
Single pass clustering for large data sets

Nikolai Alex1, Barbara Hammer2, Frank Klawonn1

1 - University of Applied Science Braunschweig/Wolfenbüttel, Department of Computer Science
2 - Clausthal University of Technology, Department of Informatics

Keywords: clustering, neural gas, k-means, large data sets, batch optimisation

Abstract— The presence of very large data sets poses
new problems to standard neural clustering and visuali-
sation algorithms such as Neural Gas (NG) and the Self-
Organising-Map (SOM) due to memory and time con-
straints. In such situations, it is no longer possible to store
all data points in the main memory at once and only a few,
ideally only one run over the whole data set is still afford-
able to achieve a feasible training time. In this contribution
we propose single pass extensions of the classical cluster-
ing algorithms NG and fuzzy-k-means which are based on
a simple patch decomposition of the data set and fast batch
optimisation schemes of the respective cost function. The
algorithms maintain the benefits of the original ones includ-
ing easy implementation and interpretation as well as large
flexibility and adaptability because of the underlying cost
function. We demonstrate the efficiency of the approach in
a variety of experiments.

1 Introduction
The self organising map as proposed by Kohonen [12] con-
stitutes an indispensable tool for visualisation and min-
ing high dimensional data sets with numerous applications
ranging from web data and picture processing to robotics
and telecommunication. For clustering, a variety of alter-
natives exist such as the classical k-means algorithm, fuzzy
extensions thereof, and neural gas [7, 9, 14]. Unlike SOM,
which focuses on visualisation and topographic mapping
using a fixed lattice structure, these alternatives do not as-
sume a prior topology of neurons such that the resulting
clustering follows the given data as accurately as possible.
K-means, fuzzy-k-means, and neural gas (NG) have a clear
mathematical foundation by means of a cost function which
is optimised in batch (for k-means and fuzzy-k-means) or
online (for NG) mode.

In recent years, the problem of mining very large data
sets becomes more and more pronounced in diverse areas
such as document and web mining, geoinformation and re-
mote sensing, or bioinformatics and medicine. In these ar-
eas, massive volumes of data arise nearly on a daily base
which have to be preprocessed and mined to allow further
processing and human inspection. Clustering constitutes
one valuable tool to compress such data in a meaningful
way. Often, in these cases, data sets do no longer fit into the
main memory and are stored in a distributed way in several
databases or on several servers. In these cases, data access
is costly and only a few, ideally at most one pass through

the data set is still affordable. Thereby, only a fraction of
the data fits into the main memory such that iterative ap-
proaches have to be used. Due to these circumstances, re-
searchers have worked on modifications of various cluster-
ing algorithms such that they run in a single or few passes
over the data and such that they require only a priorly fixed
amount of allocated memory.

Most work in this area can be found in the context of
heuristic (possibly hierarchical) clustering on the one side
and classical k-means on the other side. Heuristic al-
gorithms often directly assign data consecutively to clus-
ters based on the distance within the cluster and allocate
new clusters as required. Several popular methods include
CURE, STING, and BIRCH [5, 17, 18]. Naturally, doc-
ument ordering has an influence on the outcome of these
algorithms, however, it is in practice not very pronounced
as demonstrated in the work [11]. These methods, however,
do not rely on a cost function such that e.g. an adaptation
to relational data or the incorporation of label information
into the clustering become difficult [3, 6].

Extensions of k-means clustering can be distinguished
into methods which provide guarantees on the maximum
difference of the result from classical k-means, such as pre-
sented in the approaches [4, 10]. However, these variants
use resources which scale in the worst case with a factor
depending on N (N being the number of points) with re-
spect to memory requirements or passes through the data
set. Alternatives are offered by variants of k-means which
do not provide approximation guarantees, but which can
be strictly limited with respect to space requirements and
time. An early approach has been proposed in [1]: data
are clustered consecutively in small patches, whereby the
characteristics of the data and the possibility to compress
subsets of data are taken into account. A simpler although
almost as efficient method has been proposed in [2]: Stan-
dard k-means is performed consecutively for patches of the
data whereby each new patch is enriched by the prototypes
obtained in the previous patch. A sufficient statistics of the
outcome of the last run can thereby easily be updated in
a consecutive way, such that the algorithm provides clus-
ter centres after only one pass through the data set, thereby
processing the data consecutively in patches of predefined
fixed size.

In this article, we extend this idea to fuzzy-k-means clus-
tering and neural gas, two clustering algorithms which,
unlike k-means, are very robust to initialisation. Both
clustering algorithms can be derived from a cost function.

Thereby, we consider batch optimisation of NG as de-
scribed e.g. in [3]. Patch clustering provides results which
are competitive or only slightly inferior to the standard
batch variants with respect to cluster formation whereby
only a priorly limited memory is required and the scale of
the convergence rate is faster. Patch clustering also opens
the way towards parallel and distributed versions of these
algorithms. Further, since patch clustering is based on the
same cost function as the original clustering variant, the
methods can easily be extended to incorporate label infor-
mation or to deal with relational data.

2 Batch clustering
Given training data ~x1, . . . , ~xN ∈ R

n, the goal of prototype
based clustering is to find prototypes ~w1, . . . , ~wk ∈ R

n

which represent the data points as accurately as possible. A
common goal is the minimisation of the quantisation error

1

2
·
∑

ij

ξi(~xj)(~wi − ~xj)
2

whereby ξi(~xj) ∈ {0, 1} characterises the receptive field
of prototype ~wi, i.e. it is 1 iff the prototype ~wj is clos-
est to data point ~xi as measured in the Euclidean dis-
tance. K-means (KM) clustering directly optimises the
quantisation error by an iterative optimisation of the assign-
ments ξi(~xj), mapping a data point to its respective closest
prototype, and an optimisation of the prototype locations
~wi =

∑
j ξi(~xj)~xj/

∑
j ξi(~xj) [7]. This algorithm con-

verges in a finite number of steps towards a local optimum
of the quantisation error.

Since this cost function is multimodal, k-means is very
sensitive to initialisation of the prototypes. A variety of al-
ternatives has been proposed to overcome this problem and
to extend k-means by additional useful information about
the data, if appropriate. Fuzzy-k-means (FKM) clustering
considers the objective function

1

2
·
∑

ij

χi(~xj)
d(~wi − ~xj)

2

where d ≥ 2 is the fuzzifier (often chosen as d = 2), and
the values χi(~xj) ∈ [0, 1] constitute fuzzy assignments of
the data points to prototypes which are no longer crisp but
elements of the unit interval and which are optimised un-
der the constraint

∑
i χi(~xj) = 1 for all j. An iterative

optimisation of assignments and prototype locations using
Lagrange optimisation yields the formulas

χi(~xj) =
(~wi − ~xj)

−2/(d−1)

∑
l(~wl − ~xj)−2/(d−1)

for the assignments and

~wi =
∑

j

χi(~xj)
d~xj/

∑

j

χi(~xj)
d

for the prototype locations. In this simple form, fuzzy-k-
means converges to a local optimum or saddle point of the
cost function [9]. Unlike k-means, fuzzy-k-means is less
sensitive to initialisation because of the gradual assignment
of a data point to all prototypes; further, it provides more
subtle fuzzy assignments which can give some clue about
the clarity of the assignment.

Neural gas prevents initialisation sensitivity by means of
neighbourhood cooperation but it uses crisp assignments
[14]. It optimises the cost function (neglecting constant
factors)

1

2
·
∑

ij

hλ(ri(~xj))(~wi − ~xj)
2

where ri(~xj) = |{~wl | (~wl − ~xj)
2 ≤ (~wi − ~xj)

2}| de-
notes the rank of prototype ~wi measured according to the
distance from ~xj and hλ(t) = exp(−t/λ2) constitutes an
exponential weighting function of the ranks. NG is usually
optimised in an online mode by means of a stochastic gra-
dient descent which iteratively adapts all neurons according
to a chosen data point ~xj by means of

4wi ∼ −hλ(ri(~xj))(~wi − ~xj) .

Batch optimisation constitutes an alternative fast optimisa-
tion scheme which can be interpreted as Newton optimisa-
tion and which convergence in a finite number of steps to-
wards a local optimum of the cost function. It iteratively as-
signs ranks to the neurons according to their distance from
each data point ri(~xj) and computes optimum prototype
locations

~wi =
∑

j

hλ(ri(~xj))~xj/
∑

j

hλ(ri(~xj)) .

Thereby, the neighbourhood range λ is annealed after every
cycle towards zero. Due to the neighbourhood cooperation
measured in terms of (scale free) ranks, neural gas is a very
robust and initialisation insensitive classifier. In addition,
it provides information about the data topology by linking
every two prototypes iff they constitute the first two win-
ners for at least one data point, i.e. they possess adjoining
receptive fields within the data manifold.

Note that SOM does not possess a cost function, but a
variant thereof as proposed by Heskes [8]. Thus, batch op-
timisation of SOM (using a fixed Euclidean or hyperbolic
lattice structure, as appropriate) constitutes an alternative
clustering method which provides visualisation of data si-
multaneous to clustering [13, 16].

Unlike online variants, NG requires only few runs over
the data set. Since convergence is quadratic, the typical
number of epochs until convergence is of order at most√

N , N being the number of points, for all batch optimisa-
tion schemes. Online clustering typically requires a linear
number of passes over the data set. One update step of
batch clustering has an effort of order roughly Nk, k de-
noting the number of prototypes, whereby we are neglect-
ing the complexity of computing the weighting terms (for

2

NG and fuzzy-k-means) and sorting (for NG). (The latter
is reasonable for later runs of the algorithm where a com-
parably small contribution of data points to distant neurons
can be observed such that only a constant number of neigh-
bours must effectively be computed for a sufficient approx-
imation of the result.) Thus, the overall time complexity of
order kN

√
N results for batch clustering.

3 Patch clustering for large data sets

Batch clustering requires all training data to be stored in the
main memory which becomes infeasible for very large data
sets. The article [2] proposes a simple and efficient strategy
for k-means clustering with restricted buffer where data are
processed consecutively in patches of predefined size. Here
we transfer this strategy to NG and fuzzy-k-means.

Assume a fixed patch size P is chosen such that a num-
ber of P examples fits into the buffer. The main idea is
to subsequently process patches of size P by batch opti-
misation, thereby enlarging the data set by patterns which
stem from a sufficient statistic of the clusters obtained in
the previous run. A clustering is represented by the cluster
centres which is weighted according to the number of data
points assigned to it. Note that, with respect to the quanti-
sation error, an optimum cluster centre is represented by the
mean of data points assigned to it. This is exactly reached
in the convergence phase of NG; for fuzzy-k-means, the
computed prototypes may slightly differ due to the fuzzi-
fication, however, we will also represent clusters obtained
by fuzzy-k-means by their cluster means. To compute the
cluster centres, it is sufficient to keep track of the sum of
data points assigned to a cluster and the number, i.e. it is
sufficient to store (Sum(A), n(A)) to represent cluster A,
where Sum(A) is the sum of points assigned to the cluster,
and n(A) its number. Note that the merging of two clusters
A and B is represented by (Sum(A)+Sum(B), n(A)+n(B))
which can easily be computed iteratively.

Thus, patch clustering proceeds like follows:

choose the number of clusters k;
init (Sum(Ai) = ~0, n(Ai) = 0) for all clusters Ai

repeat until all data are processed
read the next P data points X = {~x1, . . . , ~xp}
cluster on X combined with Sum(Ai)/n(Ai)

(multiplicity n(Ai)) with batch clustering,
update the statistics (Sum(A), n(A)) by the

cluster centres (including multiplicities)

Obviously, if a data point is assigned to a cluster within a
patch, it will remain in the statistics of this cluster. Thus,
the order of the processing plays a role and the quantisa-
tion error is likely a bit larger for patch clustering com-
pared to batch clustering. However, this effect is not very
pronounced depending on the size of the patches as we will
see in experiments.

The complexity of patch clustering is reduced compared
to batch clustering depending on the size of the patches:
for patch size P , one epoch takes time ∼ Pk (neglect-
ing sorting, as beforehand), and it needs about

√
P steps

until convergence. Thus, the overall effort is of order
N/P · kP

√
P = kN

√
P as opposed to kN

√
N for batch

clustering.

4 Experiments
We test patch and batch versions of k-means, fuzzy k-
means, and NG for three different data sets, a very simple
four-mode clustering problem, a highly-multimodal bench-
mark dataset from [3], and a large data set from the 1998
KDD cup data mining contest which was also tested in [2].

Four clouds
Data stem from a mixture of four Gaussians with unit vari-
ance in two dimensions as depicted in Fig. 1. The set con-
sists of 40000 data points. Training is done by ten-fold
crossvalidation using four clusters and a random order of
the points. Thereby, the results on the training and test sets
differ only slightly. The main effect of a crossvalidation
consists in an easy evaluation of the robustness and sen-
sitivity of the algorithm with respect to the data ordering.
The patch size is 100, and each run over a patch includes 20
epochs, thereby annealing the neighbourhood of NG from
k/2 = 2 to 0. The fuzzifier of fuzzy-k-means is chosen as
d = 2. The mean value of the quantisation error is given
in Tab. 1. Obviously, the results are almost identical for
all runs due to the simplicity of the data set. Very slight
differences of the quantisation error are due to the fact that
the points at the (overlapping) cluster borders are assigned
differently in patch runs. For all methods, the four clus-
ter centres have been found in every run, showing no dif-
ferences between batch- and patch-clustering and different
patch sizes, respectively, in the principled location of the
cluster centres.

Checkerboard

Data constitute a multimodal distribution with 100 clusters
in two dimensions as depicted in Fig. 2 separated into a
training and test set. The overall number of data points
in both, training and test set is about 2000. Training is
done using 100 neurons. The patch size is chosen as 200,
400, and 600, respectively. The initial neighbourhood size
of NG, 10, is annealed to 0 during training. The fuzzi-
fier of fuzzy-k-means is chosen as d = 2. The number of
epochs is 20 for each run. It is easily possible to evalu-
ate the number of missed clusters in this task by referring
to the classification error of the underlying checkerboard:
we assign the label 0 and 1 to the data points such that a
checkerboard-pattern with 100 fields arises. We label the

3

Figure 1: Mixture of four Gaussian clusters

cluster centres based on the training set and evaluate the
classification error of this clustering on the test set. Each
percentage of misclassification corresponds to one missed
cluster (of 100 total clusters). The mean correct classifi-
cation (in percentage) obtained in ten runs is reported in
Tab. 1. In this case, the quantisation error does not allow to
infer the quality of the clustering due to the large number
of comparably small clusters: it is around 0.055 for batch
and patch variants of k-means and NG and around 0.064
for all fuzzy variants, hardly showing any difference be-
tween batch and patch clustering. Fuzzy clustering has a
larger quantisation error due to the fact that the cost func-
tion is always different from the quantisation error whereas
both, NG (for vanishing neighbourhood) and k-means di-
rectly optimise this objective.

The clustering results clearly show the following: the
task is quite hard and all methods miss a few cluster cen-
tres (ranging from 15 for k-means to 7 for NG). Note that
each of the 100 clusters is only represented, on average, by
20 data points, and the number of neurons is chosen exactly
as 100, i.e. every neuron must represent exactly one centre
for optimum classification accuracy. In these cases, a clear
difference of patch and batch clustering can be observed:
overall, patch clustering finds about 3-4 clusters less com-
pared to batch clustering. This effect depends slightly on
the size of the patches, as can be observed in particular
for NG. However, for reasonable patch size the loss in ac-
curacy is only minor and it could easily be accounted for
by using a slightly larger number of cluster centres than
necessary. In this scenario the dependency of k-means on
initialisation pops out for both, batch and patch clustering.

Due to the intuitive evaluation of the clustering result by

Batch Patch Batch Patch Patch
KM KM NG NG FKM FKM

Mean quantisation error (Four Clouds)
1.25 1.28 1.25 1.26 1.25 1.28

Variance ·10
3

0.07 0.37 0.07 0.1 0.08 0.37

Mean classification accuracy in % (Checkerboard)
patch size 200

87.32 86.38 93.35 90.18 94.14 90.80
patch size 400

85.43 90.76 90.61
patch size 600

84.47 91.80 90.49

Mean quantisation error (KDD)
patch size 1000

0.468 0.464 0.460 0.462 0.511 0.540
variance ·10

3

0.265 0.265 0.03 0.012
patch size 10000

0.468 0.461 0.520
variance ·10

3

0.114 0.011

Table 1: Quantization error or classification accuracy, re-
spectively, as obtained by the different clustering algo-
rithms for the Four Clouds data set, the Checkerboard data
set, and the KDD data set for batch and patch clustering
using different patch sizes

means of the classification error, a comparison to online-
neural gas, which can directly be applied to large data sets
since it adapts the prototypes directly after every pattern, is
easily possible in this scenario: After only one pass through
the data, no convergence can be observed in the sense that
the neurons are not located in the cluster centres at all. Af-
ter about 5 epochs, convergence can be observed. On av-
erage, 15 clusters are missed after 5 epochs, about 10 clus-
ters are missed after 10 epochs, about 8 clusters are missed
after 20 epochs (this setting is comparable to the setting
tested for batch NG, whereby batch NG obtains, on aver-
age, slightly better performance), about 5 clusters after 50
epochs, and about 3 after 100 epochs. Thus, several passes
over the entire data set are necessary for online NG to show
competitive results to patch NG.

KDD cup data mining contest

This data set stems from the 1998 KDD cup data min-
ing contest, and we use the same setting as proposed in
[2]. Data contains 95412 records with 481 statistical fields
which describe statistical information about people who
made charitable donations in response to direct mailing re-
quests. For our experiments, 56 features from these fields
have been selected, including numerical features such as
donation amount, income, age; date values, such as dona-
tion date, date of birth; and binary values such as income
category. Data are preprocessed such that only numerical
values with zero mean and unit variance result. The number

4

Figure 2: Checkerboard data

of clusters was set to 10, as proposed in [2], and the number
of epochs is 20. The mean quantisation error averaged in
a ten-fold crossvalidation is reported in Tab. 1 for two dif-
ferent patch sizes corresponding to roughly 1% and 10%
of the data, respectively. Since the preprocessing in [2] has
been described only qualitatively, we cannot compare to
the results reported in [2], but we test k-means in our set-
ting. Obviously, a slight improvement of NG compared to
k-means can be observed, whereby patch clustering using
10% of the data only slightly reduces the achieved results.
Interestingly, the variance of the results can be reduced by
patch clustering compared to batch clustering, and – as ex-
pected – NG compared to k-means. As beforehand, the
results obtained by fuzzy clustering are worse because the
objective of fuzzy clustering is different from the quanti-
sation error. However, it is clearly demonstrated that for
all variants, patch optimisation only slightly decreases the
overall result whereby reducing the required buffer size to a
fixed size and reducing the training to a single run over the
overall data set (combined with a small number of epochs
for each patch).

Comparison of the clustering time

Due to the smaller size of the data sets, patch clustering re-
quires less iterations until convergence compared to batch
clustering. This effect can be measured in experiments as
follows:

For the Checkerboard data, we perform the same exper-
iment as beforehand, thereby using 20 iterations for batch
clustering and 5 iterations for patch clustering for a patch
size 200. These numbers represent the necessary number of

Batch Patch Ratio
Checkerboard

k-means
Accuracy 0.8707 0.8675 1.0037
Time (ms) 1053.4 452.5 2.3280

NG
Accuracy 0.9353 0.9074 1.0307
Time (ms) 102781.9 37074 2.7723

fuzzy-k-means
Accuracy 0.9046 0.8884 1.0182
Time (ms) 182065.5 82409.5 2.2093

11 Clouds
k-means

Accuracy 0.9928 0.0.995 1
Time (ms) 76376.5 64465.6 1.18

NG
Accuracy 0.9984 0.9984 1
Time (ms) 94703.9 79134.5 1.2

Table 2: Classification results and time difference of batch
and patch clustering with 20 (for batch) and 5 (for patch)
epochs and patch size 200 for the Checkerboard data, and
for batch and patch clustering with 8 (for batch) and 5 (for
patch) epochs for the simpler 11 clouds data set.

iterations until convergence for the respective scenario. As
can be seen from Tab. 2, the quotient of the performance
measured by means of the classification error is close to
one, whereby the gain of the efficiency accounts for a fac-
tor larger than 2.

For a simpler data set consisting only of 11 clouds and
44000 data points, the effect is a bit less pronounced: for
batch and patch clustering, the classification accuracy is the
same while obtaining an efficiency gain of about 1.2 for
patch compared to batch clustering. This gain is due to
the reduced number of necessarz epochs until convergence,
which are 5 for patch clustering and 8 for batch clustering,
see Tab. 2.

5 Conclusions

We have presented an efficient patch optimisation scheme
for NG and fuzzy-k-means in the presence of large data sets
which requires only a priorly fixed amount of buffer space
for optimisation and which reduces the training time by a
factor roughly

√
N due to the smaller number of epochs

for batch optimisation of patches. The effectivity of the
method has been demonstrated in a variety of experiments.

Note that it is possible to extend the method directly to
SOM and HSOM [12, 16] by using batch optimisation of
these models assuming the formulation of a winner as pro-
posed by Heskes [8] such that an underlying cost function
is available. The clear foundation of the optimisation on a

5

cost function allows an immediate transfer of patch clus-
tering to extended versions which take supervised label in-
formation into account such as proposed in [6], or which
extend the applicability to general proximity data e.g. by
means of median variants as proposed in [3, 13].

Further, patch clustering opens possibilities to speed up
clustering by parallelisation: obviously, optimisation of
different patches can be done independently on different
CPUs whereby merging takes place by means of an inte-
gration of the sufficient statistics of clusterings into a new
run. The decomposition in patches and recombination of
results can be arranged e.g. in a tree-like manner such that
a simple and efficient parallel implementation of NG and
fuzzy-k-means results. Similar ideas, an iterative clustering
and merging of results, have been proposed in the article
[15] for k-means clustering. The efficiency of the method
for NG will be the subject of future research.

References
[1] P.S.Bradley, U.Fayyad, C.Reina (1998), Scaling clus-

tering algorithms to large data sets, in Proceedings
of the Fourth International Conference on Knowledge
Discovery and Data Mining, 9-15, AAAI Press.

[2] F.Farnstrom, J.Lewis, C.Elkan (2000), Scalability
for clustering algorithms revisited, SIGKDD Explo-
rations 2(1):51-57.

[3] M. Cottrell, B. Hammer, A. Hasenfuss, and T. Vill-
mann (2006), Batch and median neural gas, Neural
Networks, 19:762-771.

[4] S. Guha, N. Mishra, R. Motwani, L. O’Callaghan
(2000). Clustering Data Streams. In IEEE Symposium
on Foundations of Computer Science, 359-366.

[5] S. Guha, R. Rastogi, K. Shim (1998). CURE: an ef-
ficient clustering algorithm for large datasets. In Pro-
ceedings of ACM SIGMOD International Conference
on Management of Data, 73-84.

[6] B. Hammer, A. Hasenfuss, F.-M. Schleif, and T. Vill-
mann (2006), Supervised batch neural gas, In Pro-
ceedings of Conference Artificial Neural Networks in
Pattern Recognition (ANNPR), F. Schwenker (ed.),
Springer, pages 33-45.

[7] J. Hartigan (1975). Clustering Algorithms. Wiley.
[8] T. Heskes (2001). Self-organizing maps, vector quan-

tization, and mixture modeling. IEEE Transactions on
Neural Networks 12:1299-1305.

[9] F. Höppner, F. Klawonn, R. Kruse, T. Runkler (1999).
Fuzzy Cluster Analysis, Wiley.

[10] R. Jin, A. Goswami, G. Agrawal (to appear). Fast and
Exact Out-of-Core and Distributed K-Means Cluster-
ing, Knowledge and Information System.

[11] I.A. Klampanos, J.M. Jose, C.J.’Keith’ van Rijsber-
gen (2006). Single-pass clustering for peer-to-peer in-
formation retrieval: the effect of document ordering.
In ACM International Conference Proceeding Series,

152. Proceedings of the 1st international conference
on Scalable information systems, Hong Kong, Article
No. 36.

[12] T. Kohonen (1982), Self-Organized formation of
topologically correct feature maps, Biological Cyber-
netics, 43:59-69.

[13] T. Kohonen and P. Somervuo (2002), How to make
large self-organizing maps for nonvectorial data, Neu-
ral Networks 15:945-952.

[14] T. Martinetz, S.G. Berkovich, and K.J. Schulten
(1993). ‘Neural-gas’ network for vector quantization
and its application to time-series prediction. IEEE
Transactions on Neural Networks 4:558-569.

[15] S. Nittel, K.T. Leung (2004). Parallelizing clustering
of geoscientific data sets using data streams. In: Sci-
entific and Statistical Database Management, 73-84.

[16] H. Ritter (1999), Self-organizing Maps in non-
euclidean Spaces, Kohonen Maps, 97-108, Eds.: E.
Oja and S. Kaski.

[17] W. Wang, J. Yang, R.R. Muntz (1997). STING: a sta-
tistical information grid approach to spatial data min-
ing. In Proceedings of the 23rd VLDB Conference,
186-195.

[18] T. Zhang, R. Ramakrishnan, M. Livny (1996).
BIRCH: an efficient data clustering method for very
large databases. In Proceedings of the 15th ACM
SIGACT-SIGMOD-SIGART Symposium on Princi-
ples of Databas Systems, 103-114.

6

