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Abstract
The exploration and interaction of humanoid robots with the
environment through tactile sensing is an important task for
achieving truly autonomous agents. Recently much research
has been focused on the development of new technologies
for tactile sensors and new methods for tactile exploration.
Edge detection is one of the tasks required in robots and
humanoids to explore and recognise objects. In this work we
propose a method for edge and plane classification with a
biomimetic iCub fingertip using a probabilistic approach. The
iCub fingertip mounted on anxy-table robot is able to tap and
collect the data from the surface and edge of a plastic wall.
Using a maximum likelihood classifier thexy-table knows
when the iCub fingertip has reached the edge of the object. The
study presented here is also biologically inspired by the tactile
exploration performed in animals.

Index Terms: tactile sensing, edge detection, probabilistic clas-
sification, biomimetic

1. Introduction
Nowadays most robots are equipped with haptic systems to im-
prove their ability to interact with and learn from the environ-
ment. This is a required and important feature for humanoid
robots in order to perform tasks safely. Haptics is considered as
a perceptual system [1], which is mainly based on information
provided by two types of sensing systems: proprioceptive sens-
ing and extereoceptive sensing. Proprioceptive sensing detects
body position, weight, and joints, whilst extereoceptive sensing
refers to tactile sensing which provides physical properties of
objects through physical contact [2].

Humans use the sense of touch, or tactile sensing, to ex-
plore their environment. Different predefined exploratory pro-
cedures (EPs) performed by humans with their hands and fin-
gers allow them to recognise objects. The type of EP depends
on the type of information required – for instance, sliding, pres-
sure and contour following provide information about texture,
hardness and shape respectively [3]. The way humans perform
tactile sensing is considered as an active process rather than a
passive one, because the movement of the hand and fingers is
purposely guided to obtain more information. This process of
tactile exploration is not only used by humans but is also present
in the animal kingdom. Some examples of active tactile sens-
ing are the antennae of insects and the whiskers (vibrissae) of
rodents, which exhibit fascinating sensory capabilities [4]. For
instance, antennae allow cockroaches to explore, detect objects
and maintain their balance while climbing; rats are able to dis-
criminate texture using their whiskers with high accuracy; seals
can track fish using their whiskers, which are the most finely
tuned in the animal kingdom.

(a) (b)

Figure1: (a) iCub finger mounted on anxy-table robot to allow
the movement of the finger across a plastic wall (b) to collect
data from plane and edge.

Recent developments of haptic systems in robotics have al-
lowed research in exploratory procedures inspired by the hu-
man and the animal kingdom. A three-fingered robotic hand has
the capability to grasp through tactile sensing [5]. This robotic
hand is able to recognise objects through the shape of the hand
given by the joint angles. Another method for shape classifi-
cation, using a robotic five-fingered hand, employs continuous
rotational manipulation and pressure contact [6]. Texture recog-
nition commonly is done by humans through a lateral motion or
sliding EP. A robotic finger equipped with tactile sensors is able
to recognise textures by sliding over materials [7], sliding either
in vertical or horizontal direction. Hardness and texture recog-
nition with a robotic hand is done with squeezing and tapping
EPs [8]. This approach shows that the hardness can be measured
based on the variation of joint angles while squeezing, and tex-
tures can be recognised through a tapping procedure analogous
to the whisking performed by rats.

In this paper we consider tactile sensing with the iCub hu-
manoid robot, which has recently been equipped with tactile
sensors in its palm and fingers, allowing it to interact with the
environment [9]. The iCub humanoid has 108 taxels (tactile el-
ements) in total; 48 taxels in the palm and 12 taxels in each
finger that respond to pressure when there is a contact. To anal-
yse the tactile data from the iCub we employ recent advances in
probabilistic perception methods inspired by tactile exploration
in animals, especially rats [10, 11, 12]. In these developments,
a maximum likelihood classifier (also called naive Bayes) was
used for a variety of discrimination tasks, including texture,
shape, position and velocity.

A key task in robotics that will be the focus of this study is
to do object exploration by using edge detection through tactile
sensing. Early research on edge detection has been influenced
by digital image processing techniques. Low level tactile prim-

Proceedings of the Post-Graduate Conference on Robotics and Development of Cognition 
10-12 September 2012, Lausanne, Switzerland

24



itives have been proposed for a tactile sensor with an array of
10×16 taxels [13]. These primitives define an edge as a series
of edge contacts. Another approach for edge detection uses a
median filter which preserves edges and removes noise without
blurring the edges [14]. In [15], image processing techniques
are also applied using an edge detector which uses a threshold
to remove noise. In order to obtain the location and orientation
of the edge, an adaptive Hu transform is applied. Edge detec-
tion, location and orientation are obtained through the first three
moments from the tactile image [16]. A new method for a low-
resolution tactile sensor uses heuristics for edge detection [17].
This method has been designed for a 2×2 planar tactile sensor
array.

This work presents an implementation of tapping ex-
ploratory procedure in a biomimetic robot based on the iCub
fingertip applied to edge and plane detection. We apply a proba-
bilistic method based on biologically-inspired tactile perception
to perform the classification.

2. Methods
A. Tactile sensory system: iCub finger

For the experiments presented in this work, we used the
tactile sensory system of the iCub humanoid. This humanoid
resembles a child of 3 years old. It has 53 degrees of freedom
and is equipped with digital cameras, gyroscopes, microphones
and recently tactile sensors have been integrated in the forearm,
palm and fingertips [18]. These tactile sensors allow the iCub
humanoid to interact with the environment performing tasks
safely e.g. exploring and grasping. Each fingertip has 12
contact pads called taxels, which are distributed in the base,
sides and tip of the finger with a separation of about 4 mm
between them. These taxels are built using a capacitive sensor
technology that enables the fingers to respond to contact
pressure. The measurements from the 12 taxels are sampled
at 50 Hz. These measurements are digitised locally in the
fingertip with a capacitive-to-digital converter (CDC) [19]. The
result of the digitisation provides capacitive measurements in
the range of 0 to 244, where 0 is for a maximum pressure in
the fingertip and 244 is when there is no pressure. The data
collected from the fingertip sensor are then passed through a
drift compensation module, which converts the measurements
to double precision.

B. Exploratory architecture: XY-table robot

To enable the iCub fingertip to move across a plastic wall
for collecting data, it was mounted on anxy-table robot capable
of achieving precise positioning (Figure 1). This platform en-
ables the iCub finger to perform a tapping exploration procedure
over y axis (vertically) whilst moving inx axis (horizontally).
Also this platform allows the data to be collected systematically
with precise movements inx-axis. The finger is mounted at an
appropriate angle in order to have contact with most possible
taxels. Thexy-table robot moves the fingertip across appro-
priate regions of the stimulus to collect and store the pressure
measurements from the taxels and the position for the fingertip.
Figure 2 shows the two regions defined for collecting data: a
10 mm range for the plane and a 10 mm range for the edge. The
xy-table robot performed a periodic movement across thex-axis
of 1 mm spacing. This gave 10 taps for the plane stimulus and
10 taps for the edge stimulus.

This experiment was developed for two cases: first, moving

(a) (b)

(c) (d)

Figure2: The iCub fingertip moved by thexy-table robot;(a)
tapping in a plane region,(b) tapping in an edge region,(c) dis-
tribution of taxels in the iCub fingertip,(d) edge and plane re-
gions. Note the positioning of the fingertip relative to the stim-
ulus.

the iCub fingertip backwards (from base to tip), and second
moving in lateral motion (from left to right). For the backward
case, the iCub fingertip was first placed on the plane and
then placed on the edge. In the lateral motion case, the iCub
fingertip was first moved over plane and then returned to its
initial position and started again over the plane region. There
were collected 10 sets of data for the backward case and 6 sets
for the lateral motion case. The first set of plane and edge data
were used for the training phase and the remaining sets for
testing.

C. Probabilistic classifier

Probabilistic techniques are the state of the art for robot per-
formance under uncertainty [20]. The measurements are con-
sidered as being caused by the world with given probabilities.
This study employs previous work on probabilistic classifiers
used for tactile perception based on a maximum likelihood pro-
cedure [10, 12]. Equation 1 shows the accumulated log likeli-
hoods estimator considering the measurements to be condition-
ally independent

logP (x1, . . . , xn|Cl) =
n
∑

i=1

logP (xi|Cl) (1)

The log likelihoods logP (x1, . . . , xn|Cl) are accumulated
over n samples of data. The single sample log likelihoods
logP (xi|Cl) are estimated from the training data using his-
togram methods to determine the sampling distribution [12].
The decision-making for a choice of a classCl which can be
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Figure 3: Interaction of modules in the experimental setup.
Modules developed with C/C++ and YARP library to a straight-
forward implementation on the iCub humanoid.

an edge or plane is made through the maximum likelihood

C = argmax
C

l

P (x1, . . . , xn|Cl)

= argmax
C

l

[

n
∑

i=1

logP (xi|Cl)

]

(2)

whereargmax provides the maximum probability for a given
dataset measurement from a edge or plane contact.

In this study there are two classes;plane and edge. The
classifier takes as input the measurements from the 12 taxels
of the iCub finger as a time series. The maximum probability
calculated by equation 2 returns the classC for the current
contact. In section 3, the training and testing phases for the
classification are explained.

D. Experimental setup

For the experiments, several computational modules were
used for control and classification: first, theXYRobotmodule
for communication and control of thexy-table robot; second,
the TactileSensormodule for reading and preparing the mea-
surements from taxels in the correct format to feed the classi-
fier; and, third, theMLClassifiermodule to detect if the contact
is over an edge or plane region. This experiment is based on the
biomimetic iCub fingertip. However, the modules have been
designed to be implemented straightforwardly on the iCub hu-
manoid. Figure 3 shows the interaction between these modules.

3. Results
A. Training phase

The iCub finger was placed and adjusted to have enough
pressure contact with the most possible taxels. The plane and
edge regions were defined on a plastic wall of 6 cm×19.5 cm
dimensions. A 10 mm region was defined for the plane class
and a 10 mm region for the edge class. The iCub finger was
configured to collect data at 50 Hz. Adrift compensation mod-
ule from the iCub repository was used to pre-process the data
before classifying. For the training phase, two sets of data were
collected: one for the plane and one for the edge. These datasets
were taken from the first tap of the finger over the plastic wall.
The datasets provided to the classifier had 12 dimensions from
the number of taxels and were over 5 seconds (250 samples).
Figure 4a shows the mean of pressure contact from the twelve
taxels during the first tap on plane and edge regions. Similarly,
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Figure4: Pressure contact of first tap over plane and edge; (a)
backward movement, (b) lateral movement.
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Figure5: Edge and plane detection in testing phase; (a) back-
ward movement, (b) lateral movement.

the first tap for plane and edge in lateral movement is shown in
Figure 4b. These datasets are the input for the classifier.

It can be seen that the pressure is higher for taxels 2 and
10 when the finger is on the edge for both backward and lateral
movement, giving a discriminator for the edge from plane.

B. Edge and plane testing phase

Two scenarios were set up for edge and plane detection
validation: (1) moving the finger backward and (2) moving
laterally over the edge and plane regions. For scenarios 1 and
2, there were collected 20 and 12 datasets respectively. In
scenario 1, the iCub finger moved across 20 mm; first 10 mm
for plane and second 10 mm for edge. The taps were taken
every 1 mm. Figure 5a shows the classification across the plane
and edge for scenario 1 (backwards movement). It can be
observed in thex-axis that the position of contact by the finger
and the class (edge and plane) were well predicted. The first 10
taps correspond to the plane and the second 10 taps to the edge.
A clear separation of the two classes is observed (Figure 5b).

For scenario 2, the iCub fingertip firstly moved over six dif-
ferent positions on the edge with a range of 60 mm with a tap
every 10 mm. The same procedure was followed for the plane.
In this case, the iCub finger was rotated manually to the vertical
position to allow lateral movements. This manual rotation may
cause systematic changes in the data collection procedure fol-
lowed in scenario 1. However, good results were found for both
edge and plane lateral movements. Figure 5b shows the classi-
fication in lateral motion. Similar to the backward movement,
there is a clear separation of the two classes. Both, plane and
edge are plotted in the samex-axis, since the taps were from
same positions for the plane and edge.

Tables 1 and 2 show the confusion matrices for backward
and lateral movements respectively. Both matrices present suc-
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cessful classification accuracy of 100%. Interestingly, for the
scenario 2, even though the vertical rotation of the finger was
done manually, a 100% of classification accuracy was achieved.

Table 1: Classification of edge and plane for scenario 1.

Class Edge Plane

Edge 100% 0
Plane 0 100%

Table 2: Classification of edge and plane for scenario 2.

Class Edge Plane

Edge 100% 0
Plane 0 100%

4. Conclusions
This work has been motivated by the study of tactile sensing
capabilities in humans and animals which suggest probabilis-
tic methods for perception. A biomimetic iCub fingertip that
resembles the human fingertip was used for the experiments.
This finger was mounted in anxy positioning robot to allow
systematic movements in two dimensions. Different modules
were developed to implement the architecture for communica-
tion, control, data acquisition and probabilistic classification.

It was demonstrated that a tapping exploratory procedure
can successfully detect object features. A plane and edge region
were defined for exploration and collecting data over a plastic
wall. The platform developed allowed a systematic implemen-
tation of the experiments. The classification was performed in
two scenarios: (1) the iCub finger moving backwards and (2)
in lateral motion. For scenario 2, the experimental setup was
changed manually by orienting the iCub fingertip to point in a
vertical direction. For both cases the classification showed per-
fect results, in that the classification accuracies were 100%. The
modules used in this work for the iCub finger were designed to
be implemented straightforwardly on the iCub humanoid. As
such, the results presented in this work are a first step towards
studying and implementing exploratory procedures performed
by humans and animals on humanoid robots.
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