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ABSTRACT. The displacement method of frame analysis involves determination of the 
element stiffness matrix. In the paper, the stiffness matrix of the fixed-end composite frame 

element (type “k”) is derived. In general, the composite section consists of concrete part, 
steel section, reinforcing and prestressing steel. Concrete is considered as an aging, linear 

viscoelastic material. The relaxation of the prestressing steel is taken into account. The 

derived expressions can be used with any creep function and, also, for elements with 
variable cross-sections. The derivation of the element stiffness matrix follows two different 

approaches. The first approach is based on the integral stress-strain relation for concrete. 

The linear integral operators are used. In the second approach, the element flexibility matrix 
and the resisting force vector are determined through the numerical integration of the cross-

section deformations. The class of cross-sections which accounts for viscous effects of a 

composite section is developed. The results of the two approaches are compared in the 
numerical example.     

 

1. Introduction  

 

In the analysis of structures by the slope deflection method the stiffness matrices are used. 

In this paper, the stiffness matrix of the fixed-end composite frame element (element type 

k) is presented. Study the composite member which, in general, consists of concrete (c), 

prestressing steel (p), steel member (n) and reinforcing steel (m). Concrete is considered as 

an aging, linear viscoelastic material. The relaxation of the presstresing steel is taken into 

account. The determination of the stiffness matrix of a composite, type k, frame element 

is analogous to the direct derivation of the stiffness matrix of a homogeneous elastic 

element. The stiffness matrix is obtained using the basis stiffness matrix. The flexibility 

matrix of a composite element is derived firstly, and, by its inversion, the element basic 

stiffness matrix is found. The procedure is general, and all expressions can be used with any 

given concrete creep function and for the element with a variable cross section. In the 

paper, two different methods for derivation of the element stiffness matrix are presented: 

the mathematical method based on the use of linear integral operators, and the numerical 

method based on the numerical integration of the cross-section deformations and use of 

object-oriented classes. 
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2. The mathematical method 

 

In the mathematical method, the expressions are developed using linear integral operators 

without any mathematical simplifications introduced, apart from the inevitable 

approximations referring to the rheological properties of constituent materials. The 

mathematical method which uses the linear integro-differential operators is given by 

Mandel in the theory of aging linear viscoelasticity. Since the operators obey the algebra 

laws of ordinary numbers, the problem is solved symbolically and formally so that the 

mathematical operations are only noted. Developing the theory of composite structures, 

Lazic introduced linear integral operators which also obey the algebra laws of ordinary 

numbers [1]. Using this type of operators, the problem is solved not only symbolically and 

formally but also the expressions for stresses and displacements are significantly 

simplified. Their values can be obtained by the least number of mathematical operations. 

The same procedure is used in the paper.  

The basic expressions of the composite cross section [1] are : 
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where ),,( 0ttx   is the normal strain, ),,( 0ttx   is the curvature change of the 

member axis;  Eu is the relative modulus of elasticity, Fi and Ji are transformed cross section 

area and moment of inertia of this area, iii JFS  . Operators   and , 122211 FFF

 are 

elements of the operator matrix  
2,2hlF


 .Starting from the basic expressions of the 

composite cross section, Eq.(1), and using the principle of virtual forces, the relationship 

between the basic statically independent forces (Sik, Mik, Mki)  and deformation independent 

quantities (lik,ik,ki) for the composite fixed-end member, is established [2],[3]. This 

relationship, due to viscoelasticity of concrete and relaxation of prestressing steel, is 

integral and symbolically is presented by operators. The principle of superposition, which is 

valid in the theory of viscoelasticity, is used. This relationship is given in the following 

form: 
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The symmetric operator flexibility matrix is introduced: 
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The operators kiikikskisiksik 

 ,,,,, ,,,  are associated with the corresponding functions 

which represent the change of length of the member and deformation angles due to 
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separately acting unity forces Sik, Mik and Mki. These operators are linear integral operators 

and obey the algebra laws of ordinary numbers, including the commutative law. 

The inverse matrix of the operator flexibility matrix (3) is the symmetric operator matrix, 

which is called the basic operator stiffness matrix: 
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The operators ikikkiikik BASSN

 ,,,,  are associated with the corresponding functions which 

represent the generalized forces at i and k element ends.  

The solution procedure for the stiffness matrix of the composite frame element type  k is 

analogous to the direct procedure for determination of the stiffness matrix of the 

homogeneous elastic element. The operator stiffness matrix  K

 is derived using the basis 

stiffness matrix  oK

  and the equilibrium matrix of the element  C : 
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where: 

The operator stiffness matrix  K

 has the following form: 
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where: 
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2. The numerical method 

 

In the second method, the element flexibility matrix and the resisting force vector are 

determined through the numerical integration of the cross-section deformations. Object 

oriented approach is applied. The class of cross-sections suitable for this type of 

nonlinearities is developed. The cross-sections of this class can evaluate cross-sections 

flexibility and stiffness and also generate deformation over time.  
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The objects of cross-section class may have multiple sections made of different materials. 

Viscous deformations are generated by the material class depending on its stress history. 

The class of materials can generate these nonlinearities.  Detailed explanation of the 

developed cross section class is out of scope of this paper and can be found in [5].   

The cross-section class establishes relations between the generalised cross sectional 

deformations }{ R  and the cross sectional forces }{ RF reduced to the reference point R.  
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The elastic properties of a composite cross-section change over time, so the relations have 

to be established reduced to the reference point, instead of the centroid of the cross-section. 

In the case of plane frame, the previous expression reduces to: 
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In the simplest case, i.e. for the ideally elastic eccentric beam that has z coordinate of 

centroid zCR, the cross-section flexibility matrix reduced to the reference point is: 
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Also, in this case, the cross section rigidity matrix is: 
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Integration of deformation, in the case of element with constant cross-sections over the 

length, leads to the following expressions for the flexibility matrix coefficients: 
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Inverting this matrix the basic stiffness matrix can be obtained, and transformation of Eq. 

(5) leads to the element stiffness matrix. 

The compatibility condition of the composite cross-section imposes the requirement of the 

same cross-sectional deformation for all of its parts. Therefore, the flexibility matrix for the 

composite cross-section can be calculated by inverting the sum of the rigidity matrix for all 

of its parts. Once the flexibility matrix of the composite section is obtained, we can 

calculate the flexibility and stiffness matrices of the element. In the case of element with 

constant cross-section, the element flexibility matrix is given with Eq. 13. 

The increase of viscous deformation is calculated by the material class. Depending on the 

stress history, viscous properties and time increments, material generates increments in 

deformations. These increments result in changes of internal forces for previously 

committed values of sectional deformations. Nonlinear numerical procedures need to be 

applied. In the nonlinear procedure, frame element generates the change of its residual 

forces. These changes affect equilibrium in nodes and the system needs to be balanced in 

iterations. 

The results of the two explained methods are compared in the following numerical 

example.     

3. Numerical example  

 

Figure 1. Composite girder and its cross-section 

The composite girder shown in Fig. 1 with constant cross-section 1-1 is analyzed. The 

stresses at characteristic points of the cross-section at fixed end are calculated in time to and 

time t. Stresses are determined due to given uniform loading and due to concrete shrinkage 

in accordance with the two previously explained methods (exact method and the finite 

element method with object oriented approach), as well as, with the approximate EM 

method [4]. The results of the analysis are given in Table 1. 

Example data are: Concrete (c) Eco=Ecm=30GPa, φr=3.5,  εs = -30·10-5; Prestressing steel 

(p): Ep=210GPa, Ap=100cm2, p=8%; Structural steel (a): Ea=200GPa=Eu; Reinforcing 

steel (s): Es=200GPa,  As=80cm2. 
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Using the creep function in accordance with the ageing theory in the exact method and the 

creep function in accordance with the hereditary theory in the EM method, the upper and 

lower bounds are determined and results obtained by other theories should take place 

between them.  

 
                                                       Table 1. Results of analysis 

 

H MPa to EM  OOFEM Exact 

q 

σc4= 0.220 0.085  0.060 0.049 

σc2= 0.040 0.038  0.033 0.035 

σs3= 0.868 1.840  1.904 2.099 

σp3= 0.912 1.778  1.853 2.046 

σa2= 0.267 1.129  1.205 1.358 

σa1= -6.042 -6.341  -6.180 -6.420 

sh
ri

n
k
ag

e 

σc4=   2.676  2.726 3.063 

σc2=   2.545  2.611 2.952 

σs3=   18.320  21.852 23.303 

σp3=   17.697  21.080 22.459 

σa2=   16.357  19.563 20.906 

σa1=   -4.252  -5.073 -5.415 

4. Conclusion 

Two different methods for determination of the stiffness matrix of a composite frame 

element are presented in the paper. Both of them produce similar results when used with the 

same material parameters and viscous functions, as is confirmed in the given numerical 

example.  

 

Acknowledgement. The third author thanks the Ministry of Science of the Republic of 

Serbia for financial support under the project number TR-36046. 

 

References   

  

1 Lazic J.,Lazic V. General Theory of Composite and Prestressed Structures, The    

      Serbian Academy of Sciences an Arts, Monographs, DXLII, No.22, Belgrade  

2B.Deretic-Stojanovic, The operator stiffness matrix of the fixed-end composite   

member, Theoretical and Applied Mechanics, 23, (1997), 35-54. 

[3] B. Deretić-Stojanović, Design of Composite Structures by the Slope Deflection   

      Method, Proceedings of the 6st ASCCS Conference on Steel-Concrete Composite  

      Structures, 22-24, March,2000.  Los  Angeles, California, USA, V.2, p.1157-1164. 

[4] B.Deretić-Stojanović , Preraspodela napona kod spregnutog štapa tipa "k", Zbornik  

     radova XXI jugoslovenskog kongresa primenjene i teorijske  mehanike , 29 maj- 3 jun    

     1995. Niš, 1995.  C1. s. 191-196. 

[5] Stošić Saša, Objektni pristup modeliranju oštećenja i viskoznih deformacija linijskih 

nosača, Doktorska disertacija, Građevinski fakultet Univeziteta u Beogradu, 2007 


