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Abstract— We present an approach to dextrous robot
grasping which combines a purely tactile-driven reactive
algorithm with an implicit representation of grasp experi-
ence to yield an algorithm which can handle arbitrary, par-
tially unknown grasp situations, i.e. vague object shape and
position. During the grasp movement, the obtained contact
information is used to dynamically adapt the grasping con-
trol by targeting the best matching posture from the expe-
rience base. Thus, the robotrecalls and actuates a grasp
it already successfully performed in a similar tactile con-
text. To efficiently represent the experience, we introduce
the Grasp Manifoldassuming that grasp postures form a
smooth manifold in hand posture space. We present a sim-
ple way of providing approximations ofGrasp Manifolds
using Self-Organising Maps (SOMs) and study the prop-
erties of the represented grasp manifolds concerning their
smoothness and robustness against clustered training data.

1 Introduction

Algorithms for dextrous robot grasping bear the challenge
to grasp a large variety of objects possibly unknown in
shape, weight, and position. To this end, existing ap-
proaches nowadays use imaging techniques to estimate the
3D shape and position of the object, or employ tactile sen-
sors with coarse spatial and temporal resolution.

In general, there are two opposing approaches to ad-
dress this issue. The first uses object geometry information
to plan the grasp beforehand by computing a geometry-
specific (optimal) hand posture [1, 7, 9]. The second closes
the fingers around the object solely based on tactile feed-
back until stable object contact is detected [8, 10, 11, 16,
13]. Most of these approaches do not accumulate their
grasping experience to employ it for future grasping situ-
ations. In the case of ”geometry-based” grasping, the al-
gorithm itself inheres the knowledge of how to grasp spe-
cific objects, but is not able to match this knowledge dy-
namically to the presented object. These algorithms only
succeed if the geometric representation of the object shape
indeed matches the object at hand. If a geometric descrip-
tion of the object is not available in a previously acquired
database and cannot obtained on-line, the object cannot be
grasped at all. On the other side, ”contact-based” grasping
reacts on tactile events and dynamically adapts the grasp-
ing motion to the actual situation. While they may in-

Figure 1: The Shadow Dextrous Hand and its virtual simu-
lation model. Depicted is the initial hand posture with the
three studied grasp objects: 1) box (4× 4 × 16 cm), 2)
cylinder (l: 16 cm,∅: 6 cm), and 3) sphere (∅: 6 cm).

corporate additional visual feedback, most approaches of
this paradigm employ a fixed finger closing strategy, which
does not take advantage of an implicit or explicit represen-
tation of the object’s shape. Hence, these algorithms fail if
the initial assumptions about object position and its coarse
shape are wrong or do not match to the observed tactile
events.

In the present paper, we propose a new approach to
dextrous robot grasping that combines the advantages of
geometry-based and contact-based grasping employing an
implicit representation of grasping experience using a self-
organising map. The SOM is trained with hand postures
which previously led to successful grasps. In this man-
ner, it forms an approximation of a smooth grasp mani-
fold representing hand postures which lead to successful
grasps. Using tactile information to infer implicit knowl-
edge about the object position, the algorithm dynamically
exploits the SOM to adapt the grasping motion to the actual
situation. According to observed finger contacts, the most
suitable hand posture is selected from the grasp manifold
represented by the SOM nodes’ reference vectors.

The implementation, acquisition of training data, and
evaluation have been realised in a physics-based computer
simulation using the proprietary toolkit VORTEX [2] and a
model of our 24-DOF SHADOW DEXTROUS HAND [17]
shown in Fig. 1. While the kinematics of the hand model
exactly corresponds to the real hand, the geometric shape
is only coarsely approximated which has proven to be suf-
ficient to obtain results applicable to the real hand.

The paper is organised as follows: In Section 2 the pro-
posed grasping algorithm is presented. In Section 4 we pro-
pose a modification to the best-match search of the original



SOM algorithm to realise a grasp selection based on current
situation knowledge. The training process and the obtained
SOM manifolds are presented in Section 5 and finally we
end with a conclusion in Section 6.

2 Experience-based Grasping

The main idea of the proposed grasping algorithm is to
augment a tactile-driven grasping heuristics with anexpe-
rience base of grasp postureswhich can be used to guide
the grasping process to promising hand postures. In a first
approach, we represented this experience as a database of
hand postures~Θ which previously led to successful grasps
of one or more objects in a variety of grasping contexts,
i.e. different positions and orientations of the object rel-
ative to the hand. LetI be the number of fingers,Ni

the most distal joint in fingeri, then~Θ denotes the vector
[Θ1,1, . . . ,Θ1,N1 , . . . ,ΘI,NI

]t comprising all finger joint
angles. Notice, that a grasp posture directly corresponds to
a specific object and grasping context. Used in another con-
text, the same hand posture might not lead to a successful
grasp.

Comprising a set of successful grasp postures, the expe-
rience base implicitly provides knowledge of how to grasp
the associated object. As counterpart, the tactile informa-
tion observed during the grasping process provides implicit
knowledge of the actual object shape, position and orienta-
tion. A dynamic matching of this context-specific knowl-
edge to the grasping knowledge stored in the experience
base yields information about how to grasp the current ob-
ject in the current situation. We only utilise joint angles
for this matching process whose finger segments provide
reliable context information. To this end, we employ aPar-
tial Contact Posture (PCP)~Θpcp specifying only joints be-
tween the palm and finger segments having object contact.
If Si,j denotes the finger segment directly attached to and
moved by jointj of finger i, the PCP can be defined more
formally as:

~Θpcp = [Θpcp
1,1 , . . . ,Θpcp

1,N1
, . . . ,Θpcp

I,NI
]t where: (1)

Θpcp
i,j =

{
Θi,j if a segmentSi,(k≥j) has contacts

not specified otherwise.

Based on this PCP, we define a modified Euclidean norm
dpcp to match a current hand posture~Θpcp to the best
matching posture~Θxp,? in the experience base{~Θxp} by
minimisingdpcp, only taking reliable joints into account:

dpcp(~Θxp, ~Θpcp) =
∑
i,j

si,j · (Θxp
i,j −Θpcp

i,j )2 (2)

Thesi,j ∈ {0, 1} only selectspecified dimensionsof ~Θpcp

for comparison. The resulting~Θxp,? then acts as the target
posture for the current control cycle.
As the PCP requires contact information, a precondition for
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Figure 2: Overview of the grasp control algorithm.

the experience-based control is the existence of at least one
contact. Furthermore, as the experience base is a discrete
set of hand postures which additionally is affected by noise,
a subsequent generic finger closing heuristic similar to our
originally used algorithm [13] is necessary to finalise the
grasp and establish stable object contacts.

Subsumed, there are four different control phases of the
algorithm: A) Actuating an initial hand posture, B) Es-
tablishing first contact in an already experience-influenced
process, C) Performing experience-based grasp control and
D) Applying a generic finger closing heuristic (embedded
in phases B and C). The whole grasp control is embed-
ded in an action-perception-loop which allows a dynamic
adaptation to the current grasping context. A schematic
overview of the control algorithm is given in Fig. 2. A
detailed description and evaluation of the grasp control is
given in [15].
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3 SOM notation

In this paper, the following notation is used: the SOM lat-
tice is denoted asA with node indices~a and attached ref-
erence vectors~w~a. ~a?(~x) is the index of the best-match
node according to the input~x determined by the standard
equation using a distance metricdist(.):

a?(~x) = arg min
~a∈A

dist(~w~a, ~x). (3)

4 SOM Grasp Manifolds

Grasping experience was introduced in Section 2 as a set of
grasp postures represented by vectors of hand joint angles
and stored in a database. To appropriately cover all possi-
ble grasping situations, this database must comprise a mul-
titude of corresponding postures, which increases both the
computational costs and required storage capacity. To ob-
tain a more compact representation of the grasping knowl-
edge, we assume that all valid grasp postures for at least
one object form a low-dimensional smooth manifoldGM
embedded in hand posture space and denote it asGrasp
Manifold. Thus, if such manifold exists, it represents the
set of hand configurations in the hand posture space that is
of special interest in a specific grasping context. The task
of grasping then can be described as modifying the current
hand configuration in an appropriate way such that it con-
verges to agrasp configurationin the manifold.
The SOM as discrete approximation of such manifold pro-
vides efficient means to accomplish this task. By projecting
the current hand configuration onto the SOM by perform-
ing the best-match search, we can recover the closest grasp
configuration in the set of SOM reference vectors. In ad-
dition, the SOM provides an elegant way to recover grasp
postures based on incomplete grasp data – meaning hand
postures which only partly describe a grasp in the actual
context – and thus to pull incomplete grasp configurations
onto the manifold. This mechanism of an ”associative com-
pletion” was introduced first in [18] in the context of the
PSOM [12]. It can be realised by a simple modification of
the Euclidean Norm in the distance metricdist(.) in Eq. 3:

dist(~x, ~x′) =
∑

i

pk(xk − x′k)2 (4)

with pk > 0 if componentk should be considered for the
projection andpk = 0 otherwise. Hence, by setting the
pk = 1 for those dimensionsk of the current hand pos-
ture that already coincide with a grasp posture and setting
pk = 0 otherwise, we canactivate the grasp part of the
hand posture for the SOM best-match search anddeacti-
vate the rest. In this form, Eq.4 resembles the PCP dis-
tance metric in the previous section (Eq.2). Thus, the SOM
with the modified distance metric (Eq.4) for the best-match
search implements the same projection onto the experience
base as the PCP matching (Eq. 1-2), but for the mani-
fold representation of the experience. This extension of the

Figure 3: 10x10 extract of a cylinder-specific 25x25 SOM
Grasp Manifold. Each hand posture visualises the refer-
ence vector~w~a of one SOM-node. The smooth changing
of the postures supports the assumption of theGrasp Man-
ifold. The colour of the sub-figure borders encode the in-
ternode distance: red: min.distance, green: medium dist.,
blue: max.dist. Black bars left from the hand indicate the
relative amount of training data that fall on the SOM node;
no bars indicate the lack of supporting training data.

best-match search comes with no additional computational
costs. Fig. 3 depicts an extract of a two-dimensional SOM-
basedGrasp Manifoldtrained on 4220 cylinder grasp pos-
tures. Each hand picture represents the reference vector~w~a

of a particular SOM node. The visualisation of the SOM
shows that similar hand postures are grouped together and
change smoothly to other postures which supports our ini-
tial assumption of a smooth low-dimensionalGrasp Man-
ifold. Nevertheless, there are less smooth areas which will
be interpreted in the next section.

5 Properties of the Grasp Manifold

In our experiments, we use object-specific 25x25 SOMs
trained on grasp postures for one specific object shape.
Hence, a particular SOM is only adequate for grasping ob-
jects of the matching type, requiring a prior classification
of the object. This has the advantage, that the extension of
the system by new objects does not change the behaviour
for already learned objects. Nevertheless, we have shown
that representing all grasp postures corresponding to vari-
ous objectswithin a single SOMis possible as well [14].

As training data, we generated grasp postures in simula-
tion. To obtain postures with hand/object contacts at every
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Cylinder-SOM Box-SOM Sphere-SOM

a)

max.dist (black):63.45◦, min: 0.013◦ max:55.06◦, min:0.013◦ max:66.23◦, min: 0.007◦

b)

Figure 4: Visualisation of the inter-node distances and the data-projection-nodes of the trained 25x25 cylinder-, box- and
sphere-SOM. a) inter-node distance structure: black node connections denote maximal, light gray connections denote
minimal inter-node distances. The small white squares mark the node positions in the latticeA, the large white squares
are background. b) overlaid node matches (green background) when projecting the training data set onto the SOM. The
nodes on the cluster borders are only roughly supported by training data.

fingertip, we connected the fingertips to the corresponding
object with springs that pull the fingers in the direction of
the object. The object is fixed and by moving the hand
manually in a variety of relative hand/object positions and
orientations, we generated a total of 10.174 postures, 4.069
for the box, 4.220 for the cylinder and 1.885 for the sphere.
As the springs are only able to establish contacts for small
deviations of an initially manually actuated five-fingertip-
contacts posture, several of such ”starting postures” had to
be used. While this method allows for generating a big
amount of data representing different regions of the hand
posture space it results in man-made clusters of data around
these starting postures. But if our assumption of a smooth
manifold holds, the algorithm has to be able to cope with
these clustered training data and the inter-cluster gaps, re-
spectively.

To train the object-specific SOM-Grasp Manifolds, the
grasp postures associated with the corresponding object
were presented within all 300 learning epochs according to
a random distribution (learning rateε(t) decreasing from

0.95 to 0.05, standard deviationσ(t) of gaussian neigh-
bourhood function decreasing from6 to 0.7). The magnifi-
cation effect of the SOM learning results in a higher density
of nodes in the clusters of training data, while there remain
some nodes in the space in between. Onto these nodes, no
training data is mapped at all and their distance to neigh-
bouring nodes is much larger than on average. Hence, the
clusters of the training data and cluster borders are clearly
visible (cf. Fig. 3 and 4a). Fig. 3 is a 10x10 extract of a
node visualisation of a cylinder-specific 25x25 SOM where
each hand picture represents the reference vector of the cor-
responding SOM node. The clusters are the areas where the
depicted grasp postures remain similar, cluster borders can
be identified by highly differing postures from one node to
the next. The colours of the sub figure borders describe the
inter-node distances: bright red denotes the minimal inter-
node distance in the SOM, green a medium and bright blue
the maximal distance. A more distinct picture of the inter-
node distance structure of the whole SOMs is depicted in
Fig. 4a where only the inter-node connections are shown.
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Figure 5: Two 1x4 extracts of Fig. 3. The left and right
nodes are supported by training data (black bars left from
the hand). The middle nodes do not have data support
and represent inter-cluster nodes. Though not supported
by training data, they represent useful grasp postures and
interpolate nicely between adjacent cluster nodes.

High inter-node distances are represented by black connec-
tions (maximal distances: cyl:63.45◦ in 22 dimensions,
box: 55.06◦, sph:66.23◦) and small distances by very light
gray connections (minimal distances: cyl:0.013◦, box:
0.013◦, sph: 0.007◦). Thus, the black ”lines” represent
the cluster borders where the reference vectors have high
inter-node distances.

In Fig. 4b, in addition to Fig. 4a, the nodes which are
supported by training data are marked with green back-
ground. In contrast to the nodes in data clusters, the nodes
on the cluster borders are mainly not supported, but as
shown in Fig. 5, these inter-cluster nodes represent mean-
ingful grasp postures as well and nicely interpolate between
adjacent cluster nodes. Thus, the SOM training achieves to
learn meaningful bridges between the clusters, representing
intermediate grasp postures.

Interestingly, during application of the experience-based
grasping algorithm (keeping the SOM fixed), those inter-
nodes are more often winners than the cluster nodes used
during training (cf. Fig. 6). This suggests, that during
testing, much more grasp situations are discovered than in
training. By resuming the learning phase of the SOMs with
the grasp postures generated in testing and performing few
learning epochs with small learning parameters (10 epochs,
ε(t) decreasing from0.1 to 0.05, σ(t) decreasing from3
to 0.7), the SOM structure becomes noticeably smoother.
Fig. 7 and Fig. 8 depict the result for the cylinder-specific
SOM used for Fig. 3 and Fig. 4 after performing a second
training phase with new grasp postures. The inter-node dis-
tance structure depicted in Fig. 8a is very homogeneous.
The second training phase resulted in more nodes that are
unsupported by the original training data (cf. Fig. 8b) but
better represent the grasp postures generated by the grasp-
ing algorithm (cf. Fig. 8c).

By comparing Fig. 4b(left) and Fig. 8b, it becomes clear
that after the second training phase a noticeably smaller
amount of nodes is used to represent the original training
data resulting in a coarser posture resolution in these re-
gions. On the other hand, as in the testing phase a regular
position/orientation grid was used covering the main part
of the expedient position/orientation space, it is more de-
sirable to represent the resulting test data with a stable res-
olution (as depicted in Fig. 8c) than the clustered original
training data in a very high resolution under-representing
the meaningful inter-cluster grasps not covered by it.

Figure 6: Visualisation of the inter-node distances and
the data-projection-nodes of the 25x25 cylinder-SOM. De-
picted is Fig. 4a extended by the node matches (green back-
ground) when projecting all successful grasp postures from
evaluation (force closure grasps characterised by non-zero
positive magnitudes of the worst-case disturbance wrench
within the L1 grasp wrench space, cf. [3]). The grasp pos-
tures match mainly on the inter-cluster nodes.

Figure 7: 10x10 extract of the cylinder-specific 25x25
SOM Grasp Manifoldused for Fig. 3 and Fig. 4 after re-
suming the learning with grasp postures generated by the
experience-based grasp control. The node structure is now
very smooth, the hand postures fade smoothly from one
node to the next.
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a) b) c)

Figure 8: Visualisations of the inter-node distances and the data-projection-nodes of the 25x25 cylinder-SOM used for
Fig. 3 and Fig. 4 after resuming the learning with grasp postures generated by the experience-based grasp control. a)
besides one outlier (which was an outlier already before), the inter-node distance structure of the whole SOM is very
homogeneous. b) overlaid node matches (green background) when projecting the training data onto the SOM and c) with
overlaid node matches (green background) when projecting the new grasp postures generated by the control algorithm.

6 Conclusion

We presented a new approach to dextrous robot grasping
that dynamically combines grasping experience with cur-
rent tactile object information. Searching for the grasp pos-
ture which best matches the currentPartial Contact Posture
the algorithm dynamically bridges the gap between general
grasping knowledge and actual object perception. As effi-
cient experience representation, we introduced theGrasp
Manifold being a smooth manifold in hand posture space.

With the Self-Organising Map, we provided one power-
ful example of aGrasp Manifoldapproximation. By study-
ing the properties of the resulting SOMs, we could fortify
our assumption of the existence of smooth grasp manifolds.
We have shown that the SOM learning is able to smoothen
the clustered training grasp postures to more general grasp-
ing contexts which are not covered by the training data.
Further on, by resuming the learning phase for the trained
SOMs with grasp postures resulting from the application
of the described experience-based grasping algorithm, we
could homogenise the inter-node distance structure of the
SOMs even more and obtained a very smooth SOM ap-
proximation of aGrasp Manifold.

Future work will address an extension to more objects
and more complex object shapes as well as a realisation
of the presented grasp strategy with our realShadowHand
which does not meet the precision and sensitivity require-
ments of the presented control algorithm yet. Finally, the
performance of continuous manifold representations like
theUnsupervised Kernel Regression[4][5][6] will be eval-
uated concerning the effect of the continuity and the ability
to represent whole movement trajectories instead of final
grasp postures only.
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