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Abstract—    This paper introduces a novel way of 

analyzing input patterns presented to the Self-Organizing 
Map (SOM). Instead of identifying only the “winner,” 
i.e., the model that matches best with the input, we 
determine the linear mixture of the models (reference 
vectors) of the SOM that approximates to the input vector 
best. It will be shown that if only nonnegative weights are 
allowed in this linear mixture, the expansion of the input 
pattern in terms of the models is very meaningful, 
contains only few terms, and provides a better insight into 
the input state than what the mere “winner” can give. If 
then the models fall into classes that are known a priori, 
the sums of the weights over each class can be interpreted 
as expressing the affiliation of the input with the due 
classes. 

1 Introduction 
When an unknown input pattern is presented to the Self-
Organizing Map, called briefly the SOM (Kohonen, 
2001), the algorithm returns and displays the location of 
the best-matching model, the “winner.”   
 
However, it has long been felt that a single response, the 
“winner,” to an input pattern is not sufficient for the 
description of input information that is derived from two 
or more independent sources, for instance when the input 
describes features of several distinct objects that occur 
simultaneously. Consider also that if the SOM is used to 
track sequences of the states of a system or a machine, the 
input vectors are usually constructed as averages of 
measurements made over time windows of considerable 
length, say, minutes or even hours. If the system is just 
then undergoing a state transition, the input vector, 
averaged over the time window, is expected to be a linear 
mixture of the samples, eventually representing different 
states that have occurred within that window. 
 
Another reason for mixtures of input states to occur is that 
the system from which the input observations are derived 
is defined by several more or less independent state 
variables. Their deviations from regular values are caused 
by faults or noise. The simultaneous occurrence of two or 
more independent faults in different parts of the system 

might then be reflected as a mixed input state of the SOM, 
and thus as a mixture of input signal components, each of 
which corresponds to an individual fault. 
 
A very intriguing case occurs in document analysis that is 
based on the usage of typical words in the text. An 
interdisciplinary or a multidisciplinary document is 
expected to contain words from the different vocabularies 
of its subtopics. One may then be interested in the relative 
contributions of the mixed topics in the document.  
 
It will be shown in this article that a more thorough 
description of the input is obtainable if, instead of 
determining only the “winner” among the models, one is 
able to fit a linear mixture of the models (reference 
vectors) to the input. It should be noted that I do not mean 
”K winners,” which are rank-ordered according to their 
matching, nor a set of  “parallel winners,” each of which 
is defined over a local area of the SOM. Instead, the input 
pattern is approximated by the linear mixture of any 
subset of models (i.e., reference vectors) that 
approximates to the particular input best. 
  
In this paper we shall show, however, that if only 
nonnegative weights are allowed in the fitting of the 
models, there will be left only a relatively very small 
number of models in the mixture, i.e., the fitting is very 
selective.    
  
Since we are going to deal with linear-fitting problems in 
the sequel, it may seem proper that the SOM should be of 
the dot-product type, in which the matching of the input 
vector with the model vectors is measured in terms of 
their dot products. Then the input vector and all of the 
weight vectors shall be normalized, say, to unit length. 
Nonetheless there are no restrictions in principle to the 
application of the same ideas to SOMs that have been 
constructed on the basis of the Euclidean or any other 
metric. Even in these cases, however, before using this 
method, it will be mandatory to normalize the SOM 
model vectors. 
 
Let us regard the input as a Euclidean vector x, and let its 
dimensionality be n. In matrix calculations x shall be 
regarded as an n-dimensional column vector. Let us then 



denote the SOM by a p times n matrix M, where p is the 
number of the models. If the model vectors (regarded as 
column vectors) of dimensionality n are denoted as mi = 
1, 2, … , p, they constitute the rows of M and must then 
be denoted by mi´, where the prime (´) denotes the 
transpose of a vector or a matrix. All of the mi shall have 
an identical Euclidean norm. In the dot-product SOM, the 
“activation” of the models, or the degree of matching of x 
with the mi, is thought to be represented by the p-
dimensional activation vector (column vector) y, 
 
           y = M x .                                                              (1) 
 
The largest component of y identifies the best-matching 
model, the “winner.” 
 
Comment. Graphically, the SOM is most often defined as 
a two-dimensional array of nodes where with each node i, 
a model mi is associated. During learning, the models in 
this array interact in such a way that the highest-activated 
cell imposes corrections on its neighboring models in the 
array in the same direction. One must clearly realize the 
distinction between the rows of matrix M and the 2-D 
geometry of the SOM array, however.  

2 Failure of the Unconstrained 
Linear Fitting 

Let us tentatively try to fit the best linear mixture of any 
given reference vectors mi to a given vector x. In other 
words, we want to determine the optimal scalar 
coefficients ki  in the following error expression e, 
whereupon the Euclidean norm of e shall be minimized: 
 
       e  =  k1 m1  +  k2 m2  + … +  kp m p –  x  .                (2) 
 
Let k be the column vector formed of the ki, 
 
       k = [k1, k2, …, kp]´.                                                   (3) 
 
The linear mixture of the mi can be written, using matrix 
expressions, as  
 
       k1 m1 + k2 m2 + ... + kp mp = M´ k ,                         (4) 
 
where M´ is the transpose of the matrix M that has the 
reference vectors as its rows; the latter are identified as 
the mi´.  Now M´ k is the estimate of x. If the fitting error 
is written as 
 
        e = M´ k – x ,                                                          (5) 
 
the square of the Euclidean norm of e is  
 
        e´ e  =  k´ M M´ k – k´  M x – x´ M´ k + x´ x .     (6) 
 

It is generally known that e´e is minimized when its 
gradient with respect to k is equal to zero. This gradient 
(cf., e.g., Kohonen, 2001, Ch.1) is 
 
      gradk (e´e) = 2 MM´ k – 2 M x .                              (7) 
 
From the expression (7) we may try to solve for k: 
  
       k  = (MM´)-1 M x .                                                  (8) 
 
Unfortunately, the expression (8) can only be computed if 
(MM´)-1 exists, i.e., if the determinant of MM´ is 
nonzero. A necessary condition for it is that all of the mi,  
i = 1, 2, …, p are linearly independent. For the SOM 
matrices this is usually not the case. 
 
Even though we would have a SOM in which the 
dimensionality of the vectors and the number of the 
models were identical, and even though (M M´)-1 would 
exist, we may discern a weird result. If the input x is an 
arbitrary vector, some of the ki in its linear mixture may 
attain very large values (say, some thousands when the 
vectors are normalized). The fitting may be perfect, but it 
makes no sense. This kind of a problem is called 
“overfitting.”  

3 Fitting with Nonnegative 
Weighting Coefficients  

Much attention has recently been paid to least-squares 
problems where the fitting coefficients are constrained to 
nonnegative values. Such constraints are natural, when 
the negatives of the samples have no meaning, for 
instance, when the input consists of statistical indicators 
that can have only nonnegative values, or is a weighted 
word histogram of a document. In these cases at least, the 
constraints contain additional information that is expected 
to make the fits more meaningful. In any case we are able 
to circumvent the above “overfitting” problem, if we 
forbid the (eventually large) negative weights. 
 
The mathematical problem is formulated as follows: for 
general dimensionalities of M and k, 
 
         minimize  norm(M´ k – x)                                     (9) 
 
subject to the condition that all of the elements of k are 
nonnegative. In this work the norm is Euclidean. 
 
Gradient-descent optimization. There exist several ways 
for the solution of (9). The simplest and most 
straightforward is the gradient-descent optimization. An 
iterative algorithm that takes into account the 
nonnegativity constraint can be specified in the following 
simple way. Denoting the component i of the gradient in 
eq.(7) by Gi we write 
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     for all i ,   ki (t + 1) = max (0, ki (t) – αGi ),             (10) 
 
where t is the integer-valued index of the iteration step, 
and α is a small scalar factor that defines the size of the 
gradient step. Typically, a few tens of thousands of 
iteration steps (10) are necessary to reach a reasonably 
stable solution with a numerical accuracy of, say, three 
significant digits. 
 
The Matlab function lsqnonneg. The present fitting 
problem belongs to the broader category of quadratic 
programming or quadratic optimization, for which 
numerous methods have been developed over the years. A 
recent one-pass solution of (9) is based on the Kuhn-
Tucker theorem (cf. Lawson & Hanson, 1974), but it is 
too complicated to be reviewed here. Let it be mentioned 
that it has been implemented as the function named the 
lsqnonneg in the Matlab:  
   
          K = lsqnonneg (M´, X, K(1)) ,                           (11) 
 
where K stands for k, M has been denoted by M and x by 
X, respectively, and K(1) is the initial value of k used by 
the algorithm. 
 
Limitations of the methods.  For both of the above 
methods, the rank of the matrix M can be arbitrary, and 
solutions exist even though (MM´)-1 does not. 
Nonetheless one can easily see that there are theoretical 
cases where the optimal solution is not unique, for 
instance, when some of the mi in the final optimal mixture 
are linearly dependent. This condition can be checked by 
first forming the matrix M1 of those models, the 
corresponding coefficients ki of which are positive, and 
then computing the determinant det(M1 M1´). If it is zero, 
the components in the linear mixture are linearly 
dependent. Such a case will also be manifested by a slow-
down of the computing time in both of the above 
methods. 
 
 

4 Applications 

4.1 Cellular-Phone Data 
The first practical example describes the performance of a 
cell in a cellular-telephone network. The input vector to 
the SOM was defined by 22 variables that describe the 
key performance indices (KPI) such as signal qualities in 
inward and outward transmission, frequencies of breaks in 
operation relating to different kinds of faults, and loadings 
of the cell. We had data from 110 cells available, and 
each one of the records was an average of the respective 
measurement or evaluation over an hour. This example is 
from cell No. 50 during 879 hours of uninterrupted 

operation. The particular SOM constructed for this study 
consisted of 80 models with the dimensionality of 22.  
 
A comparison of the different responses to the input 
vector has been presented in Fig. 1 for five successive 
sampling intervals (Nos. 10 through 14). The algorithm 
thereby used was the lsqnonneg. On the first row we see 
the degree of matching (dot product) of the various 
models with the input. The second row shows the location 
of the ”winner” on the SOM. The third row illustrates the 
weighting coefficients ki, displayed on the SOM 
groundwork. The shade of the dots corresponds to the 
value of ki. One can discern that the resulting mixtures 
that describe the input states are not very complex: on the 
average, they contain only about five per cent of all 
models in this application. 
 
Table 1 shows the quantization and fitting errors for five 
samples that were not involved in the computation of the 
SOM. Let us recall that the expression of the former error 
is norm(mc – x), where mc is the “winner,” and that of the 
latter is norm(M´k– x), respectively. 
 
 
Table 1: The quantization error and the fitting error for 
five successive sampling intervals of the mobile-phone 
data. 
 

Interval 
 No. 

Quantization 
error 

Fitting  
error 

10 .5659 .3072 
11 .2996 .2272 
12 .1777 .1270 
13 .1550 .0907 
14 .1694 .1435 

 

 
Fig. 1. Comparison of different displays. Horizontal 
direction: five successive sampling intervals.  First row: 
The activation vectors y = Mx averaged over one-hour 
sampling periods. Second row: The locations of the 
“winners” on the SOM. Third row: the fitting coefficients 
ki, shown on the SOM groundwork.  
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4.2 Document Analysis  
In the second and third application, the input item was a 
weighted histogram of the vocabulary of a given 
document. The objective was to perform a text analysis, 
in order to discover to what extent the vocabularies of the 
given document and those of the other documents 
overlap. It must be emphasized that only the most 
distinctive words were taken into account in the 
overlapping vocabularies. 
 
 
4.2.1 The Reuters Corpus 
 
The first more extensive experiment of this type was 
based on the text corpus collected by Reuters. No original 
documents were made available, but Lewis et al. (2004) 
have preprocessed the textual data by removing the stop 
words, and reducing the words into their stems. J. 
Salojärvi from our laboratory selected a 4000-document 
subset from this preprocessed corpus, restricting only to 
such documents that were classified into one of the 
following categories:  
  
        1. Corporate-Industrial.  
        2. Economics and Economic Indicators. 
        3. Government and Social. 
        4. Securities and Commodities Trading and Markets.    
 
Salojärvi then picked up those 1960 words that appeared 
at least 200 times in the selected data and weighted the 
word  i (”term”) of document  j  by the factor 
 
       wij = (1 + log( TFij )) log( N / DFi ),                       (12) 
 
where TFij is the ”term frequency” (frequency of word i in 
document  j), DFi  (”document frequency”) tells in how 
many documents word i appears, and N is the total 
number of documents (Manning & Schütze,1999). 
          
Labeling of the SOM models.  The number of input 
items used for training was only about twice the number 
of models, so it was not reasonable to label the models 
according to the majority of hits on them. Instead, each 
model was labeled according to its K nearest neighbors in 
the input space of the training data, where K was initially 
taken as 10 and, for each model separately, increased 
gradually only in the case of ties in the determination of 
the majority of labels. 
 
Fig. 2 shows the labeled class regions on the SOM, using 
four different shades. 
 

 
Fig. 2. Labeling of the SOM nodes according to the  four 
document classes. The shades correspond to the classes. 
 
  
 Fitting results.  The best-fitting linear mixtures of 
models for three randomly chosen documents are shown 
in Figs. 3, 4 and 5 on the SOM groundwork, indicating 
the value of the due ki by the shade of the corresponding 
SOM location, respectively. 
 
The quantization error and the fitting error for the three 
documents are given in Table 2. Notice that these 
documents were excluded from the corpus when training 
the SOM.  
 
 
Table 2:  The quantization error and the fitting error for 
three documents. 
 
 

Document  
No. 

Quantization 
error 

Fitting  
error 

101 .8541 .8036 
201 .8084 .7767 
901 .8686 .8082 
 
 

 
Class mixtures.  If it is wanted to evaluate, e.g., the 
degree of multidisciplinarity of a document, one approach 
is to sum up the ki of each class separately. Figs. 6, 7 and 
8 illustrate, in relation to this approach, the affiliations of 
the individual documents with the classes 1 through 4, 
respectively. The first and second documents belonged to 
category No. 1, and the third document was from category  
No. 4.  
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Fig. 3. The linear mixture (with nonnegative  
coefficients shown as shaded dots) of models that  
fits best with document No. 101 in the corpus. 
 

 
Fig.4.  The linear mixture (with nonnegative  
coefficients shown as shaded dots) of models that 
fits  best with document No. 201 in the corpus. 

 

   
 
Fig. 5.  The linear mixture (with nonnegative 
coefficients shown as shaded dots) of models that 
 fits best with document No. 901 in the  corpus. 
. 

 

 
Fig. 6.  Relative contributions of the vocabularies of the 
four categories to the vocabulary of document No. 101. 
This document belonged to category No. 1. 

 

 
Fig. 7.  Relative contributions of the vocabularies of the 
four categories to the vocabulary of document No. 201. 
This document belonged to category No. 1. 

 

 
 

Fig. 8.  Relative contributions of the vocabularies of the 
four categories to the vocabulary of document No. 901. 
This document belonged to category No. 4. 
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4.2.2. Applications to the Academy of Finland 
 
 
The Academy of Finland made 3224 grant applications 
from the years 2005 and 2006 available to us, in order to 
find out, e.g., to what extent the area of research is 
reflected in the textual content of the research plan, and to 
analyze the degree of multidisciplinarity of the 
applications. There were 44 ”official” research areas into 
which the applications were classified. 
 
The text mining procedure was almost similar to that used 
with the Reuters corpus. The selected vocabulary 
consisted of 1200 words, and the size of the SOM was 
1200, too. 
 
Figs. 9 and 10 exemplify the linear mixtures of models 
that describe the applications Nos. 109706 and 109707, 
respectively.  
 

 
Fig. 9.  The linear mixture of models fitted to the 
application No. 109706. 
 

 
Fig. 10.   The linear mixture of models fitted to the 
application No. 109707. 
 
 
The quantization error and the fitting error of the cases 
described by Figs. 9 and 10 are given in Table 2. 
 
 
Table 3:  The quantization and fitting errors vs. Figs. 9 

and 10. 
 

Application 
 No. 

Quantization 
error 

Fitting  
error 

109706 .8820 .7722 
109707 .6332 .5482 

 
 
Examples of Classification into Research Areas. Figs. 
11 and 12 give the degrees to which a given application  
is confused with the different research areas, as analyzed 
by text mining.  The columns of a histogram indicate to 
what extent the weighted vocabulary of an application 
resembles to those of the 44 research areas. 
 
The applicants were also asked to give the primary and 
the secondary research area of their proposal, which have 
been exemplified  on the top of Figs. 11 and 12. It turned 
out that their choices coincided with the results given by 
the text mining to an accuracy of about 70 per cent. There 
were several reasons for the remaining discrepancies: 
 

(i) Some of the 44 research areas were very 
similar, e.g., there were three areas 
connected with biochemistry, and five areas 
connected with the environmental sciences, 
and the terminologies in each subgroup were 
rather similar. 

  
(ii) The choice for the primary and secondary 

research areas made by an applicant was 
completely subjective. 

 
(iii) Each area was compared with 43 other 

areas, so even though there is only a small 
mutual overlap in the weighted vocabularies 
of two areas, there are many possibilities for 
the confusion of their vocabularies with  the 
43 other areas. All of these paired 
differences, however, sum up to the total 
error. A more realistic measure might be the 
average confusion with a different area. 

 
 
 
Correlation coefficient. Another evaluation of the 
accuracy of this method is obtained if one compares the 
distribution of the primary research areas of the 3224 
applications with the sum of all histograms. The 
correlation coefficient of these two “distributions” was 
.98. 
 

 
 
 

 
 

 
Fig. 11. Relative contribution of the weighted 
vocabularies of the 44 research areas to the weighted 
vocabulary of application No. 109706.  Research area 44 
corresponds to ecology and evolution research, whereas 
29 means forest research. The subjective choices by the 
applicant for the primary and secondary research areas 
have been given on top of the figure.    
 

 
 
Fig. 12. Relative contribution of the weighted 
vocabularies of the 44 research areas to the weighted 
vocabulary of application No. 109707.  Research area 31 
corresponds to cellular and developmental biology, 
whereas area 30 contains biochemistry, molecular 
biology, and microbiology. The subjective choices by the 
applicant for the primary and secondary research areas 
have been given on top of the figure.    
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5 Conclusion 
The purpose of this paper has been to extend the use of 
the SOM by showing that instead of a single ”winner,” 
one can define several “outputs” that together describe the 
input pattern more accurately. These “outputs” are 
defined to be the components in the linear mixture of 
SOM models that approximate to the input best in the 
sense of least squares. Only nonnegative weights in the 
fitting are allowed.  
 
In the light of the above experiments it looks evident that 
the approximation of the input by the optimized 
nonnegative-coefficient linear mixture of the SOM 
models contains more information than the mere location 
of the best-matching model can give. It is striking how 
few nonzero components are contained in  the optimized 
mixture. 
 
If the models fall into classes that are known a priori, the 
sums of weights of the models over each class can be 
interpreted as expressing the degree to what the input is 
affiliated with the various classes. 
 
An early version of this work has been published in 
(Kohonen, 2007). 
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