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Abstract— Self-Organising Maps have been used for
a wide range of clustering applications. They are well-
suited for various visualisation techniques to offer better
insight into the clusterings. A particularly feasible visu-
alisation is the plotting of single components of a data set
and their distribution across the SOM. One central problem
of the visualisation of Component Planes is that a single
plot is needed for each component, which leads to prob-
lems with higher-dimensional data. We therefore build on
the Metro Visualisation for Self-Organising Maps which
integrates Component Planes into one illustration. Higher-
dimensional data sets still pose problems in terms of over-
loaded visualisations – component selection and aggrega-
tion techniques are highly desirable. Hence, we propose
and compare two methods, one for the aggregation of cor-
related components, one for the selection of the compo-
nents that are most feasible for visualisation with respect
to a certain SOM clustering.

1 Introduction

The Self-Organising Map (SOM) is an unsupervised neu-
ral network used for the mapping of high-dimensional data
onto a usually two-dimensional output space. Exploratory
data analysis, for example, can be based on the Self-
Organising Map principles to allow insight into data that
usually cannot be given due to its high dimensionality.

A fact heavily contributing to the popularity of the Self-
Organising Map is the wide range of available visualisa-
tions. Even though the projection to two dimensions al-
ready brings a significant alleviation, the often large num-
ber of data vectors and their initially very high dimension-
ality still leads to difficulties in understanding the coher-
ence within the data. Especially for inexperienced users,
plain Self-Organising Map clusterings may seem over-
whelmingly difficult.

A well-known method to gain a better understanding of
the characteristics of certain areas of the map is the visu-
alisation of Component Planes. This visualisation parti-
tions the SOM into projections of single variables or com-
ponents. However, they are often still hard to make sense
of in case of high-dimensional data sets as the number of
plots needed for displaying Component Planes is still equal

to the number of dimensions. The clustering of component
Component Planes in order to obtain groups of common
characteristics can often ease this problem.

In this paper, we propose an intuitive metaphor of maps
of metro lines, which aims at showing a simplified repre-
sentation of the components in a single illustration – which
is a huge simplification compared to the plots of Compo-
nent Planes. For the Metro Visualisation each variable is
represented by differently coloured and connected line seg-
ments, called Component Lines. The metaphor of metro
maps utilises the concept of skewed distances. For these
distances do not truthfully represent real-world distances,
they are well-suited for our method.

In this paper, we particularly focus on the selection of
feasible components for visualisation. More specifically,
we emphasise the selection of components according to the
SOM clustering and the way these variables were mapped
onto the Self-Organising Map. This approach has the main
advantage of applying feature selection with respect to the
positions and transitions of a clustering’s component re-
gions. In other words, we omit components which would
result in scattered line visualisations across the map and
therefore hard to meaningfully display and apply the Metro
Visualisation to the remaining features only. In addition,
we propose an aggregation method which groups Compo-
nent Lines in case they are highly correlated, reducing the
amount of redundant information displayed. Many of the
steps involve a trade-off between the level of detail and
amount of information, and the clarity of the representa-
tion. We sometimes deliberately choose to sacrifice ac-
curacy in order to communicate the data in an intuitive
manner. The resulting visualisation allows to intuitively
communicate relationships between multiple variables and
tendencies on a SOM in a single visualisation, abstracting
from spurious details and focussing on the dominant at-
tribute value distributions on the SOM.

This paper is structured as follows. Section 2 gives an
overview of related work. In Section 3 we describe the
method for computing the Metro Visualisation. In Sec-
tion 4 we elaborate on methods for the selection of most
feasible components as well as their aggregation. In Sec-
tion 5, we apply our approach to the Boston Housing data
set. A conclusion and an outlook on future work are given
in Section 6.



(a) Plot of single component planes

(b) Plot of component planes grouped into six regions

Figure 1: Selected component planes and grouped component planes for the Boston Housing data set

2 Related Work
In this section, we introduce the Self-Organising Map and
related concepts and visualisation techniques.

2.1 Self-Organising Map
The Self-Organising Map is a widely-used, unsupervised
neural network model [1]. Its basic operation is the map-
ping from a high-dimensional input space to a lower-
dimensional, mostly two-dimensional, output space. The
mapping is preserving the existing topology within the
data, i.e. input patterns that are located closely in the input
space will also be positioned close to each other in the out-
put space. By contrast, dissimilar patterns will be mapped
on opposite regions of the map.

The Self-Organising Map is a low-dimensional lattice,
comprising M neurons or units. In this paper we use a
two-dimensional lattice and rectangular maps as the topol-
ogy. For each unit in the output space, a model vector mi of
the dimensionality of the input space is linked to a position
on the map, denoted as ξi = (ξx

i , ξy
i ). The model M is the

set of all model vectors. As part of the training process, the
best matching unit is identified by the use of a certain dis-
tance function and its model vector and the model vectors
of neighbouring units are shifted towards the input vector.
Self-Organising Maps have been applied to a multitude of
tasks, ranging from data mining [11] to document organi-
sation in digital libraries.

2.2 Self-Organising Map Visualisations
When Self-Organising Maps are to be visualised, one plat-
form to be used is the map lattice itself [10]. In that case,
quantitative information is most commonly displayed via

colour values or markers of different sizes. The analogy to
geography, for example, is exploited in [7]. Another pos-
sibility is the usage of an island-like metaphor, taking into
account the data vectors itself, to visualise important re-
gions of the map [4]. Many SOM visualisation techniques
that rely solely on the model vectors, others take into ac-
count the distribution of the data samples.

The unified distance matrix (U-Matrix) [9], e.g., is a vi-
sualisation technique that shows the local cluster bound-
aries by depicting pair-wise distances of neighbouring pro-
totype vectors. The Gradient Field [5] has some similarities
with the U-Matrix, but applies smoothing over a broader
neighbourhood. It plots a vector field on top of the lat-
tice where each arrow points to its closest cluster centre.
This can be used to contrast different groups of Component
Planes [6], with a similar goal as the method we describe.
Similarly, [11] applies clustering of and projection tech-
niques on the Component Planes with the aim of visually
ordering them. Other methods include Smoothed Data His-
tograms [4], which show the clustering structure by map-
ping each data sample to a number of map units. The P-
Matrix [8] is a density based approach that depicts the num-
ber of samples that lie within a sphere of a certain radius
around the model vectors. The radius is a quartile of the
pair-wise distances of the data vectors. Other techniques
adjust the distances in between units during the training
process to separate the cluster boundaries more clearly [2].

2.3 The London Underground Map

Metro map visualisations were introduced in the 1930s for
the London underground transportation network, and are,
with only slight modifications, still used for today’s Lon-
don metro maps. Contrary to previous metro maps it disre-
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garded geographical aspects, with the geometric represen-
tation of the river Thames being the only link between the
map and the actual landform of the area it represented. To-
day, this kind of schematic representation has become very
well-known. It is common knowledge that the distances on
metro maps are skewed and do not conform with real-world
distances, which is also true for the Metro Visualisations
of Component Lines we describe in this paper. Its prime
attraction, however, lies in its simplicity, abstracting from
spurious details and resulting in a more abstract represen-
tation that is more easily memorised and compared across
different variations.

3 The Metro Visualisation
The Metro Visualisation of Component Lines has been first
presented in [3]. Here, we will give a brief summary of
the most important aspects and then explain the component
selection process on top of the existing basic visualisation
approach in more detail.

3.1 From Components to the Metro Map
The classic Component Plane visualisation for some se-
lected components is shown in Figure 1(a). Values for this
component are depicted by colour-coding each unit. Start-
ing from that representation, each component is split into a
number n of disjoint ranges. In this paper, the division is
performed by calculating the threshold values as equidis-
tant points between the lowest and highest values in the
particular Component Planes. This results in n partitions
of the SOM. The upper limit l for region k for a component
cj is defined as follows:

lk(cj) =
k · (max cj −min cj)

n
+ min cj (1)

where cj ∈ RM is the j − th component, and max cj and
min cj denote the maximum and minimum values for this
particular component, respectively. The set of units that fall
within these intervals are denoted as:

Θj,k = {ξi | mi,j ∈ [lk−1, lk]} (2)

where j is an index over the dimensions or components,
k an index over the number of regions. mi refers to the
model vectors.

Further, region centres ωj,k for component j and region
k are computed as the centres of gravity as follows:

ωj,k =
1

|Θj,k|
∑

ξi∈Θj,k

ξi (3)

For being continuous values the coordinates for ω do not
necessarily coincide with the integer unit coordinates.

Ωj denotes the entire tuple of centres {ωj,k | 1 ≤ k ≤ n}
and implicitly represents the n−1 lines, obtained by linking
all centres of regions of a specific component ordered by
their value, henceforth referred to as Component Lines.

(a) Measure of distances be-
tween lines

(b) Snapping of region centres to
units of the SOM

Figure 2: Computation of distances between metro lines (a)
and snapping of region centres (b)

3.2 Distances between Component Lines
Figure 1(b) shows the same components as Figure 1(a), but
grouped into regions – the main modification that is made
for the calculation of the Metro Visualisation. As opposed
to the mere Component Planes, segregation of regions on
the map is apparently much easier, which also paves the
way for the identification of the most feasible components
later on. In order to perform subsequent steps, we need to
introduce a metric that measures the distance between two
component lines Ωj1 and Ωj2 . This function d introduces
a concept of dissimilarity, such that pairs of lines that are
mutually more similar than others can be identified. We
define this measure as

d(Ωj1 ,Ωj2) = min
( n∑

k=1

‖ωj1,k − ωj2,k‖,

n∑
k=1

‖ωj1,k − ωj2,(n+1−k)‖
)

(4)

where ‖ · ‖ denotes the Euclidean norm. The idea behind
this is that the lines are a simplified representation of the
gradient of a single variable, which should be visually sim-
ilar in case the variables are correlated. Thus, Compo-
nent Lines which share approximately the same path are
assigned a low distance. Figure 2(a) illustrates the compu-
tation of distances between Component Lines as the sum of
the distances between the pairs of centre points of the same
indices. Inverting the indices of Ωj2 as in the second argu-
ment of min in Equation 4 stems from the fact that Com-
ponent Planes can be negatively correlated. For similarity
only the absolute value of the correlation is of interest.

3.3 Visual Enhancements
Snapping For a more intuitive and smoother representa-
tion, and to more closely resemble the metaphor of a metro
map, the locations of the region centres are adjusted so that
the lines Ωj are drawn only horizontally, vertically, or di-
agonally, i.e. in multiples of 45 degrees angles. In order to
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achieve this kind of representation, we compute new Com-
ponent Lines Ω∗j where the centres ωj,k are restricted to
the discrete unit positions on the map. The selection of the
most feasible Component Lines is performed by minimis-
ing the energy function

min
Ω∗

j

d(Ωj ,Ω∗j ) | Ω∗j ∈ S (5)

where S is the set of valid candidate Component Lines as
defined above. Figure 2(b) illustrates the process of align-
ing the original Ωj to candidate lines Ω∗j and Ω∗∗j . The
small crosses represent the discrete positions of the map
units. In this example, the candidate with the smallest dis-
tance to the initial Component Line would be Ω∗∗j .

Metro Stations and Intersections The centres ω, rep-
resenting the centres of gravity of single components, are
indicated by markers on the Component Lines, intuitively
mimicking metro stops. To even more emphasise the
metaphor of real-life metro maps, intersections of Compo-
nent Lines are displayed as metro stations (white circles).
These stations more clearly point out the meaning of paral-
lel lines, namely their homogeneity with respect to a certain
local similarity.

Iconified Cluster Boundaries As described in Sec-
tion 2.2, the U-Matrix can be utilised to visualise cluster
boundaries. We use this technique in our map to show
distinct boundaries between clusters as iconified rivers or
lakes, which often feature in the background of real-world
metro maps. Analogously to a city being divided into dif-
ferent areas, our visualisation divides data into clusters.

4 Aggregation and Selection Steps
In this section, we explain two techniques for dimension-
ality reduction for the Metro Visualisation. One selects the
most feasible components with respect to the given clus-
tering, whereas the other combines different components
into one. With an increasing number of dimensions in the
input space, and therefore an increasing number of Compo-
nent Plane visualisations, the perception of this visualisa-
tion becomes increasingly difficult. Component Lines can
combine the Component Plane information in one plot, but,
again, this approach is only feasible up to a certain dimen-
sionality.

4.1 Aggregation of Component Lines
We propose an optional step of aggregating similar Com-
ponent Lines into representative prototypes. This is based
on clustering the Component Lines. With the distance mea-
sure between two such lines defined in Equation 4, a matrix
of pair-wise distances can be calculated. Subsequently, hi-
erarchical clustering with any of the common linkage met-
rics can be performed. In our approach, we use Ward’s
clustering, and the resulting model vectors are computed

Algorithm 1 Region detection for Component Planes after
the discretisation step

for each component cj do
for each component region ωj,k do

for each unit ξi do
if ¬assigned to region(ξi) then

#of assigned neighbours = 0
for ξl in neighbours(ξi) {ξl | 2 < l < 4} do

if assigned to region(ξl)∧
in component region(ξi, ωj,k)∧
in component region(ξl, ωj,k) then

add unit to region(region(ξl), ξi)
#of assigned neighbours+

end if
if #of assigned neighbours > 1 then

merge(region(ξl,m), region(ξl,n))
end if

end for
if #of assigned neighbours == 0 then

add unit to region(region(ξi), ξi)
end if

end if
end for

end for
end for

by averaging over the Component Lines within each clus-
ter. A threshold value for the Ward’s clustering can be used
to influence the level of aggregation and to suit user’s sub-
jective information needs or desired levels of aggregation.
This aggregation step can either be performed on the full
set of components, or after any other kind of pre-selection
process.

4.2 Selection of Feasible Components

Plotting all possible component lines will overload the il-
lustration already at considerably low dimensionalities –
even after the aggregation step as shown in Figure 3(a).
Additionally the aggregation might be influenced by noisy
components that can hardly contribute to any meaningful
visualisation because of their spread and diversity. There-
fore, we propose a method to select the most feasible com-
ponents with respect to their distribution over the map. The
rationale behind this idea is that component planes which
have a structured distribution over the map will be most in-
fluential for forming clusters. We define a measurement for
the detection of different inter-connected areas. Further, it
is detected over how many areas the regions we divided the
Component Plane into are spread across.

Algorithm 1 explains the detection of regions for a
trained Self-Organising Map. The maximum number of
regions of a SOM is its number of units, that is the case
when no adjacent units belong to the same component re-
gion. For each component and region, every unit of the
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map is inspected sequentially. A unit builds a new region
iff none of its neighbours is assigned to a region yet. Oth-
erwise the unit is assigned to its neighbours’ regions. The
special case, where a unit’s neighbours are assigned to dif-
ferent regions requires particular treatment in the form of
region merging. Thereby, all regions of a unit’s neighbours
are merged into one region and the unit itself gets assigned
to this new region. Once all units are handled, this process
yields to a number of region assignments smaller or equal
to the number of units |M |.

The smaller the number of areas, the more coherent the
regions are, which implies a structured spread of the com-
ponent values over the map. Thus, such components have
a strong influence on the global cluster structure, and are
more interesting for analysis. The component region ratio
ν is given as the fraction of the number of component re-
gions n and the number of areas of adjacent units on the
map m in Equation 6.

νcj =
nj

mj
(6)

To select the most interesting components, we can either
choose the n components with the smallest numbers of ar-
eas, or select all components that have a ratio smaller than
a certain fraction of max ν.

5 Experiments
To demonstrate the effect of aggregation and selection tech-
niques, we performed experiments on a data set having a
fairly high, yet not unmanageable, input dimensionality.
The Boston Housing data set comprises 506 instances con-
taining information collected by the U.S Census Service
concerning housing in the area of Boston, Massachusetts.
The data is described in 13 continuous and one binary at-
tributes. We trained a SOM consisting of 20 × 16 = 320
units. The number of component regions n for the Metro
Visualisation is set to 6.

Figure 1 shows the Component Planes for some compo-
nents of the Boston Housing data set (Figure 1(a)) and its
discretisation (Figure 1(b)). The variables ‘crim’, ‘nox’,
and ‘dis’ are most valuable in terms of the component re-
gion ratio ν. Their tighter distribution becomes apparent,
particularly after the discretisation step (Figure 1(b)). On
the other hand, the ν values for the variables ‘tax’, ‘rad’,
and ‘ptratio’ are the lowest in the data set. In terms of a
low spread, the ‘crim’ variable is the best choice for com-
ponent visualisation in this example, since it is only spread
across 8 regions, resulting in a ν value of 6

8 = .75. By
contrast, the ‘ptratio’, is split across 34 different regions
on the map, any visualisation based thereon does not seem
feasible.

We first applied the Component Lines aggregation tech-
nique to the full data set in Figure 3(a), yielding in a rather
crowded illustration of all components in one plot. To over-

come the negative impact of noisy or ‘ill-distributed’ com-
ponents, we applied component selection and applied the
aggregation technique on top of that.

The component selection process we used is
parametrised by the top t number of components to
select. To that end, the ν values for all components are
ranked and the ν value for the t-th component is set as
cutoff criterion. Note that this can lead to a number of
components selected higher than t; in case of equally val-
ued components, all of them are taken into consideration
for visualisation.

Figure 3(b) shows the impact of component selection on
the resulting Metro Visualisation. This plot contains the
best-suited components in terms of their spreading across
the map only. The aggregation performed on top of com-
ponent selection leads to a rather clear display of the most
important groups of components – in accordance with user-
defined parameter settings. The negative influence of noisy
components is minimised or eliminated. Their shifting ef-
fect, i.e. the distortion of the visualisation they have on the
important components does not occur.

6 Conclusions and Future Work

We presented a novel method for the detection and se-
lection of most meaningful components with respect to a
given SOM clustering. We showed how this approach can
be used for the Metro Visualisation, a visualisation tech-
nique for the aggregation of multiple component informa-
tion into one illustration. To this end, the Metro Visuali-
sation utilises a discretisation of single Component Planes.
The Metro Visualisation is motivated by the problems aris-
ing when trying to plot all components, namely the re-
sulting high number of plots. The experiments presented
show that our method is feasible for visualising higher-
dimensional feature sets. Furthermore we showed that the
pre-selection of single components before the actual aggre-
gation helps in removing noisy components. The resulting
visualisation of the aggregated components forms a feasi-
ble, abstract way of analysing Self-Organising Map map-
pings.

Future work will mainly deal with a more thorough in-
vestigation of gradient based methods for the detection of
feasible components. Another possible research direction
are advanced methods for component aggregation and their
evaluation. Moreover, possible heuristics for automatically
choosing parameter values might further simplify the pro-
posed methods. We further want to investigate the applica-
bility to very high-dimensional data sets, e.g. the clustering
of text corpora. Here we will inspect both the scalability of
the algorithm as well as the interpretability of the resulting
components or terms.
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(a) Visualisation of aggregated components (b) Aggregation on top of component selection

Figure 3: Metro Visualisations of aggregated 3(a) and pre-selected 3(b) component lines for the Boston Housing data

References
[1] Teuvo Kohonen. Self-Organizing Maps, volume 30

of Springer Series in Information Sciences. Springer,
Berlin, Heidelberg, 1995.

[2] Guanglan Liao, Tielin Shi, Shiyuan Liu, and Jian-
ping Xuan. A novel technique for data visualiza-
tion based on SOM. In Proceedings of the 15th
International Conference on Artifical Neural Net-
works (ICANN’05), pages 421–426, Warsaw, Poland,
September 11-15 2005.

[3] Robert Neumayer, Rudolf Mayer, Georg Pölzlbauer,
and Andreas Rauber. The metro visualisation of com-
ponent planes for self-organising maps. In Proceed-
ings of the International Joint Conference on Neu-
ral Networks (IJCNN’07), Orlando, FL, USA, August
12-17 2007. IEEE Computer Society. Accepted for
publication.

[4] Elias Pampalk, Andreas Rauber, and Dieter Merkl.
Using Smoothed Data Histograms for Cluster Visu-
alization in Self-Organizing Maps. In Proceedings of
12th the International Conference on Artifical Neu-
ral Networks (ICANN’02), pages 871–876, Madrid,
Spain, August 27-30 2002. Springer.

[5] Georg Pölzlbauer, Michael Dittenbach, and Andreas
Rauber. Gradient visualization of grouped compo-
nent planes on the SOM lattice. In Marie Cottrell,
editor, Proceedings of the Fifth Workshop on Self-

Organizing Maps (WSOM’05), pages 331–338, Paris,
France, September 5-8 2005.

[6] Georg Pölzlbauer, Michael Dittenbach, and Andreas
Rauber. Advanced visualization of self-organizing
maps with vector fields. Neural Networks, 19(6-
7):911–922, July-August 2006.

[7] André Skupin. A picture from a thousand words.
Computing in Science and Engineering, 6(5):84–88,
2004.

[8] Alfred Ultsch. Maps for the visualization of high-
dimensional data spaces. In Proceedings of the
4th Workshop on Self-Organizing Maps (WSOM’03),
pages 225–230, Kyushu, Japan, September 11-14
2003.

[9] Alfred Ultsch and Hans Peter Siemon. Kohonen’s
self-organizing feature maps for exploratory data
analysis. In Proceedings of the International Neu-
ral Network Conference (INNC’90), pages 305–308,
Paris, France, July 9-13 1990. Kluwer.

[10] Juha Vesanto. SOM-based data visualization meth-
ods. Intelligent Data Analysis, 3(2):111–126, 1999.

[11] Juha Vesanto and Jussi Ahola. Hunting for corre-
lations in data using the self-organizing map. In
Proceedings of the International ICSC Congress on
Computational Intelligence Methods and Applica-
tions (CIMA’99), pages 279–285, Rochester, N.Y.,
USA, June 22-25 1999. ICSC Academic Press.

6


