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Abstract. This paper presents a cognitive vision system based on the
learning of lifting wavelets. The learning process consists of four steps:
1. Extract training and query object images automatically from adja-
cent video frames using our proposed cosine-maximization method; 2.
Compute autocorrelation vectors from the extracted training images,
and their discriminant vectors by linear discriminant analysis; 3. Map
the autocorrelation vectors onto the discriminant vector space to obtain
feature vectors; 4. Learn lifting parameters in the feature vectors using
the idea of discriminant analysis. The recognition of a query object is
performed by measuring cosine distance between its feature vector and
the feature vectors for training object images. Our experimental results
on vehicle types recognition show that the proposed system performs
better than the discriminant analysis of original images.

1 Introduction

With recent advances of network cameras, their practical use in monitoring is
rapidly broadening. The network camera can capture in real-time a large amount
of objects such as vehicles and walkers, moving on streets and intersections. The
images of these objects are memorized in its server after compression. By moni-
toring the stored images, we can recognize, for example, traffic conditions in the
streets and intersections. However, present network cameras are not capable of
recognizing vehicle types, counting the number of vehicles moving for a specific
period of time, or detecting the vehicles of illegal parking. For the network cam-
eras to possess such kinds of functions, more intelligent cognitive vision systems
are needed.

There are many approaches for detecting and recognizing moving vehicles.
Schneiderman et al. [3] studied a statistical model for vehicle detection. Another
different statistical model was presented by Weber et al. [10]. They extracted a
set of local features from each vehicle image and applied the EM algorithm to
learn the parameters contained in the probability distribution of the set. Papa-
georgiou et al. [2] extracted the features of objects using Haar wavelet transform,
and classified the objects by applying Support Vector Machines (SVMs) to the
features. Also, Haar wavelets and SVMs were combined for vehicle detection
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by Sun et al. [4]. They have proposed three feature selection schemes based on
Haar wavelets for detecting moving vehicles by the use of SVMs. See e.g. [5] for
a recent review on vision-based on-road vehicle detection systems.

In contrast to these approaches, our cognitive vision system is based on the
learning of lifting parameters contained in the lifting filters. Training object
images are automatically extracted as follows: We compute the difference images
between adjacent video frames containing various objects as well as the target
objects. To extract only the target objects, we learn a lifting wavelet filter at their
centres using our cosine-maximization method [6–9]. By applying the learned
filter to another set of difference images, we extract object regions around the
detected centres after the dilation operation. The object regions are mapped into
the original video frame, and rectangular image regions containing the objects
are cut off from the video frame. We put the values of pixels 0 in the rectangular
region except for the objects. These rectangular images are used as training
images.

From the training images, we compute three-order autocorrelation vectors.
Linear discriminant analysis is applied to the vectors to compute the discriminant
vectors. Next, we apply the dyadic wavelet transform to the training images to
get low-pass and high-pass images. Lifted high-pass images are constructed from
these images. By combining the lifted images with the discriminant vectors, we
construct feature vectors for the training images. We learn lifting parameters in
the feature vectors such that the Fisher criterion is maximized.

The recognition of a query object is performed as follows: We extract a rect-
angular image containing moving objects as for training images. The dyadic
wavelet transform is applied to the rectangular image for obtaining low-pass
and high-pass images. By combining these images with the learned parameters,
we construct several lifted high-pass images. Furthermore, we compute a feature
vector by the combination of these high-pass images with the discriminant vec-
tors. To recognize the query object, the query feature vector is compared with
the feature vectors for the training set by the use of cosine distance.

In experiments, we address the problem of detection and recognition of vehi-
cles moving on a street in our campus. These images can always be captured by
the web camera equipped at the window of our laboratory. From the captured
video sequences, the images of vehicles such as sedan, taxi, van, truck, and bus,
are extracted using our technique. The recognition of vehicle types is carried out
based on the proposed recognition method.

The remainder of this paper is structured as follows. Section 2 introduces the
lifting dyadic wavelets and autocorrelation vectors. In Section 3, we present an
algorithm for learning lifting parameters. Section 4 is devoted to our recognition
system. Section 5 shows the recognition results of vehicle types. Finally, we
conclude with Section 6.
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2 Lifting Dyadic Wavelets and Autocorrelation Vectors

2.1 Lifting Dyadic Wavelet Transform

Let {ho
n, go

n, h̃o
n, g̃o

n} be an initial set of dyadic wavelet filters. The ho
n and go

n are
called low-pass and high-pass analysis filters, respectively, and the h̃o

n and g̃o
n are

low-pass and high-pass synthesis filters, respectively. A lifting scheme for dyadic
wavelet is given by

hn = ho
n,

gn = go
n −

∑
l

λlh
o
n−l, (1)

h̃n = h̃o
n +

∑
l

λ−lg̃
o
n−l, g̃n = g̃o

n.

Here λl’s are called the lifting parameters.
The lifting wavelet coefficients for an image ui,j are computed as follows: An

application of ho
n in vertical direction to ui,j yields

Ccol
m,k =

∑
j

ho
jum,k+j .

By applying the lifting filter (1) in horizontal direction to Ccol
m,k, we get the lifting

wavelet coefficients
Dm,k =

∑
i

gd
i Ccol

m+i,k. (2)

Here gd
i ’s are given by

gd
i = go

i −
L∑

l=−L

λd
l h

o
i−l, i = −K − L, ...,K + L + 1,

where λd
l ’s represent lifting parameters in horizontal direction. We assume that

the index i of the filter ho
i ranges from −K to K + 1.

Next, we compute
Crow

m,k =
∑

i

ho
i um+i,k

by the application of ho
n in horizontal direction. Applying the lifting filter (1) in

vertical direction to Crow
m,k gives

Em,k =
∑

j

ge
jC

row
m,k+j . (3)

Here ge
j ’s denote

ge
j = go

j −
L∑

l=−L

λe
l h

o
j−l, j = −K − L, ...,K + L + 1,
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where λe
l ’s represent lifting parameters in vertical direction.

It follows from (2) and (3) that

Fm,k = Dm,k + Em,k

= F o
m,k −

(
L∑

l=−L

λd
l Cm+l,k +

L∑
l=−L

λe
l Cm,k+l

)
, (4)

where

F o
m,k =

∑
i

go
i Ccol

m+i,k +
∑

j

go
j Crow

m,k+j , Cm,k =
∑
i,j

ho
i h

o
jum+i,k+j . (5)

If the primal high-pass filter coefficients go
n are chosen as go

0 = go
2 = −0.25

√
2,

go
1 = 0.5

√
2 and go

i = 0 otherwise, then the lifting wavelet filter defined by (4)
approximates an elliptic-type partial differential operator Q(λd, λe) defined by

Q(λd, λe)u = −
(

∂2

∂s2
(Itu) +

∂2

∂t2
(Isu)

)
− I(λd, λe)u. (6)

Here, u = u(s, t) is the continuous version of ui,j , Itu and Isu represent the
integral versions of Ccol

m,k and Crow
m,k respectively, and I(λd, λe)u corresponds to

the last term of (4). The λd and λe are denoted by

λd = (λd
−L, ..., λd

L), λe = (λe
−L, ..., λe

L).

2.2 Autocorrelation Vectors

Feature vectors for object detection and recognition are preferred to be shift-
invariant and additive. In this paper, we use autocorrelation vectors, which
are shift-invariant and additive [1]. A three-order autocorrelation vector is con-
structed from the original image um,k using three kinds of autocorrelation func-
tions

xo =
ns−1∑
m=0

nt−1∑
k=0

um,k, (7)

xo((i1, j1)) =
ns−1∑
m=0

nt−1∑
k=0

um,kum+i1,k+j1 , (8)

xo((i1, j1), (i2, j2)) =
ns−1∑
m=0

nt−1∑
k=0

um,kum+i1,k+j1um+i2,k+j2 . (9)

Here, (i1, j1) and (i2, j2) denote displacements, and their range is restricted
to within a local 3 × 3 window. If we eliminate the displacements which are
equivalent by the shift, the number of displacement patterns is 35. By arranging
these functions, we construct a 35-dimensional autocorrelation vector

xo = (xo
1, x

o
2, ..., x

o
35)

′, (10)
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where ′ indicates transpose. Similarly, we can define autocorrelation functions
xi, i = 1, ..., 35 for the lifted high-pass image Fm,k as in (7), (8) and (9), and
construct an autocorrelation vector as

x = (x1, x2, ..., x35)′. (11)

3 Learning Algorithm

3.1 Discriminant Analysis

For convenience, we put N = 35. Assume that we have M(≤ N) classes of train-
ing images, whose ν-th class consists of T images. Let us denote the τ -th training
image in the ν-th class by uν,τ

i,j . From uν,τ
i,j , we compute the autocorrelation vec-

tors xo,ν,τ , which has the form (10).
We put M1 = M − 1. The discriminant analysis is to compute the N × M1

discriminant matrix A = (a1 a2... aM1) by solving the matrix equations

Σo
BA = Σo

W AΛ,

A′Σo
W A = E.

Here, Λ is a diagonal matrix, E is the unit matrix, and Σo
W and Σo

B denote the
within-class and between-class covariance matrices represented, respectively, by

Σo
W =

1
MT

M∑
ν=1

T∑
τ=1

(xo,ν,τ − x̄o,ν)(xo,ν,τ − x̄o,ν)′,

Σo
B =

1
M

M∑
ν=1

(x̄o,ν − x̄o)(x̄o,ν − x̄o)′,

where x̄o,ν is the average of xo,ν,τ in the ν-th class, and x̄o the average of whole
vectors xo,ν,τ .

3.2 Learning of Lifting Parameters

The autocorrelation vectors xo,ν,τ can be expanded using the discriminant vec-
tors ap as

xo,ν,τ =
M1∑
p=1

(ap · xo,ν,t)ap,

because the remaining discriminant vectors ap, p = M, ..., N span the null-space.
Here the symbol · indicates inner product.

Now, from the lifted high-pass image F ν,τ
m,k having the expression (4), we

construct M1 autocorrelation vectors xν,τ,p, p = 1, ...,M1 with the form (11).
Using xν,τ,p, we define a vector

yν,τ = (a1 · xν,τ,1, a2 · xν,τ,2, . . . , aM1 · xν,τ,M1)′, (12)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
           Proceedings of the ICVS International Cognitive Vision Workshop – ICVW 2007 
          Published in 2007 by Applied Computer Science Group, Bielefeld University, Germany
          This document and other contributions archived and available at: http://biecoll.ub.uni-bielefeld.de



which is a generalization of the feature vector

(a1 · xo,ν,τ , a2 · xo,ν,τ , . . . , aM1 · xo,ν,τ )′.

We determine the lifting parameters contained in (12) component-wise. The
within-class and between-class variances of the p-th components yν,τ

p are given
by

ρp =
1

MT

M∑
ν=1

T∑
τ=1

(yν,τ
p − ȳν

p )2, σ2
p =

1
M

M∑
ν=1

(ȳν
p − ȳp)2, (13)

respectively, where ȳν
p =

∑T
τ=1 yν,τ

p /T and ȳp =
∑M

ν=1 ȳν
p/M . We introduce the

within-class and between-class covariance matrices ΣW and ΣB for xν,τ as

ΣW =
1

MT

M∑
ν=1

T∑
τ=1

(xν,τ − x̄ν)(xν,τ − x̄ν)′,

ΣB =
1
M

M∑
ν=1

(x̄ν − x̄)(x̄ν − x̄)′,

where x̄ν is the average of xν,τ in the ν-th class, and x̄ the average of whole
vectors xν,τ . Then, ρp and σ2

p can be written as

ρp = (ap)′ΣW ap, σ2
p = (ap)′ΣBap.

The lifting parameters are contained in ΣW and ΣB . It is preferable to make ρp

small, and σ2
p large. This leads to the maximization problem

J(λd,p, λe,p) = (ap)′ΣBap − γ(ap)′ΣW ap −→ max., (14)

where λd,p = (λd,p
−L, ..., λd,p

L ), λe,p = (λe,p
−L, ..., λe,p

L ), and γ is a penalty constant.
This problem can be solved by

∂J(λd,p, λe,p)

∂λd,p
l

= 0,
∂J(λd,p, λe,p)

∂λe,p
l

= 0, l = −L, ..., L

using the Newton’s method. This is our learning algorithm, which is illustrated
in Fig. 1.

4 Recognition System

4.1 Automatic Extraction of Training and Query Objects

This paper focuses on the recognition of vehicle types such as sedan, taxi, van,
truck, and bus, moving on streets and intersections. First, images including mov-
ing objects are extracted from the difference images between adjacent video
frames. The extracted images may contain shadows of vehicles, walkers, part of
buildings, white lines on streets as well as vehicles themselves. So, we want to
extract only vehicles by employing the proposed cosine-maximization method
[6–9]. We briefly describe our object detecting process.
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Fig. 1. Learning of lifting parameters in the feature space

1. Compute difference images from adjacent video frames.
2. Select centres of vehicles from the difference images, and learn the lift-

ing dyadic wavelet filter at the centres, exploiting our cosine-maximization
method.

3. By applying the learned filter to another set of difference images, detect the
points for which cosine-values are large.

4. Extract objects around the points from the difference images by the dilation
operation.

5. Map each of the extracted object regions into the corresponding original
video image, and cut off a rectangular region containing it.

6. Put the values of pixels 0 in the rectangular region except for the extracted
object.

4.2 Leaning Process

We automatically extract M classes of vehicle images using the extraction pro-
cess described in Section 4.1. Each class includes T vehicle images of the same
type. From these training images, autocorrelation vectors are constructed follow-
ing the method presented in Section 2.2. The autocorrelation vectors are used for
determining the lifting parameters by the learning algorithm detailed in Section
3.

4.3 Recognition Process

The recognition of vehicle types is performed as follows: A vehicle is extracted
from video frames exploiting the extracting method provided in Section 4.1. From
this vehicle image, we construct M1 autocorrelation vectors xqer,p p = 1, ...,M1

using the lifting parameters learned for the training images. Furthermore, we
compute a feature vector

yqer = (a1 · xqer,1, a2 · xqer,2, ..., aM1 · xqer,M1)′,

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
           Proceedings of the ICVS International Cognitive Vision Workshop – ICVW 2007 
          Published in 2007 by Applied Computer Science Group, Bielefeld University, Germany
          This document and other contributions archived and available at: http://biecoll.ub.uni-bielefeld.de



where ap, p = 1, ...,M1 are the discriminant vectors obtained for the training
set. The type of the query vehicle is recognized by measuring the cosine distance
between yqer and the feature vectors for the training images.

5 Experiments

We capture many images containing vehicles moving on the street in our campus,
by using the web camera equipped at the window of our laboratory. From these
images, vehicles, each of which has 64 × 64 size, are extracted by the method
described in Section 4.1. The extracting process is shown in Fig. 2. Figure 3

Fig. 2. Extracting process.

shows several extracted vehicles.

Fig. 3. Examples of extracted vehicles.

A part of the extracted vehicles is used as a training set, which is illustrated
in Fig. 4. The types of vehicles are minicar, sedan, van, truck and bus, but we
distinguished facing left vehicles from facing right ones, except for bus. Therefore,
we have 9 classes of vehicles.

We compute the autocorrelation vectors of these training images, from which
their discriminant vectors are computed by the discriminant analysis. Each of
the training images is decomposed using the spline dyadic wavelet filters to get
low-pass and high-pass images. From these images, lifted high-pass images are
generated and the lifting parameters therein are learned following the learning
algorithm detailed in Section 3.2. The number of lifting parameters in each
direction is 3, i.e. L = 1.
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minicar left minicar right

sedan left sedan right

van left van right

truck left truck right

bus

Fig. 4. Training images.

We applied the discriminant analysis to the autocorrelation vectors of the
test images. We also examined our method for the test images. Figure 5 shows
that our method is successful. Figure 6 is a failure case.

6 Conclusion

We have proposed a cognitive vision system based on the learning of lifting
wavelets. Our experiments show that the extraction of vehicles is succeeded, but
we have many misrecognition results in both the discriminant analysis and our
method. There are still open problems. We need another set of image features
in addition to the autocorrelation vectors. The discriminant analysis is usually
used for separating objects into two classes. These are future work.
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Discriminant analysis fl van fr van fr minicar fl truck fr truck
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Fig. 5. Case of success.

Query
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Our method fr truck fl sedan fl sedan fr truck fl minicar

Fig. 6. Case of failure.
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