
Path finding on a spherical SOM using the distance transform
and floodplain analysis

Michael Bui and Masahiro Takatsuka
ViSLAB

School of Information Technologies
University of Sydney

email: {mbui,masa}@vislab.usyd.edu.au

Keywords: self-organizing map, distance transformation, floodplain, path planning

Abstract— Data visualization has become an impor-
tant tool for analyzing very complex data. In particular,
spatial visualization enables users to view data in a intu-
itive manner. It has typically been used to externalize clus-
ters and their relationships which exist in highly complex
multidimensional data. We envisage that not only cluster
formation and relationships but also other types of informa-
tion, such as temporal changes of datum, can be extracted
through the spatialization.

In this paper, we investigate an application of trajec-
tory/path analysis carried out using a Self-Organizing Map
as a spatialization method. We propose an application of
distance transformations to the Geodesic Self-Organizing
Map. This new approach allows a user to visually in-
spect the trajectory of multidimensional knowledge pieces
on a two-dimensional space. The trajectories discovered
through this approach are essentially the shortest paths be-
tween two points on the Self-Organizing Map. However,
those paths might go outside of the input dataspace due
to the connectivity of neurons imposed by the grid struc-
ture. We also present a method to find the shortest path,
which falls within the input dataspace using simple flood-
plain analysis.

1 Introduction
Our society has for a long period of time used maps as tools
for exploration and navigation. Through the use of maps,
a simplified representation of a space can be obtained, re-
ducing the complexity of discovering pathways in the un-
explored space. However, maps are not just reserved for
geography but have also been used for information visual-
ization; the latter having greater relevance to our research.

A popular jargon term, referred to as roadmaps, has
even been made to describe plans consisting of many
stages. Such roadmaps, like those for software develop-
ment projects, consist of many intermediate stages that
need to be incrementally reached in order to achieve a
clearly defined goal. We envisage that if an abstract knowl-
edge space can be represented in the form of a map, transi-
tions of knowledge can be defined as a path on these maps.
The discovery of a desirable path could then be translated

as a process of knowledge transition.

It would thus be of key interest to our research to study
the usage of maps to spatialize multidimensional data onto
a two-dimensional or three-dimensional space. Once the
data has been spatialized, we can use these maps to track
temporal or state changes, such as the movement of a data
point. Furthermore, paths in the original high-dimensional
space could also be found. If a map is used to describe a
knowledge space, the process of decision making can then
be viewed as being equivalent to finding paths on the map.

With the recent efforts on applying cartographic perspec-
tives on non-geographic information visualization [1, 2],
we believe it would be worthy to investigate the applica-
tion of techniques which have typically been used on geo-
referenced data, such as path planning, on non-geographic
data. This is also driven by the fact that spatial analysis
techniques should, in principle, applicable to spatial rep-
resentations of data. By using automated computational
techniques to perform tasks such as path planning, alterna-
tive and better paths may be discovered which would have
otherwise remained hidden.

We recently proposed the application of distance
transformations to the Geodesic Self-Organizing Map
(Geodesic SOM). The Geodesic SOM would be used to
visualize complex datasets in the form of a spherical map.
Distance transformations are then used to perform multi-
dimensional path planning on the resulting visualization in
two dimensions. This computes the shortest path between
two points on the Geodesic SOM. In some situations, these
paths may traverse through cluster boundaries of large dis-
tances even there is no input data covering such area. In
such cases, there may be other possible and more desirable
paths to travel around these cluster boundaries. Such paths
will travel through the dataspace represented by the exist-
ing input data. In this paper, we present an application of
floodplain analysis to improve the path finding process in
order to find the flattest path to solve this problem.



2 Related work

2.1 The Self-Organizing Map and Visualiza-
tion

The Self-Organizing Map (SOM) [3] is a widely used arti-
ficial neural network which can be used to visualize data.
The benefits of using SOMs are that they can (1) preserve
the topology of the data, (2) approximate the probability
density function, (3) perform multidimensional scaling and
(4) unsupervised clustering.

Their topology preservation properties have allowed
them to be regarded as roadmaps of the high-dimensional
space [4]. Moreover, they could also be used for tempo-
ral sequence processing. Temporal information can then
be recovered from SOMs, even though time may not be
taken into consideration during the training process. Given
a temporal sequence of features, their corresponding best
matching units on the SOM can then be connected to
form trajectories that visualizes the state transitions. These
”trajectory-based SOMs” have been used for speech recog-
nition [5], process monitoring [6] and bankruptcy predic-
tion [7]. Financial benchmarking applications [8] have also
demonstrated that there is the potential for SOMs, in gen-
eral, to be used as a tool for strategic management. This
could support executives in discovering characteristics that
would lead a company to reach and maintain desirable per-
formance levels.

Despite the benefits of using SOMs, one of problems as-
sociated with them is the ”border effect”. As neurons on the
boundaries of the SOM have fewer neighbours than those
within the boundaries, the chance of these neurons being
updated is lower. Hence, the map may appear to be less
well ordered near the boundaries. One of the various sug-
gestions to eliminate this was to implement the SOM on a
spherical lattice so that borders would not exist [9].

Wu and Takatsuka [10] reported that the icosahedron-
based geodesic dome is the most suitable spherical lattice
for implementing the SOM. Compared to the other pla-
tonic polyhedra, the icosahedron has the least variance in
edge lengths after tessellation and more closely resembled
a sphere. This led to the development of the Geodesic Self-
Organizing Map (Geodesic SOM) whose 2D data structure
is able to support fast neighbourhood searching for updat-
ing neurons in a neighbourhood set. Experimental results
were able to show that the Geodesic SOM had more uni-
form error distribution and potentially better performance
when dealing with large datasets. Furthermore, its 2D data
structure is able to support fast neighbourhood searching.

2.2 Distance transformations

The original distance transformation algorithm [11] was
developed for image processing. Given a binary image I
composed of pixels that have a value of either 0 or 1, it is
able to compute a corresponding distance map D. This is

Figure 1: An example of a visualization produced by the
Geodesic SOM. The arrow passes through the two extreme
points from the south to the north pole. Regions are la-
belled with numbers to indicate which cluster the points in
these regions belong to.

achieved by propagating distance values from one pixel to
another. The pixel value of D(i, j) would then represent the
distance of pixel I(i, j) to the nearest zero pixel.

While distance transformations are generally known for
their applications in pattern recognition [12], it was discov-
ered that by extending the original algorithm, they could
be used to calculate optimal, collision-free paths to solve
robot motion planning problems [13]. In this case, a dis-
tance wave would be propagated from a source cell through
the free space around any obstacles. While A* [14] is
commonly used in continuous, real Euclidean space maps,
distance transformations are prominent for discretized grid
maps. Furthermore, the algorithms are designed to be fast
due to the nature of the problems it may be used to solve.

Figure 2 illustrates how the distance transformation al-
gorithm can be applied to compute a distance map to help
solve robot motion planning problems. In this example, the
goal cell is marked by the letter G. By applying the distance
transformation on the map in figure 2 (a), this would com-
pute a distance map as depicted in figure 2 (b). Since the
values in each cell represents the minimum amount of cells
that need to be travelled to reach the goal, a path to the goal
can be found by following the steepest descent (algorithm
1), although any algorithm that calculates the shortest path
can be applied to the distance map.

2.3 Path Planning in Multidimensional Data

Trajectory-based SOMs have proven that spatial visualiza-
tions can be used to track temporal and state changes in
a high-dimensional space [5, 6, 7]. By using the SOM to
perform dimensionality reduction, the task of tracking the
movement of a data point in high-dimensional space be-
comes simpler to achieve and perceive. Due to the SOM’s

2



Figure 2: Figure (a) depicts an example of an environment
that contains obstacles and is typical of problems in robot
motion planning. The goal cell is labelled by the letter G.
Applying the distance transformation results in figure (b).
Propagation begins from the goal cell and the distance val-
ues in each cell represents the shortest distance to the goal
cell. By following the steepest descent, a path to the goal
can be found.

ability to approximate the data distribution, neurons with
no data samples mapped to them are still significant in
some way. Therefore, with the appropriate data, if one were
to calculate a path between two points on the SOM, the
weight vectors of the neurons on the path would represent
the intermediate states that need to be reached. To date,
no work has been done to take the next step further with
trajectory-based SOMs. That is, to progress from utilizing
trajectory-based SOMs for tracking the path of an object in
high-dimensional space, to calculating/finding the path of
an object migh take.

This led to our proposal to apply a distance transform to

Algorithm 1 Calculating the shortest path through steepest
descent
Require: start and goal cell, distance map

c = start
while c != goal do

for all n = c.neighbours do
if n.distance < c.distance then

c = n
end if

end for
end while

the Geodesic SOM. In our approach, the Geodesic SOM is
utilized to perform dimensionality reduction and for map
generation. Each neuron is associated with a distance
value, initially -1, which represents the shortest distance
from that neuron to the goal. Since the U-Matrix is used
to visualize the Geodesic SOM, the calculated U-heights
(the local distances in the high-dimensional space) are used
as the distance values that would be propagated by the
distance transformation algorithm (algorithm 2). This ap-
proach helps solve the problem of finding the shortest path
between two points on the Geodesic SOM. Note that the
neurons on the boundaries on the Geodesic SOM’s data
structure have duplicates since the data structure is formed
by opening up an icosahedron (refer to [10] for more de-
tails). Thus, when these neurons need to have their distance
values updated, their duplicates also need to be processed.

Algorithm 2 Distance transformation on the Geodesic
SOM to find the shortest path
Require: start and goal and Geodesic SOM

Initialization
Queue Q is empty
for all neuron in neurons do

neuron.distance = -1
end for
goal.distance = 0
Q.push(goal)
Start distance transformation
while Q is not empty do

c = pop(Q)
d = avg diff

√
2

neighbours = getNeighbours(current)
for all n in neighbours do

if n.distance == -1 then
n.distance = current.distance + n.avg diff
Q.push(n)

else
if n is a diagonal neighbour and n.distance >
c.distance + d then

n.distance = c.distance + d
Q.push(n)

else
if n.distance > c.distance + n.avg diff then

n.distance = c.distance + n.avg diff
Q.push(n)
for all v in n’s duplicate neurons do

v.distance = n.distance
end for

end if
end if

end if
end for

end while

Experiments have shown that information about the
state/temporal changes of data could be recovered by us-

3



ing this approach (figure 3). Compared to previous ap-
proaches which have prior knowledge of all of the states in
a temporal sequence, we rely on a topological mapping of
a high-dimensional space to recover temporal information
given only an initial and end state. This approach works
based on the assumption that consecutive states are similar
to each other in the high-dimensional space and would thus
be placed near each other on the low-dimensional mapping.
Consequently, there is a potential that this could also be
used to forecast such changes. Since weight vectors are
essentially state vectors, parameters can then be extracted
from these vectors for purposes similar to process steering
[15]. In fact, it has been suggested in the aforementioned
literature that path finding algorithms could help steer a
process toward some optimum operating state. Thus, for
applications that need to discover the consecutive states
that need to be reached from one state to another, our tech-
nique may be used to discover such state transitions.

Figure 3: Geodesic SOM trained with the benchmarking
data on the 1994/1995, 1995/1996 and 1996/1997 finan-
cial year. A five-frequency geodesic dome(252 nodes) was
used, with an initial update radius of 9, while the Geodesic
SOM was trained for 3000 epochs. The distance trans-
formation was applied to find the path from North Syd-
ney’s state in the 1994/1995 financial year, to its state in
the 1996/1997 financial year. The path can be seen to pass
through Hornsby and North Sydney in the 1995/1996 fi-
nancial year.

As mentioned earlier, there is a problem with the pro-
posed approach. In figure 4, we can see an example of
a dataspace that may be used to train the Geodesic SOM.
After training the Geodesic SOM, contraction may occur
whereby two dissimilar points may be placed near each
other on the SOM and there may be neurons representing
points outside of the dataspace. Consequently, if we ap-
plied the distance transformation to find the shortest path
(dashed line in the figure) between two points within this
dataspace, the path may actually travel outside of the datas-
pace. Figure 5 demonstrates what this may look like on
the SOM where this may result in an incorrect path being
found. To ensure that a path travels within the dataspace,
we propose to find the flattest, shortest path instead.

Figure 4: An example of a dataspace. The dashed line de-
picts a path thats move outside of the dataspace, which is
the region enclosed by the curved shape.

Figure 5: The path (5-8-13) from node 5 to 13 on the
Geodesic SOM. The path is incorrect as rather than trav-
elling through the flat region on the SOM (blue region), it
travels through the mountain range enclosed by the hexag-
onal shape.

3 Calculating the Flattest Path in
Multidimensional Data

Robot motion/path planning applications operate in envi-
ronments where obstacles may exist. Here, path planning is
typically performed to calculate collision-free paths (which
are usually optimal) from a starting location to a goal loca-
tion. We initially applied distance transformations to the
Geodesic SOM to perform path planning with multidimen-
sional data in two dimensions. The result would then corre-
spond to the shortest path from one point to another on the
Geodesic SOM. However, visual inspection revealed that
these paths may pass through large cluster boundaries on
the SOM, despite the fact that alternate paths around them
may exist. If one were to use a landscape metaphor to de-
scribe the U-Matrix, these regions would appear as moun-
tain ranges on the landscape. The best route would clearly
be to go around these mountains if possible.

4



Furthermore, one of the properties of the SOM is that it
will approximate the probability density function of the in-
put data. If we view the input data as a cloud, or even mul-
tiple clouds of points, then the SOM would function like an
elastic net that tries to fit itself around all of these points.
This results in a surface representing the probability density
function. The surface, however, might cover regions where
there are no samples. This is because the structure of this
surface is governed by the neighbourhood connectivities of
neurons. In this scenario, when a path passes through a
cluster boundary on the SOM, this may correspond to the
path navigating in a region where no training samples exist.
Since the SOM may have neurons that correspond to these
regions, finding the shortest path between two neurons may
reveal a path that goes through these neurons. Calculating
the flattest path instead will help limit paths such that they
will only travel along the region representing by the input
dataset’s probability density function, and create a sense of
continuity.

3.1 Approach

The approach we use to find the flattest path between two
points on the Geodesic SOM is a modification to the ap-
proach that we have initially presented (a simple applica-
tion of distance transformations), and is described below
by algorithm 3. Hence, distance transformations are still
applied to the Geodesic SOM. The difference here is that
the neurons with a U-height (denoted by u-height) above
a certain threshold (max u-height) will be ignored. Given
the start and goal neuron, the threshold’s value will be ini-
tialized as the largest U-height value out of these two neu-
rons. The threshold max u-height defines a floodplain-like
landscape. In other words, all neurons whose u-height is
smaller than max u-height belong to the floodplain, and
we would like to find the shortest path on this floodplain
by applying the distance transformation.

The distance value of the goal neuron will be initialized
to 0, while the rest of the neurons will have a distance value
of -1. This distance value corresponds to the shortest dis-
tance to the goal neuron, with a value of -1 meaning that no
path exists from the corresponding neuron to the goal. The
goal neuron is then added to a queue. It is then removed
from the queue and its distance value will be propagated
to its direct neighbours so that their distance values can be
updated. The direct neighbours are then added to the queue
so that their distance values may also be propagated, and
this process is repeated until the queue is empty. How-
ever, only neurons with a U-height value below or equal to
the threshold will be added to the queue. If no path exists
from the start to the goal, that is, the start neuron’s distance
value is -1, then the threshold is increased to be the next
highest U-height that was found during the distance trans-
formation. In this situation the distance transformation will
be repeated, taking the threshold into consideration, until a
valid path is found from the start neuron to the goal neuron.

Algorithm 3 Distance transformation on the Geodesic
SOM to find the flattest, shortest path
Require: start and goal and Geodesic SOM

max u-height = max(start.u-height, goal.u-height)
while start.distance = - 1 do

next max u-height = ∞
Queue Q is empty
for all neuron in neurons do

neuron.distance = -1
end for
goal.distance = 0
Q.push(goal)
Start distance transformation
while Q is not empty do

c = pop(Q)
d = u-height

√
2

neighbours = getNeighbours(current)
for all n in neighbours do

if n.u-height > max u-height then
if n.u-height < next max u-height then

next max u-height = n.u-height
end if
ignore n

end if
if n.distance == -1 then

n.distance = current.distance + n.u-height
Q.push(n)

else
if n is a diagonal neighbour and n.distance >
c.distance + d then

n.distance = c.distance + d
Q.push(n)

else
if n.distance > c.distance + n.u-height then

n.distance = c.distance + n.u-height
Q.push(n)
for all v in n’s duplicate neurons do

v.distance = n.distance
end for

end if
end if

end if
end for

end while
max u-height = next max u-height

end while

5



4 Results
Our experiments were conducted on a Pentium 4 3.2GHz
PC with 1 GB of memory and the Geodesic SOM was
implemented in Java. Here, the initial learning rate is al-
ways 0.8 and the update radius is set such that it covers
approximately 80% of the network. Due to the fact that the
Geodesic SOM visualizes the data in the form of a spheri-
cal dome, it is difficult to get a full view of the visualization
and generated paths. Consequently, the Wagner III pseu-
docylindrical projection was used to project the Geodesic
SOM to a two-dimensional map [10]. Our experiments in-
volve both synthetic and real data. Note that as the colours
on the Geodesic SOM are associated with the local dis-
tances in high-dimensional space, visual inspection could
be used to see if they navigate around the mountain ranges.

4.1 Synthetic data
In this experiment, we constructed a synthetic dataset
representing a binary tree of depth 3 that contains 15
nodes(refer to figure 6. The dataset itself is essentially a 15
x 15 distance matrix, that is, it consists of 15 data points de-
scribed by 15 attributes. If we denote this matrix as M , the
value of M(i, j) represents the graph distance from node
i to node j, where a value of zero would mean node i and
node j are actually the same node.

Figure 6: The binary tree used to construct the dataset.

The original method of applying distance transforma-
tions to the Geodesic SOM was able to reveal information
about the structure of the data. The majority of the dis-
covered paths on the Geodesic SOM (from the root, that
is node 1) were also valid paths in the original binary tree
(see figure 7 for an example). After analyzing the incorrect
results, we were able to see cases where the paths would
cross through the mountain ranges on the Geodesic SOM
like in figure 8. If these paths were to go around these
mountain ranges instead, then the paths may be valid in the
original binary tree. In the following figures, the mountain
ranges of interest is enclosed by a hexagon. We can see that
such regions have no data samples whatsoever. Therefore,

these regions could be said represent regions outside of the
dataspace.

Figure 7: The path (1-3-7-15) from node 1 to 15 on the
Geodesic SOM. The path is correct.

Figure 8: The path (8-13) from node 8 to 13 on the
Geodesic SOM. The path is incorrect and also passes
through the mountain range.

Our aim for this experiment is to see if using the modi-
fied approach to compute the flattest shortest path would
actually travel around these regions and discover valid
paths within the dataspace. A two-frequency geodesic
dome was used (42 nodes), while the initial update radius is
set to 3, and the Geodesic SOM was trained for 150 epochs.
Note that there are two circled labels which are 8 and 10.
This indicates that there was another node mapped to that
same neuron as well, which are 9 and 11 respectively. Since
these clustered nodes both share the same parent, this is not
a problem.

Compared to figure 8, we can see that in figure 9, us-
ing the flattest, shortest path approach solves the problem
where the path travels through the mountain range on the
Geodesic SOM. Furthermore, the discovered path was in-
deed valid in the original binary tree. Therefore, in cases
where the shortest path approach fails, the flattest path ap-
proach is a valuable alternative that is worth trying out to
generate paths that may follow the structure of a dataset
more closely.

6



Figure 9: The path (8-4-2-1-3-6-13) from node 8 to 13 on
the Geodesic SOM. The path is correct and travels around
the mountain range enclosed in the rectangle unlike the
path in figure 8

4.2 Financial benchmarking data

For this dataset, we used real public financial benchmark-
ing data obtained from the State Library of New South
Wales, Australia web site [16]. The data was taken from
the income/expenditure statements of a number of cities in
the metropolitan area for the 1994/1995, 1995/1996 and
1996/1997 financial years. This data was combined to-
gether to form a single dataset. Each library in the dataset
that described by 9 attributes: the expenditure costs for ad-
ministration, employee costs, library collections and over-
head expenses, as well as the total income, capital expen-
diture, capital income, total operating expenses and deficit.
By performing path planning on this data, we could use the
results to determine the financial states that a library would
need to achieve over a period of time in order to reach the
same level as another library.

When performing financial benchmarking in the real
world, one presumption that needs to be made is that the
training data adequately covers the whole input space. This
would allow the SOM to approximate all the realistic fi-
nancial states. However, when there are not enough data
samples, there may be neurons corresponding to financial
states outside of the scope of the data, which may not even
be realistic. It may be more desirable to use the data that
does exist, and use distance transformations in a way that
the paths will travel within the dataspace corresponding to
the dataset. Figure 10 illustrates an example where there is
a cluster boundary with no data samples. This region could
correspond to a region outside of the dataspace. Thus, the
application of distance transformations for path planning
may not produce useful results.

By applying our new method to the same dataset, this
can force the paths to travel along regions with data sam-
ples. In figure 11, the path between South Sydney and Lake
Macquarie is observed to pass through a number of neurons
containing data samples corresponding to states like Lake
Macquarie, Newcastle and Wyong in the 1995/1996 finan-
cial year. It can also be observed that this method is able

Figure 10: Geodesic SOM trained with the benchmarking
data on the 1994/1995, 1995/1996 and 1996/1997 finan-
cial year. A five-frequency geodesic dome (252 nodes) was
used, with an initial update radius of 9, while the Geodesic
SOM was trained for 3000 epochs. The distance trans-
formation was applied to find the path from South Syd-
ney’s state in the 1996/1997 financial year, to Lake Mac-
quarie’s state in the 1996/1997 financial year. The path
passes through a region where there is no data.

Figure 11: Geodesic SOM trained with the benchmarking
data on the 1994/1995, 1995/1996 and 1996/1997 finan-
cial year. A five-frequency geodesic dome(252 nodes) was
used, with an initial update radius of 9, while the Geodesic
SOM was trained for 3000 epochs. The distance trans-
formation was applied to find the path from South Syd-
ney’s state in the 1996/1997 financial year, to Lake Mac-
quarie’s state in the 1996/1997 financial year. The path
passes through neurons with data samples which may help
provide more meaningful results.

to discover a link between the states of Lake Macquarie’s
libraries in 1995/1996 and 1996/1997 that did not appear
using the original method we proposed. Using these results
may thus more beneficial as the results would be based on
data that does exist.

5 Conclusions
It has been demonstrated through the SOM that spatial vi-
sualizations may allow users to track temporal changes of
data in high-dimensional space. This process is similar to
tracking the movement of an object, such as a car, on a ge-

7



ographic map. Such maps have been extensively used to
plan paths to get from one point to another. Despite the
fact that cartographic perspectives have been applied to the
visualization of non-geographic data, not much effort has
been made to attempt to plan paths on maps representing
non-geographic data

Previously, we proposed to use the Geodesic SOM to vi-
sualize multidimensional data in the form of a map, due to
its ability to effectively remove the border effect and reduce
data distortion. Distance transformations, which have fre-
quently been used for robot motion planning, were then ap-
plied to perform path planning in high-dimensional space
in two dimensions through the Geodesic SOM’s 2D data
structure. However, this on some occasions would generate
paths that pass through mountain ranges on the Geodesic
SOM. These regions may correspond to points outside of
the dataspace. Consequently, we have presented in this
work, a modification of the original application of distance
transformations in order to solve this problem. This in-
volves ignoring neurons whose U-height are above a cer-
tain threshold when performing the distance transforma-
tion. If no valid path can be discovered, the threshold is in-
creased and the distance transformation is done again. This
process is repeated until a valid path is discovered. This
is a rather simple method to find the flattest path. Future
work on this would concentrate on using a better approach
to find the threshold for which a valid path exists.

While we have not been able to secure more useful data
at this stage and evaluate how this would perform in the
real world (which further work would concentrate on), our
results so far are promising. The paths that our technique
generates clearly attempts to avoid regions that would be
undesirable to traverse through as much as possible. By
limiting the neurons that are to used during the distance
transformation, this restricts the paths so that they will only
travel on the surface representing the probability density
function. This creates a sense of continuity and the results
may be more meaningful to users as the paths would only
travel within the dataspace.

Acknowledgements
The authors wish to thank Yingxin Wu for her permis-

sion to use images related to the Geodesic SOM, and her
Geodesic SOM work.

References
[1] A. Skupin, ”From Metaphor to Method: Cartographic

Perspectives on Information Visualization”, Proceed-
ings of the IEEE Symposium on Information Vizualiza-
tion 2000, pp. 91, Washington, DC, USA, 2000. IEEE
Computer Society.

[2] A. Skupin and S. Fabrikant, ”Spatialization methods:
A Cartographic Research Agenda for Non-geographic
Information Visualization”, Cartography and Geo-

graphic Information Science, Vol. 30, No. 2, pp.
95119, 2003.

[3] T. Kohonen, ”Self-Organizing Maps, Third Edition”,
Springer-Verlag, Berlin Heidelberg, 2001.

[4] A. Ultsch, ”U*-matrix: A Tool to Visualize Clusters in
High Dimensional Data”, Technical Report 36, Univer-
sity of Marburg, 2003.

[5] T. Kohonen, ”The Neural Phonetic Typewriter” Com-
puter, Vol. 21, No. 3, pp. 1122, 1988.

[6] M. Kasslin, J. Kangas, and O. Simula, ”Process
state monitoring using self-organizing maps”, I., Alek-
sander and J. Taylor, editors, Artificial Neural Net-
works, Vol. 2, pp. 1531-1534, North-Holland, 1992.

[7] C. Serrano-Cinca, ”Let financial data speak for them-
selves”, G. J. Deboeck, T. K. Kohonen, and T. K. Ko-
honen, editors, Visual Explorations in Finance, chapter
1, pp. 323. Springer-Verlag New York, Inc., Secaucus,
NJ, USA, 1998.

[8] B. Back, M. Irjala, K. Sere and V. Vanharanta,
”Competitive Financial Benchmarking Using Self-
Organizing Maps”, Åbo Akademi, Reports on Com-
puter Science and Mathematics, Series A, No. 169,
1995.

[9] H. Ritter, ”Self-Organizing Maps on Non-Euclidean
spaces”, Kohonen Maps, pp. 97108, Amsterdam: El-
sevier.

[10] Y. Wu and M. Takatsuka, ”Spherical Self-Organizing
Map using Efficient Indexed Geodesic Data Structure”,
Neural Networks, Vol. 19, No. 67, pp. 900910, July
August 2006.

[11] A. Rosenfeld and J. L. Pfaltz, ”Sequential Operations
in Digital Picture Processing”, Journal of the ACM,
Vol. 13, No. 4, pp. 471494, 1966.

[12] K. K. Lau, P. C. Yuen, and Y. Y. Tang, ”EDT Based
Tracing Maximum Thinning Algorithm on Grey Scale
Images”, Proceedings of the Fifthteenth International
Conference on Pattern Recognition, pp. 28632866, Los
Alamitos, CA, USA, September 2000. IEEE Computer
Society.

[13] R. A. Jarvis, ”Collision-Free Trajectory Planning
Using Distance Transforms”, Mechanical Engineer-
ing Transactions of the Institution of Engineers, Vol.
ME10, No. 3, pp. 187-191, 1985.

[14] P. E. Hart, N. J. Nilsson and B. Raphael, ”A For-
mal Basis for the Heuristic Determination of Minimum
Cost Paths”, IEEE Transactions on Systems Science
and Cybernetics, Vol. 4, No. 2, pp. 100-107, 1968.

[15] V. Tryba and K. Goser, ”Self-organizing feature maps
for process control in chemistry”, T. Kohonen, K. Mk-
isara, O. Simula, and J. Kangas, editors, Proceedings of
the International Conference on Artificial Neural Net-
works, pp. 847-852, North-Holland, Amsterdam, 1991.

[16] State Library of New South Wales, Accessed 27th Feb
2007, http://www.sl.nsw.gov.au/pls/benchmark/

8


