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*Abstract— In this paper, an important application of 

Self-Organizing Maps (SOM) to construction of adaptive 
meshes is considered. It is shown that application of the 
basic SOM model leads to a number of problems like 
inaccurate fitting the border of a physical domain, mesh 
self-crossings, etc. The composite SOM model is 
proposed which is based on the composition of a number 
of SOM models interacting in a special way and self-
organizing over their own set of input data. A core of the 
composite SOM model is the colored SOM model with 
nonadjustable neurons which provides us a technique to 
control the neuron weights adjustment taking into account 
the fixed ones and the general layout of the mesh. As a 
result, the composite SOM model allows us to 
approximate an arbitrary complex physical domains with 
well topology preservation.  

1 Introduction 
Self Organizing Map (SOM) is a neural network that has 
been used in a wide range of scientific and industrial 
applications [1]. The ability of SOM model to perform the 
topology preserving mapping of high dimensional data 
onto a low dimensional space makes it possible to apply it 
to the construction of adaptive meshes used in the area of 
complex numerical simulation problems [2].  

Within the scope of all types of adaptive meshes, there 
is an important class in which the mesh is an image under 
an appropriate mapping of a fixed mesh. All conventional 
methods of this class, such as equidistribution method [3], 
Thompson method [4], elliptic method [5], etc., and even 
algebraic and conformal mapping ones, eventually require 
solving a complicated system of nonlinear partial 
differential equations (PDEs) to obtain good enough 
adaptive meshes. The necessity of solving PDEs usually 
leads to significant difficulties, among which are those 
connected with initial mesh, limitations on mesh density 
function, efficient parallelization, etc. [6]. Additionally, 
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special complex PDEs for mesh construction are required 
for different dimensionalities of a physical domain.  

Self-organizing properties, inherent parallelism and 
stochastic nature of the SOM learning algorithm form an 
essential basis for the development of highly efficient 
methods of mesh construction [6]. Unlike the 
conventional methods, the SOM is expected to allow us to 
construct adaptive meshes with arbitrary initial data, 
without limitations on the mesh density function. 
Moreover, it is possible to make the process of mesh 
construction fully automatic, particularly, there is no need 
to fix the boundary nodes beforehand, and the algorithm 
of mesh construction can be made universal with regard 
to dimensionalities of the physical domain [7]. 

When applying a basic SOM [1] for the mesh 
construction, there are a number of problems. First, it is 
impossible to obtain an accurate approximation of the 
border of a physical domain; and second, the failures of 
topology preservation can lead to mesh self-crossings and 
result in the mesh nodes going out of the physical domain 
when constructing the mesh over the non convex domains 
and with complicated mesh density distribution. These 
problems make it difficult to obtain qualitative adaptive 
meshes [8]. 

In this paper, the composite SOM model is proposed. 
This model is based on the composition of  a number of 
SOM models interacting in a special way and self-
organizing over their own set of input data. The SOM 
models taking part in the composition are responsible 
typically for the border or interior of a physical domain. 
The main task of the learning algorithm for the composite 
SOM model is to provide the consistency between these 
SOM models. The composite SOM model allows us to 
overcome the problems of the basic SOM listed above 
and, thus, to construct qualitative meshes automatically 
over complex, even multiply-connected, physical 
domains. 

There are several works in which an attempt of joining 
together a number of SOM models, self-organizing over 
given sets of input data, has been made.  

The first has been developed for 3D shape 
reconstruction for mobile robotics [9]. Input data is 
divided into subsets by clustering and then each subset of 
data is used for training of a corresponding SOM model. 



After the training, some of the SOMs are joined by 
connecting their nearest boundary neurons. The approach 
is not suitable for mesh construction because joining is 
performed without taking into account the topology of 
SOM models and is based only on the closeness of neuron 
weights. In the proposed composite SOM model, joining 
is accomplished automatically during the learning.  

For adaptive meshes, in [10] the interweaving 
algorithm has been proposed which brings together 1D 
SOM for the boundary nodes, and 2D SOM for the 
interior ones. But this algorithm interferes in the input 
data occurrence that can lead to the distortion of mesh 
density function. The more developed composite 
algorithm is proposed in [8]. The composite algorithm is 
based on the special alternation of 1D and 2D basic SOM 
models. But it still does not allow the mesh to fit in an 
appropriate way the essentially non-convex domains. The 
composite algorithm serves as a background for the 
learning algorithm of the proposed composite SOM 
model. 

A core of the composite SOM model is a SOM-like 
model that may involve a number of nonadjustable 
neurons with a technique balancing the border effect for 
the small learning radius and coloring the neurons and 
input data. Using appropriately these neurons together 
with the coloring technique, it is possible to essentially 
improve the topology preservation. The coloring 
technique is close to the multi-block adaptive meshes 
approach used in conventional PDE-based methods [4]. 

On the one hand, the use of nonadjustable neurons and 
coloring limits freedom of self organization of SOM. But 
on the other hand, from a practical point of view, the 
composite SOM model becomes more flexible and 
capable of accurate approximation of input data with any 
distribution. 

We believe that the composite SOM model is 
applicable not only in the field of adaptive mesh 
construction but in other areas in which it is possible to 
divide input data into subsets or separate border and 
interior data.  

The paper is organized as follows. In Section 2, the 
application of the basic SOM model is discussed, the 
learning rate suitable for adaptive mesh construction is 
presented. Section 3 contains the description of the 
colored SOM model with nonadjustable neurons is 
proposed. In Section 3, the composite SOM model, its 
architecture and the learning algorithms are proposed. 
Section 5 concludes the paper. 

2 The basic SOM for adaptive 
mesh construction 

Let the SOM neuron layer consists of N neurons. Each i 
neuron has a fixed location qi in the Euclidean space RQ, 
where qi is a point in the given computational domain Q. 
Therefore, the neuron layer forms a mesh 

1{ ,..., }N NQ q q=  over Q. Let a map M be referred to the 

set of neuron indices {1,..., }N . For simplicity, it is 

assumed that the mesh QN is a rectangular uniform one, 
but all the techniques proposed in this work can be 
applied for meshes of other structures. For each pair of 
neurons, i-th and j-th, , 1,...,i j N= , there is a lateral 

connection between them with strength being a 
decreasing function of the distance between qi and qj. 

Let G  be a physical domain, in the Euclidean space RG, 
on which an adaptive mesh 1{ ,..., }N NG x x=  is to be 

constructed, where ix G∈ , 1,...,i N=  are desired 

adaptive mesh nodes locations. When applying SOM for 
adaptive mesh construction, the point xi is a weight vector 
of the corresponding i-th neuron which is updated during 
the learning process. Random points from G serve as the 
input data for SOM. Density distribution of the resulting 
mesh is controlled by the probability distribution used for 
random point generation [8].  

The learning algorithm for the basic SOM model 
consists of the following steps. At each iteration t, a 
random point y is generated from G; among all the 
neurons the winner is selected, which has the weight 
vector ( )mx t  being closest to the y; and all the neurons 

adjust their weights according to the following rule: 
( 1) ( ) ( ) ( , )( ( ))

mi i q i ix t x t t t q y x tδ η+ = + − . (1) 

where ( ) [0,1]tδ ∈  is responsible for a learning step and 

( , ) [0,1]
mq it qη ∈  is a function which defines the strength 

of the lateral connection between the m-th and i-th 
neurons. These two functions control the magnitude of 
nodes displacements in G while the nodes move towards 
the point y, and essentially influence on the quality of 
resulting meshes and speed of construction process. The 
composite SOM model employ the same learning rule (1) 
as the basic SOM model, but this rule is applied in 
specific conditions as it is described in the next Sections.  

The learning rate selection is very important issue when 
applying the SOM for mesh construction. Therefore, 
based on the experiments the learning rate has been 
thoroughly selected to provide the good mesh quality with 
reasonable computational speed. The learning step is 
define by the function 0.2( ) ( )t t tδ χ−= , where 

5( ) /( ) 1 t T Tt eχ −= −  and T is a maximum number of 

iterations which is fixed beforehand depending on N. In 
our experiments, 10T N= . The function for lateral 
connections has the following form: 

2
( , )

( )( , )
m i

m

d q q

r t
q it q sη

� �
� �
� �

= , where (0,1)s ∈  is fixed to be close 

to zero, e.g. 510s −= , and ( )r t  is a learning radius which 

is a decreasing function of t and given by 

( )/ 0,25( ) ( ) ( ) (1)0.05 ( )t Tr t r T t r r T tχ −= + − . Here (1)r  

and ( )r T  initial and final radiuses, (1) ( )r r T> . The 

learning rate provide the condition that the winner 
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receives the maximum displacement, while for the other 
nodes the greater the distance between them, the less their 
weights change.  

When applying the basic SOM for mesh construction, 
the following problems occur. First, it is impossible to 
obtain accurate approximation of the border of a physical 
domain, as it can be clearly seen from all of the examples 
in Fig. 1, because boundary nodes never reach the border 
and they are influenced by the border effect. Second, 
some of the mesh nodes can go out of the domain in the 
case of complex non-convex domains (Fig. 1(a)). Third, a 
general layout of the mesh is fixed unpredictable and can 
turn out to be unsuitable for the given configuration of the 
domain (Fig. 1(a)). Fourth, if the probability distribution 
p(x) is non uniform, then boundary nodes can propagate 
to the interior of the domain that is the result of bad 
topology preservation as Fig. 1(b) shows. Finally, the 
mesh may contain self-crossings (Fig. 1(c)) that makes it 
entirely unusable for numerical simulations. All of these 
problems can be solved by using the composite SOM 
model presented below. 

 
 

(a) (b)  

 
(c) 

Fig. 1. Problems of the basic SOM application to adaptive mesh 
construction. (a) mesh nodes go outside the non convex domain 
and the mesh layout is unsuitable; (b) boundary nodes propagate 
to the interior of the domain; (c) mesh self-crossings. 

3 Colored SOM with non-
adjustable neurons 

A core of the composite SOM model is a SOM-like 
model that involves a number of non adjustable neurons 
and the technique of coloring the neurons and input data. 

Let F M⊆  be a subset nonadjustable neurons. The 
weights of these neurons are fixed in some way and not 
adjusted during the learning process. The task is how to 
organize the learning process for adjustable neurons 
updating their weights in consistency with the 
nonadjustable ones. Due to the lateral connections, 
according to the learning rule (1), neurons change their 

weights in the same direction as the winner, with the 
magnitude depending on the distance to the winner in Q. 
Therefore, the nonadjustable neurons should participate in 
the winner selection process. 

Nonadjustable neurons don’t change their weights 
towards the random point y while the other neurons do. 
To provide consistency, the point y is to be replaced by 
the location of the mesh node xm if the m-th neuron is the 
winner and nonadjustable one. As a result, the mesh 
nodes move directly towards a fixed node once it 
becomes a winner. It has to be noted that replacing the 
random point by the nonadjustable winner balances the 
border effect if the final learning radius r(T) is small.   

If the weights of nonadjustable neurons are fixed 
appropriately, the topology preservation can be improved 
essentially, e.g. it is possible to avoid mesh self-crossings 
and to exclude the situation when boundary nodes 
propagate to the interior of the physical domain. Also, this 
technique allows us to obtain the mesh without nodes 
outside the physical domain, even in the case of complex 
non-convex domain like the one shown in Fig. 1(a). 

 

 

 
Fig. 2. The process of mesh construction with nonadjustable 
boundary neurons: 1st, 10th and 10000th iterations. 
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In this example, all the boundary mesh nodes are placed 
to their correct positions along the border of G and has 
been declared as nonadjustable. Initial locations of the 
interior mesh nodes has been set up to (0,0). It can be seen 
that the fixed boundary nodes induce the correct mesh 
lay-out (Fig. 2) and the interior nodes finally fit the 
boundary ones in an appropriate way. Such a distribution 
of mesh nodes is unreachable when using the basic SOM 
(compare with Fig. 1(a)). 

The next question is how to obtain appropriate weights 
for nonadjustable neurons? For example, it is still a non- 
trivial task to fix the boundary nodes along the border 
beforehand like it’s done in Fig. 2. As a solution to this 
question, we propose the composite SOM model which is 
able to alternate construction of the mesh over particular 
parts of the domain and, thus, to distribute all mesh nodes 
over the domain automatically based on the self-
organization. Nonadjustable neurons then serve as the 
basis for providing the consistency between those 
different parts of the mesh. For example, at the stage of 
updating the interior nodes, the boundary ones can be 
considered as nonadjustable, while the correction of 
boundary nodes is performed with fixed interior nodes. 

Since the composite SOM model distribute the mesh 
nodes based on self-organization, there is a chance to 
obtain incorrect mesh layout. To make the composite 
SOM model flexible, let us introduce the coloring 
technique which helps the model to detect a correct mesh 
layout. Although this model is capable to detect the layout 
by itself, the use of the coloring technique makes it  
possible to construct a mesh over an arbitrary complex 
physical domain by dividing it into a number of more 
simple ones.  

Let 1: { ,..., }G pC G c c→  be a coloring function which 

puts each point of G into the correspondence with one of 
the colors 1,..., pc c . Similarly, a coloring function 

1: { ,..., }Q pC M c c→  defines the colors for neurons. 

These functions take part in the learning algorithm in such 
a way that at each iteration the winner is selected from 
neurons of the same color as the random point y. As a 
result, mesh nodes of the color cj can become winners 
only when y is generated from the subdomain of the same 
color cj, and then, they gradually move towards this 
subdomain. In Fig. 2, boundary nodes has been 
distributed using the coloring functions shown in Fig. 4. 
The aim of coloring in this case is to separate parts of the 
domain border which are close to each other.  

Before presenting the composite SOM model, let us list 
the learning algorithm for colored SOM model with 
nonadjustable neurons (the procedure SOM-Core) which 
is used at each alternation stage of the learning algorithm 
for the composite SOM model and processes a part of the 
mesh.  

Algorithm 1. The procedure SOM-Core. 
Repeat the following operations at each iteration 

,...,st fint t t= : 

(1) Generate a random point  y G∈  according to the 

probability distribution ( )p x . 

(2) Calculate the Euclidean distances ( , )d ⋅ ⋅  between y 

and all the weights ( )ix t  for which ( ) ( )G QC y C i= , 

and choose the winning neuron with weights 
( )mx t , where 

arg min{ ( , ( )) | ( ) ( )}i G Q
i M

m d y x t C y C i
∈

= = . 

(3) If m F∈ , i.e. the winner is nonadjustable, then the 
random point y is to be replaced by the weight 
vector of the winner: : ( )my x t= . 

(4) Adjust weights of all neurons with indices from 
M \ F using the following rule: 

( 1) ( ) ( ) ( , )( ( ))
mi i q i ix t x t t t q y x tδ η+ = + − ,  

where \i M F∈ . 

4 Composite SOM model 
The idea of the composite SOM model is to combine 
together a number of SOM models interacting between 
each other in a special way and self-organizing over their 
own set of input data. Learning algorithm for the 
composite SOM model is based on the alternation of 
training of each SOM model by the Algorithm 1. 

Let the physical domain G be divided into subdomains 

1,..., nG G . The neuron layer is also divided into n subsets. 

Each k-th subset of neurons forms a part of the mesh 
which is to be spread over the subdomain Gk. A simple 
example of such a division is when we separate the border 
and interior of a physical domain and divide all mesh 
nodes into boundary and interior nodes. This kind of 
division seems to be the most convenient for the majority 
of physical domains. 

To specify a SOM model for each k-th part of the mesh, 
it is necessary to define a map kM M⊆ , 1,...,k n= . 

Since each k-th part is to be adapted to a number of 
neighboring parts of the mesh, the map Mk should contain 
not only neurons from the k-th part but the ones from the 
neighboring parts of the mesh which are the nearest 
neighbors for the neurons of the k-th part. These 
neighboring neurons are considered as nonadjustable 
while training the k-th SOM model. But they can adjust 
their weights during another alteration stages. The set of 
all nonadjustable neurons for the k-th SOM model is 
denoted by kF , where k kF M⊆ , 1,...,k n= . An example 

of the collection of maps Mk is shown in Fig. 3. In this 
figure, two 1D meshes and one 2D mesh are to be 
consistently constructed over a multiply-connected 
physical domain.  
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Fig. 3. Collection of 3 submaps for construction of the mesh 
over a multiply-connected physical domain. Black neurons are 
adjustable and gray are nonadjustable.  

 
Furthermore, the coloring functions CG and CQ are 

given which are defined over the whole physical domain 
G and the map M respectively. An example of the 
coloring functions is shown in Fig. 4. These function has 
been used for construction the boundary mesh in Fig. 2. 

A collection of maps Mk together with the sets of 
nonadjustable neurons and the coloring functions 
constitutes the architecture of the composite SOM model. 
This architecture depends on the configuration of the 
physical domain.  

 

(a) 

 

(b) 

Fig. 4. Coloring functions. (a) the function CG; (b) the 
function CQ. These functions has been used for construction of 
the boundary mesh in Fig. 2.  

 
Each alternation stage of the learning algorithm for the 

composite SOM model consists in training of all the SOM 
models during a given number of iterations, is referred to 
as a macroiteration and is denoted by s. For each map Mk, 
there is a private counter of iterations, and the maximum 
number of iterations Tk is given in such a way that Tk is 
proportional to |Mk|, i.e. to the number of neurons in the 
map Mk. Let ( )k sϕ  be the number of iterations at the 

macroiteration s during which the procedure SOM-Core is 
to be applied to the k-th SOM model. For example, 

( ) /k ks T Sϕ = , where S is the maximum number of 

macroiterations. The functions ( )k sϕ  can be chosen 

depending on the physical domain configuration. The 
learning algorithm for the composite SOM model consists 
of the following steps. 

Algorithm 2. Learning algorithm for the composite 
SOM model. 
(0) Set arbitrary initial weights of all neurons (0)ix , 

1,...,i N= . 
(1) At the first macroiteration (s = 1), apply the 

procedure SOM-Core to the general map M without 
nonadjustable neurons, i.e. F = ∅ , with random 
points generated from the whole domain G and 

(1) 1stt = , 0(1)fint T= , where T0 is a given number of 

iterations. 
(2) Repeat the following operations at each 

macroiteration s > 1: for each 1,...,k n=  apply the 
procedure SOM-Core to the map Mk with 
nonadjustable neurons Fk, random points generated 
from Gk and ( ) ( 1) 1st fint s t s= − + , 

( ) ( ) ( )fin st kt s t s sϕ= + .  

The step (1) of the Algorithm 2 is a ordering stage of 
the learning algorithm. Application of SOM-Core to all 
mesh nodes makes the mesh become ordered and take 
roughly the form of G. The number of iterations T0 
depends on the physical domain configuration. Typically, 
T0 is varying from 0.01T to 0.005T. Due to the coloring 
functions, the correct mesh layout is reached after this 
step, and boundary nodes are located near their 
appropriate border positions.  

The step (2) is a refining stage of the learning 
algorithm. All the submaps consistently fit more and more 
fine details of their own part of the physical domain. 
Overlappings between the submaps help them to keep in 
touch with each other, and the alternation controls all the 
weights to change gradually. From our experiments, in 
some cases the better results can be obtained if the 
submap for outer boundary neurons does not have 
nonadjustable interior neurons. Actually, it means that the 
outer boundary nodes is responsible for the topology and 
all other nodes adapt to them. 

In Fig. 5, examples of adaptive meshes constructed 
using the proposed composite approach are shown. 
Quality of 2D meshes in Fig.5 has been measured by the 
generally accepted quality criteria for quadrilateral 
meshes such as the criteria of cell convexity and 
oblongness, the criterion of mesh lines orthogonality [8]. 
The values of these criteria are in the admissible range. 
The adaptive mesh over a multiply connected domain, 
shown in the center of Fig. 5, has been constructed for test 
numerical simulations of a solitary wave run-up around 
islands where each island assigns a hole in a physical 
domain [3]. Here mesh density is defined by ocean depth 
values. 
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Fig. 5. Examples of adaptive meshes constructed by the 
proposed approach of the composition of Self Organizing Maps.  

5 Conclusions 
The proposed method based on the composite SOM 
model provides us an efficient and automatic tool for 
adaptive mesh construction without limitations on an 
initial mesh and mesh density function and does not 
require to fix mesh nodes along the border beforehand, 
since the proper distribution of boundary nodes is 
detected during the learning process. At the same time, 
the quality of the resulting meshes constructed by the 
proposed composite approach has been evaluated as 
acceptable according to the commonly used quality 
criteria for finite-difference meshes. One of the most 

important feature of the proposed method is that it can be 
easily parallelized with efficiency greater than 90% [6].  

In the future, the composite model that combines a 
number of Growing Neural Gas models [11] is to be 
developed. This model is expected to provide us no less 
efficient method of unstructured adaptive mesh 
generation. Also, the SOM with nonadjustable neurons is 
to be applied for generation of moving adaptive meshes, 
since it can provide us a technique to control local 
adaptive mesh refinements without global mesh 
reordering.   
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