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Abstract. One fundamental problem in mobile robotics research is Si-
multaneous Localization and Mapping (SLAM): A mobile robot has to
localize itself in an unknown environment, and at the same time gen-
erate a map of the surrounding area. One fundamental part of SLAM
algorithms is loop closing: The robot detects whether it has reached an
area that has been visited before, and uses this information to improve
the pose estimate in the next step. In this work, visual camera features
are used to assist closing the loop in an existing 6 degree of freedom
SLAM (6D SLAM) architecture. For our robotics application we pro-
pose and evaluate several detection methods, including salient region
detection and maximally stable extremal region detection. The detected
regions are encoded using SIFT descriptors and stored in a database.
Loops are detected by matching of the images’ descriptors. A comparison
of the different feature detection methods shows that the combination of
salient and maximally stable extremal regions suggested by [12] performs
moderately.

1 Introduction

One application of visual attention is to support recognition of places recorded in
digital images. Mobile robotics broaden this need, since it can be used to solve
the SLAM problem, i.e., building an environment map and localizing a robot
within this map at the same time. Loop closing is the subproblem of recognizing
that the robot has reached an already visited place again, enabling the SLAM
algorithms to bound accumulated errors and to create a consistent map. More
precisely, there are two different problems in the task of loop closing: First, in
place recognition, a robot recognizes if it has visited an area under inquiry before.
Second, knowledge integration is the task of incorporating this extra information
into the localization and mapping data structures. In this work only the problem
of place recognition is addressed. To recognize a place, the robot relies only on
visual information from camera data. In this paper we re-implement and evaluate
the place recognition procedure suggested by [12] that tries to solve loop closing
by using using visual features, namely salient features.

The proposed visual feature detector is based on two criteria: saliency and
wide-baseline stability. It is compared to other detectors within the framework
developed by [10]. In particular, we are interested in the exclusive usage of salient
regions or MSERs (maximally stable extremal regions). The evaluation shows
that for our robotics application, i.e., the loop detection, encoding the feature
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regions by using SIFT descriptors [6] is justified. In the last step, the procedure
is integrated into the existing 6D SLAM architecture [15] on the Kurt3D robot
platform to assist the present algorithms regarding loop closing.

This paper is structured as follows: First, we present a brief state of the art.
The methods used for visual feature extraction, the feature matching and the
application of loop closing are described in Section 2. The used data set, the
evaluation criteria and the evaluation results are presented in Section 3. Finally,
the robot architecture and the testing results are explained in Section 4. Section 5
discusses the results, addresses open issues and concludes.

Related Work. There is a variety of approaches that tackle the SLAM problem;
some methods build 2D maps, while other research groups aim at building 3D
maps. To this end, the robot poses are estimated with 6 degrees of freedom taking
the x, y and z position and the roll, yaw and pitch angle into account [1,15]. An
excellent state of the art of 2D SLAM is given in [16]. Many sensors are used to
solve SLAM, e.g., wheel encoders, gyros, GPS, laser range finders or cameras. A
few groups combine the latter two sensors [2, 3, 12], e.g., for loop closing.

In order to make loop detection robust, Newman and Ho suggest an approach
that does not rely on the robot’s pose estimation to decide whether a loop closure
is possible [12], since such data is typically erroneous. This approach is followed
in this paper, too: Only visual data is considered for the loop detection task.
Laser data is purely used for the purpose of map building.

Camera data for loop detection is utilized by extracting features from the cap-
tured images and processing them. This is normally done in three steps: detecting
the features, encoding them using feature descriptors, and finally matching them
against each other. Many region detectors are available, namely, the MSER de-
tector, the Salient region detector, the Harris-Affine detector, the Hessian-Affine
detector, the Intensity extrema based detector (IBR), and the Edge based detec-
tor (EBR) [5,7,8,13,17]. There are also quite a number of feature descriptors, e.g.,
SIFT, GLOH, Shape Context, PCA, Moments, Cross correlation and Steerable
filters [10]. Important attributes are invariance to scale, rotation, transformation
or changes in illumination. A good overview over both detectors and descriptors
can be found in [9].

2 Loop Closing

The loop closing procedure is basically designed like this: Images are taken from
the robot in an incremental fashion. These images are applied to the visual fea-
ture extraction pipeline one at a time. The result of the pipeline, the extracted
features, are stored in a database. After the first image is processed, the result-
ing features of each succeeding image are matched against all features that are
already stored in the database to detect a loop. The matching of the features is
equivalent to the distance between vectors in a high dimensional vector space. A
loop closing hypothesis is generated if similar features are found in two images,
that is, if their distance is below a certain threshold.

Like in the study [12], three steps are needed in the visual feature extraction
pipeline to generate the feature representation that is stored in a database and
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Fig. 1. Results for the saliency, the MSER and the combined saliency-MSER feature
detection for the same image. The detected visual features are highlighted: Salient
regions in the left, MSERs in the middle, and the overlapping regions from these both
images are shown on the right image.

used for the matching process: the saliency detection (Section 2.1), the MSER
detection (Section 2.2) and the SIFT description (Section 2.3). Two criteria
are used to detect the features in the image, namely saliency and wide-baseline
stability (MSER detection). An example for the detection methods is shown in
Figure 1. The detected regions are encoded in the third step with the SIFT
description algorithm.

2.1 Salient Region Detection.

Saliency is the first criterion for feature detection. It can be understood best as
characteristic for “interesting” regions. Presumably, those regions are relatively
sparse in an image. That makes this metric useful for loop detection, because
features are more or less unique in an image and, accordingly, for a location.

The scale-saliency algorithm developed by Kadir and Brady [4] was used
by Newman and Ho for loop closing [12]. It defines saliency by locally distinct
“complexity”, i.e., by local changes in entropy HD of the image region D com-
pared to its environment. A region is a scaled circular window around a center
pixel x. The window size or scale s is bound to a range between a minimum and
a maximum scale value. Pixels and their values within the region are denoted
with di. The probability density function for region D is PD(s, x), it returns the
probability for a certain value of di in its corresponding region. The following
equation is used to calculate the distinctiveness for each image pixel and for
different scales:

HD(s, x) = −

∫

i∈D

PD(s, x)log
2
PD(s, x)di. (1)

In order to select only those scales which contribute most to the result, the
entropy measure is weighted. The weight puts more emphasis on scales where
the entropy changes significantly in respect to their next neighbor scales. The
rate of change of the probability density function PD(s, x), multiplied with the
scale s, meets the needs as weighting factor:

WD(s, x) = s
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Thus, the overall metric for salient regions YD(S, x) is the described entropy HD

multiplied with the weighting factor WD(s, x):

YD(S, x) = HD(S, x) ×WD(S, x). (3)

2.2 Maximally Stable Extremal Region (MSER) Detection.

The second criterion for the feature detection is wide-baseline stability. The
benefits of these features are that they are robust against monotonic changes
of image intensities as well as continuous transformations of image coordinates.
The last property is useful for loop detection, since the robot will barely reach
the exact same pose as before. That is, the viewpoint of the robot will have
changed at a second encounter of some place.

The detection algorithm that was developed by Matas et al. [7] fits the needs
of such wide-baseline stability, since the maximally stable extremal regions have
the following properties:

– They are invariant to monotonic changes of image intensities.
– The neighborhood of the regions is preserved under transformation.
– The regions are stable, because they stay unchanged over an interval of

thresholds.
– Both very small and very large regions are detected.

In this implementation, gray-scale images with pixel values from the range
[0, . . . , 255] are considered. First all pixels of the image are sorted in O(n) into
bins with regard to their intensities using the binsort algorithm. For each in-
tensity from 0 to 255, a list of connected pixels (or extremal regions) below
the current intensity is maintained. The union-find algorithm determines the
extremal regions efficiently; they are then stored in a data structure with their
corresponding intensity levels and sizes. If two regions merge, the smaller is sub-
sumed by the larger one. In a last step, those intensities of the regions are chosen
from the data structure where the rate of change of the region size has a local
minimum. The regions with these selected intensities form the maximally sta-
ble extremal regions. The algorithm that is described here detects the minimum
intensity regions. Maximal intensity regions can be found analogously, only the
input image needs to be inverted. In this work both types of regions are detected.

2.3 SIFT Description.

SIFT descriptors as developed by Lowe [6] are compact, highly distinct and in-
variant to image rotation. These aspects make them very attractive and popular
in recent work [14].

In this work, SIFT descriptors are used to encode the detected feature re-
gions and store them in a database. Besides the SIFT description method other
approaches are tested on the regions detected by the Salient-MSER detector in
the publicly available evaluation framework [10]. SIFT descriptors perform best
on nearly all tested scenarios.
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2.4 Application of Loop Closing

Loop closing uses visual features in the following way for detecting a loop in
the path of the robot. This algorithm detects a loop if some descriptors of two
images are similar, taking the norm of two descriptors as a similarity measure.
For each image pair the similar descriptors are counted. If this number exceeds
a certain threshold, a loop hypothesis is generated. In our experiments we found
that a sensible value of the threshold on the number of similar descriptors is 2
or 3. More precisely, for a query image Iq :

1. Generate nq feature descriptors Vq from the image Iq.
2. Store feature descriptors and capture time of the image in the database.
3. For each candidate image Ic in the database:

(a) Retrieve all nc candidate feature descriptors Vc from the database.
(b) Build a nq × nc matrix Mq,c where the (i, j)-th entry Mq,c(i, j) is the

Euclidean norm dij =‖ Vq(i) − Vc(j) ‖.
(c) Thresholding the distances results in nqc matched descriptors.

4. After all candidate images are processed, the candidate images with the
largest number of nqc matched descriptors are selected if the number is
higher than a certain threshold.

5. The capture times of the selected images are compared with a separate jour-
nal of temporal and spatial information in order to determine the location
where the candidate image was made. Finally, a loop hypothesis for the
assumed location is generated.

3 Evaluation

The presented algorithms for feature detection in Sections 2.1 and 2.2, and the
description in Section 2.3 are compared with other methods within the frame-
work developed by Mikolajczyk and Schmid [10]. The used test data and evalu-
ation criteria are described in Section 3.1. The results are presented in detail in
Section 3.2.

3.1 Data Set and Evaluation Criteria

To produce comparable results, the described detectors and descriptors were
tested on the same data set. It is publicly available on the website www.robots.
ox.ac.uk/∼vgg/research/affine/. This test set contains images where dif-
ferent image transformations were applied: image blur, viewpoint change, zoom
and rotation, light change, and JPEG compression. In addition to these trans-
formations, the images feature either structured or textured scenes.

The evaluation framework provides the tester with two measures that can be
used for analyzing the feature detectors. These measures are the repeatability
and the matching score. Both measures are calculated for a given image pair.

The repeatability score is the ratio between the number of region-to-region
correspondences and the smaller number of detected regions in the image pair:

repeatability score =
# corresponding regions

# detected regions
. (4)
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The second measure, the matching score, is the relative number of correctly
matched regions compared with the smaller number of regions in the pair of
images:

matching score =
# correct matches

# detected regions
. (5)

3.2 Evaluation Results

The following feature detectors are tested within the presented framework: the
Salient-MSER detector, the MSER detector, the Salient region detector, the
Harris-Affine detector, the Hessian-Affine detector, the Intensity extrema based
detector (IBR), and the Edge based detector (EBR). Recall that the study [12]
has used only the combined Salient-MSER detector.

For each image transformation and each scene type, a set of six images is ap-
plied to the detectors. One image is the reference image, the others show the same
scene under increasing image transformations. For the evaluation, the reference
image is pairwise processed with each of the other five images. The repeatability
and the matching score are reported exemplarily for some transformations in
Fig. 2, 3, 4, and 5.
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Fig. 2. Scale change transformations for the structured boat scene, cf. website in Sec-
tion 3.1. Left: Repeatability score. Right: Matching score.
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Fig. 3. Viewpoint change transformations for the structured graffiti scene, cf. website
in Section 3.1. Left: Repeatability score. Right: Matching score.
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Fig. 4. Blur transformations for the textured tree scene, cf. website in Section 3.1. Left:
Repeatability score. Right: Matching score.
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Fig. 5. Light change transformations for the outdoor scene, cf. website in Section 3.1.
Left: Repeatability score. Right: Matching score.

In general, the change of the viewpoint seems to be the most difficult setting
for all detectors, followed by the change of the scale. For increasing blur and de-
creasing light changes, nearly all detectors are relatively robust and show almost
horizontal curves. The matching of feature region is better in structured than in
textured scenes. The Hessian-Affine detector showed the best performance for
most scenarios. Differences in the results to those obtained in [11] are due to
distinctive parameters used in this implementation.

To assess the proposed methods by [12] the focus of this evaluation is on
the Salient-MSER detector and how it performs different from the MSER and
the Salient region detector. The Salient region detector performs better on tex-
tured scenes than on structured scenes. For the MSER detector the opposite
is true, its performance is better on structured scenes. These two results sound
promising for the combined Salient-MSER detector. The Salient-MSER detector
obtains slightly higher scores than MSER detector for structured scenes. But for
the textured the performance is similar. In total the performance of the Salient-
MSER detector is not significantly different from the MSER detector. Therefore
the results do not show a substantial advantage of the combination of the two
detectors.
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In the descriptor evaluation, the SIFT
descriptor is compared with other de-
scriptors: GLOH, Shape Context, PCA,
Moments, Cross correlation and Steer-
able filters. All descriptors are calculated
from the feature regions that are de-
tected by the proposed Salient-MSER
detector [12]. The performance of all de-
scriptors are relatively similar but nev-
ertheless imply a ranking of the descrip-
tion methods. The best results are ob-
tained by the SIFT description method.
Results for the changing viewpoint sce-
nario are shown exemplarily in Figure 6;
the results in the other scenarios are
qualitatively similar.
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Fig. 6: The matching score for viewpoint
change transformations for a structured
graffiti scene. The descriptors were calcu-
lated from Salient-MSER regions.

4 Robot Experiments and Results

The loop closing application that is shortly described in Section 2.4 is integrated
and tested on the existing 6D SLAM robot platform Kurt3D. The robot is de-
scribed in Section 4.1, followed by the experimental setup and results.

4.1 The 6D SLAM Robot Platform

Kurt3D (Fig. 7) is a mobile robot, 45 cm (l) × 33 cm (w) × 29 cm (h) in size and
a weight of 22.6 kg. Two 90 W motors are used
to power the 6 skid-steered wheels. The core
is a Linux P1400 with 768 MB RAM. Kurt3D
is equipped with a 3D laser range finder based
on a SICK 2D range finder, extended with a
mount and servomotor. Through a controlled
pitch motion, the area in front of the robot is
scanned in 3D, in a stop-scan-go fashion. The
acquired data serves as input for solving the
6D SLAM problem [15]. Fig. 7: The mobile robot Kurt3D.

4.2 Loop Closing Experiments

In the experiments, the robot was driven twice around a loop in our lab. In the
matching process, the minimum number of similar feature descriptors was varied
between 2 and 3. For each number, different thresholds for the Euclidean distance
measure were tested. The number of generated loop hypotheses are reported for
different thresholds in terms of true and false positives in Tables 1 and 2. A
successful loop detection counts as true positive, whereas a wrong hypothesis
counts as false positive. The ground truth information was provided manually,
that means, an operator decided whether two images showed the same scene.
Figure 8 shows two examples of successful loop detections.
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Table 1. Results with at least 3 matched feature descriptors. The threshold for the
distance is denoted with d, cf. step 3(c) in Section 2.4.

d = 250 d = 220 d = 200
# Images True Pos. False Pos. True Pos. False Pos. True Pos. False Pos.

53 41 67 27 21 18 5

Table 2. Results with at least 2 matched feature descriptors. The threshold for the
distance is denoted with d, cf. step 3(c) in Section 2.4.

d = 200 d = 170 d = 150
# Images True Pos. False Pos. True Pos. False Pos. True Pos. False Pos.

53 30 30 17 3 8 1

Table 1 and 2 show the results for at least 3 and 2 similar matched feature
descriptors, respectively. The minimal distances between the feature descriptors
were varied in both runs. The number of processed images was 53. The ratio
between true and false positives changes significantly for the tested thresholds.
In general the characteristic of the numbers for the tested distances are similar.
As the ratios between the true positives and false positives suggest the best
performance is achieved for smaller distances – which is an expected effect.

5 Discussion and Conclusion

This paper has presented and evaluated the use of saliency for place recognition.
A mobile robot was used to acquire images from its surroundings and to extract

Fig. 8. Examples for two true positive loop hypotheses.
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visual features that have been encoded and matched. The results of the evalu-
ation show that salient features alone work moderately and that the proposed
Salient-MSER detector by [12] performs generally much like the MSER detector.
Saliency and wide-baseline stability does not lead to a significant performance
improvement.

Future work on loop closing will address the exclusive usage of maximally
stable extremal regions or a combination of theses regions with other feature
detectors, e.g., the Hessian-Affine. The implementation of loop closing proposed
here is based on single visual features only. It is also possible to incorporate
other methods such as object or landmark recognition to achieve a more robust
performance.
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