the network the (scaled) dataset was first ran-
domly split into a training (80% of the data) and test set (20%).
The test set allows to verify that the results obtained via learn-
ing are not over-fitting. Separate networks were trained for the
estimation in the X and Y direction. Each network consists of
one input layer with dimension 13, a hidden layer, and an out-
put layer. The network uses bias terms and is fully connected.
The hidden layer consists of 10 neurons, which use a sigmoidal
activation function of the formσ(u) = 1

1+e
−u

. Finally the out-
put layer is a single neuron representing the estimated position
along one axis. The ANNs were trained using PyBrain [10]
with a learning rate of0.35 and a moment of0.1. The errors
reported are the average of 10 runs.

3.2. Genetic Programming

Genetic Programming (GP) is a search technique, most com-
monly used for symbolic regression and classification tasks. It
is inspired by concepts from Darwinian evolution [11]. Herein
we use GP to find expressions mapping the inputs to the out-
puts (3D coordinates). The basic algorithm works as follows:
a population is initialised randomly. Each individual represents
a tree, encoding a mathematical expression. The nodes encode
a function, with the leaf nodes either being an available input
or a constant value. For a given set of input values, the output
of the expression can be found by recursing from the root node
through to the terminal nodes. The individuals are then tested to
calculate their ‘fitness’ (in our case the sum of the mean error).
The lower this error, the better the individual is at performing
the mapping. In the next step a new population is generated out
of the old, by taking pairs of the best performing individuals and
performing functions analogous to recombination and mutation.
The process of test and generate is repeated until a solution is
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Table 2: The mathematical functions available for the genetic
programming (GP) method to select from.

add subtract multiply devide
power sqrt exp log

sin sinh cos cosh
tan tanh asin acos

atan2 min max abs

found or a certain number of individuals have been evaluated.
A comprehensive introduction to genetic programming and its
applications can be found in [12].

Herein we use a freely available software ‘Eureqa’ [13]. It
produces compact, human readable expressions from datasets
employing the above mentioned techniques. The input values
do not have to be scaled in this approach and can remain in the
original form. As with the neural network regression, data was
shuffled and then split into training and validation sets. The
standard settings were used. These including a population of
64 individuals, a crossover rate of0.5 and a mutation rate of
1.5% and the mean square error of the predication was used
as a fitness metric. The generated solution can contain any of
mathematical functions in in Table 2.

4. Experiments and Results
To learn the ability to generalise, the techniques need a dataset
representing the robot in various configurations and object loca-
tions on the table. Our first approach was to place a single object
at different known positions on the table and collect data. To
simplify the image processing, a red LED was used. The LED
was placed at a known position in the grid to mark the refer-
ence point, while theiCubmoved into different poses. For each
pose the joint angles and camera images were collected. After
collecting data for a number of poses, the LED was moved to
another position and the process repeated.

For the table case the problem is simplified as we can as-
sume a constant height (Z axis) estimation. Table 3 compares
the position prediction errors of the ANN and GP techniques. It
shows that the neural network is performing better during learn-
ing, which can also be seen in Fig. 2. Both approaches perform
similarly when generalising to unseen data (test set). The ANN
training necessitates a longer runtime, as the back-propagation

Table 3: Estimation accuracy on the dataset for both techniques.
ANN GP

Average Error 2D (cm) 0.846 3.325
Standard Deviation 2D (cm) 0.504 2.210

Average Error X (cm) 0.540 2.028
Standard Deviation X (cm) 0.445 1.760

Average Error Y (cm) 0.5433 2.210
Standard Deviation Y (cm) 0.4304 1.716

algorithm repeats to update the neural network until the network
performance is satisfactory. As described above, two separate
networks were trained to predict the coordinates on the X and Y
axes independently. This approach was chosen as it allowed for
faster learning (i.e. less generations needed to yield the results)
and the ability to run the learning in parallel. On average about
1700 epochs were needed per network for its prediction error to
converge. After training the network produces estimates with
an average accuracy of0.8 cm, with lower separate errors on
the axes (see Table 3). This makes the ANN approach the best
performing approach on the dataset.

The GP method, while converging faster than the neural
network, performs with a lower average accuracy of3.3 cm.
Although this performance is worse than the ANN, it is still
sufficiently accurate to allow for simple reaching and grasping
tasks on theiCub. However, there are a number of advantages to
be considered. The output is in a human-readable form, which
can easily and quickly be transferred and tested on the robot.
Table 4 shows the evolved equations. An interesting observa-
tion is that only one of the camera images is used (featuresv0

andv1). This allows to reduce the (complete) runtime of the es-
timation as only one images needs to be processed with object
detection algorithms before the expression can be evaluated.

During off-line training it appeared that both the ANN and
GP approaches provide sufficient accuracy for object manip-
ulation. Both approaches were implemented on theiCub to
perform real time distance estimation of objects and to allow
for further verification. The object position in the images (pro-
vided by an object detection filter from a separate iCub vision
system [8]) and joint encoder values were provided to both the
trained neural network and the GP evolved formulae, to allow
easy comparison of the position predictions.

The validation results were obtained using locations on the

Figure 2: The estimated object position (blue dots) vs. the measured object position (red blocks) for the machine learning approaches:
on the left the result obtained from artificial neural networks (ANN), on the right the results using genetic programming (GP).
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Table 4: The equations generated using Genetic Programming.
x = 17.81 − 0.01906 v1 + 0.1527 v4 + 0.1378 v7 + 0.01108 v10 − 0.0296 v11 − 0.1207 v12

y = 1.124224045 + 0.1295920897 v10 + 0.1156011386 v8 + 0.01695234993 v0

Table 5: The relative estimation errors (in cm) when estimating
the position using fixed poses of the robot and object locations
not in the training nor test set.

ANN GP currentiCub
dX dY estX estY estX estY estX estY
0 +2 0.10 1.93 0.51 2.28 0.0 2.17
0 +1 0.10 0.78 0.30 0.91 0.05 1.0
0 0 0 0 0 0 0 0
0 -1 0.03 1.14 0.31 1.35 0.03 1.07
0 -2 0.11 2.08 0.61 2.40 0.03 2.07

+2 0 1.70 0.01 1.93 0.57 2.01 0.17
+1 0 0.71 0.10 0.81 0.34 0.92 0.11
0 0 0 0 0 0 0 0
-1 0 0.99 0.21 1.12 0.11 1.17 0.06
-2 0 1.98 0.30 2.24 0.34 2.33 0.1

Figure 3: The relative localisation errors on the real hardware.
The ground truth is shown in black, the circles represent the
learning approaches, ANN (empty circle) and GP (filled). Re-
sults from theiCub ‘stereoVision’ module is plotted in green.

table and poses that were not in the original training not test
set. It was found that the GP out-performed (average error of
2.7 cm) the ANN (average error of3.5 cm) on localisation.
Both techniques performed slightly worse than a fully calibrated
iCub’s ‘stereoVision’ module (1.8 cm accuracy). The perfor-
mance on the relative error (where the target object was moved
by small increments away from a central point) was very high
for both implementation with the ANN yielding better results,
as can be seen by the values in Table 5 and Fig. 3. The results of
the currentiCub localisation module are added for comparison.

To test these approaches under moving conditions, we
scripted the robot to move a given trajectory and recorded the
position estimates for an object at a fixed location. The errors
were tested for using only head/neck joints, for only using torso
and for a combination of both. These all ranged in 2-4 cen-
timetres. The faster the movement the higher the error was, this
lead us to believe that it might mainly be an issue of getting the
images from both cameras synchronised as much as possible.

We also performed this test with a moving test object, the

error though is harder to measure when both objects are moving.
In visual verification no big errors were found1.

5. Conclusions
To estimate the positions of objects placed on a table in front
of an iCub robot we compared artificial neural networks (ANN)
and genetic programming (GP). No explicit robot model nor a
time-consuming stereo camera calibration procedure is needed
to learn. Results of locating objects on the table (2D) are suf-
ficient for real world reaching scenarios, with the GP approach
performing worse than the ANN method on the training set but
generalising better when used on the hardware. The results on
the first 3D dataset show that the method can be scaled to per-
form full 3D estimation. That said a more thorough experimen-
tal testing on the iCub will need to be conducted.

The results show that theiCub can learn simpler ways to
perceive the location of objects than the human engineered
methods. Both approaches provide simple and fast methods that
can be used in real time on the robot. As the learnt models are
‘light weight’ they could easily be incorporated into embedded
systems and other robotic platforms.

6. References
[1] N. G. Tsagarakiset al., “iCub: the design and realization of

an open humanoid platform for cognitive and neuroscience re-
search,”Advanced Robotics, vol. 21, pp. 1151–1175, Jan. 2007.

[2] R. Hartley and A. Zisserman,Multiple view geometry in computer
vision, 2nd ed. Cambridge University Press, 2000.

[3] U. Pattacini, “Modular Cartesian Controllers for Humanoid
Robots: Design and Implementation on the iCub,” Ph.D. disserta-
tion, RBCS, Italian Institute of Technology, Genova, 2011.

[4] A. Gloye, F. Wiesel, O. Tenchio, and M. Simon, “Reinforcing the
Driving Quality of Soccer Playing Robots by Anticipation,”IT -
Information Technology, vol. 47, no. 5, 2005.

[5] J. Bongard and V. Zykov, “Resilient machines through continuous
self-modeling,”Science, vol. 314, no. 5802, pp. 1118–1121, 2006.

[6] E. Sauser and A. Billard, “View sensitive cells as a neural basis for
the representation of others in a self-centered frame of reference,”
in Int’l. Symposium on Imitation in Animals and Artifacts, 2005.

[7] G. Metta, P. Fitzpatrick, and L. Natale, “YARP: Yet Another
Robot Platform,”Advanced Robotic Systems, vol. 3, 2006.

[8] J. Leitner, S. Harding, M. Frank, A. Förster, and J. Schmidhuber,
“icVision: A Modular Vision System for Cognitive Robotics Re-
search,” inInternational Conference on Cognitive Systems, 2012.

[9] S. J. Russell and P. Norvig,Artificial Intelligence: A Modern Ap-
proach, 3rd ed. Prentice Hall, 2010.

[10] T. Schaulet al., “PyBrain,” Journal of Machine Learning Re-
search, 2010.

[11] J. Koza,Genetic Programming: On the Programming of Comput-
ers by Means of Natural Selection. MIT Press, 1992.

[12] R. Poli, W. B. Langdon, and N. F. McPhee,A field guide to genetic
programming. Published athttp://lulu.com ; Freely avail-
able athttp://www.gp-field-guide.org.uk, 2008.

[13] M. Schmidt and H. Lipson, “Distilling Free-Form Natural Laws
from Experimental Data,”Science, pp. 1–5, Apr. 2009.

1A videoshowing localisation while the iCub and the object is mov-
ing can be found athttp://Juxi.net/projects/icVision/.

Proceedings of the Post-Graduate Conference on Robotics and Development of Cognition 
10-12 September 2012, Lausanne, Switzerland

23



Edge and plane classification with a biomimetic iCub fingertip sensor

Uriel Martinez-Hernandez1, Nathan F. Lepora2, Hector Barron-Gonzalez2, Tony Dodd1, Tony J. Prescott2

1ACSE Department, University of Sheffield, Sheffield, UK
2Psychology Department, University of Sheffield, Sheffield, UK

{uriel.martinez, n.lepora, h.barron, t.j.dodd, t.j.prescott}@sheffield.ac.uk

Abstract
The exploration and interaction of humanoid robots with the
environment through tactile sensing is an important task for
achieving truly autonomous agents. Recently much research
has been focused on the development of new technologies
for tactile sensors and new methods for tactile exploration.
Edge detection is one of the tasks required in robots and
humanoids to explore and recognise objects. In this work we
propose a method for edge and plane classification with a
biomimetic iCub fingertip using a probabilistic approach. The
iCub fingertip mounted on anxy-table robot is able to tap and
collect the data from the surface and edge of a plastic wall.
Using a maximum likelihood classifier thexy-table knows
when the iCub fingertip has reached the edge of the object. The
study presented here is also biologically inspired by the tactile
exploration performed in animals.

Index Terms: tactile sensing, edge detection, probabilistic clas-
sification, biomimetic

1. Introduction
Nowadays most robots are equipped with haptic systems to im-
prove their ability to interact with and learn from the environ-
ment. This is a required and important feature for humanoid
robots in order to perform tasks safely. Haptics is considered as
a perceptual system [1], which is mainly based on information
provided by two types of sensing systems: proprioceptive sens-
ing and extereoceptive sensing. Proprioceptive sensing detects
body position, weight, and joints, whilst extereoceptive sensing
refers to tactile sensing which provides physical properties of
objects through physical contact [2].

Humans use the sense of touch, or tactile sensing, to ex-
plore their environment. Different predefined exploratory pro-
cedures (EPs) performed by humans with their hands and fin-
gers allow them to recognise objects. The type of EP depends
on the type of information required – for instance, sliding, pres-
sure and contour following provide information about texture,
hardness and shape respectively [3]. The way humans perform
tactile sensing is considered as an active process rather than a
passive one, because the movement of the hand and fingers is
purposely guided to obtain more information. This process of
tactile exploration is not only used by humans but is also present
in the animal kingdom. Some examples of active tactile sens-
ing are the antennae of insects and the whiskers (vibrissae) of
rodents, which exhibit fascinating sensory capabilities [4]. For
instance, antennae allow cockroaches to explore, detect objects
and maintain their balance while climbing; rats are able to dis-
criminate texture using their whiskers with high accuracy; seals
can track fish using their whiskers, which are the most finely
tuned in the animal kingdom.

(a) (b)

Figure1: (a) iCub finger mounted on anxy-table robot to allow
the movement of the finger across a plastic wall (b) to collect
data from plane and edge.

Recent developments of haptic systems in robotics have al-
lowed research in exploratory procedures inspired by the hu-
man and the animal kingdom. A three-fingered robotic hand has
the capability to grasp through tactile sensing [5]. This robotic
hand is able to recognise objects through the shape of the hand
given by the joint angles. Another method for shape classifi-
cation, using a robotic five-fingered hand, employs continuous
rotational manipulation and pressure contact [6]. Texture recog-
nition commonly is done by humans through a lateral motion or
sliding EP. A robotic finger equipped with tactile sensors is able
to recognise textures by sliding over materials [7], sliding either
in vertical or horizontal direction. Hardness and texture recog-
nition with a robotic hand is done with squeezing and tapping
EPs [8]. This approach shows that the hardness can be measured
based on the variation of joint angles while squeezing, and tex-
tures can be recognised through a tapping procedure analogous
to the whisking performed by rats.

In this paper we consider tactile sensing with the iCub hu-
manoid robot, which has recently been equipped with tactile
sensors in its palm and fingers, allowing it to interact with the
environment [9]. The iCub humanoid has 108 taxels (tactile el-
ements) in total; 48 taxels in the palm and 12 taxels in each
finger that respond to pressure when there is a contact. To anal-
yse the tactile data from the iCub we employ recent advances in
probabilistic perception methods inspired by tactile exploration
in animals, especially rats [10, 11, 12]. In these developments,
a maximum likelihood classifier (also called naive Bayes) was
used for a variety of discrimination tasks, including texture,
shape, position and velocity.

A key task in robotics that will be the focus of this study is
to do object exploration by using edge detection through tactile
sensing. Early research on edge detection has been influenced
by digital image processing techniques. Low level tactile prim-
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itives have been proposed for a tactile sensor with an array of
10×16 taxels [13]. These primitives define an edge as a series
of edge contacts. Another approach for edge detection uses a
median filter which preserves edges and removes noise without
blurring the edges [14]. In [15], image processing techniques
are also applied using an edge detector which uses a threshold
to remove noise. In order to obtain the location and orientation
of the edge, an adaptive Hu transform is applied. Edge detec-
tion, location and orientation are obtained through the first three
moments from the tactile image [16]. A new method for a low-
resolution tactile sensor uses heuristics for edge detection [17].
This method has been designed for a 2×2 planar tactile sensor
array.

This work presents an implementation of tapping ex-
ploratory procedure in a biomimetic robot based on the iCub
fingertip applied to edge and plane detection. We apply a proba-
bilistic method based on biologically-inspired tactile perception
to perform the classification.

2. Methods
A. Tactile sensory system: iCub finger

For the experiments presented in this work, we used the
tactile sensory system of the iCub humanoid. This humanoid
resembles a child of 3 years old. It has 53 degrees of freedom
and is equipped with digital cameras, gyroscopes, microphones
and recently tactile sensors have been integrated in the forearm,
palm and fingertips [18]. These tactile sensors allow the iCub
humanoid to interact with the environment performing tasks
safely e.g. exploring and grasping. Each fingertip has 12
contact pads called taxels, which are distributed in the base,
sides and tip of the finger with a separation of about 4 mm
between them. These taxels are built using a capacitive sensor
technology that enables the fingers to respond to contact
pressure. The measurements from the 12 taxels are sampled
at 50 Hz. These measurements are digitised locally in the
fingertip with a capacitive-to-digital converter (CDC) [19]. The
result of the digitisation provides capacitive measurements in
the range of 0 to 244, where 0 is for a maximum pressure in
the fingertip and 244 is when there is no pressure. The data
collected from the fingertip sensor are then passed through a
drift compensation module, which converts the measurements
to double precision.

B. Exploratory architecture: XY-table robot

To enable the iCub fingertip to move across a plastic wall
for collecting data, it was mounted on anxy-table robot capable
of achieving precise positioning (Figure 1). This platform en-
ables the iCub finger to perform a tapping exploration procedure
over y axis (vertically) whilst moving inx axis (horizontally).
Also this platform allows the data to be collected systematically
with precise movements inx-axis. The finger is mounted at an
appropriate angle in order to have contact with most possible
taxels. Thexy-table robot moves the fingertip across appro-
priate regions of the stimulus to collect and store the pressure
measurements from the taxels and the position for the fingertip.
Figure 2 shows the two regions defined for collecting data: a
10 mm range for the plane and a 10 mm range for the edge. The
xy-table robot performed a periodic movement across thex-axis
of 1 mm spacing. This gave 10 taps for the plane stimulus and
10 taps for the edge stimulus.

This experiment was developed for two cases: first, moving

(a) (b)

(c) (d)

Figure2: The iCub fingertip moved by thexy-table robot;(a)
tapping in a plane region,(b) tapping in an edge region,(c) dis-
tribution of taxels in the iCub fingertip,(d) edge and plane re-
gions. Note the positioning of the fingertip relative to the stim-
ulus.

the iCub fingertip backwards (from base to tip), and second
moving in lateral motion (from left to right). For the backward
case, the iCub fingertip was first placed on the plane and
then placed on the edge. In the lateral motion case, the iCub
fingertip was first moved over plane and then returned to its
initial position and started again over the plane region. There
were collected 10 sets of data for the backward case and 6 sets
for the lateral motion case. The first set of plane and edge data
were used for the training phase and the remaining sets for
testing.

C. Probabilistic classifier

Probabilistic techniques are the state of the art for robot per-
formance under uncertainty [20]. The measurements are con-
sidered as being caused by the world with given probabilities.
This study employs previous work on probabilistic classifiers
used for tactile perception based on a maximum likelihood pro-
cedure [10, 12]. Equation 1 shows the accumulated log likeli-
hoods estimator considering the measurements to be condition-
ally independent

logP (x1, . . . , xn|Cl) =
n
∑

i=1

logP (xi|Cl) (1)

The log likelihoods logP (x1, . . . , xn|Cl) are accumulated
over n samples of data. The single sample log likelihoods
logP (xi|Cl) are estimated from the training data using his-
togram methods to determine the sampling distribution [12].
The decision-making for a choice of a classCl which can be
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Figure 3: Interaction of modules in the experimental setup.
Modules developed with C/C++ and YARP library to a straight-
forward implementation on the iCub humanoid.

an edge or plane is made through the maximum likelihood

C = argmax
C

l

P (x1, . . . , xn|Cl)

= argmax
C

l

[

n
∑

i=1

logP (xi|Cl)

]

(2)

whereargmax provides the maximum probability for a given
dataset measurement from a edge or plane contact.

In this study there are two classes;plane and edge. The
classifier takes as input the measurements from the 12 taxels
of the iCub finger as a time series. The maximum probability
calculated by equation 2 returns the classC for the current
contact. In section 3, the training and testing phases for the
classification are explained.

D. Experimental setup

For the experiments, several computational modules were
used for control and classification: first, theXYRobotmodule
for communication and control of thexy-table robot; second,
the TactileSensormodule for reading and preparing the mea-
surements from taxels in the correct format to feed the classi-
fier; and, third, theMLClassifiermodule to detect if the contact
is over an edge or plane region. This experiment is based on the
biomimetic iCub fingertip. However, the modules have been
designed to be implemented straightforwardly on the iCub hu-
manoid. Figure 3 shows the interaction between these modules.

3. Results
A. Training phase

The iCub finger was placed and adjusted to have enough
pressure contact with the most possible taxels. The plane and
edge regions were defined on a plastic wall of 6 cm×19.5 cm
dimensions. A 10 mm region was defined for the plane class
and a 10 mm region for the edge class. The iCub finger was
configured to collect data at 50 Hz. Adrift compensation mod-
ule from the iCub repository was used to pre-process the data
before classifying. For the training phase, two sets of data were
collected: one for the plane and one for the edge. These datasets
were taken from the first tap of the finger over the plastic wall.
The datasets provided to the classifier had 12 dimensions from
the number of taxels and were over 5 seconds (250 samples).
Figure 4a shows the mean of pressure contact from the twelve
taxels during the first tap on plane and edge regions. Similarly,
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Figure4: Pressure contact of first tap over plane and edge; (a)
backward movement, (b) lateral movement.
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Figure5: Edge and plane detection in testing phase; (a) back-
ward movement, (b) lateral movement.

the first tap for plane and edge in lateral movement is shown in
Figure 4b. These datasets are the input for the classifier.

It can be seen that the pressure is higher for taxels 2 and
10 when the finger is on the edge for both backward and lateral
movement, giving a discriminator for the edge from plane.

B. Edge and plane testing phase

Two scenarios were set up for edge and plane detection
validation: (1) moving the finger backward and (2) moving
laterally over the edge and plane regions. For scenarios 1 and
2, there were collected 20 and 12 datasets respectively. In
scenario 1, the iCub finger moved across 20 mm; first 10 mm
for plane and second 10 mm for edge. The taps were taken
every 1 mm. Figure 5a shows the classification across the plane
and edge for scenario 1 (backwards movement). It can be
observed in thex-axis that the position of contact by the finger
and the class (edge and plane) were well predicted. The first 10
taps correspond to the plane and the second 10 taps to the edge.
A clear separation of the two classes is observed (Figure 5b).

For scenario 2, the iCub fingertip firstly moved over six dif-
ferent positions on the edge with a range of 60 mm with a tap
every 10 mm. The same procedure was followed for the plane.
In this case, the iCub finger was rotated manually to the vertical
position to allow lateral movements. This manual rotation may
cause systematic changes in the data collection procedure fol-
lowed in scenario 1. However, good results were found for both
edge and plane lateral movements. Figure 5b shows the classi-
fication in lateral motion. Similar to the backward movement,
there is a clear separation of the two classes. Both, plane and
edge are plotted in the samex-axis, since the taps were from
same positions for the plane and edge.

Tables 1 and 2 show the confusion matrices for backward
and lateral movements respectively. Both matrices present suc-
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cessful classification accuracy of 100%. Interestingly, for the
scenario 2, even though the vertical rotation of the finger was
done manually, a 100% of classification accuracy was achieved.

Table 1: Classification of edge and plane for scenario 1.

Class Edge Plane

Edge 100% 0
Plane 0 100%

Table 2: Classification of edge and plane for scenario 2.

Class Edge Plane

Edge 100% 0
Plane 0 100%

4. Conclusions
This work has been motivated by the study of tactile sensing
capabilities in humans and animals which suggest probabilis-
tic methods for perception. A biomimetic iCub fingertip that
resembles the human fingertip was used for the experiments.
This finger was mounted in anxy positioning robot to allow
systematic movements in two dimensions. Different modules
were developed to implement the architecture for communica-
tion, control, data acquisition and probabilistic classification.

It was demonstrated that a tapping exploratory procedure
can successfully detect object features. A plane and edge region
were defined for exploration and collecting data over a plastic
wall. The platform developed allowed a systematic implemen-
tation of the experiments. The classification was performed in
two scenarios: (1) the iCub finger moving backwards and (2)
in lateral motion. For scenario 2, the experimental setup was
changed manually by orienting the iCub fingertip to point in a
vertical direction. For both cases the classification showed per-
fect results, in that the classification accuracies were 100%. The
modules used in this work for the iCub finger were designed to
be implemented straightforwardly on the iCub humanoid. As
such, the results presented in this work are a first step towards
studying and implementing exploratory procedures performed
by humans and animals on humanoid robots.
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Abstract
In perception systems for object recognition, the advantage
of multiple modalities, of combining approaches, and several
views is emphasized, as they improve accuracy. However, there
are great variances in the implementation, suggesting that there
is no consensus yet on how to approach this problem. Nonethe-
less, we can identify some common features of the methods and
propose a flexible system where existing and future approaches
can be tested, compared and combined. We present a modular
system in which perception routines can be easily added, and
define the logic of making them work together based on the
lessons learned from different experiments.
Index Terms: robotics, multi-cue vision, machine learning

1. Motivation
Autonomous agents working in human environments have a
huge variety of objects to deal with, and some of them present
special problems (texture-less, transparent, etc). There are mul-
tiple approaches that have been shown to be able to segment, de-
tect, categorize and/or classify some of the objects such robots
might encounter. There are, however, inherent limitations in
these approaches, and there is no robust and large-scale solu-
tions yet [1]. As each perception method captures only some
aspect of the objects, the situation is similar to the old story
about the six blind men trying to describe an elephant based on a
single touch. Clearly, a correct combination of different sensor
modalities, segmentations, features, classifiers would improve
results. Additionally, in [2] it is argued, that a cognitive agent
needs to be embodied to gather experiences, and presents differ-
ent paradigms on how to approach the learning and grounding
of new information. Similar ideas are discussed in [3] as well,
where the task and environment adaptation of a robot improves
its capability to perceive objects.

In this work, we focus on taking advantage of exploration
capabilities of the robot, and the fact that a high-level task spec-
ification is typically available. Therefore we propose a system
that can take advantage of the fact that only some objects are
probable to be at different places in the close surrounding of the
robot, and of these ones, only some are relevant for the task at
hand. Different perception methods can then be activated (or
tuned) and combined, in order to improve detection rates. Ad-
ditionally, multiple observations over time can be incorporated
to obtain higher quality results. In short, the main propositions
of this paper for a perception system are as follows:

• common input-output defined for segmentation and de-
tection methods,

• support for consecutive or parallel methods to correct or
support each-other in a probabilistic framework,

• enable the specialization of each method to a subset of
objects and to group objects into categories,

• incorporating information from multiple views to disam-
biguate complex cases.

To support our approach, we evaluate these principles, and:
• show the advantage of combining different cues,
• evaluate different ensemble methods and discuss their

benefits and drawbacks,
• describe our practical solutions to increase the robust-

ness and accuracy of perception systems,
• present proof-of-concept experiments.
After an overview of the related work, we will outline the

basis for our proposal in Section 3, followed by the details of a
multi-cue perception system in Section 4. As it will be detailed,
the modular combination of task-adapting perception routines
performing spatio-temporal integration of multiple modalities
holds great potential for the development of robust computer
vision. We argue that a deep integration of various levels of a
cognitive architecture will be required, and present the connec-
tions we found to be most important in our experiments.

2. Related Work
Inspired by earlier work based on developmental psychology,
object categorization using multiple modalities is explored in
[4] and the advantage of accumulating information over time
is shown. While sychological findings do suggest that a single
sensory modality is often not enough, they leave out the most
descriptive modality, vision, and focus on proprioceptive and
auditory feedback [5].

In [6] the authors validate the use of different visual modal-
ities, showing that color-based cues are more important for in-
stance recognition, while geometric ones are better suited for
categorization, and that their combination improves on both.

Existing perception systems that use multiple modalities for
object detection, either combine these in a fixed feature [7] or
use them in a fixed framework [8]. Selecting only relevant fea-
tures for a specific task was explored in [9], but in a sequen-
tial framework with a fixed order of features/modalities. Here
we propose a parallel architecture with a heuristic decision on
which perception primitives should be applied to identify dif-
ferent objects, and with an incremental merging and verification
step to provide the final result.

Systems that use validation of the detections through geo-
metric consistency relied on a single modality so far [10, 11],
however the advantage of scoring or voting for different solu-
tions is an important lesson that we incorporated in the system.

There is growing evidence that human vision combines top-
down (concept driven) and bottom-up (data driven) approaches
[12], thus extending classification systems with context infor-
mation is a natural way of increasing performance. In our
framework we use the prior distribution over the possible ob-
jects/locations (and the known object models) as the context.
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Most of the perception systems rely either on
color/black&white camera (e.g. SIFT [13]) or 3D (e.g.
VFH [14])information, although image processing techniques
can be applied on different image sources as well (e.g. thermal
cameras). There are approaches that combine geometry and
color descriptors, but properly balancing these two is not
straightforward as discussed in [15].

3. Experimental Support
Some aspects of the proposed solution have been verified al-
ready in different experiments. The following subsections give
details on the evaluation of some of the natural ways how object
perception results can be improved.

3.1. Multi-Modal Perception

Combining multiple sensor modalities to improve detection can
be done in general either by combining multiple features in a
single classification pipeline or by separate processing pipelines
for each modality, whose results are combined. The former ap-
proach is pursued in [6], where a combination of visual and
depth cues is used. We explored the latter approach in [9], high-
lighting the limitations of the different sensors, and exploiting
that not all features need to be check if there is a subset of them
that uniquely describes the object. In this work, we present
our approach for combining the results of different modules by
forming ensembles, as discussed in the following subsection.

3.2. Ensemble Learning

We evaluated the accuracy of standard off-the-shelf classifiers,
trained on image-based and 3D features, and ensembles of such
classifiers on the large RGB-D object dataset from [16]. As vi-
sual features we used SURF [17] and Opponent SURF with a
Bag of Features approach and VFH [14] and GRSD-, the geo-
metric part of VOSCH [15], as geometric features. Our interest
lies predominantly in simple, non-parametric ensemble meth-
ods, since such simple ensembles can endow the proposed sys-
tem with the required modularity. Hence, the goal was to inves-
tigate how simple, non-parametric ensemble methods compare
to more sophisticated but parametric classifiers and ensembles.

As a benchmark we considered the the task of identifying
the category to which an object belongs for all of the 300 ob-
jects and 51 categories in the dataset. All the objects are seen
during training time and half of the over 200,000 scans in the
dataset are used for training the classifiers. A quarter is used for
evaluation and another quarter as hold-out data to estimate the
accuracy of the ensemble methods.

We tested SVM and boosted decision trees (AdaBoost) as
classifiers, and different voting based methods and stacking for
merging their results, as these were suggested in the literature as
promising approaches [18, 19]. Classifiers trained on the con-
catenation of all the features are used as a baseline to which the
performance of the ensembles is compared (see Table 1).

Table 1: Error rates for single features and the concatenation
of all features – linear SVM (top) and AdaBoost (bottom).

VFH GRSD- SURF O.SURF All
0.133 0.409 0.281 0.301 0.031
0.149 0.435 0.360 0.361 0.0991

After trying several weightings for the voting methods, the

best one was found to be the weighting with the estimated class
accuracy. For stacking we used real AdaBoost as level-0 classi-
fiers and real AdaBoost, LogitBoost and Gentle Boost as well as
linear SVM and SVM with Radial Basis Function kernel as the
level-1 classifier, and found Gentle Boost to give best results.

Table 2: Voting vs tacking for ensembles of single features

Base classifier Voting er-
ror rate

Level-1
classifier

Stacking
error rate

SVM-Linear 0.100 GentleB 0.054

As shown in Table 2, combining different cues is advanta-
geous, and (while more tests could be made) it seems that con-
catenating the features outperforms the simple weighted voting
and the learning based stacking approach. Nonetheless, both
approaches improve the result over those of the best single fea-
ture, and we found that using pairwise concatenations of fea-
tures the error rates can be lowered even below that of the clas-
sifiers trained on the concatenation of all the features (see Ta-
ble 3). This suggests that with the right feature combinations
and weighting factors, voting could be a great solution as well
– increasing the modularity of the perception system.

Table 3: Stacking with classifiers of single + double features.

L-SVM RBF-SVM AdaB LogitB GentleB
0.031 0.065 0.02 0.019 0.019

3.3. Spatio-Temporal Integration

220 240 260 280 300 320
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Figure 1: As the camera is moved (left), multiple frames can be
captured that cover different parts of the objects in the scene
(right), increasing the overall classification accuracy (bottom).

We showed the advantage of merging the object detection
results from multiple 3D scans in a voting framework previ-
ously in [11]. There, we also proposed the use of multiple seg-
mentations of the same input to be merged in the same man-
ner. This approach is employed for image segmentation as well,
showing improved results. In Figure 1 the same idea is applied
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Figure 2: Basic setup of the proposed system for iterative re-
finement of object hypotheses by multiple methods according to
a task specification.

for detecting 6 commonly occurring shapes of household ob-
jects (a grouping of data from [16] based on [9]), where 3D
volumes obtain votes from scans taken from different angles.

3.4. Class Hierarchies

In order to match the perception capabilities of humans, the au-
thors in [20] advocate that searching for predefined templates
is not enough, and that recognition of new exemplars of known
categories have to be facilitated. On this premise, in [9] we
used geometric cues for categorization and visual cues for in-
stance classification. We also reported on the improvement in
accuracy of over 10% when the geometric categorization is al-
lowed to work with “internal” categories. This suggests that
an unsupervised classification level followed by a mapping to
human-defined labels, as in [11], enables the classifiers to tune
themselves to the specific feature space used.

4. Proposed Solution
Our proposed solution to integrate the approaches supported in
Section 3 for a modular, multi-cue perception system that takes
advantage of the robot’s exploration capabilities is exemplified
in Figure 2 (as a generalized extension of the system presented
in [9]). It builds on the lessons learned form previous experi-
ments by the authors and others, and on many discussions from
people involved not only in perception, but also high-level plan-
ning, manipulation and knowledge engineering for example.

4.1. Regions of Interest and Poses

Most related systems from literature are either doing segmen-
tation or classification (or both at once), but in both cases a re-
gion of space is observed, and hypotheses are given about what
objects it, or parts of it, contains. A segmentation routine for
example breaks large regions up into smaller ones, and assigns
to each of them a non-informative prior, i.e. from the point of
view of the method each segment can contain anything. Sub-
sequent processing (classification) steps then refine these possi-
bilities. Template matching methods for example do both steps
at once, by returning possible (scored) positions in which an
object could be in the scene.

Therefore, we propose the use of volumes of space, or re-
gions of interest (ROIs) as the basic input and output data for
object perception methods. These can be for example the hulls

Figure 3: Feature vector length vs. Training Time (20 classes)

of clusters for 3D data, or the estimated volumes of image pix-
els. These, and the associate probabilities of given objects be-
ing contained in it, are received and updated by the perception
methods, and can be used to merge information coming from
different sensors, and different views.

4.2. Task-adapting Perception Primitives

Initially, the system would start off with the complete
workspace of the robot as its region of interest, with the dif-
ferent priors for the occurrence of the possible objects assigned
to it. The list of these objects and their prior probability can then
be considered by the different methods, and when summarizing
their results.

We call all the segmentation, detection, fitting and classifi-
cation methods perception primitives, as they are the different
modules the system is build of. They can use different sensors,
extract various features, apply different recognition methods,
and have only to respect the aforementioned input and output in
order to be part of the “ensemble”. Classification methods such
as those based on nearest neighbors, are easy to be re-trained,
and this allows simple integration of new data as well. How-
ever, with the addition of more and more classes, the accuracy
can drop – this can be avoided by taking advantage of the known
task specification (i.e. list of possible objects and list of sought
objects). Similarly, the accuracy of other classifiers deteriorates
with the increase in the number of classes (see Tables 4,5 and
those in Section 3.2), something that can be alleviated by task
and environment specialization.

Table 4: Error rate for single/concatenated features, 20 classes.

Classifier VFH GRSD- SURF O.SURF All
SVM-linear 0.081 0.270 0.154 0.163 0.0188
SVM-RBF 0.050 0.202 0.098 0.105 0.0172
AdaBoost 0.087 0.293 0.254 0.202 0.0544

Table 5: Stacking with classifiers trained on single + double
features, for 20 classes.

L-SVM RBF-SVM AdaB LogitB GentleB
0.013 0.013 0.014 0.014 0.012

Not all classes are as fast to be re-trained as nearest neigh-
bors though, as shown in Figure 3, but methods like locally
weighted logistic regression [21] could be used to avoid re-
training by adjusting only the weighting of the examples.
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4.3. Combining Cues

Since each perception primitive refines the result of its input,
the ROIs are trimmed down (if necessary) and the class prob-
abilities accumulated. In the merging step all the results can
be united through ROI unification, and a decision can be made
by an ensemble method. Subsequent sensor readings can be
accumulated using the same procedure, and the object hypothe-
ses and their poses can then be verified if they match the data
as in [11]. Accumulating or comparing object poses is more
complicated, but a scored list of poses can also be maintained,
and checked against the accumulated data in the given volume.
Another approach to obtain 6DOF pose directly from camera
images is to project CAD models of objects to the image and
search for good edge responses. However it is unclear how these
methods scale to handling very large number of objects.

5. Initial Demos and Discussion
Proof-of-concept demonstrations of the presented approach
were made during the 2nd BRICS Research Camp “From 3D
sensing to 3D models” (www.best-of-robotics.org/
2nd\_researchcamp/MainPage) and the public 2011
CoTeSys Fall Workshop (www.youtube.com/watch?v=
DTaeWITW1kI). Here, a region of interest is provided by the
task executive using the known environment model along with
the list of possible objects to be detected. The different detec-
tion, classification and model fitting methods decide for each
request to activate or not based on the objects to be detected
and if they have models for those. Different 2D and 3D meth-
ods are chained in order to produce the final result, i.e. list
of object locations and locations/poses/models. The task ex-
ecutive then interprets the results, decides on the next action
to be taken (which could be repeating a failed procedure) and
triggers a new task if necessary (e.g. using the bounds of the
detected cutter board to detect the slice of bread). As the num-
ber of integrated perception primitives increases, and multiple
routines for performing the same task become available, the the-
oretical consideration presented in this paper become more and
more important. The presented approach for taking advantage
of multiple sources of information by a modular system proved
to be useful and scalable in our initial experiments implemented
in ROS (ros.org). We are confident that the robustness sug-
gested by the supporting experiments will be of great use for
integrating our perception system into a cognitive architecture
with similar design philosophy, e.g. based on [22].
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Abstract
This paper studies an interactive learning system that couples
internally guided learning and social interaction in the case it
can interact with several teachers. Socially Guided Intrinsic
Motivation with Interactive learning at the Meta level (SGIM-
IM) is an algorithm for robot learning of motor skills in high-
dimensional, continuous and non-preset environments, with two
levels of active learning: SGIM-IM actively decides at a meta-
level when and to whom to ask for help; and an active choice of
goals in autonomous exploration. We illustrate through an air
hockey game that SGIM-IM efficiently chooses the best strat-
egy.
Index Terms: Active Learning, Intrinsic Motivation, Social
Learning, Programming by Demonstration, Imitation.

1. Introduction
In initial work to address multi-task learning, we proposed the
Socially Guided Intrinsic Motivation by Demonstration (SGIM-
D) algorithm which merges socially guided exploration as de-
fined in[1, 2, 3, 4] and intrinsic motivation [5, 6, 7, 8] based
on SAGG-RIAC algorithm [9], to reach goals in a continuous
task space, in the case of a complex, high-dimensional and con-
tinuous environment [10]. Nevertheless, the SGIM-D learner
uses demonstrations given by a teacher at regular frequency. It
is passive with respect to the social interaction and the teacher,
and does not optimise the timing of the interactions with the
teacher, not to mention that it did not consider the everyday
situation where it has several human teachers around him, to
whom it can ask for help. Some works have considered the
choice among the different teachers that are available to be ob-
served [11] where some of them might not even be cooperative
[12], but have then overlooked autonomous exploration. Our
new SGIM-IM (Socially Guided Intrinsic Motivation with In-
teractive learning at the Meta level) learner is able to choose
between active autonomous and social learning strategies, and
in the case of social learning, whom to imitate from.

2. General Framework
2.1. Formalisation

In this subsection, we describe the learning problem that we
consider. Csibra’s theory of human action finds that infants
connect actions to both their antecedents and their consequents
[13, 14]. Thus, every episode would be described as [con-
text][action][effect].

Let us describe different aspects of the states of a robotic
system and its environment by both a state/context spaceC, and
an effect/task space Y (an effect/task can be considered as re-
stricted to the changes caused by the agent’s actions). For given
contexts c ∈ C, actions act ∈ ACT allow a transition towards
new states y ∈ Y (fig. 1 and 2). We define the actions act
as parameterised dynamic motor primitives, i.e. temporally ex-
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tended macro-actions controlled by parameters a in the action
parameters space A. The association (c, a, y) corresponds to a
learning exemplar that will be memorised. Our agent learns a
policy through an inverse model M−1 : (c, y) 7→ a by building
local mappings of M : (c, a) 7→ y, so that from a context c and
for any achievable effect y, the robot can produce y with an ac-
tion a. We can also describe the learning in terms of tasks, and
consider y as a desired task or goal which the system reaches
through the means a in a given context c. In the following, both
descriptions will be used interchangeably.

2.2. SGIM-IM Overview

SGIM-IM learns by episodes during which it chooses actively
its learning strategy between intrinsically motivated exploration
or social interaction with each of the existing teachers.

In an episode under the intrinsic motivation strategy (fig.
1), it actively generates a goal yg ∈ Y of maximal competence
improvement, then explores which actions a can achieve the
goal yg in context c, following the SAGG-RIAC algorithm [9].
The exploration of the action space gives a local forward model
M : (c, a) 7→ y and inverse model M−1 : (c, y) 7→ a, that it
can use later on to reach other goals. The SGIM-IM learner ex-
plores preferentially goals where it makes progress the fastest.
It tries different actions to approach the self-determined goal,
re-using and optimising the action repertoire of its past au-
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Figure 3: Time flow chart of SGIM-IM

Algorithm 2.1 SGIM-IM
Initialization: R← singleton C × Y
Initialization: flagInteraction← false
Initialization: Memo← empty episodic memory
Initialization: ∆0, ...∆i, ... : progress values made by strategy i
among: autonomous exploration or social learning with either teacher
loop
strategy ← Select Strategy(prefS , prefA)
if Social Learning Strategy then

demo← ask & perceive demo to the selected teacher i
(cdemo, ademo, ydemo)← Correspondence (demo)
Emulate Goal: yg ← ydemo
γs ← Competence for yg
Memo← Imitate Action(ademo, c)
γ ← Competence for yg
Add γ − γs to stack ∆i

else
Intrinsic Motivation Strategy
Measure current context c
yg ← Decide a goal(c,R)
γs ← Competence for yg
repeat

Memo← Goal-Directed Action Optimisation(c, yg)
until Terminate reaching of yg
γ ← Competence for yg
Add γ − γs to stack ∆0

end if
R← Update Goal Interest Mapping(R,Memo, c, yg)

end loop

tonomous exploration or the actions suggested by the teacher’s
demonstrations of the social learning strategy. The episode ends
after a fixed duration.

In an episode under the social learning strategy with teacher
i (fig. 2), our SGIM-IM learner observes the demonstration
[cdemo, actdemo, ydemo], memorise this effect ydemo as a pos-
sible goal, and imitates the demonstrated action actdemo for a
fixed duration.

The SGIM-IM learner actively decides on a meta level
which strategy to choose according to the recent learning
progress enabled by each strategy. If it has recently made the
most progress in the intrinsic motivation strategy, it prefers ex-
ploring autonomously. Conversely, if the demonstrations does
not enable him to make progresses higher than by autonomous
learning (limited teacher, or inappropriate teacher) it would pre-
fer autonomous exploration.

3. SGIM-IM Architecture
3.1. A Hierarchical Architecture

SGIM-IM (Socially Guided Intrinsic Motivation with Interac-
tive learning at the Meta level) is an algorithm that merges in-
teractive learning as social interaction, with the SAGG-RIAC
algorithm of intrinsic motivation [9], to learn local inverse and
forward models in complex, redundant, high-dimensional and

Algorithm 3.2 [strategy] = SelectStrategy(∆S ,∆A)

input: ∆0, ...∆i, ... : progress values made by strategy i
among: autonomous exploration or social learning with ei-
ther teacher
output: flagInter : chosen strategy
parameter: nbMin : duration of the initiation phase
parameter: ns : window frame for monitoring progress
parameter: costi : cost of each strategy
Initiation phase
if Social Learning and Intrinsic Motivation Regimes have not
been chosen each nbMin times yet then
pi ← 0.5

else
Permanent phase
for all strategies do
wi ← average(last ns elements of ∆i)

end for
pi ← min(0.9,max(0.1, costi×wi∑

costj×wj
))

end if
strategy← i with probability pi
return strategy

continuous spaces and with several teachers. Its architecture
(alg. 2.1) is separated into three layers (fig. 3) :

• An interface with the teacher, which manages the inter-
action with the teacher. It decides in an active manner
whether to request a demonstration and to whom (Select
Strategy) and interpreting his actions or his intent and
translates the demonstrations into the robot’s represen-
tation system (Correspondence, which is an important
issue [15] but will not be addressed in this study.

• The Task Space Exploration, a level of active learning
which drives the exploration of the task space. With the
autonomous learning strategy, it sets goals yg depending
on the interest level of previous goals, by stochastically
choosing the ones for which its empirical evaluation of
learning progress is maximal (Decide a Goal). With the
social learning strategy, it retrieves from the teacher in-
formation about demonstrated effects ydemo (Emulate a
Goal). Then, it maps C × Y in terms of interest level
(Goal Interest Mapping).

• The Action Space Exploration, a lower level of learning
that explores the action space A to build an action reper-
toire and local models. With the social learning strategy,
it imitates the demonstrated actions actdemo, by repeat-
ing it with small variations (Imitate an Action). During
self-exploration, the Goal-Directed Action Optimisation
function attempts to reach the goals yg set by the Task
Space Exploration level, 1) by building local models dur-
ing exploration that can be re-used for later goals and
2) by optimising actions to reach yg . Then, the Action
Space Exploration returns the measure of competence at
reaching ydemo or yg .

The active choice of learning strategy will be described
hereafter. For the other parts of the architecture, which are com-
mon to SGIM-D, please refer to [10] for more details.

3.2. Select Strategy

Based on the recent progress made by each of them, a meta
level chooses the best strategy among autonomous exploration
and social learning with each of the teachers. For each episode,
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the learner measures its progress as the difference of compe-
tence at the beginning and the end of the exploration for the
self-determined or the emulated goal, and adds this progress
value to stacks ∆i, where i is the current strategy (i = 0 for
autonomous exploration, i = 1 for social learning with teacher
1, i = 2 with teacher 2,...). The preference for each strategy
is computed as the average on a window frame of the last ns
progress values of ∆i. Setting the value of ns does not depend
on the complexity of the tasks but more on the size of the task
space. It needs to allow appropriate sampling of Y by each
method. In our simulations, ns = 20. Besides, to limit the
reliance on the teacher and take into account the availability of
each teacher, we penalise the preference for social learning with
a costi factor (costi = 100). For the autonomous exploration
strategy, cost0 = 1. The strategies are selected stochastically
with a probability proportional to their preference (alg 3.2).

We applied our hierarchical SGIM-IM algorithm with 2
layers of active learning to an illustration experiment.

4. AirHockey Experiment
4.1. Description of the Experimental Setup

Our first experimental setup is a simulated square air hockey ta-
ble that contains an obstacle (fig. 4). Starting with a fixed posi-
tion and velocity (1 single context), the puck moves in straight
line without friction. The effect is the position of the impact
when the puck collides with the top border of the table. Y is
thus the top border of the table, mapped into the [−1, 1] seg-
ment, which highlights the subregion hidden by the obstacle as
difficult to reach.

We control our mallet with a parameterised trajectory de-
termined by 5 key positions u0, u1, u2, u3, u4 ∈ [−1, 1]2 (10
scalar parameters) at times t0 = 0 < t1 < t2 < t3 < t4 (4
parameters). The trajectory in time is generated by Gaussian
distance weighting:

u(t) =

5∑
i=0

wi(t)ui∑5
j=0 wj(t)

with wi(t) = eσ∗|t−ti|2 , σ > 0 (1)

Therefore, A is of dimension 14 and Y of dimension 1. The
learner maps which trajectory of the mallet a induces a collision
with the top border at position y. This is an inverse model of
a highly redundant mapping, which is all the more interesting
than the obstacle introduces discontinuities in the model.

4.2. Experimental Protocol

We detail in this subsection the experiments we carry with our
air hockey table, how we processed to evaluate SGIM-IM and
provide our learner with demonstrations.

Figure 5: Comparison of several learning algorithms

4.2.1. Comparison of Learning Algorithms

To assess the efficiency of SGIM-IM, we decide to compare the
performance of several learning algorithms (fig. 5):

• Random exploration: throughout the experiment, the
robot picks actions randomly in the action space A.

• SAGG-RIAC: throughout the experiment, the robot ex-
plores autonomously driven by intrinsic motivation. It
ignores any demonstration by the teacher.

• SGIM-IM: interactive learning where the robot learns by
actively choosing between social learning strategy or in-
trinsic motivation strategy, and who to imitate from.

• SGIM-D: the robot’s behaviour is a mixture between Im-
itation learning and SAGG-RIAC. When the robot sees
a new demonstration, it imitates the action for a short
while. Then, it resumes its autonomous exploration, un-
til it sees a new demonstration by the teacher. Demon-
strations occur every T actions of the robot.

For each experiment in our air hockey setup, we let the
robot perform 10000 actions in total, and evaluate its perfor-
mance every 1000 actions. For the air hockey experiment, we
set the parameters of SGIM-IM to: cost = 10 and ns = 20,
and those of SGIM-D to T= 50.

4.2.2. Demonstrations and Evaluation

We simulate 2 teachers by using the learning exemplars taken
from Random and SAGG-RIAC learners. For teacher 1, we
choose demonstrations in [−1, 0.5] with each ydemok ∈ [−1 +
k×0.01,−1+(k+1)×0.01]. For teacher 2, we likewise choose
demonstrations in [0.5, 1], that manage to place the puck behind
the obstacle.

We assess the algorithms by measuring how close they can
reach a benchmark set distributed over Y = [−1, 1] and placed
every 0.05, with the mean error at reaching the benchmark
points.

4.3. Results

Fig.6 plots the mean distance error of the attempts to hit the bor-
der at the benchmark points, with respect to the number of ac-
tions performed by the mallet. It shows that while Random ex-
ploration and SAGG-RIAC error decrease, SGIM-IM performs
significantly better, and faster. It almost divided by a factor of
10 the final error value compared to SAGG-RIAC. Its error rate
is always smaller than for the other algorithms since the very
beginning. SGIM-IM has taken advantage of the demonstra-
tions very fast to be able to hit the puck and place it on the
top border, instead of making random movements which would
have little probability of hitting the puck, let alone placing it
at the benchmark position. Its performance is comparable with
SGIM-D. This shows that its active choice of strategy was able
to choose social learning over autonomous learning to bootstrap
its progress, and to vary its choice of teacher to overcome the
limited subspaces of the demonstrations of each teacher .
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Figure 6: Evaluation of the performance of the robot with re-
spect to the number of actions performed, under different learn-
ing algorithms. We plotted the mean distance to the benchmark
set with its variance errorbar.

Figure 7: Percentage of times each strategy is chosen by SGIM-
IM with respect to the number of actions performed: intrinsic
motivation (green), social learning with teacher 1 (red) and with
teacher 2 (blue).
4.4. Active Choice of Strategy

As for the strategy adopted, fig.7 shows that total number of
demonstration requests increases in the very beginning, as they
are most useful in the beginning, as each indicate to the learner
which kind of actions can make the mallet hit the puck whereas
random movements have low probability of hitting the puck.
After this first phase, the learner prefers autonomous learning
because of the cost of asking for teachers’ help. It then increases
again in the second half of the experiment when the progress
made by autonomous exploration decreases. Demonstrations
then help the learner improve in precision.

Furthermore, requests were asked more often to the teacher
1 as he covers a more important subspace of Y . This indicates
that the learner could detect the difference in teaching capabil-
ities of the 2 teachers. We would also like to point out that
the number of demonstrations of teacher 2 made a small peak
around 6500 when the error curve stops decreasing, showing
that his help was most useful once the learner has managed to
reach the subspace of Y that is easy to reach before getting in-
terested in the subspace behind the obstacle. This slight peak
effect can be more visible with more experiments to improve
our statistics, and by complementary figures to analyse this ef-
fect.

5. Conclusion
We presented SGIM-IM (Socially Guided Intrinsic Motiva-
tion with Interactive learning at the Meta level), an algorithm
that combines intrinsically motivated exploration and interac-
tive learning with demonstrations. With an architecture organ-

ised into 3 layers, it actively decides when and to whom to ask
for demonstrations. Through an air hockey experimental setup,
we showed that SGIM-IM efficiently learns inverse models in
high-dimensional, continuous and non-preset environment de-
spite high redundancy. Its active choice of strategy was able to
choose social learning over autonomous learning to bootstrap
its progress, and to choose the right teacher to overcome the
limited subspaces of the demonstrations of each teacher. It thus
offers a framework for more flexible interaction between an au-
tonomous learner and its users.
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Abstract 

For modern biology and ethology, the reason for the 

emergence of leaders-followers patterns in groups of living 

organisms, is the need of social coordination. In this paper we 

attempt to examine factors contributing to the emergence of 

leadership, trying to understand the relation between leader 

role and behavioral capabilities. In order to achieve this goal, 

we use a simulation technique where a group of foraging 

robots has to choose between two identical food zones. Thus, 

robots must coordinate in some way in order to select the same 

food zone and collectively gathering food. Behavioral and 

quantitative analysis indicate that a form of leadership 

emerges and the emergence of leadership relates with high 

level of fitness. Moreover, we show that more skilled 

individuals in a group tend to assume a leadership role, in 

agreement with literature.   

Index Terms: Leadership, Evolutionary Robotics, Flocking 

1. Introduction 

 

Many animal species, including humans, live in groups [1]. 

The advantages of living in groups have been extensively 

explored in ethology and robotics, and they are related to (a) 

protection from predators [2], (b) feeding efficiency [3], (c) 

competition with other groups of conspecifics [4], and (d) 

possibility of information sharing [5].  

Living in groups poses a fundamental problem of social 

coordination. Researches in robotics and agent-based 

modeling have usually focused on homogeneous groups, in 

which social coordination emerges from local rules followed 

in the same way by all individuals [6,7],    

Anyway, in real animals, especially in mammals and virtually 

always in primates, whenever there are groups, there is  a 

leadership / followership pattern emergence. Evolutionary 

biologists use the term leadership for behaviors that influence 

the type, timing and duration of group activity [8] and  

generally argue that the reason for the emergence of leadership 

/ followership patterns is the need to coordinate [9]. It has 

been proposed, for example, [10] that personality differences 

may represent a prerequisite for the emergence of leadership, 

where individuals more prone to environmental exploration 

tend to assume the role of leaders. 

Game-theoretical analysis has shown how, in some situations, 

leadership is almost inevitable. In a simple two-player 

“coordination game”, a pair of individuals has to reach two 

simple goals: one individual must stay near the partner for 

protection, and the other needs to seek resources such as food 

patches and waterholes. In this situation, any trait (physical or 

behavioral) that increases the likelihood of one individual 

moving first will make him more likely to emerge as the 

leader, and the other player is left with no option but to follow. 

Furthermore, if this trait difference between players is stable 

(i.e. if the first individual is always hungry first) then 

leadership-follower patterns will be stable over time [11]. 

Therefore, it seems that individuals are more likely to emerge 

as leaders if they have a particular physiological or behavioral 

trait increasing their propensity to act first to solve 

coordination problems. In the human case, social environment 

may have increased  the conditions for the emergence of 

sophisticated leadership / followership patterns [12].  

Biological and ethological experiments  are often difficult to 

be performed in laboratory and  it is  hard to get  experimental 

evidences of theories about leadership and grouping 

emergence using experimental animal or human subjects.  

In this work we propose an alternative and original approach 

based on a collective robotics experimental setup. We have 

simulated a group of artificially evolving robots (kepera-like) 

situated in an environment where they must coordinate in 

order to forage. We conceived the evolutionary process in 

order to maintain genetic (and behavioral) diversity whithin 

the groups, so to reproduce conditions which can lead to 

leadership emergence according to the literature previously 

provided. We tried to answer to some fundamental questions, 

such as: Does  leadership  arise  in a group of genetically 

heterogeneous robots? Who is the leader? What are 

characteristics and skills of leaders?  

The originality of our approach comes from the 

implementation of an evolutionary robotics model in order to 

study decision making in a social group. These kind of 

simulations are been performed, in the past, but with a merely 

agent-based approach (e.g. [13]).  

 

2. Experimental Setup 

2.1. The Task 

A group of four simulated robots live in an environment 

consisting of a 110cm x 110cm squared arena surrounded by 

walls. When a robot bumps against environment’s wall or 

against another robot, it bounces back in the neighborhood of 

the contact point, with a new random direction. 

The food source is located in two target areas placed in a fixed 

position of the environment. Each robot is made of a circular 

chassis with a radius of 11 cm and it is equipped with two 

motors controlling the movements of two wheels, respectively 

(Fig. 1). Moreover, the robot is geared with two sensors which 

“smell” the relative position of the food zone in respect to the 

position of the robot body, as illustrated in Fig.2. According to 

the position of the food zone with respect to a fixed sector of 

the robot, smell sensors will be activated with a two digits 

binary code.  

Each robot is characterized by a color of the body: green, blue, 

light blue and yellow and it is equipped with a linear retina 

system in order to see the position and the color of the other 
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group members. The linear retina is made of five RGB 

photoreceptors that manage a portion of the robot field of 

view. 

 
 

 

Figure 1: Schematisation of top and bottom view of 

the robot chassis.  

The field of view (FOV) of each robot is 90 degrees wide, and 

represents the extent of the observable world that the robot can 

see at any moment. The FOV ranges from -45 degrees to +45 

degrees with respect to the direction of movement (0°). In this 

way, each photoreceptor manages a 18 degree wide portion of 

the FOV, the first one is associated to a range of [-45°,-27°] 

respect to the face direction, the second one to [-27°,-9°], and 

so on.  

 

Figure 2: Representation the activation patterns of the 

robot smell system.  

Each photoreceptor consists of 3 colour sensitive components, 

respectively Red, Green, and Blue. When an object (such as a 

robot) is located in the front of a photoreceptor, within its 

vision angle, the sensor is activated to the corresponding RGB 

value for that object. The maximum vision distance of 

receptors is the environment size. The setup is illustrated in 

Fig. 3.  

 

 

Figure 3: The environment and the robots.  

2.2. Neural Controller 

The control system (Fig. 4) of each robot consists of a feed-

forward neural network with 18 input neurons, 2 hiddens, and 

2 output neurons. Each layer of neurons is connected to the 

next layer with a pattern of synaptic weights representing the 

strength of the connections. The input layer contains 15 

neurons encoding the activation state of the corresponding 

photoreceptors RGB components, 2 neurons that receive smell 

signals and 1 neuron that receives output from ground sensor. 

The output layer is made of 2 neurons which control the speed 

of two motors, respectively.  

2.3. Artificial evolution 

The evolutionary process for the robots is based on a ranking 

type genetic algorithms (e.g. [14]). Each individual is 

represented by a genotype that encodes the sequence of 

synaptic weights and biases of a neural network controller. 

Each parameter is encoded with 8 bits. In order to provide 

robots with different behaviours, each of the four robots 

belongs to a different population of 100 individuals. Thus, the 

evolution starts with 4 populations of completely “naive” 

robots (i.e. with randomly generated genomes) with no skills 

about how to move and identify the food sources.  

 

 

 

Figure 4: Neural network architecture.  

Genotypes are randomly selected within each population: for 

each generation, individuals of each population is numbered 

by an index (0-99) and a sequence of indexes is chosen (i.e 3-

4-5-4) from the four populations in order to extract the 

genotype that will control the robots. The first genotype (3), 

from the first population, controls the green robot, the second 

genotype, from the second population (4) controls the blue 

robot and so on. For 100 trials, a new different sequence of 

individuals is compared in the environment, and robots fitness 

is calculated at the end of life. If the same individual is 

extracted in more trials, in different sequences, (i.e 4-6-7-2 for 

a trial and 3-6-3-1 for another trial), the fitness score of that 

individual will be averaged over all trials. The same index 

sequence never will be extracted twice. The extraction of 

sequences is depicted in Fig. 5.  

Each robot is rewarded with +1.0 at a given time step in which 

the entire group stays in the same food zone. Life time 

consists of 3000 cycles of neural network activation.  

At the end of 100 trials (end of one generation), each  

individual (neural controller) is separately ranked according to 
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the fitness score. The 20 higher-ranked individuals are 

selected from the list of genotypes for each population. Each 

best individual generates 5 offspring individuals which inherit 

its genotype . The first offspring individual preserves entirely 

the genotype of the father (elitism) while the other four ones 

receive a random mutation with a probability of 2%. The total 

number of new individuals 20(bests) x 5(off) x 4(pop), will 

populate the next generation. Since, each population evolves  

separately: this mechanism fosters the genetic differentiation 

between the four robots and allows the robots to evolve 

distinctly their behavioral skills. 

 

 

 
 

Figure 5: Schematization example of index sequence 

selection.  

 

3. Results 

By evolving the control systems robots for 10 replications 

with different initial populations and for a total of 300 

generations, we observe the emergence of a grouping 

behavior. For a better understanding of the behavioral 

observations, we performed some detailed analysis. For each 

replication (seed) we calculated the average fitness over the 

last 20 generations, plotted in Fig.6. The variation between 

seeds suggests that in some replications there could be a 

stronger grouping and following pattern with respect to others 

.  

 

 
 

Figure 6: Schematization example of index sequence 

selecting.  

This variation is also confirmed by running tests where we 

measured which robot in a group, is the closest to the group 

“center of mass”.  For each generation, 4 tests are performed 

by stopping one robot of the group in a fixed position of the 

environment. Then, the average distance between the fixed 

individual and the other robots is calculated.  In this way, we 

obtained 4 curves that show the distance of each robot from 

the group “center of mass” (and example is the plot in Fig. 7). 

We can observe that the yellow robot has the minimum 

average distance from the “center of mass”, especially in the 

last generations. It means that it is always near the centre of 

the group and the other robots surround or follow it. This fact 

suggests the emergence of a leader/followers pattern, where 

the yellow robot is the leader.  

 

 
 

Figure 7: Evolution of distance from group centre of 

mass over generations. Replication n.9.  

 

It is also interesting to measure the “quality” of the leadership 

within a group. This measure is obtained by a Leadership 

Measure (LM) calculated for each replication (Fig. 8). The 

LM is obtained by calculating the difference between the 

minimum distance from the group “centre of mass” (Leader) 

and the average distance of the other 3 individuals 

(Followers). High differences imply a good extent of a clear 

leader/followers relationship. Comparing Fig.6 and Fig.8 we 

can notice that in a replication where there is a high LM, it is 

also present an high level of fitness. This fact indicates that 

leadership is a successful strategy in these simulations.  

 

 

 
 

Figure 8: Leadership Measure. 

 

 

Moreover the second important information emerges when we 

ran another test in which the fitness of the group and of the 

individuals is calculated. This test fitness is calculated by 

testing in the environment only the 4 best individuals for each 

generation (sampled with a step of 5 generations). Thus, a 

group fitness and individual fitnesses of each robot are 

calculated for each generation. The individual fitness, in this 

test, is taken by summing the times in which a given 

individual is located in the food zone, independently of the 

behavior of other robots. It should be noted that this is a 

virtual fitness, since it is not employed in evolution and it is 

only used in testing, so to understand the skill of each 

individual. We hypothesize that those fitnesses should be 

different, as the robots belong to different populations and 

play different roles in the group. By plotting individual fitness 

values for replication n.9, for example, (Fig.9), it is possible to 
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observe how the skills of each group member evolve 

throughout generations. In this case, after an initial phase (of 

about 30 generations), where the robots have almost the same 

individual abilities, the yellow robot consistently reaches 

better performances. This data prove, in a preliminary way, 

that whenever there is a strong presence of leadership in one 

replication, the most skilled individual (i.e. the fastest in 

approaching the food zone, the one that shows a better 

exploratory behavior) tend to be the leader of the group. This 

relation has been also observed in replication 4 and 5, that also 

show a consistent level of leadership (see figure 8) . 

 

 

Figure 9: Evolution of abilities in reaching the food 

zone over generations. The group fitness is 

represented in red. Replication n.9.  

 

The mechanisms underpinning the emergence of leadership 

are essentially based on the decision making process within 

the group. As we can see in figure 8, the yellow robot is the 

one that shows the best performance within the group. That is, 

it is the robot that reaches the food zone before the others, and 

this is true throughout all the evolutionary time. It should be 

noted that the better performance of the yellow robot, for 

example, depends entirely on the initial conditions of the 

population genotypes. In other replications of the same 

experiment, we observed different populations, i.e. different 

colours, as emergent leaders of the group. 

The fact that the best robot is also the leader can be explained 

by the fact that it can reaches the food zone faster and more 

frequently during the different tests. Therefore, during the 

evolutionary process the other robots of the group can use the 

best robot within the food zone as a landmark, which helps 

them to reach and remain within the same area and gain 

fitness. Thanks to this process, which facilitates the decision 

of the group towards one of the two areas, the best robot is 

elected as the leader of the group.  

 

4. Conclusions 

Although preliminary, these results show that in a group of 

robots, with variable distribution of skills (due to different 

genetic characters), leadership is often observed. In particular, 

the result of our simulation suggests that the stronger the 

leadership and the higher the level of the group coordination, 

the higher the overall fitness of the group. Interestingly, we 

observed that the robot which emerges as leader is also the 

best in reaching the food zone and foraging on it. This fact 

suggests similarities on what is reported in biological 

literature. 

However, more analysis is needed to better understand the 

process that leads to the emergence of those types of social 

behaviors and many other questions can be addressed with this 

kind of simulation, such as, what happens when robots are 

clones: do leadership/followership patterns emerge? What 

happens in a condition where the leader is not the individual 

with the best behavior? How does selective pressure on 

individual robots favor or inhibit the emergence of leadership? 

What happens when populations are not segregated and 

genotypes can mix and compete?  

We believe that these kind of questions could be investigated 

in the future by following and extending the approach  

preliminarily presented here.   
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Abstract
To explore development of motor skills for reaching in the iCub
robot, we test the capabilities for a neural network controller to
learn progressively by locking some degrees of freedom (DOF)
of the robot’s arm before allowing it to explore the space with
more DOF’s. We consider exploration and bio-inspired mech-
anisms can aid in the development of control of the iCub robot
arm. Results suggest the advantage of progressive development
over an initial full training, also, these pointed out the impor-
tance of interaction with the world and the necessity of trial and
error occurring in a time lapse for developing of reaching skills.
Index Terms: degrees of freedom, motor skills, development,
epigenetic robotics

1. Introduction
Proposed by Bernstein, the degrees of freedom problem [1]
poses difficulties for autonomous skills learning and has drawn
attention recently in the psychology field [2, 3]. Recent research
on robotics [5, 4] has addressed this problem as well and tried
to implement some of the ideas proposed by Bernstein due to
the nature of recent advances in robotics and the need of devel-
oping controllers for redundant robot arms, specially of those of
humanoids. Current cognitive robotics research has focused on
the importance of the embodiment of an agent in order to richly
interact within a world plenty of stimuli and cues that can aid
in processes and reduce workload for a central controller such
as the brain. The body plays an important role for this interac-
tion and roboticists constantly look for new and better ways to
control it.

Studies with evolutionary robotics approaches have been
carried out with success for reaching and maipulation tasks.
Massera et al. [6, 7] successfully evolved networks capable of
fine-grained interaction with objects by exploiting the morpho-
logical contraints of a robotic arm. In this work, however, we
are interested on the epigenetic development of such tasks.

Development of the human body flows from the top and
centre of the body to the limbs. The spinal cord is the start-
ing point, arms, legs, hands and toes take longer to develop.
It is said that it follows a proximo-distal and cephalo-caudal
direction [8] and this can be appreciated in infants: younger
infants move their limbs in broad uncontrolled movements be-
cause only the most proximal joints of the limbs have been de-
veloped, like the shoulders. Later on, it can be seen that the
elbow and wrist also come into play. Also, control of the lower
part of the body comes after that of the upper part. In experi-
mental psychology and motor development of humans there is
evidence indicating that for learning new skills, adults freeze

Figure 1: Images from the robot once the controller has foveated
the target. Above, the original images. Below, the low-res
colour-segmented images.

some of the distal joints involved in the new task until some de-
gree of performance has been achieved, then some more degrees
of freedom are used for achieving better performance [9, 10]. In
the present work we test if that interaction with the world along
with experience limited by constraints imposed by the physi-
cal characteristics of the arm, can help the learning process if
this is segmented. We use a simulated iCub robot with neural
controllers for the arm.

2. Methods
For testing the hypothesis, experiments were planned and car-
ried out on the iCub robot simulator [11]. The iCub robot [12]
is a humanoid robot about the size of a four years old child
with 53 degrees of freedom designed for cognitive development
research. The iCub’s head subsystem consists of six degrees
of freedom and is capable of vergence (the oculomotor adjust-
ment needed to foveate the same point in space with both eyes).
Three degrees of freedom in the head (tilt, pan and eyes’ ver-
gence) and four degrees on the arm (two from the shoulder, two
from the elbow) were used. The robot head was provided with
a visual tracking controller that locates and gazes at a specific
target. For the experiments the target was a red ball. The gazing
controller performed colour segmenting for the target’s colour
on the images coming from both eyes. This processing allowed
it to track the centre of the target and adjust the position of three
joints in the head in order to have the target in the centre of
each eyes’ field of view (Fig 1). By this mechanism, the robot
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Figure 2: The iCub performing the reaching task once it has
foveated.

gets information about the depth or distance at which the tar-
get is and together with the tilt and pan joints positions, it en-
codes the positions of the target in space. We use vergence as
a depth measure following recent findings [13, 14] that indicate
that vergence is in fact one strong signal for depth estimation
and programming of prehension movements of humans.

Three different learning conditions (with three networks
each) were tested on the robot to test our hypothesis. The first
two were: staged learning or development, involving learning
control of two DOF’s and then the two other (DEV condition),
and learning the head-hand associations involving four DOF’s
from the beginning (NO-DEV condition). For the last condition
(NO-TRAIN), a group of three randomly initialized networks
were created. These did not go through any learning process
and are the control group.

With the help of the gazing mechanism a dataset was cap-
tured consisting of joint values of the head and eyes and the
joint values of an arm position suitable for locating the end ef-
fector (the hand) in the point where the target was. This process
can be considered a tutoring stage where the ball was put in the
hand every time the robot executed random babbling [15] with
the arm, then the gaze controller moved the head for foveating
the target. For the cases the head was not able to move to a
position were the target could be gazed no data was captured.
This train set is equivalent of one acquired by performing ran-
dom babbling while foveating the target. Reduction of the time
required by this process is of course reduced when this kind of
tutoring is present, as it happens with infants helped by parents
when they start trying to reach objects that are usually out of
reach or the baby simply fails to reach.

The controller for the robot arm was a feed-forward net-
work with three inputs (one for each joint of the head controlled
by the gazing controller), forty hidden units and four outputs,
each of these output units controlled one joint of the arm. Two
of these joints are in the shoulder and two in the elbow of the
robot. During the initial training set creation, random babbling
only occurred for the two most proximal joints of the arm, that
is, for the ones in the shoulder. The other two joints were kept
in constant values, in positions that we considered natural for an
extended, similar to those when performing reaching for objects
not very close to the body. Therefore, the positions that can be
reached after the initial training are determined by the physical
characteristics of the arm and by the generalization capabilities
of the network. All learning for the networks was with the back-
propagation of error algorithm using a learning rate of 0.01 and
a momentum of 0.1.

For the development condition (DEV), each of the three net-
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Figure 3: Error during training of the first stage of development.
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Figure 4: Error during training of the second stage of develop-
ment.

works was trained using the set acquired via tutoring until the
mean square error (MSE) became stable. For the three networks
this was around the three hundred epochs. Figure 3 shows the
training error for this stage of learning. After the initial train-
ing for reaching using two degrees of freedom, a test phase was
carried out in ecological conditions. For an extended period of
time, the robot was presented with the target in different loca-
tions, each time, the robot gazing mechanism was used for gaz-
ing the target, then the arm neural controller was activated with
the inputs coming from the position of the head and eyes. When
the robot successfully reached the target, that is, it touched it,
the arm went to it’s resting position and the next test target posi-
tion was presented. Otherwise, the two degrees of freedom that
were initially locked (remember their values were constant for
the first phase of learning) were randomly moved while the two
most proximal degrees of freedom were kept constant with the
values the neural controller produced. With this movement the
robot was sometimes able to reach the target. When that was the
case, the position that enabled it to achieve reaching was stored
in a new set that was used for later training. This phase will
be called from now on ”experience phase”. Figure 4 shows the
training error during the second phase of learning for the three
networks and the mean of the three of them.

The training using the new set generated in the experience
consisted of 900 epochs. Figure 4 shows the error during train-
ing of this second stage of the learning.

The second condition (NO-DEV) consisted of using the
training set generated during the experience phase on randomly
initialised networks without going through an initial, partial,
learning phase nor an experience phase. That is, these con-
trollers were trained with the set that uses four degrees of free-
dom from the beginning. The training was for nine hundred
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Figure 5: Error during training of the non-developed con-
trollers.

epochs, at that point the MSE was stable. Figure 5 shows the
error for this no-development learning.

Measurements for comparing the two conditions were per-
formed during the execution of a reaching task similar to the
task executed in the experience phase. Figure 2 shows the iCub
executing the task once it has foveated the target. Final distance
from hand to target was saved for each of the trails of the three
controllers. Also, the number of times the controller success-
fully reached was recorded for having a percentage of success
for each of the networks.

3. Results and discussion
Analysis on the output data indicates the controllers belong-
ing to the staged or developmental training performed better in
terms of final distance to the target as well as in the percent-
age of success (Figs 6 and 7). An analysis of variance test was
performed to check for statistical difference between conditions
(including the non-trained condition). This test reported statis-
tical difference: current effect F2,897=850.45, p=0.0000.

This can be due to various factors: following a developmen-
tal training, consisting of tutoring, experience during operation
in it’s environment and learning based on that experience could
have shaped the weights of the controller’s networks to a stage
that was able to find a solution for the second training set. Even
when the training error of the final training in both conditions
is very similar, in test conditions an advantage of the developed
can be appreciated.

Because reaching is an important step in the development
of motor and cognitive skills, it is also a skill explored to get an
insight of the series of processes emerging in infants [16]. Our
work on development of reaching tries also to consider the fact
that for acquiring a skill it is necessary to has trial-and-error pro-
cesses where time constraints cannot be avoided. In our exper-
iments, the generation of the second training set for the staged
learning condition, the ”experience phase”, took considerably
longer than any other part of the experiment. But we believe
this was a very important step due to the fact that each network
will generate different outputs for the same inputs so the set is
particular to each of them.

We have tried to implement what Bernestein [1] suggested
for simplifying the degrees-of-freedom problem: in our exper-
iments the robot arm controller goes through a developmen-
tal progression in order to find a first but simpler solution to
the problem an later on, increasing the complexity of the prob-
lem. Other roboticists have implemented similar ideas in recent
years. Ivanchenko and Jacobs [17] simulated a three degrees of
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Figure 6: Mean distance from the center of the palm fo the hand
to the center of the target. Each controller was tested with 60
different target locations, none of them belonging to any of the
sets used for training. Bard indicate standar deviation for all
tests on each condition.
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Figure 7: Results show the percentage of times the end efector
touched the target. Each controller was tested with 60 different
target locations, none of them belonging to any of the sets used
for training.

freedom robot arm that tries to learn the dynamics of the arm
while moving on trajectories on two dimensional space. The
difference with our approach is that in our case the architecture
of the networks is the same for every condition, it is the pres-
ence or absence of experience what shapes the performance at
their final stages. Ivanchenko has a special architecture, devised
from the idea that this decouples dynamic interactions among
the joints and therefore allows to separately train the joints. Un-
like Ivanchenko, for our experiments we decided to keep the
same architecture. We want to explore uncoupling of dynam-
ics without changing the internal (not directly exposed to the
environment) characteristics of the system. In Ivanchecnko’s,
results indicate that a developmentally trained controllers only
outperformed the non-developmentally ones when the develop-
mental path matched the nature of the task executed. In the case
of our experiments, training as well as the ”experience” phase
matched the final task. This could explain the obtained results.

As Massera et al. in [6], we have started this exploration on
a robotic arm with just four degrees of freedom. Our approach
contrasts with that one in that we are interested on the epige-
netic development of the skill instead of an evolutionary one.
Moreover, in our case, experiments look to include vision into
the development of the task instead of direct pass of coordinates
or distances to the system without visual processing, as we con-
sider that working towards the implementation of this type of
skill development will require real-life sensory capabilities. The
head controller for our experiments employs vision as a simple
processing but action-involving task. Schlesinger et al. [18]
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have also explored with the freezing of DOF’s but again, using
a non-realistic vision mechanism and a 2D environment and us-
ing evolutionary algorithms. Our work has pushed this type of
exploration to a more realistic environment and explores the in-
teraction on fixed architecture systems. We showed that even in
this circumstances, a developmental approach can lead to better
performance. Using the iCub simulator has proven to be a good
test-bed for this type of research, as it allowed to implement and
test controllers and visual sensors and explore performance in a
controlled environment and free of mechanical strain issues.

3.1. Future work

In this study we have investigated the advantages of a progres-
sive unlocking of joints to achieve better reaching performance.
Our system has used two and then four degrees of freedom to
explore and then improve a motor skill. However, limbs of nat-
ural systems, such a humans, display the property of overcom-
pleteness. Overcompleteness implies that even though only 4
degrees of freedom are required for navigating a limb through
three dimensional space [19], limbs on many vertebrates usually
exhibit more than 4 degrees of freedom. This property turns the
problem of controlling a limb more complex in computational
terms (at least for traditional control) but also can represent and
advantage in terms of the possibility of finding solutions that al-
low to reach a target at the same time that an obstacle is avoided.
This could keep a relation with the representation of the reach-
able space. Also, constraints in other sensory or mechanical
parts will be explored in further work.
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Abstract 
Stigmergy is defined as a mechanism of coordination through 
indirect communication among agents, which can be 
commonly observed in social insects such as ants. In this work 
we investigate the emergence of coordination for locomotion 
in modular robots through indirect communication among 
modules. We demonstrate how intra-configuration forces that 
exist between physically connected modules can be used for 
self-organization in modular robots, and how the emerging 
global behavior is a result of the morphology of the robotic 
configuration. 
Index Terms: modular robot, locomotion, distributed 
controller, self-organization, embodiment 

1. Introduction 
Modular robots are systems composed of several individual 
unit modules, which with self-reconfigurable capability can 
autonomously change their morphology. Modular robots can 
be broadly classified into lattice-type and chain-type systems. 
Lattice-type systems achieve locomotion through continuous 
self-reconfiguration, where each module has the ability to 
move independently in the configuration, giving the notion of 
modules flowing on the ground and around obstacles. 
Locomotion in a chain-type system is achieved by controlling 
the actuator of individual modules in a fixed configuration. 

One of the earliest demonstrations of locomotion in chain-
type reconfigurable modular robots was provided by Mark 
Yim in [1], which included several locomotion modes such as 
walking, crawling, rolling, climbing etc. Distributed 
controllers for locomotion in chain-type modular robots have 
been researched in [2], [3], [4], [5] and [6]. Shen et al. have 
used a biologically inspired method called Digital Hormone 
Method (DHM) [2], [3], [4] for adaptive communication of 
state information between modules, based on which a module 
can decide an action from the gait table, resulting in the 
emergence of locomotion. Gonzalez-Gomez et al. have 
demonstrated in [5] how simple sinusoidal oscillators can be 
used on minimal configuration modular robots with two and 
three modules to generate locomotion in one and two 
dimensions respectively. In [6] Ijspreet et al. at the Biorobotics 
Laboratory, EPFL, have used Central Pattern Generators 
(CPG) [7] for producing locomotion oscillations on their 
modular robotic platform called YaMoR. CPGs are 
specialized neurons found in the spinal cord of vertebrate 
animals, which have the capability of producing rhythmic 
output without rhythmic sensory or central input. The 
mathematical model of CPGs used for controlling locomotion 
in modular robots are usually one or two CPG neurons per 
module, which are coupled in different ways with CPGs of 
other modules based on the configuration. 

Though DHM and CPGs are distributed control 
methodologies, they rely on explicit inter-modular 
communication. The simple oscillators for locomotion in 
modular robots demonstrated by Gonzalez-Gomez et al. in [5] 
is a distributed controller as well, but the phase relation 
between modules are predetermined, making the controller 
heterogeneous. We have, in this work, attempted to develop a 
locomotion controller for chain-type modular robots that is 
distributed, homogeneous and which does not rely on explicit 
communication between modules. 

2. Simulation and robotic platform 
In this work, we test our locomotion controller on modular 
robotic configurations built using the simulated model of the 
Y1 modular robot modules, developed by Juan Gonzalez-
Gomez. OpenRAVE is the simulation environment used for 
experiments in this work. OpenRAVE is physics based, open-
source, robotics simulator that has Open Dynamic Engine as 
its core. The Y1 modules are an open source, low cost, 
flexible, and easy to build modular robotic platform, which 
have been used as a research platform in several research 
projects. TheY1s, as could be seen in Fig.1, are open-ended 
cube shaped modules, which have a single degree of freedom, 
with a rotation range of 180º. The dimensions of these 
modules are 72x52x52 mm. The simulated modules are kept 
consistent with the real modules, both structure wise, and with 
respect to actuator features. 

 

Figure 1: Y1 module (a) Real and (b) Simulated 
versions. 

2.1. Modular robot configurations 

We have tested our locomotion controller on three different 
modular robotic configurations, as could be seen in Fig.2. 
Each configuration is explained in the following subsections. 

2.1.1. Minimal configuration 

The Minimal configuration is a two module, one-dimensional 
configuration, and according to [5], this is the smallest 
possible configuration for producing locomotion in one-
dimension. When both the modules are actuated with simple 
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sinusoidal oscillators with predefined phase difference, they 
produce a caterpillar gait, which resembles a travelling sine 
wave, with the phase value determining the direction of 
locomotion. 

 

Figure 2: (a) Minimal configuration (b) Y-bot and   
(c) Lizard. 

2.1.2. Y-bot 

Y-bot is a four module configuration that can be seen as an 
extension of the Minimal configuration when two more 
modules (Head_left and Head_right) are connected to the 
Spine module at an angle of +/-60º. Locomotion in two-
dimension is possible with this configuration, although we 
focus only on one-dimensional locomotion gait in this work. 
Again, with simple phase-differed sinusoidal oscillators, this 
configuration produces a caterpillar like gait, when modules 
Head_left and Head_right remain in phase. 

2.1.3. Lizard 

Lizard is a six module configuration that has four Limb 
modules, and two Spine modules. The Spine modules are 
rotated by +/-90º along the pitch axis, in relation with the rest 
of the configuration. When modules in this configuration are 
actuated with phase-controlled sinusoidal oscillators, as shown 
in Table 1 (derived empirically), the result is a quadruped 
walking gait, resembling that of a reptile. 

Table 1. Phase relation between modules in a Lizard 
configuration with respect to the module ‘Limb_1’. 

Module Phase Angle 
Limb_1 0º 
Limb_2 160º 
Spine_1 80º 
Spine_2 -80º 
Limb_3 160º 
Limb_4 0º 

3. Controller 
Locomotion in general, whether a gallop of a horse, 

flapping of a bird, or walking of a human, can be seen as 
repetitive and coordinated movement of limbs, through which 
the locomotion gait emerges. Looking at locomotion as a 
collection of oscillators, the phase relation between these 
oscillators determines the generated gait. This phase relation 
can be brought about by sharing actuation information among 
modules through explicit inter-module communication in a 

modular robotic system. But since a modular robot is an 
embodied system comprising of physically connected robot 
modules, our controller relies on the intra-configuration forces 
that exist among modules for coordination. 

3.1. Intra-configuration forces 

In a simulated Minimal configuration, when one module is 
actuated with a sinusoidal oscillator, with amplitude of 60º, 
and the other module is made to remain at a constant 0º, the 
oscillating module is seen to affect the other module. As could 
be seen in Fig.3, the unactuated module oscillates as well with 
low amplitude and an offset, due to the force exerted on it by 
the oscillating module. This is because a robot is an embodied 
system, where physically connected modules exert force on 
each other when actuated, which can be seen as an implicit 
communication among modules. Since the simulation tool 
used here is based on physics, similar (if not exactly the same) 
results can be expected in the real system.  

 

Figure 3: Plot of actuator values in a Minimal 
configuration, demonstrating the effects of the 
oscillating module over an unactuated module. 

3.2. Simple controller 

Since oscillation is fundamental to all locomotion gaits, we 
made the modules oscillate independently with fixed 
amplitude and an offset as defined in (1). Conditions (2) and 
(3) are used to determine if the module’s actuator has reached 
the desired oscillation angle, and if either of the two 
conditions satisfies, then the direction of rotation of the 
module’s actuator is switched by obtaining the next oscillatory 
angle from (1). Fig.4(a) depicts the control strategy. Condition 
(2) checks if the actuator is within a range of α+  and α−  
of the desired position determined by (1). Condition (3) 
checks if the rate of actuation is above a certain limit specified 

by β . The value of the parametersA ,o , α  and β  are 

determined empirically. 

 Ν∈∀+−= ioAy i
i ,)1(:  (1) 

 αθ ≤− ty  (2) 

 βθ ≤∆ t  (3) 

Where iy  is the 
thi  input to the module's actuator, A  is 

the amplitude, o  is the offset, tθ  is the positional feedback 

from the module's actuator at time instancet . Parameters α  

and β  are constants. 
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Figure 4: Control flow of (a) Simple controller (b) 
Neural controller. 

3.3. Neural controller 

Extending the previous model to include adaptive oscillation 
rather than a fixed-amplitude-offset oscillator, (1) is replaced 
with a fully connected feed-forward multilayer perceptron 
Artificial Neural Network [ANN], as shown in Fig.4(b). The 
ANN has one input neuron, one hidden layer with a single 
hidden neuron, and one output neuron. The input to the neural 
network is the positional feedback from the module's actuator, 
and the output is the control signal for the same. The lone 
hidden neuron and the output neuron have one bias node each. 
Flood, an open source ANN library, is used for implementing 
the ANN. The parameters of this controller are optimized 
using Genetic Algorithm [GA]. 

4. Experiment and results 

4.1. Evolution 

The parameter β  and the synaptic weights of the ANN in the 

neural controller are optimized using GA, individually for 
each of the three configurations. A robotic configuration is set 
up in the simulation environment, with each module controlled 
independently with the neural controller, starting with random 
initial parameters. The evaluation criteria for evolving optimal 
parameters, is the distance travelled at the end of the 
simulation cycle. Each individual in the population is 
evaluated for 50 seconds in the simulation environment. A 
fairly standard GA approach is followed, with Roulette Wheel 
selection method and Intermediate Recombination method for 
reproducing new offspring. Table 2 contains the GA 
parameters employed. 

Table 2. GA Parameter values used for evolution. 

Parameters Value 
Population Size 50 
Evolution length 50 generations 

Crossover percentage 50.0% 
Elite population percentage 12.5% 

Mutation rate 1/Size of genome 

4.2. Evaluation 

The resulting neural controller was evaluated by controlling 
modules in a given configuration with the most optimal 
control parameters evolved for that configuration. When 
actuated, the modules in the Minimal configuration started 
oscillating in phase, but quickly develop and maintain a steady 
phase difference, and resulted in a caterpillar locomotion gait. 
The frequency of oscillation is not predefined in the controller, 
but intrinsic to the system, and it is inversely-proportional to 
the amplitude. The amount and stability of phase relation 
between modules is a result of the morphology. A plot of the 

oscillation, frequency and phase values of the emerged 
locomotion gait in this configuration is as shown in Fig.5, 
Fig.6 and Fig.7 respectively.  

 

Figure 5: Plot of actuator values in the Minimal 
configuration actuated with the neural controller. 

 

Figure 6: Oscillation frequency graph of modules in 
the Minimal configuration when actuated with the 
neural controller. 

 Figure 7: Graph containing phase relation between 
modules in the Minimal configuration when actuated 
with the neural controller. 

When modules in the Y-bot configuration were 
actuated with the best evolved neural controller, a 
similar caterpillar gait emerged and the phase relation 
graph is as shown in Fig.8. In the Lizard 
configuration, the neural controller produced a 
quadruped walking gait, similar to that of a reptile. 
Each configuration with its respective neural 
controller was evaluated for a period of 300 seconds. 
Table 3 contains the speed of locomotion, averaged 
over 10 evaluations. Fig.9 and Fig.10 contains the 
phase relation graph of the emerged locomotion gait in 
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the Lizard configuration. The graphs in Fig.9 and 
Fig.10 are from a single evaluation, but presented 
separately as two different conventions are used with 
respect to the Y-axis range for better visualization. 

Table 3. Speed of locomotion averaged over 10 
evaluations. 

Configuration Speed (Cms/Sec) 
Minimal configuration 3.35 

Y-bot 4.18 
Lizard 2.09 

 

Figure 8: Graph containing phase relation between 
modules in the Y-bot configuration when actuated with 
the neural controller. 

 

Figure 9: Graph containing phase relation between 
some pairs of modules in the Lizard configuration 
when actuated with the neural controller. The phase 
angle is represented as a value between -180º and 
+180º for better visualization. 

 

Figure 10: Graph containing phase relation between a 
few other pairs of modules in the Lizard configuration 

when actuated with the neural controller. The phase 
angle is represented as a value between 0º and 359º 
for better visualization. 

4.3. Cross-evaluation 

Considering both, the difference in morphology and the 
dynamics of the emerged locomotion gait in the Y-bot and the 
Lizard configurations, the required coordination among 
modules of both the configurations must be very different. To 
test how a controller evolved for a particular configuration 
would fair when applied on a different configuration, we 
cross-evaluated the neural controller evolved for the Y-bot 
configuration on the Lizard configuration, and vice versa. The 
emerged locomotion gait when cross-evaluated was virtually 
similar to the configuration's original locomotion gait in both 
the cases, implying that the controller is able to adapt its 
behavior based on the change in morphology.  

5. Conclusions 
In a multi-robot system like modular robots, coordination 

among modules is required to produce a stable locomotion 
gait, and with our controller we have been able to demonstrate 
how such coordination among modules can emerge based only 
on indirect local interaction among connected modules, 
without the need for any direct communication between them. 
Furthermore, by cross-evaluating the controller, we have been 
able to demonstrate the dependency of the emerged gait on the 
morphology of the robot, supporting the notion of embodiment 
in a robot. 

Moving forward, we would like to first evaluate the 
proposed controller on configurations with real Y1 modules. In 

the current model, although the parameter β  which 

determines the actuation rate threshold is optimized using GA, 
it is a constant during the control phase. We would like to 
extend our model in such a way that the activation rate 
threshold value is adaptive during the control phase. 
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Abstract 
The paper presents the evaluation process of a first version of 
the one axis torque sensor designed for the iCub humanoid 
robot. Newly designed strain gauges equipped sensor was 
found to show a significant readouts hysteresis, therefore 
several tests were run to define the reason of the hysteresis. 
Some of the design issues met while testing the new sensor are 
discussed including the screws connection and relative rigidity 
of the sensor’s elements analyses. Verification of the assembly 
procedure is also included. Tests revealed several problems on 
both design stage and exploitation of the sensor. Possible 
solutions to the encountered problems are further proposed. 
Index Terms: torque sensor, strain gauge, friction, fatigue 
analysis 

1. Introduction 
A humanoid robot low-level understanding of the environment 
is provided by the sensors in which it is equipped. Interaction 
with the real objects and moving within the unspecified 
environment is only possible, when adequate amount of 
information is provided. This include external and internal 
forces and torques applied to the robot’s end-effectors which 
in case of the iCub robot have been sensed with use of four 6-
axis Force/Torque sensors placed along the kinematic chain of 
legs and arms – one sensor in each [1]. Information from those 
sensors, together with on-fly motor current measurements has 
been insufficient though for the robot to walk. More detailed 
information about the torques applied by each motor of the 
robot can be provided by a joint level torque sensors what 
shall result in better understanding of the internal and external 
forces of the manipulators and shall widen the robot’s 
possibilities to interact with the environment [2]. The joint 
torque level control offers moreover possibility to compensate 
effects of the robot dynamics without real time computation of 
the robot dynamics and the control schemes may be robust in 
respect to parameter variations [3,4] 

A single-axis torque sensors were considered to be placed 
in each powering unit of the robot’s lower-body (Fig.1, left). 
In  powering units B to F one torque sensor was considered, 
whereas since powering unit A consists of four motors, this 
part was assigned with four torque sensors. Because the iCub 
robot is very compact, the torque sensor had to be designed 
specifically for this application with several design limitations 
imposed. [5]. The torque sensor (Fig.1, e) was considered to 
be placed in the kinematics chain of each powering unit of the 
robot after the harmonic drive CSD-17-100 flexspline (Fig.1, 
c) and before the unit output (Fig.1, a).  

Readouts of the newly designed sensor appeared to have a 
hysteresis though and for this reason a series of sensor’s tests 
were commissioned. This paper presents the evaluation 
process of a first version of the sensor and discusses some of 
the sensor’s design issues found while testing the sensor. 
Possible solutions to the encountered problems are also 
proposed. 

 

Figure 1: Placement of the 1-axis torque sensors in 
the iCub robot’s structure (left), assembly of a torque 
sensor (right) – output flange (a), bearing (b), flex 
spline (c), wave generator (d), sensor (e). 

2. The sensor 
Tested sensor structure was made of 17-4 ph stainless steel 
characterized by 1100MPa ultimate tensile stress and 200GPa 
Young modulus[6].  The sensor design involved an inter 
mounting part constrained to the harmonic drive with use of 
6xM4 8.8 screws on a radius of 7.29mm each, an outer 
mounting hoop constrained with use of 8xM3 8.8 screws on a 
radius of 17.5mm and four beams out of which two had strain 
gauges glued onto (Fig.2). All mounting holes in the sensor 
were threaded with ISO thread. The sensor in the robot 
assembly was also supported by KAA15XLO bearing on an 
outer hoop (Fig.1, b). 

The sensor was equipped with SS-060-033-500P Micron 
Instruments P-doped silicon semiconductor bar-type strain 
gauges of 500Ohms nominal resistance and 0.84mm of active 
length [2]. Strain gauges were connected in Wheatstone’s 
bridge design employing four strain gauges arranged in a two 
half-bridges configuration. 

Readings of the sensors were acquired via the CAN bus by 
the  STRAIN board [3]. The utilized board was designed for a 
six axis Force-Torque sensor used in the earlier versions of 
iCub. It operates six Wheatstone half-bridges equipped with 
very same strain gauges as in discussed application, on six 
independent channels. For sake of this study, only two 
channels were utilized. To acquire data from the STRAIN 
board a Canreal software ver. 4.33 was used. Data was 
displayed with use of Gulp! software ver.0.22 alpha. Offset 
was set with help of the Gulp! software. 
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Figure 2: Sensor structure (left) - inner mounting part 
(a), outer mounting hoop (b), sensor beams (c), short 
beams (d); strain gauges glued onto the sensor (right). 

3. Tests setup 
In order to provide most uniform testing conditions special  
mounting flanges were manufactured. Inner mounting flange 
was simulating connection with a harmonic drive and was 
constrained to the table, whereas an outer flange was designed 
in the way to enable application of a constant torque to the 
sensor. Sensor was then fixed to the mounting flanges with 
screws. Torque was applied by loading a rod having 287mm 
of length in the way, that the load vector was in the plane of 
the sensor’s face surface and perpendicular to the radius of the 
sensor body. To achieve this, weights were hung on a cord at 
the end of the rod. The sensor was also tested under equal 
loads applied in opposite directions (creating a pair of forces), 
but results were comparable to the previously discussed load 
case, whereas the test setup was far more complicated. Since 
the radial deflection of the loaded sensor was noticed to be 
approx. 0.5˚ it was decided, that the load applied to one of the 
rods should have given sufficient approximation. Sensor was 
loaded with loads varying from 1 to 11kg. Maximum torque 
that the sensor was designed to withstand is 40Nm, what is 
adequate to the load of 14kg applied on a 287mm long lever. 
Tests were mostly carried out in the load range of up to 20 Nm 
because they involved mounting the sensor with some screws 
loosen what entailed much more stressful load case than 
provisioned for the sensor. Tests were done in a steady 
temperature conditions of approximately 20˚C (±5˚C). 
Hysteresis of the sensor’s readouts was observed to be 
independent from the environment temperature. 

4. Tests 
Obvious reason for hysteresis in case of strain gauges is gluing 
to the bending surface, what may result in some amount of 
permanent deformation of the loaded glue. Whether this was 
the reason, the sensor was loaded when not constrained rigidly 
to anything (with loosen all the screws mounting the sensor). 
Such a test setup resulted in lack of hysteresis. This proved, 
that the strain gauges are glued correctly to the sensor body. 

Verification procedure was begun with checking the signal 
conditioning system. Alternative acquisition module (ADT4U-
RS232, WoBit production) was used together with dedicated 
software (ADT4U-PC ver.1.02) in order to verify the 
correctness of the STRAIN board and software functioning. 
The new acquisition module was earlier tested with other 
strain gauges presenting no problems. New setup showed the 
same drawbacks as the original one. Hence it was deduced, 
that the sensor readouts problems do not origin from 
electronics nor software errors. Further tests were carried out 
with use of the original acquisition module and software. 

4.1. Screws connection verification 

During initial tests it was observed, that the mounting screws 
tightening torque was significantly influencing the sensor’s 
readouts hysteresis. Tests of friction based connection (with 
use of not shoulder screws) shown, that in best case of 
tightening torques (M4 and M3 screws tightened with 3.5 and 
2Nm respectively) residuals of the sensor’s readouts were 
varying from 15 up to 24% of the applied load (Fig.2 - dark 
blue). Tightening screws with higher torques resulted in higher 
values of residuals, whereas tightening screws with lower 
torques improved results for low load values but for high load 
values it made residuals inacceptable high. Following tests 
were meant to provide information of which connection 
element causes most of the problems and if use of shoulder 
screws does alter the results. Testing was divided in two cases 
- first involving only inner mounting flange connected with 
the sensor with tightened screws, whereas the outer hoop was 
attached to the mounting flange with loosen screws, and the 
later one involving the external mounting flange connected to 
the sensor’s outer hoop with tightened screws, whereas the 
inner mounting flange was attached with loosen screws. 

Tests involving only outer hoop connected with use of 
tightened, not shoulder screws (tightening torque: 1 - 2.5Nm) 
revealed that residuals for different tightening torques and 
different loads applied varied from 5 to 15% of applied load 
(Fig.2 - dark green). Best results were achieved for the sensor 
connected by the outer mounting flange with M3 screws 
tightened with 2Nm torque. Further tests including only inner 
mounting flange connected with use of tightened, not shoulder 
screws (tight. torque:1-4Nm) revealed that the residuals varied 
for different tightening torques and different loads between 0.2 
and 3.4% of applied load (Fig.2 - light red). Best results were 
achieved for the sensor connected by inner mounting flange 
with M4 screws tightened with 3.5Nm torque.  

At this point it is important to note, that M4 screw 8.8 is 
able to withstand 6.1kN of axial force before elongating 
plastically (what is not acceptable). The axial force was 
therefore considered acceptable if the stress in the screws does 
not exceed 520 MPa, which is 0.65*Ultimate tensile stress. In 
this case axial force evoked according to Eq.1. in a single 
screw is 4kN. Tightening torque applied to each screw shall be 
then 3.48Nm. 

 

Faxial = 
M�.������	
��
�	�� ��

�������������� 	

�������.������       (1) 

 
,where M is a tightening torque, d2 is a middle diameter of a 
screw (=3.545mm), µg is a friction coeff. between surfaces of 
the thread (=0.15), α is a tread’s lead angle (=0.5236rad), P is 
a tread’s pitch (=0.7), dh is a screw’s head middle diameter 
(=5.9mm) and µ is a friction between screw’s head and a 
reciprocal surface (=0.15). Since the friction between the 
sensor and the inner mounting flange is directly dependent 
from the axial force evoked by screws, value of the friction 
force  (T)  evoked  with  tightening all  six (n) screws is 
calculated according to Eq.2 to be 3.6kN (assuming µ, as well 
as µg equal 0.15). 

T=Faxial*n*µg    (2) 
 

M friction=T*
��*µ   (3) 

 
The momentum of friction (Mfriction) between the sensor and 
the rear mounting flange’s surfaces - necessary to keep the 
sensor on its original position - is according to Eq.3 26Nm,  
where  d   is a middle diameter of the surfaces being in contact 
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Figure 3: Residuals of the sensor’s readouts in 
percentage of total load applied to the sensor after the 
load is removed. 

(=14.58mm). Calculated friction momentum is less than 
expected 40Nm,thus  relative movement between parts appear. 

Similar calculations were done for M3 screws. Axial force 
in every single screw was assumed to be Faxial=2.3kN, screws 
tightening torque M=1.6Nm, middle diameter d2=2.675mm, 
friction coeff. µg=0.15, thread’s lead angle α=0.5236rad, 
thread’s pitch P=0.5, screw’s head middle diameter 
dh=5mm,friction coeff. µ=0.15, number of screws n=8, middle 
diameter of surfaces in contact d=17.5mm. In was calculated, 
that eight M3 screws provide a 48Nm of friction momentum.  

Above numbers does not correspond though with the fact, 
that tightening M3 screws resulted in much higher hysteresis 
during tests, what was shown in Fig.2. Screws diameter must 
had been therefore not the only reason for hysteresis. Shoulder 
screws were introduced in place of the regular ones in order to 
minimize the relative movement of sensor and mounting 
flanges. In this case screws’ shafts was supposed to keep the 
sensor on its position rather than friction between surfaces.  

Tests involving shoulder screws shown, that when screws 
at both inner and outer mounting flanges were tightened, best 
results were obtained for M3 and M4 screws tightened all with 
torque of 2 and 1.5Nm respectively. Hysteresis was in such 
case varying from 2.7 to 7.4% of applied load for different 
torques applied (Fig.2 - light blue). 

Similarly to the previous tests, inner and outer mounting 
flanges were further investigated separately. Outer loop 
screwed with eight M3 shoulder screws (tight. torques: 1 - 
2.5Nm) resulted in the residuals varying from 1.8 to 7.0% of 

applied load for different torques applied to the sensor (Fig.2 - 
light green). Tests including only inner mounting flange 
connected with use of six M4 shoulder screws (tight.  torques: 
1 - 4Nm) revealed that the residuals varied for different 
tightening torques and different loads from 0.2 to 3.4% of 
applied load (Fig.2 - dark red). 

Another important aspect of the threaded connection is 
that there should be enough material left around threaded 
holes to withstand pressure caused by the screw head when 
tightening the screws. This apply particularly to the M4 
screws, since M3 screws’ heads do not come into contact with 
the sensor in the assembly. From the condition for surface 
pressures (Eq.4), the bulk material around the threaded hole 
should have a minimal diameter of (dm). Applying axial force 
of 4kN by each the M4 screw implies having a minimal 
diameter of 6.25mm of material that has to surround the hole. 

dm=����������� ! ���   (4) 

 
, where σk is an ultimate tensile stress (1100MPa) multiplied 
by a safety coeff. (0.65), D is an external diameter of a 
threaded hole. The sensor has bulk material around M4 
threaded holes of 5.5mm in diameter, what is not sufficient for 
the hole to stay undeformed after tightening the screws. 

In order to further minimize the hysteresis, the sensor was 
glued with outer mounting flange (sensor was left attached to 
the inner m.f with loosen screws). For this reason Epoxy 
Loctite 9497 A&B Hysol was used. This mounting scheme 
resulted in significant improvement. In this case hysteresis 
was varying from 1 to 4.1% of applied load with much less 
steep characteristics (Fig.2 - orange).  

Next candidate to cause the hysteresis was the mismatched 
relative rigidity of sensor’s elements. Finite element analysis 
was done using ANSYS software in order to evaluate 
correctness of the sensor’s shape design. Particular attention 
was paid to the external mounting hoop (Fig., b) of the sensor. 
The reason for investigating this element was that only a 
deflection of intended elements should be measured by the 
strain gauges, whereas in this design the rigidity ratio between 
elements which are supposed to deflect (Fig.2, c and d) and an 
element which is supposed to stay rigid (Fig.2, a and b) 
seemed to be too small. For the purpose of this analysis a 
radial displ. of 0.0189rad was applied to each of the mounting 
holes of the outer mounting hoop, while inner mounting part 
was constrained (forces and displacements were applied to all 
nodes of holes surfaces). Such load case resulted in 637MPa 
of stress (Fig.4, right). To simplify the representation of 
displacements, the design was transformed into a Cartesian 
coordinate system (Fig.5) as an infinite subsequent series of 
two beams (representing entities c and d from Fig.2) coupled 
by a thick part from one side and a thin part from the other 
(which correspond to entities a and b from a Fig.2). 

Applying a displacement of f=0.032mm in Y direction to 
the same holes as in the case of circular design (what 
represents a displacement of 0.0189rad applied to the circular 
design) resulted in maximum stress of 640MPa (Fig.4, 
bottom). Circular and serial designs shows therefore a good 
approximation. As an outcome of applied translation along Y 
axis, a lateral translation of 0.023mm along X axis occurred 
next to the short beams forcing elements to rotate. Unwilled 
rotation is a result of too rigid short beam in respect to a 
coupler. The rotation is caused by internal forces which are 
shown in Fig.6 – in this case a sensor was constrained by holes 
of the outer mounting hoop, whereas force was applied to the 
thick part of the sensor.  
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In this load case reaction forces in X direction evoked at 
the holes next to the short beam were 678N and -678N, what 
was in each case approximately one third of a total force 
applied in Y direction to the sensor. At the same time reaction 
forces in Y direction evoked at the holes next to the short 
beam were 839N. Internal forces in this element behave as a 
pair of forces applied to the coupler rotating it and causing this 
way a respective movement between the sensor’s external 
hoop and the mounting flange. Therefore it can be stated, that 
the external hoop of the sensor was not rigid enough to keep 
the mounting holes in fixed position in respect to each other. 

 

Figure 4: Sensor initial conditions (top) and a stress 
distribution under f=0.0189rad displacement applied 
to the mounting holes of outer hoop (bottom). 

 

Figure 5: Serial representation of the sensor with 
analysis initial conditions (left), stress distribution 
under f=0.034mm displacement applied-displacement 
representation is scaled up 100 times (right). 

 

Figure 6: Serial representation of the sensor with 
internal loads shown. 

5. Conclusions 
Tests of the sensor revealed, that the hysteresis of the sensor’s 
readouts in its original connection scheme was significant and 
residuals varied from 10 to 24% of the applied load for 
different torques applied to the sensor. The sensor’s 
connection to the output/input flanges scheme, relaying on 
friction was found to be incorrect - sensor was moving in 
respect to the mounting flanges when load was applied. The 
connection should have been designed in the way to provide 
enough friction between contact surfaces or it should rely on 
pin connection rather than on the friction. Most important 
result of presented study was that applying torque to the 
sensor resulted in deformation of the sensor’s outer mounting 
hoop, what caused relative motion of parts hence the friction. 
Revision of the sensor’s design revealed also that amount of 
bulk material left around the threaded holes was not sufficient 
- the sensor deflected upon tightening the mounting screws. 

Sensor’s tests gave several important hints to minimize the 
readouts’ hysteresis. At the design stage of the sensor it is 
important to decide on a proper mechanical sensor’s interface. 
For friction based interface friction between elements should 
be enough to keep them with no respective movement. Screws 
with calibrated shaft gave most repeatable results with less 
hysteresis in case of discussed case (residuals varying from 2 
to 7.2% of applied load for different torques). It should be kept 
in mind, that this problem arise in case when some of the 
mechanical interface elements are not rigid enough to stay 
undeformed. Kind of solution may be gluing parts together (in 
this case it resulted in hysteresis 5 to 10 times smaller than in 
the initial tests with friction based connection). It was also 
shown, that for a given connection scheme – screw based – it 
is important to maintain a proper tightening torques of screws. 
With hand screwdriver human can apply much higher 
tightening torques than M3 or M4 screws can withstand. This 
may result in plastic elongation of screws and uncertain 
behavior of the sensor’s mechanical interface. 
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Abstract
We investigate whether spontaneous movements, which initi-
ate and guide early development in animals, can be accounted
for by the properties underlying embodiment. We constructed
computer and robotic models of several biological species with
biologically plausible musculoskeletal bodies and nervous sys-
tems, and extracted the embodied and motor networks based on
inter-muscle connectivities. In computer simulations and robot
experiments, we found that the embodied and motor networks
had similar global and local topologies, suggesting the key role
of embodiment in generating spontaneous movements in ani-
mals.
Index Terms: embodiment, developmental model, network
analysis

1. Introduction
Through evolutionary processes, the animal body and nervous
system have mutually adapted in order to achieve efficient sen-
sorimotor integration within the environment. As a result, vari-
ous adaptive behaviors can emerge from dynamical interactions
between the body, nervous system and the environment. This
is possible because the neural system exploits the physics of
the body on the one hand, while on the other hand, the body
dynamics structures the neural dynamics via sensory informa-
tion. This constitutes a fundamental property of embodied in-
telligence [1].

Converging developmental studies have emphasized the
significance of learning from as early as the fetal period for mo-
tor and cognitive development [2]. In particular, these studies
have emphasized the importance of spontaneous movements for
early development. Recent detailed ultrasound studies on the
emergence of fetal motility revealed that spontaneous behaviors
start prior to the completion of the spinal reflex arc [3]. Further,
these spontaneous movements play an important role in shap-
ing reflex movements and organizing the nervous system in the
spinal cord and brain during development [4][5].

Several researchers have suggested Central Pattern Genera-
tors (CPGs) as the neural basis for spontaneous movement [3],
but how these spontaneous movements emerge in animals with
complex and redundant musculoskeletal systems is still not
completely understood. Understanding the neural and biome-
chanical basis of this underlying mechanism can be useful for
understanding how spontaneous movements guide early devel-
opment.

Further, accumulating evidence from developmental re-
search has revealed species generality in the early developmen-
tal stage, for example, the dorso-ventral patterning program that
characterizes motor neuron and interneuron generation in the

spinal cord, progressive phases of limb motor development and
motor primitives for locomotion [6][7]. These studies raise the
question of whether and how a general mechanism guides early
development beyond the difference of body, nervous system and
their environment. Yet, few studies have answered this question
and constructed a theoretical model for early development.

Our aim was to deepen our understanding of general mech-
anisms of early development in natural organisms by focusing
on spontaneous movements. In this paper, we argue that em-
bodiment generates spontaneous movements and guides early
development. Since spontaneous movements precede the de-
velopment of spinal reflex arc and affects the formation of
anatomical and functional neural circuits, it is not necessar-
ily reasonable to assume that innate muscle coordination cir-
cuits are required for the generation of the spontaneous move-
ments. We thus predicted that embodiment, which structures
sensory-motor interactions, intrinsically contains enough infor-
mation to generate spontaneous movements. To test our hy-
pothesis, we constructed biological models of several animal
species, and investigated their movements in both computer
simulations and robot experiments. In a series of experiments,
we showed that spontaneous movements can emerge according
to their species-specific embodiment from the common neural
circuit without any pre-defined muscle coordination circuits in
all tested species, and suggesting that this principle can apply to
a wide range of species.

2. Materials and methods
2.1. Biological systems

We constructed three musculoskeletal vertebrate models in
computer simulation: the Zebrafish embryo, canine and human
fetus models (Fig. 1(a) ∼ Fig. 1(c)). Each of these models had
parameters that changed with developmental stage.

In the Zebrafish embryo model, the key parameters that we
manipulated were size, muscle configuration and the number of
somites during the embryonic stage [8]. The number of somites,
that is the number of muscles, increased with development.

We constructed the human fetus model based on previous
work by Mori and Kuniyoshi [9]. In the human and canine fe-
tus models, the size, mass, moment of inertia of each body part,
joint angle limits, muscle configuration and force were manipu-
lated to match those of the fetuses at a gestational age [10][11].
The canine and human fetus models had 170 and 198 muscles,
respectively, in the whole body excluding the finger and face
muscles.

For the embryonic and fetal environment, we used the am-
niotic fluid and uterine wall models produced by Mori and Ku-
niyoshi [9].
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(a) Zebrafish embryo (b) canine fetus

(c) human fetus (d) quadruped robot

Figure 1: Biological systems. (a)-(c) Blue circle is egg or uter-
ine wall, white and red circle is contact point, and red string is
muscle.

Length Tension

Muscle 
activation

Unitary neural element

Figure 2: Spinobulbar model. Neural oscillator : neural oscil-
lator neuron model, S0 : afferent sensory interneuron model, α
: alpha motor neuron model, γ : gamma motor neuron model,
Spindle : muscular sensory organ model, Tendon : Golgi ten-
don organ model. Arrow and filled circle represent excitatory
and inhibitory connections, respectively.

Further, to examine the hypothesis in a real-world envi-
ronment, we designed a simple quadruped robot that captured
important features of the animal musculoskeletal system (Fig.
1(d)). For actuators, we employed McKibben-type pneumatic
artificial muscles that reproduced some of the non-linear prop-
erties of biological muscles in terms of damping and elasticity.
The muscle configuration and sensory feedback of our robot
were compatible with the mono- and bi-articular muscles of a
quadruped animal, its muscle spindles and Golgi tendon organs.

For the nervous system, we employed the spinobulbar
model developed by Kuniyoshi and Sangawa [12]. This model
receives muscle length and tension as sensory input, and then
outputs the degree of muscle activation as motor command.
Each muscle is independently controlled by a single unit within
the spinobulbar model (Fig. 2). These muscles are coupled to
each other so that if one muscle moves (i.e. contracts), the other

Graph
Theoretical
Analysis

Embodied Network

Motor Network

Embodied Coupling

Motor Coupling

Edge : correlation between motor outputs

Spontaneous
Movements

Edge：informational flow from motor to sensor

muscle 1

muscle 2

Figure 3: Diagram of measuring and analyzing embodied and
motor networks based on inter-muscle connectivities.

muscles change configurations due to the physical constraint of
the body (i.e. elongates). Therefore, although individual units
of the spinobulbar model are not linked by pre-defined motor
coordination circuits, this model can serves to dynamically cou-
ple different muscles, and then generate various whole-body
movements. In this paper, we refer to embodied coupling as
such dynamic coupling through the body. This model allows
us to investigate whether and how embodiment shapes sponta-
neous movements through embodied coupling.

2.2. Embodied and motor network analysis

To quantitatively characterize embodiment and spontaneous
movements in our biological models, we built networks of mus-
cles with inter-muscle connections defined by sensory and mo-
tor activations (Fig. 3).

To characterize embodiment, we extracted the embodied
network which represents patterns of embodied coupling, that
is, how much the motor output of one muscle influences the
sensory information of other muscles. We computed this em-
bodied coupling with transfer entropy, which captures patterns
of directed interaction and information flow [13].

To characterize spontaneous movements, we extracted the
motor network by measuring the dynamic motor coupling be-
tween muscles. The dynamic coordination of motor commands
between muscles was quantified by measuring the Pearson cor-
relation coefficient between motor outputs.

We used standard graph measures to analyze and compare
the local and global network properties of both the embod-
ied and motor networks, as well as muscle-specific properties
within each network.

3. Experiments
We conducted simulations with the Zebrafish embryo, canine
and human fetus models, using the open dynamics engine for
simulating rigid body dynamics [14]. We set the time step of
the simulation to 1 ms, and ran each simulation for 1, 000 s.

We also did several experiments with the quadruped muscu-
loskeletal robot. The robot was mounted with a CPU board run-
ning a real-time OS that sent pressure values as motor command
and received the length and tension of each pneumatic muscle
as sensory feedback every 7.5 ms. One external PC commu-
nicated with the CPU board every 100 ms and computed the
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Figure 4: Module decomposition of the motor network in the
human fetus model. Circle is muscle, size of circle is within-
module degree and colors depict community assignments. The
number of modules is 7.
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Figure 5: Time series of the instantaneous phase synchroniza-
tion index (for 200 ms) between one muscle and the others.

neural dynamics every 1 ms.
When we constructed the embodied and motor networks,

we used muscle length from the muscle spindle model as sen-
sory information and motor commands from the alpha motor
neuron model as motor information.

3.1. Emergent movements

Throughout the simulation experiments, the Zebrafish embryo,
canine and human fetus models exhibited mixtures of peri-
odic and aperiodic complex movements. In robot experiments,
we also observed the robot transited from forward to back-
ward movements, and after several steps it regenerated forward
movements. Among other behaviors, there were forward-only
and backward-only movements as well as jumping-like motion.
Movie of the experiments is available on the first author web-
site1.

We also investigated the modular architecture in the motor
networks to reveal movement modules. We found that modular
partition of the canine and human fetus models corresponded to
groups of the body parts, such as each leg and arm (Fig. 4).

To reveal dynamic coordination relationship at a time scale
of movement unit, we calculated the phase locking value [15],
which can identify transient synchrony between muscle pairs on
a millisecond scale. Figure 5 shows temporal evolution of the
instantaneous synchrony between one muscle and the others.

1http://www.isi.imi.i.u-tokyo.ac.
jp/%7Ey-yamada
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Figure 6: Binary networks of the human fetus model. Black
squares represent existing connections.

Table 1: Network properties in the human fetus model.

Embodied Motor
clustering coefficient 5.63 7.13

characteristic path length 1.74 1.69
modularity 0.69 0.70

small worldness 3.24 4.22
assortativity 0.44 0.33

3.2. Relationship between embodied and motor networks

We carried out a detailed analysis of the embodied-motor net-
works in all four biological systems (Fig. 6, Table 1). We com-
puted characteristic measures of network organization, includ-
ing the (normalized) clustering coefficient, (normalized) char-
acteristic path length, modularity, small worldness and assorta-
tivity. Normalized measures were computed relative to a set of
100 comparable random graphs.

Both networks showed a high level of clustering coefficient
(>1) and a high level of characteristic path length (∼1), con-
firming a small-world organization of networks. Modularity
of both networks was more than 0.3, suggesting the presence
of a significant modular architecture in the networks. Assorta-
tivity characterizes network resilience properties against node
removal. Both networks showed positive assortativity coeffi-
cients, indicating that properties of these networks are relatively
robust against the removal of nodes.
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Further, we compared the node-specific degree, strength
and betweenness centrality of the embodied and motor net-
works. These measures identify node centrality, which is useful
diagnostic for comparing topologies. As the results, these mea-
sures within embodied networks were significantly correlated
with those within the motor network (e.g. degree r = 0.76,
strength r = 0.77 and betweenness centrality r = 0.60 for the
human fetus model; Student’s t-test p < 0.001, n = 198).

We note a high level of consistency of these graph mea-
sures, suggesting substantial agreement in the topological orga-
nization between the embodied and motor networks.

3.3. Relationship between canine and human fetus models

Dominici et al. showed the similarity of motor primitives in lo-
comotor system between humans, other mammals and birds [7].

So, we compared embodied and motor networks with ca-
nine and fetus models in the muscles shared by two species ac-
cording to anatomical knowledge. As the above global graph
measures, two models have similar topology both in embod-
ied and motor networks. Node-specific measures also were sig-
nificantly correlated between emergent motor networks in the
canine and human fetus models (degree r = 0.45, strength
r = 0.46 and betweenness centrality r = 0.38; Student’s t-
test p < 0.001, n = 170).

4. Discussion
Animals are dynamically coupled to their environments, with
embodiment shaping the structure of sensory input, and sensory
information determining neural dynamics. In this paper, we ex-
plained how such mechanisms occur in neural-body coupling
using the biological systems. We also explained how embodi-
ment produces spontaneous movements and attempted to char-
acterize this as a general phenomenon transgressing differences
in embodiment. To examine our hypothesis, we introduced a
set of quantitative network analysis aimed at capturing the re-
lationship between embodiment and spontaneous movements.
We exemplified their use by running computer simulations and
robot experiments which produced spontaneous movements.

In the computer simulation and robot experiments, we
found the embodied and motor networks share similar topolo-
gies of global and node-specific graph metrics. These results
suggest spontaneous movements can emerge according to their
species-specific embodiment without any pre-defined innate
muscle coordination circuit.

Further, we observed the neural-body coupling based on
the biological body and nervous system was capable of produc-
ing transient synchronization between localized body parts, and
resulted in complex and interrelated spatiotemporal behaviors.
Fast motor dynamics exhibit intermittent synchronization and
desynchronization on a time scale of hundreds of milliseconds,
enabling the system to continually explore a repertoire of func-
tional motor coupling.

Experimental studies on animal movements have suggested
the existence of motor primitives, or motor synergies, and have
studied their organization as a result of learning [4]. However,
their neural basis and mechanisms of organization during de-
velopment remain poorly understood. Our results suggest the
embodiment possesses lots of regularities that restrict the num-
ber of coordination and allows the animal to explore a variety
of embodied dynamics via neural-body coupling. We believe
that these explorations via spontaneous movements guided by
embodiment could bring about organization of motor synergies

as a result of modulation and selection of the motor repertories
based on sensory information and motives.

In comparing the canine and human fetus models, we dis-
covered similarities in embodiment and spontaneous move-
ments. Although further research is needed to understand the
precise cause and potential implication of the above findings, it
is reasonable to assume that similarities in the embodiment and
spontaneous movements create, through developmental pro-
cesses, similarities in motor development and motor synergy
for locomotion [6] [7].

In this paper, we quantified the contribution of embodi-
ment in shaping spontaneous movements with biologically real-
istic systems. We discussed the possibility that the spontaneous
movement based on embodiment is a key principle for the early
development of natural organisms. In future works, we will in-
vestigate and compare how the spontaneous movement shapes
coordination neural circuits and guides motor and cognitive de-
velopment using biological systems of various species at vari-
ous developmental stages.
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Abstract 
Robots are more and more present in our daily lives. They 
have to move in human-centered environments, to interact 
with humans, and obey some social rules so as to produce an 
appropriate social behavior in accordance with human's profile 
(i.e., personality, emotional state, and preferences). The user’s 
personal profile links between different ways of communication 
like the verbal, nonverbal, and para-verbal. Verbal and 
nonverbal communication play a major role in transferring and 
understanding messages in a social interaction between a 
human and a robot, because of their natural alignment and 
synchronization. The nonverbal behavior can be generated 
based on a linguistic and contextual analysis of the verbal 
language, relying on rules derived from extensive research 
into human conversational behavior. 
 
This study defines a new mechanism of generating gestures, in 
parallel with generated natural language based on human 
personality. Our model contains the following steps: 

• Speech recognition platform. 

• Personality recognition analysis. 

• Natural language generation. 

• Gestures generation corresponding to the generated 

   language. 

• Transferring the data of the generated gestures in real 

   time to the humanoid robot (in our case Nao robot). 
 
 In this work, we used Dragon (Dragon Naturally Speaking 
11.5) speech recognition system that can dictate continuous 
speech into a text with high accuracy. This text is used for the 
user’s personality recognition analysis. The personality of the 
user is expressed through the Big Five personality dimensions  
[1]: Openness, Conscientiousness, Extraversion, Agreeableness, 
and Neuroticism, based on some psycholinguistic cues in the 
written text [2].The natural language generator (PERSONAGE) 
developed by Mairesse and Walker in [3], receives the 
description of the human’s personality as input, and tries to 
generate a corresponding text to the personality dimension to be 
used as a verbal reaction by the robot, based on the traditional 
pipelined natural language generation (NLG) architecture [4]. 
PERSONAGE generator was mainly developed to produce 
personality based utterances for the restaurants’ domain in New 
York City, but it can also be extended to other domains, and this 
point is still under development. The user’s personality and the 
gestures are highly correlated. In [5] the authors discussed the 
effect of the personality traits on the characteristics of the 
performed gestures (e.g., amplitude, direction, rate, and 
speed). Similarly, they can influence the verbal content of 
speech in terms of (verbosity, repetitions, etc). Moreover, 
Nass et al. in [7] discuss the similarity-attraction principle 
(i.e., individuals are attracted by others with the same 
personality traits). All this work constituted the inspiration of 

this current work, where we try to use the user's personality 
traits as an intermediate step towards automatically generating 
robot gestures based on the generated text that matches the 
user’s personality traits. 
 
Moreover, we use (BEAT) toolkit for generating different kind 
of gestures (e.g., eyebrows, iconic, beat, and deictic) based on 
the generated utterances in the previous step, from which it 
extracts some linguistic features (e.g., theme/rheme) in order 
to generate a series of synchronized gestures [6]. BEAT is 
driven by hand made rules synchronizing gestures with 
linguistic cues obtained from live conversations. However, the 
existing system doesn’t include a lot of gesture types. In this 
work, we try to extend the existing model by training the 
system over new rules characterizing new kind of gestures to 
increase the gestural expressiveness toolkit. 
 
The last step concerns the modeling of both the generated 
gestures and the generated language on the robot’s behavior. 
In this way, we expect to obtain a multi-modal customized 
robot behavior capable to interact with humans autonomously 
in different contexts and scenarios. 
 
A video of our system with Nao robot is available at: 
http://www.ensta-paristech.fr/~tapus/HRIAA/media. 
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1. abstract
The goal of this research is to create a non-verbal system able to
interact safely and naturally with humans. The main hypothesis
is that mechanisms of high level interactions such as cooper-
ation and understanding intentions can be obtained from well
designed low-level systems. For example, an effector device in-
strumented to detect force constraints applied by others allows
to get easily the direction (opposing vs facilitating) and, at a
higher level of interpretation, the intention of others concern-
ing the device’s movement. This is one of the reasons we pre-
ferred hydraulic technology which presents a potential of phys-
ical compliance. Moreover, pressure control in the pistons is
closer to muscles control than the electric motors.

Figure 1: Example of the robotic devices used in our exper-
iments. A 6 DOF robotic arm is used in conjunction with a
robotic head for visual perception and interaction.

For the control architecture, we are interested in modeling
the layers of motor command : low level force control, multi-
modal inputs (especially vision) leading to prediction and antic-
ipation capabilities. To do so, this research includes the design
of a bio-inspired neural network able to provide a force control
of the hardware and merging inputs from different kind of sen-
sors including vision and proprioception. The control has to be
as close as possible to the hardware with the less layer possible.
It is based on a control by activation of agonist and antagonist
muscles. The position and torque sensor as well as short range
proximity sensor are used to learn simple movements and their
sensory outcome. The vision is also available through robotic
eye mounted on a fast pan-tilt system allowing movement at
human speed. High definition camera gives a video flow that
can be used to analyze the scene. The neural network designed
allows the system to analyze the scene using point of interest.
By extracting local features around those points it is possible
to construct a library of visual feature. Using this library ob-
jects can be recognize by learning simple associations between
those local feature and sensorial context including supervision

signals. Action can then be associated with the context or the
presence of an object. Moreover sequences of simple actions
can be learned through cognitive maps. For example the robot
can learn from the human teacher to grasp, move and release an
object. From then and with the recognition of object the robot
is able to learn tasks such as sorting objects using their visual
characteristic.

Figure 2: Overview of the neural network model used to learn
on-line sequences of gestures.

As we construct this controller we hope to improve our
knowledge of some structures of the brain such as the motor
cortex, the pre-frontal cortex, the striatum or the cerebellum.
Models of all these structures and other are used in the model
here developed. The researches aim especially to better under-
stand the influence of each structure on the global behavior of
the robot as well as the synergies that emerge from the cooper-
ation between structures and to create a new type of humanoid
robot where all parts from the technology, through the low level
control to the high level control is thought in the optic of realis-
tic interactions with humans.
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Abstract 
Typical neurocognitive development is based on multimodal 
interactions. One way to study multimodal interactions is 
to analyze how children learn language. The studies we 
conducted aim to understand the development of cognitive 
non verbal tasks including -attention, action/gesture imitation, 
haptic and visual perception tasks -and their relationship with 
the development of verbal tasks in children aged 5 to 6 years 
old. The above considerations relevant to the natural and 
neuronal environments were taken into account 
for the neurorehabilitation of autistic children using artificial 
environments rendered possible through the use of mobile toy 
robots. Autism which is a complex neurocognitive disorder is 
characterized by troubles in communication as well as deficits 
in the cognitive treatment of emotions. We designed four 
studies whose aim was to quantitatively and qualitatively 
evaluate the multimodal interaction between autistic children 
and a mobile toy robot during free spontaneous game play. 
A range of cognitive non verbal criteria including eye contact, 
touch, manipulation, and posture were analyzed, firstly 
in a dyadic interaction and secondly in a triadic interaction. 
The dyadic interaction of autistic children and a mobile toy 
robot suggests that the mobile toy robot in an ecological 
situation such as free, spontaneous game play could be used 
as a neural mediator in order to reduce skill impairment 
witnessed in autistic children. The analysis of the triadic 
interaction involving an autistic child, the robot and a therapist 
concludes that once the robot-child interaction has been 
established, the child can use the robot as a mediator 
to express positive emotion and play with a person. 
Therefore robot therapy could conceivably have a high 
potential to improve the condition of brain activity in autistic 
children. 
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Abstract 

The goal of this research is to provide a real-time and 

adaptive spoken langue interface between humans and a 

humanoid robot.  The system should be able to learn new 

grammatical constructions in real-time, and then use them 

immediately following or in a later interactive session.  In 

order to achieve this we use a recurrent neural network of 500 

neurons - echo state network with leaky neurons [1].  

The model processes sentences as grammatical 

constructions, in which the semantic words (nouns and verbs) 

are extracted and stored in working memory, and the 

grammatical words (prepositions, auxiliary verbs, etc.) are 

inputs to the network.  The trained network outputs code the 

role (predicate, agent, object/location) that each semantic word 

takes.  In the final output, the stored semantic words are then 

mapped onto their respective roles.  The model thus learns the 

mappings between the grammatical structure of sentences and 

their meanings. 

The humanoid robot is an iCub [2] who interacts around a 

instrumented tactile table (ReacTableTM) on which objects can 

be manipulated by both human and robot.  A sensory system 

has been developed to extract spatial relations. A speech 

recognition and text to speech off-the-shelf tool allows spoken 

communication.  In parallel, the robot has a small set of 

actions (put(object, location), grasp(object), point(object)).  

These spatial relations, and action definitions form the 

meanings that are to be linked to sentences in the learned 

grammatical constructions. 

The target behavior of the system is to learn two 

conditions.  In action performing (AP), the system should 

learn to generate the proper robot command, given a spoken 

input sentence.  In scene description (SD), the system should 

learn to describe scenes given the extracted spatial relation. 

Training corpus for the neural model can be generated by 

the interaction with the user teaching the robot by describing 

spatial relations or actions, creating <sentence, meaning> 

pairs. It could also be edited by hand to avoid speech 

recognition errors. These interactions between the different 

components of the system are shown in the Figure 1. 

The neural model processes grammatical constructions 

where semantic words (e.g. put, grasp, toy, left, right) are 

replaced by a common marker. This is done with only a 

predefined set of grammatical words (after, and, before, it, on, 

the, then, to, you). Therefore the model is able to deal with 

sentences that have the same constructions than previously 

seen sentences. 

In the AP condition, we demonstrate that the model can 

learn and generalize to complex sentences including “Before 

you put the toy on the left point the drums.”; the robot will first 

point the drums and then put the toy on the left: showing here 

that the network is able to establish the proper chronological 

order of actions. 

Likewise, in the SD condition, the system can be exposed 

to a new scene and produce a description such as “To the left 

of the drums and to the right of the toy is the trumpet.”   

In future research we can exploit this learning system in 

the context of human language development. In addition, the 

neural model could enable errors recovery from speech to text 

recognition. 

Index Terms: human-robot interaction, echo state network, 

online learning, iCub, language learning. 
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Figure 1: Communication between the speech recognition tool 

(that also controls the robotic platform) and the neural model. 
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Abstract 
Learning to use a tool is a critical step in human development. 
Recent work has identified the developmental steps leading to 
the emergence of tool-using in infants (e.g. [2], [4]). These 
longitudinal and cross-sectional studies show evidence for the 
beginning of tool-using in infants from the age of 18 months. 
The tool use studied in these studies refers to the retrieving of 
an out-of-reach toy with a rake-like tool, when there is a 
spatial gap between the toy and the tool. 
It is surprising that the ability to use a tool to retrieve an out-
of-reach toy appears so late in the development, whereas 
infants are able to combine two objects starting from the age 
of 10 months, and achieve more and more complex object 
combination during their second year of life (see for example 
[1]). Why does tool-use emerge so late? One possible 
explanation is the change in infants' ability to attend to more 
than one item in the environment at the same time [3]. This 
raises the question of what infants perceive in their 
environment when trying to solve a task like retrieving an out-
of-reach object, and in particular what infants perceive from 
the physical relations between the toy and the tool.  
We explored this question using the string paradigm: infants 
were presented with an out-of-reach object connected to a 
string that was within reach. Infants are known to be able to 
pull a string to retrieve an object attached to it starting from 
the age of 10 months [6]. However, when 16-month-olds are 
presented with four strings, only one of them connected to the 
toy, they often fail to pull the connected string and instead pull 
any string at random [5]. To check infants' attentional 
behaviour toward the connection, we used a Tobii eye tracker 
with a scene camera to see which string the infants looked at 
when they saw someone preparing to do the task. We tested 
infants aged 16, 20 and 24 months.  
The preliminary results show that infants older than 16 months 
looked at the correct string prior to the adult's movement. 
Gaze analyses are still in progress, but we expect that infants 
who failed to pull the correct string (mostly 16 month-olds) 
will have different attentional strategies than successful 
infants. This attentional mechanism might be directly 
correlated with the strategies used for the tool task around the 
period where infants start to succeed in using a tool. The aim 
of the whole research program is to understand more deeply 
the mechanisms underlying tool-use learning in infants, in the 
view of implementing them in a computational model that 
might be of relevance to autonomous learning of tool-use in 
robots. 
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Abstract
The symbol grounding problem [1] is currently an active topic
in both cognitive modeling and robotics. It refers to the need for
grounding the symbols used to represent thoughts and beliefs in
something other than just more symbols. This paper describes
work on an artificial neural network that grounds symbols in
sensorimotor trajectories through a local Hebb-like learning
performed online. This is of interest for exploring the develop-
ment of higher-level cognitive abilities in humans through ex-
periments with robots [2]. For example the grounding of action
words in the sensorimotor interaction with the world [3]. It is
also relevant for assistive robots. Here it may be desirable to
learn online the correlation of multimodal inputs over time [4].

An architecture with a time-delayed input structure and no
hidden layers was used. Each input for each time delay was rep-
resented by a set of neurons, the number of which depended on
the discretization desired. A Gaussian distribution was used to
distribute activation over neurons for a given input value. Each
delayed input layer was given full connectivity with a layer rep-
resenting the current time inputs. A Hebb-like [5] learning rule
was then used to associate all inputs in the past with all in-
puts in the present online. No activation was propagated dur-
ing training of the neural network. Causality was thus assumed
to arise implicitly from the time-delayed input structure of the
neural network and its embedding in the sensorimotor loop. The
learned weights were then used to predict into the future by one
time delay value, by propagating the activation resulting from
inputs in the past and present. Predicting low-level actuation as
well as the high-level descriptive labels grounded in the low-
level actuation. The ability to learn online distinguishes the
approach from recent work on Multiple Time-scales Recurrent
Neural Networks (MTRNN) [6].

First results from benchmarking trials on a simulated iCub
humanoid robot [7] are presented. A set of Cartesian trajectories
were executed with one 7 Degree Of Freedom (DOF) arm, and 4
descriptive labels where given to different phases of the trajecto-
ries. Six DOF were actuated and used as low-level inputs. Two
overlapping number 8 shape movements were learned, rotated
90 degrees with respect to one another. The labels indicated
the top/bottom and left/right part of the trajectories, as well as
the respective movement directions. During prediction, number
8 shapes that were 25% faster and 25% smaller were also at-
tempted. For the worst case scenario used the root mean square
error for the prediction of the joint angles was kept within 7
degrees and the labels were predicted correctly more than 80%
of the time. This indicates that the approach is reasonably ro-
bust to the ambiguity introduced by partially overlapping and
non-exact trajectories.

Index Terms: Symbol grounding, Hebb rule, sensorimotor co-
ordination, developmental robotics, assistive robotics, bench-
marking, online learning
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Marek Ruciński, Francesca Stramandinoli∗

Centre for Robotics and Neural Systems, Plymouth University
Drake Circus, PL48AA Plymouth, United Kingdom

(marek.rucinski,francesca.stramandinoli)@plymouth.ac.uk

Abstract
Until recently, research studies about symbolic representations
have mainly focused on concrete language; hence, very little
is known about the symbolic/conceptual system governing ab-
stract language. In contrast to concrete entities, which can be
perceived through the senses, abstract language refers to things
that are intangible and that are not physically defined nor spa-
tially constrained [1, 2]. Nevertheless, according to the embod-
ied view of cognition, representations of such concepts are also
shaped by our sensorimotor interactions with the environment.
We present two cognitive robotics experiments which look at
the relations between motor actions and abstract symbol ma-
nipulation capabilities. Through the first study we want to ad-
dress the question whether abstract concepts can be grounded
on more concrete motor primitives, while in the second experi-
ment we want to understand if motor activities can play a facil-
itating role in the acquisition of conceptual competences.

A recent body of work in the neuroscience [3, 4, 5, 6] and
the behavioural communities [6, 7] has revealed that words are
not arbitrarily linked to their referents but they are grounded in
perception, action and sensorimotor knowledge. Furthermore,
different theories proposed in psychology [8, 9] state that em-
bodiment plays an important role even in representing abstract
concepts. By exploiting this knowledge, we have developed a
cognitive model for the learning of compositional actions from
the combination of motor primitives. In this model, sequences
of linguistic inputs lead to the development of new higher-order
concepts by combining words grounded on basic actions and
concepts. This mechanism allows to interpret linguistic com-
mands in terms of internal language and motor repertoire. The
developed model uses recurrent neural networks. Simulation re-
sults have shown that motor primitives have different activation
patterns according to the action’s sequence in which they are
contained. This seems to be consistent with recent neurophysi-
ological [10] and computational neuroscience results [11]. We
argue that a hierarchical organisation of concepts can be a pos-
sible account for the acquisition of abstract words in cognitive
robots.

Learning to count is an example of acquisition of a con-
ceptual competence facilitated by a motor activity. It is well
established that pointing or touching plays an important role
in learning the counting procedure between 2 and 6 years of
age [12, 13, 14]. Importantly, there are studies which suggest
that active gesture provides a unique contribution not present
when gesturing is performed by another person [15]. Up to
day various, not mutually exclusive hypotheses about the role

∗Corresponding author. Tel.: +44 1752584908. E-mail address:
francesca.stramandinoli@plymouth.ac.uk (F. Stramandinoli)

of gesture have been proposed. First, gesture may facilitate co-
ordination of producing number words (temporal aspect) and
matching them with items (spatial aspect) by naturally joining
the two aspects in one activity [16]. Second, gesture may help
overcome limitations in cognitive resources like reducing the
working memory load [13]. Third, gesture may be seen as a
social learning communication channel through which the child
provides its tutor with feedback on the current learning state
[17]. Due to its embodied character and connection with a con-
crete symbolic competence, counting is an attractive topic for
robotics modelling. Using this approach we seek to validate
aforementioned hypotheses.
Index Terms: symbolic representations, sensorimotor knowl-
edge, embodiment, language acquisition
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1. Abstract
Infants learning the meaning of their first words are faced with a
difficult task involving multiple sources of uncertainty. Both the
speech they hear from their caretakers and their visual environ-
ment can be viewed as stochastic sources of information. This
paper investigates a computational model of word learning that
takes a closer look at these sources of uncertainty. We present
an algorithm, based on exploiting the statistical regularities in
the input, and show that this is sufficient to reliably learn words
from speech and vision under highly adverse circumstances.
The learning strategies the algorithm implements supports con-
jectures about infant learning, most notably the crucial roles of
statistical learning and of taking an active approach to in pro-
cessing the environmental input.

We identify two types of uncertainty. The first relates to
the fact that the infant must discover recurrent acoustic stretches
from a highly variable speech stream and eventually form mean-
ingful combinations of these building blocks. Research has
shown that the ability of young learners to detect patterns in
spoken language is at least partly based on the use of the statis-
tical properties of the speech signal.

The second type of uncertainty is due to possible inconsis-
tencies between patterns in the speech stream and objects in the
scene surrounding the learner. Any pairing of a spoken word
and a communicative scene presents the learner with a large
number of possible referents. When a caretaker utters a sen-
tence pertaining to an object in the visual environment, it may
thus be highly ambiguous from the viewpoint of the learner. In-
fants use statistical evidence across many individually ambigu-
ous word-scene pairings to discover cooccurrences of auditory
and visual information, thus resolving the ambiguity. They are
also able to detect when form-referent pairings do not match
their previous experience and will actively attempt to resolve
these perceived mismatches by aligning a different visual refer-
ent with a given auditory form.

We present a computational model of word learning that in-
corporates both cross-situational statistical learning as well as
the corrective process after detection of a mismatch, which has
an analogy in active learning procedures in machine learning
techniques. Learning in our model consists of multi-modal pat-
tern finding, combining information extracted from speech ut-
terances and images with the goal of both identifying the basic
building blocks of language and forming word-referent pairings
from situations of referential ambiguity.

Results from the model show the advantages of combining
cross-situational statistics and active learning. We show that
cross-situational statistics by itself provides the learner with a
high level of robustness against referential ambiguity. Incor-
porating active learning, we then show that this improves the
model’s robustness even further, where the gain is proportional

to the level of ambiguity in the input. Our model shows the im-
portance of the active learning procedure attested in infants, in
reliably learning words under highly uncertain conditions, such
as the conditions an infant faces when learning his or her first
words.
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Abstract
Faces appear to attract  the attention of humans in an extra-
ordinary way from birth [1] and throughout the rest  of life. 
The currently dominant view in developmental psychology is 
that infants have some form of innate internal representation 
which  preferentially  matches  face  like  stimuli.  The  debate 
surrounding this issue has become a canonical stage for issues 
such  as  the  nature  of  innateness  and  the  development  of 
specialisation  in  the  brain.  This  poster/presentation  will 
introduce initial results from modelling studies of innate face 
preference conducted on the iCub humanoid robot. 

The hypothesis  under investigation is that an innate internal 
representation  is  unnecessary,  and  possibly  insufficient  for 
basic  face  preference  in  real  world  conditions.  Instead  we 
exploit the fact that the visual system is mounted on a face to 
make  faces  "special"  to  the  robot.  This  fact  enables  the 
emergence  of  a  visual  "affordance",  or  sensorimotor 
invariance  in  the  relationship  between  the  viewer  and  the 
world, which we recently described in [2]. On this view, the 
reason why pairs of eyes pop out in visual scenes is that we 
see things with a pair of eyes.  Other facial texture can also 
play  a  role.  Eyebrows  are  known  to  be  very  important  in 
visual-facial perception. We are testing this hypothesis in both 
real interactions with humans and with stimuli used to study 
human neonates. Performance is compared to a model based 
on the CONSPEC hypothesis of an innate face template [3].

A well defined theoretical framework has allowed us to make 
predictions regarding neonate face preference which we hope 
will motivate studies on neonates [4]. In addition to offering a 
way out of a somewhat  unproductive 20 year  debate in the 
literature on newborn face preference as to the form of this 
representation,  this  theoretical  framework  and  the  results  it 
generates will bear on issues of innateness and the nature of 
cognitive and behavioural inheritance. 

This study also exemplifies wider debates in cognitive science. 
Does cognition occur primarily in internal models of self and 
world which are somehow matched to the sensorimotor flux 
and used to control that flux from outside it? Or is cognition 
largely  embedded  in  the  embodiment  of  the  agent  and  the 
form  of  the  sensorimotor  flux  itself?  Can  the  causative 
structure of behavioural and cognitive events and processes be 
functionally localised in space, such within a brain region? Or 
is  a  systems  approach required  to  understand  what  may be 
fundamentally  distributed  networks  of  causality  without  a 
central  controller?  What  is  the  appropriate  way  to  use 
abstraction and concreteness in cognitive modelling? We will 
present  our  results  in  the  light  of  their  relevance  for  these 
broader discussions within the field, in the hope of showing 
how  bridges  between  developmental  psychology  and 
developmental robotics may be built, a process crucial to the 

ongoing  success  of  developmental  cognitive  science  as  an 
inter-disciplinary project.

1. Acknowledgements
This research is being supported by the EU project Robot-Doc 
under 25065 from the 7th Framework  Programme, Marie 
Curie Action ITN.

2. References

[1] Johnson, M., Dziurawiec, S., Ellis, H., and Morton, 
J. (1991). Newborns preferential tracking of faces 
and its subsequent decline.
Cognition, 40(1-2):1–19.

[2] Wilkinson, N., Metta, G., Rea, F. and Gredeback, G. 
(submitted).  Visual  morphological  resonance:  
Direct, depth robust binocular sensing of real world 
spatial scale. Journal of Vision.

[3] J. Morton and M. Johnson. Conspec and conlern: A 
two-process  theory  of  infant  face  recognition.  
Psychological Review, 98(2):164–181, April 1991.

[4] Wilkinson,  N.,  Metta,  G.,  and  Gredeb¨ack,  G.  
(2011a).  Interfacial  relations:  Binocular  geometry  
when eyes meet.  Proceedings  of 2nd International  
Conference on Morphological Computation, Venice, 
p.p 69–71.

Proceedings of the Post-Graduate Conference on Robotics and Development of Cognition 
10-12 September 2012, Lausanne, Switzerland

65




