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Abstract. Camera Calibration (CC) is a fundamental issue for Shape-
Capture, Robotic-Vision and 3D Reconstruction in Photogrammetry and
Computer Vision. The purpose of CC is the determination of the intrin-
sic parameters of cameras for metric evaluation of the images. Classical
CC methods comprise of taking images of objects with known geometry,
extracting the features of the objects from the images, and minimizing
their 3D backprojection errors. In this paper, a novel implicit-CC model
(CC-RN) based on Resilient Neural Networks has been introduced. The
CC-RN is particularly useful for 3D reconstruction of the applications
that do not require explicitly computation of physical camera parameters
in addition to the expert knowledge. The CC-RN supports intelligent-
photogrammetry, photogrammetron. In order to evaluate the success of
the proposed implicit-CC model, the 3D reconstruction performance of
the CC-RN has been compared with two different well-known implemen-
tations of the Direct Linear Transformation (DLT). Extensive simulation
results show that the CC-RN achieves a better performance than the
well-known DLTs in the 3D backprojection of scene.

1 Introduction

Camera calibration (CC) is an obligatory process for metric Shape-Capture,
Robotic-Perception and 3D Scene Reconstruction in Photogrammetry, Photogram-
metron and Computer Vision [1–9]. The purpose of CC is the computation of
the physical imaging parameters of cameras for metric evaluation of the images.
Classical CC methods [1–3] comprise of taking images of objects with known
view-geometry of camera, extracting 2D positions of the objects from the im-
ages, and minimizing their 3D backprojection errors. CC has been studied exten-
sively [1–9] in 3D Vision technologies (e.g. Photogrammetry, Photogrammetron
and Computer Vision) and the proposed techniques in the literature include
the techniques that use 3D calibration patterns, 2D calibration images and self-
calibration. Heuristic tools (e.g. artificial neural networks, genetics, fuzzy sys-
tems) have also been used to solve some common Computer Vision problems such
as Stereo Vision, Motion Tracking, Image Classification and Image Restoration.

The goal of implicit CC is calibrating view-geometry of the cameras without
computing their physical parameters. Most of the classical CC methods [2, 3]
use a fixed number of parameters which can limit the measurement-accuracy of
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the CC and most of them require using complex optimization methods [1–3, 5]
for the solution of nonlinear equations. This paper proposes a novel implicit CC
method [4, 6–9] which describes a mathematical mapping between a point on
an image plane and its corresponding 3D world coordinates. The proposed CC
method benefits from the parameters of a Resilient Neural Network (RN) [10–12]
to realize this mathematical mapping.

The proposed CC-RN can be used at calibrating a single camera to make
2D reconstruction and also can be used at the 3D reconstruction by using mul-
tiview images, which has been investigated in this paper. The proposed CC-RN
describes the camera calibration parameters as the weights, bias values and
transfer functions of the RN [10–12].

Full automation of the Photogrammetry which is referred as Intelligent Pho-
togrammetry (Photogrammetron) [7] consists of ideas, methods and applications
from Digital Photogrammetry, Intelligent Agents and Active Vision. Photogram-
metron can only be possible with an autonomous and intelligent agent system
such as Artificial Neural Networks [8, 9], Fuzzy Systems, Genetic Algorithms
[4, 6], and other intelligent computing techniques. Photogrammetron is basi-
cally a Photogrammetric system that has a full functionality of Photogramme-
try in addition to an intelligent agent system and a physical structure of active
vision. It may have different forms as coherent stereo photogrammetron, sep-
arated stereo photogrammetron and multi-camera network photogrammetron.
Photogrammetron can be used in various applications including photogrammetry-
enabled robotic guidance, intelligent close-range photogrammetry, intelligent 3D
multimedia-video indexing and real-time digital Videogrammetry.

A number of CC methods that implement an intelligent agent have been
introduced in the literature [4, 6, 8, 9]. Most of these methods implement the
structure of an intelligent agent either to learn the mapping from 2D image to
3D world coordinates or to improve the performance of other existing methods.
Knowing that the CC parameters are important in various computer vision appli-
cations such as stereo-reconstruction, the CC-RN goes beyond the existing ones
by providing 3D reconstruction from multi-view images besides stereo-images [1–
9].

The proposed CC-RN adaptively models the imaging-sensor for each 3D
backprojection points by using resilient-backpropagation learning method in or-
der to achieve 2D to 3D mapping more accurately. The CC-RN can be used with
automated active lenses and does not require a good initial guess of classical CC
parameters.

The rest of the paper is organized as follows: Resilient Neural Networks are
explained in Section 2. Proposed Method and Experiments are given in Section
3 and Section 4, respectively. Finally, Conclusions are given in Section 5.

2 Resilient Neural Networks

Artificial Neural Network (ANN) [8–12] is an advanced learning and decision-
making technology that mimics the working process of a human brain. Various

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
           Proceedings of the ICVS Workshop on Camera Calibration Methods for Computer Vision Systems - CCMVS2007
          Published in 2007 by Applied Computer Science Group, Bielefeld University, Germany 
          This document and other contributions archived and available at: http://biecoll.ub.uni-bielefeld.de



kinds of ANN structures and learning algorithms have been introduced in the
literature [8–12]. In this paper, RNs have been used for the CC.

In contrast to other gradient algorithms, this algorithm does not use the
magnitude of the gradient. It is a direct adaptation of the weight step based
on local gradient sign. The RN generally provides faster convergence than most
other algorithms [10–12]. The role of the RN is to avoid the bad influence of the
size of the partial derivative on the weight update. The size of the weight change
is achieved by each weight’s update value, Aji(k), on the error function E(k),
which is used to calculate the delta weight as in Equation 1.

∆wji (k) =




−Aji (k) if B (k) > 0
+Aji (k) if B (k) < 0

0 else
(1)

where B (k) is ∂E
∂wji

(k) and

Aji =





ηAji (k − 1) , B (k − 1) B (k) > 0
µAji (k − 1) , B (k − 1)B (k) < 0
Aji (k − 1) , else

(2)

where B (k − 1) is ∂E
∂wji

(k − 1), η and µ are the increase and decrease factors,
respectively where 0 < µ < 1 < η.

More details about the algorithm can be found in [10–12].
A number of calibration methods implementing intelligent agents have been

introduced recently [4, 6, 8, 9]. The intelligent agents based camera calibration
methods introduced in the literature generally require a set of image points with
their 3D world coordinates of the control points and the corresponding 2D image
coordinates for the learning stage. The CC-RN can merge multisource camera
images, for the reconstruction of a 3D scene, due to its high flexible properties
of learning from examples.

3 Proposed Method

In this paper, the algorithm of the CC-RN and the preparation steps of the
Learning Data and Validation Data used in the training RN structure of the
CC-RN are explained below:

1. Determine the Image Coordinates of the Control Points (u,v), which are over
the Calibration Patterns as seen in Fig.1-a and obtain 3D world-coordinates,
(X,Y,Z), of the related (u,v). Each Calibration Pattern plane involves 11x7=77
points, hence, totally 539 calibration points over the seven Calibration Pat-
terns planes have been used in this study.

2. Select 300 Control Points randomly for training and use the remaining 239
Control Points for validation of training in order to avoid from over-training
disaster of RN structures.
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Fig. 1. (a) The seven Calibration Patterns and the Point Cloud obtained by using the
proposed method for the Test Pattern. (b) Solid model of the Point Cloud which was
obtained by using the proposed method for Test Pattern.

3. Train the RN-based neural structure that achieves a mapping from 2D (u,v)
image space to 3D world-space (X,Y,Z) (Fig.1-b). The input data of the
neural structure are the image coordinates (u,v) of the Control Points and the
output data are the corresponding (X,Y,Z) world-coordinates of the input
data (u,v).

4. Apply the image coordinates, (u,v), to the neural structure in order to com-
pute the world coordinates, (X,Y,Z), of the related image points.

Extensive simulations exposed that accuracy of 3D reconstruction of the
neural network systems increases with the increasing number of the cameras
used in the imaging system. Therefore, the imaging system used in this paper
comprises four virtual Fire-i IEEE 1394 cameras. Consequently, neural structures
have eight inputs (u1, v1, u2, v2, u3, v3, u4, v4)p and three outputs (X, Y, Z)p for
each point p.

The maximum epoch of the training phase was predefined as 250.000 for
the neural structure but in order to control the computational burden of the
proposed method, the training phase ended when the error goal of the RN was
smaller than 0.001. Extensive simulations have been realized by using different
initial conditions for neural structure and the best solution of problem of RN has
been used in this paper. In the proposed method, the Purelin Training Function
of the Matlab r© [10] has been used for the neural structures.
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Table 1. Mean-Squared-Error (MSE) values of the proposed CC-RN, DLT [1], and
M-DLT [5] methods

MSE of X MSE of Y MSE of Z

DLT (Train) 0.0025 0.1372 0.0008
DLT (Validation) 0.0027 0.1537 0.0010
M-DLT (Train) 0.0025 0.1374 0.0008
M-DLT (Validation) 0.0027 0.1543 0.0010
CC-RN (Train) 0.0022 0.1268 0.0009
CC-RN (Validation) 0.0024 0.1479 0.0010

4 Experiments

In this paper, a set of real images have been employed in the experiments of
the CC-RN. The obtained results have then been compared with both DLT
[1] and M-DLT [5] methods. Four virtual Fire-i IEEE 1394 cameras have been
used in the experiments. Distortion models of the virtual cameras have been
obtained by using the well known camera calibration toolbox given in [13]. The
neural structure of the proposed method has 4Camera ∗ 2Image Corrdinates = 8
inputs. Each of the Calibration Pattern Planes have 11*7=77 Control Points.
Image Coordinates (u,v) of the Control Points were acquired by using the well-
known normalized cross correlation matching algorithm with subpixel accuracy
for [13]. 10.000 measurements have been acquired over the Test Object. The
seven Calibration Patterns and The Point Cloud obtained by using the proposed
method for the Test Pattern was illustrated in Fig.1-a. The Calibration Patterns
have been used for setting Calibration Data sets of the proposed method, DLT
and M-DLT. Planimetric and depth reconstruction accuracies were evaluated in
Mean-Squared-Error (MSE) as seen in the Table 1. Extensive simulations show
that CC-RN supplies statistically acceptable and more accurate results as seen
in Table 1. The method proposed in this paper was implemented by using the
Image Processing, Image Acquisition and Neural Network toolboxes of Matlab r©
v7.3.0.

For the analysis of the CC-RN, the images obtained from the camera have
been employed directly. The image coordinates of the control points have been
extracted by employing the normalized cross correlation matching algorithm
with subpixel accuracy and no deformation corrections have been applied to the
images.

Before using the DLT methods (DLT and M-DLT), the required distortion
corrections have been applied to the coordinates obtained as a result of the image
matching. On the other hand, no distortion corrections have been applied to the
corresponding coordinates in the CC-RN method.

Solid model of the Point Cloud which was obtained by using the proposed
method for the Test Pattern was illustrated in Fig.1-b. Solid models obtained
from 3D measurement systems are often noisy. Therefore, mesh smoothing is
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required for realistic mesh models. In this paper a variation of the method pro-
posed in [14] has been used as a smoothing operator for illustration of Fig1-b.

4.1 Statistical Analysis

In the Manova [15, 16], mean vectors of a number of multidimensional groups are
compared. Therefore, the Manova is employed to find out whether the differences
in the results of CC-RN, DLT and M-DLT are statistically significant or not.

The tested null hypothesis is;
H0: µ1 = µ2= ... =µ
H1: at least two µ’s are unequal
where µ1is the mean vector of the group # 1, µ2 is the mean vector of the

group # 2 and µ is the population mean vector.
As a result of the implemented Manova, no statistically significant difference

has been found between the results of CC-RN, DLT and M-DLT. That means
the null hypothesis cannot be rejected. This hypothesis test has been made using
Wilk’s Λ and χ2 tests. The details of both of the tests and Manova can be found
in [15].

For the Wilk’s Λ test, the test and critical values are computed as 0.9953 and
0.7244, respectively, given that α significance level is 0.05 and degrees of freedom
for the sum of squares and cross-products are 29997 and 29999, respectively. Due
to the condition of Λtest > Λcritic , the null hypothesis cannot be rejected.

For the χ2 test [15], the test and the critical values are computed as 2.00 and
6.00, respectively, given that α significance level is 0.05 and degrees of freedom is
3. Due to the condition of χ2

test < χ2
Critic, the null hypothesis cannot be rejected.

That is to say that there is no statistically significant difference between the
results of CC-RN, DLT and M-DLT.

This outcome statistically verifies the advantages of the CC-RN method in
various perspectives.

5 Conclusions

A Resilient Neural Network based camera calibration method for 3D information
recovery from images is proposed in this paper. The obtained results have been
compared with the traditional DLT [1] and M-DLT [5].

The main advantages of the CC-RN are as follows: It does not require the
knowledge of complex mathematical models of view-geometry and an initial esti-
mation of camera calibration, it can be used with various cameras by producing
correct outputs, and it can be used in dynamical systems to recognize the posi-
tion of the camera after training the ANN structure. Therefore, the CC-RN is
more flexible and straightforward than the methods introduced in the literature.

The advantages of the CC-RN may be summarized as follows:

– Offers high accuracy both in planimetric (X,Y) and in depth (Z).
– Simple to apply and fast after training.
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– Suitable for robotic 3D-vision.
– The CC-RN can use same or different type cameras together or separately.
– Optimization algorithms are not employed during 3D reconstruction in con-

trary to the same well-known 3D acquisition methods.
– Does not use physical parameters of cameras.
– Users do not need to know complex mathematical models of the view-

geometry, therefore, proposed CC-RN does not need to have detailed tech-
nical knowledge on CC.

– Does not have any camera type restriction.
– An approximated solution for initial step of CC is not employed.
– No image distortion model is required.
– The CC-RN is flexible and significantly easier to implement than the CC

methods presented in the literature.
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