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Abstract

Raman spectroscopy is a promising optical diagnostic tool that can be applied to un-
stained cells in order to detect changes in molecular composition. The data collected
can be described as a chemical fingerprint of the sample under investigation. Thus it
is very popular in the recent times to use Raman spectroscopy in cytology to increase
diagnostic sensitivity and specificity for early stage cancer. In this thesis, I introduce
an automated Raman cytology system for cancer diagnostics which integrates all the
hardware and software in Micro-manager and operates them in a specific order. An
autofocus algorithm for unstained cells and a three-dimensional morphology recov-
ery algorithm are also investigated and contributed to the final automated system.
With increasing usage of Raman cytology systems, automation is a solution to limit
data variabilities which is a major problem at the moment. In addition, a higher
throughput of cellular analysis and a reduction in manpower could be expected from
the proposed automation system.
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Title: Research Fellow, Member of the Department of Electronic Engineering and the
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Chapter 1

Introduction

Raman spectroscopy[1] is based on the inelastic scattering of monochromatic light,

wherein the wavelength of the scattered photons is shifted by an amount dependent

on the molecular properties of the sample[2]. Raman spectroscopy is particularly

suitable for applications in biology because water is a weak Raman scatterer[3]. The

increasing availability of high power lasers with narrow linewidth, and high quality

filters that attenuate the Rayleigh scattered light, has led to a significant increase

in the application of Raman spectroscopy in biology in recent years[4]. For biolog-

ical samples that consist of a complex mixture of various biochemicals, the Raman

spectrum can be used for fingerprint like identification. Although the spectra ob-

tained from healthy and diseased tissue types can appear to be very similar, the use

of multivariate statistical algorithms[5] can be applied in order to classify an un-

known sample. This requires the recording of datasets of spectra belonging to known

groups, which in turn enables the training of algorithms to achieve high diagnostic

sensitivities and specificities[6]. In recent years the method has been demonstrated to

be useful in diagnosing a range of different conditions including brain metastases[7],

prostate[8], breast[9], esophagus[10], skin[11], bladder[12], oral[13], cervical[14] and

lung[15] cancers.

This thesis is concerned with the application of Raman spectroscopy to cytology[16],

i.e. to the investigation of cells and in particular for the identification of cancerous

cells. This technique involves the integration of a Raman spectrometer into a stan-
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dard clinical microscope and has become known as Raman micro-spectroscopy. The

microscope objective serves to both deliver the source laser to a microscopic point on

the sample and to collect the Raman scattered photons, while simultaneously allow-

ing the microscope to image the sample. It is possible to obtain low noise spectra

by employing a confocal aperture which serves to isolate the collected spectrum from

a specific three dimensional point on the sample. Numerous companies offer high

quality commercial Raman micro-spectrometers, such as Horiba and Renishaw, that

are routinely employed in the analysis of cells and tissue samples[17].

The most common example of diagnostic cytology is the evaluation of cervical

smears referred to as the Pap smear[18]. Cervical cytology is based on the qualitative

inspection of images obtained under a microscope and requires a trained histopath-

ogist. Recently it has been shown that confocal Raman micro-spectroscopy coupled

with principal component analysis-linear discriminant analysis (PCA-LDA) modelling

yielded a diagnostic accuracy of 84.1% (a sensitivity of 81.0% and a specificity of

87.1%) for in-vivo discrimination of dysplastic cervix[19]. The technique can be ap-

plied to cervical cells as a straightforward adjunct to the existing pap smear test and

requires no further additional patient interaction. Bladder cytology is another area

that has been shown to benefit from Raman micro-spectroscopy. Bladder cytology,

whereby a histopathogist inspects epithelial cells shed into urine samples, can provide

80% to 90% sensitivity and 98% to 100% specificity for high grade samples[20] but

only 20%-50% sensitivity for low grade samples[21] which make up the majority of

cases. As a result, tissue biopsies are required as a standard. In the first patient

study, Raman micro-spectroscopy has been shown to successfully diagnose between

normal, low-grade and high-grade bladder cells with a sensitivity of 92% and speci-

ficity of 91%[12][22]. This discovery may pave the way for a completely non-invasive

bladder cancer test.

Clearly, Raman micro-spectroscopy applied to cells (or Raman cytology for short)

has potential to become a standard clinical diagnostic tool. However, some problems

exist with the implementation of the technique in a clinical environment. Firstly, the

cells cannot be stained before recording the spectrum because the additional chemicals
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corrupt the recorded spectrum and may give rise to either fluorescence or photo-

damage, which makes imaging difficult. The optimum location from which to obtain

a Raman spectrum is the cell nucleus, but the location of the nucleus of an unstained

cell is often challenging to identify. Once identified, the cell nucleus is aligned with the

laser spot using a manually controlled translation stage and a spectrum is recorded for

approximately 30 seconds. In many cases, improper alignment of the cell in one of the

three dimensions results in a spectrum of poor quality and the cell must be realigned

and the spectrum rerecorded. This is then repeated for a large number of cells and

even for one patient sample, the overall process can be tedious and time consuming.

The correct use of the system requires training and experience and the results obtained

can vary from user to user due to slight variability in experimental procedures which

reduces the reliability of the method. Standardisation of the approach is necessary

in terms of equipment, consumables and methodologies if it is ever to be adopted a

standard everyday clinical tool.

One significant step towards standardisation of Raman cytology is the automation

of the overall process, and it is this subject that is addressed in this thesis. The obvious

benefits of automation include reduced manual workload, faster turnover, and more

reproducible and reliable results. However, an core challenge in full automation of

Raman cytology is accurately targeting the unstained cell nucleus and getting the

nucleus in-focus. Recently, an image processing method was outlined[23] that can

identify the nucleus in an unstained cell using a segmentation algorithm based on

fuzzy logic and it was proposed that this algorithm could potentially be utilised to

develop an automated Raman cytology system. In this thesis, an automated Raman

cytology system based on an novel image processing algorithm is proposed that can

quickly identify the nucleus of an unstained cell. This is realised by recording images

of slightly out of focus planes in which the nucleus effectively behaves like a small

lens to produce a tightly focused bright spot which indicate the location of nucleus.

Another sophisticated nucleus targeting algorithm is also investigated in this thesis

for the purpose of accurately targeting, which is termed unstained cell morphology

recovery algorithm. The cell morphology is achieved by applying a new autofocus

19



algorithm for unstained cell recording by bright-field microscope on different parts of

the image.

The main contribution of this thesis is the development of a fully automatic Raman

cytology. This proposing method is built around Micro-manager[24], an open source

software package for the control of microscope related hardware. A large area of a

slide is scanned, and candidate cells are identified using image processing algorithms;

these cells are ordered according to a quality metric applied to the images of the bright

spots. Following this, the selected cells are sequentially aligned in three dimensions

with the laser spot and spectra are recorded. A clear description of the process is

provided such that it may be implemented by anyone using a commercial Raman

micro-spectrometer or a custom built set-up. All of the software employed to control

the various hardware in the system (digital camera, translations stage, filter wheel,

spectrograph, microscope lamp, spectrograph and cooled CCD) is open source and

freely available. The method outlined in this thesis may pave the way for fully

automated Raman diagnostics that can be used for mass screening of oral, cervical

and bladder cancer.

The breakdown of this thesis is as follow; In Chapter 2, 15 autofocus metrics are

investigated for unstained cells recorded by brightfield microscopy. The main differ-

ence in the behaviour of autofocus metrics applied to opaque objects and unstained

transparent cells are emphasized and illustrated. The optimum metrics are identified

in this chapter and are applied in the following chapters in order to find the focal

plane of a region or the global image. In Chapter 3, the best performing metrics

selected from chapter 2 are further investigated for different parts of the cell image

in order to recover a depth map of the cell and in this way estimate the 3D morphol-

ogy of unstained cells. Two methods are proposed; the first provides low resolution

depth maps but can be performed quickly while the second provides high resolution

depth maps but is computationally slow. Chapter 4 provides a detailed explanation

of the proposing automated Raman cytology system both in terms of hardware and

software.
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Chapter 2

Investigation of autofocus algorithms

for bright-field microscopy of

unstained cells

In the past decade, there has been significant interest in image processing for bright-

field cell microscopy because the additional chemicals will corrupt the spectrum and

may give rise to either fluorescence or photo-damage. For some applications, where

the biochemical integrity of the cell is required to remain unchanged so that sensitive

chemical testing can later be applied, it is necessary to avoid staining. In particu-

lar, Raman spectroscopy and Raman cytology can only be applied to unstained cells

recorded by brightfield microscope. Much of the previous research on image process-

ing for microscopy has focused on fluorescence microscopy, including cell counting,

cell tracking, cell segmentation and autofocusing. Fluorescence microscopy provides

functional image information that involves the use of labels in the form of chemical

stains or dyes. Unstained cells are often effectively transparent and appear to have a

homogeneous intensity profile when they are in focus. Brightfield microscopy is the

most universally available and most widely used form of optical microscopy and for

the various reasons already mentioned it is interesting to investigate image processing

of unstained cells recorded using a standard bright field microscope. In this chapter,

the application of a range of different autofocus metrics applied to unstained bladder
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cancer cell lines using a standard inverted brightfield microscope with microscope

objectives that have high magnification and numerical aperture are investigated. A

number of conclusions on the optimum metrics and the manner in which they should

be applied for this application are presented.

The brightfield microscope is the most common form of microscope and has played

an essential role in clinical science for over a century[25]. It is comprised of a white

light source, usually a halogen lamp, which is focused onto a sample using a condenser

lens. The light passes through a partially transparent sample and into a microscope

objective. The sample plane is imaged to a digital camera and/or a set of oculars

via the microscopic objective. Variations in the absorption of the sample contribute

to the image that is recorded by the camera. Only objects that have the property of

absorbing light can be imaged to the camera plane. In many cases cells or other bio-

logical samples can appear to be effectively transparent and the resulting brightfield

microscopic image can appear to contain very little contrast. To compensate for this,

staining is often employed in order to add absorption to parts of the sample, eg, the

nucleus of a cell. While this facilities imaging using the brightfield microscope, it has

the disadvantage of being time consuming, costly and in many cases the dyes can be

toxic to the cells, and therefore the cells must first be fixed before imaging.

The inability of brightfield microscopy to image unstained transparent cells has re-

sulted in the development of other forms of microscopy. Phase contrast microscopy[26]

and digital holographic microscopy,[27][28] both enable variation in the refractive in-

dex and/or thickness of the sample to be measured, which allows for visualization of

the cell, and the cell nucleus without the need for staining. However, phase contrast

requires the use of specially designed microscope objectives and digital holographic

microscopy requires a laser and expensive optical elements. Differential Interference

Contrast (DIC) microscopy[29] offers a significant improvement in contrast for un-

stained cells. This technique uses a series of Wollaston prisms and polarisers, both

before the condenser and after the microscope objective, the purpose of which are to

split the illuminating light into two slightly misaligned light sources which are then

realigned after passing through the sample. The effect is to create an interference pat-
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tern that highlight subtle changes in the path lengths travelled and thereby provide

high contrast of features in the object. The main disadvantage of DIC microscopy is

the expense of the additional optical elements and suitable microscopy objectives.

Fluorescence microscopy[30] involves the use of fluorescent labels or fluorophores

that can bind to a specific part of the cell where they absorb a specific wavelength

and emit light of longer wavelength. The location and the amount of the label can be

observed in the image and this can reveal functional information about a particular

part of a cellular structure or a process. Fluorescence microscopy is often expensive; it

normally requires a monochromatic source such as a laser as well as dichroic mirror, a

filter and a suitable low noise camera. In some cases, fluorescence microscopy cannot

be used due to inherent cell damage caused by phototoxicity[31]. Often multiple

fluorescent channels are required to image different parts of the cell such as the nucleus

and the cytoplasm and this can increase the expense and experimental difficulty[32].

Despite the advantages afforded by the various microscopy techniques discussed

above, brightfield microscopy remains the most ubiquitous, inexpensive and widely

used form of microscopy and is the prevalent form of microscopy applied in Ra-

man micro-spectroscopy. To date a range of image processing techniques have been

developed for microscopy but many of these focus on applications involving digital

holographic microscopy,[28][32] or fluorescence microscopy.[30][33] In the past decade,

there has been increasing attention on image processing algorithms for brightfield

microscopy in order to enhance the overall functionality of the technique, particu-

larly for imaging transparent unstained cells.[34][35][36][37][38][39][40][41] Many of

these papers discuss algorithms that have been shown to successfully calculate the

cell boundary and the cell nucleus for transparent unstained cells that have been

recorded using brightfield microscopy. In particular level set contouring has been

shown to successfully segment unstained cells[38]. Some of these algorithms make

use of the fact that, when the cell is slightly out of focus, certain cell information is

revealed that can be used to segment the cell.

Despite the recent interest in image processing of unstained cells, to the best of

my knowledge, there has been no comprehensive investigation of autofocusing of un-
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stained cells and it is this subject which is explored in this chapter. While it has

been acknowledged that autofocusing has a long history in microscopy.[42][43] Inves-

tigations to date have focused on objects that absorb light. Autofocusing algorithms

generally require the recording of a stack of images for a range of distances where the

object is moved relative to the microscope objective. A metric is then applied to each

image in the stack and the image which results in this metric having a maximum value

is taken to be the most in focus image. These metrics are universally based on the

idea that, when the image is in focus, image detail can be observed and so they often

quantify the amount of high frequency content or variation in the image. However,

for the case of objects which appear to have a homogeneous intensity pattern, such as

transparent cells, it is well known that these metrics fail. In this chapter, the appli-

cation of 15 well known autofocusing metrics to unstained cells are investigated and

the behaviour of these metrics are compared with that obtained from an abosorbant

object, also recorded using brightfield microscopy. How these metrics can be adapted

to work for transparent cells is demonstrated and the metrics provide the best results

are determined.

The breakdown for this chapter is as follow; In Section 2.1, the various autofocus

metrics that are investigated for this thesis are introduced. In Section 2.2, the differ-

ence in the behaviour of these metrics are analysed for transparent cells and opaque

objects. To do this, all 15 metrics are applied on stacks of unstained bladder cancer

cell images and a USAF resolution chart. By evaluating the performance of these

metrics conclusions are made on how these metrics can be adapted for transparent

objects and three of the best performing metrics are selected for further study. The

three selected metrics are applied on a cheek cell, a blast cell and a bladder cancer cell

respectively in Section 2.3 to prove the robustness of the method. The work presented

in this chapter has been published in a recent conference proceedings[44].
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2.1 Autofocus Metrics

In this section, the various theoretical aspects of traditional autofocusing are intro-

duced and a number of commonly used metrics that are utilised at the core of aut-

ofocusing algorithms are briefly overviewed. In this chapter the application of these

various metrics are investigated for the autofocusing of unstained epithelial cells ob-

tained using standard brightfield microscopy. The transparent nature of these cells

means that these metrics cannot be employed in a traditional sense and further inves-

tigation is required. The manner in which focus curves are computed and analysed

for these transparent cells is explained step by step in Section 2.2. In addition, the

difference between the focus curves that are calculated for transparent and opaque

cells is emphasised in Section 2.2.

In order to realize autofocusing the use of a focus metric is required that can be

applied to a stack of images by comparing this metric across each image in the stack.

It is possible to identify the most ’in-focus’ image by examining the behaviour of this

metric across the set of images. In this chapter, 15 different autofocus metrics listed

below are investigated. While these metrics have previously been applied to opaque

images,[42] to the best of my knowledge, this chapter represents the first investigation

of these algorithms applied to images of transparent unstained cells, obtained using

brightfield microscopy. The metrics are as following;

1. Absolute Gradient:

𝑓(𝑛𝑧) =
1

𝑁𝑥𝑁𝑦

𝑁𝑥−1∑︁
𝑛𝑥=0

𝑁𝑦−1∑︁
𝑛𝑦=0

|𝐼 (𝑛𝑥∆𝑥, 𝑛𝑦∆𝑦, 𝑛𝑧∆𝑧) − 𝐼 (𝑛𝑥∆𝑥, 𝑛𝑦 − 1∆𝑦, 𝑛𝑧∆𝑧)| (2.1)

Where 𝐼 represents the digital image recorded by a digital camera; ∆𝑥 and ∆𝑦 repre-

sent the camera pixel size in the 𝑥 and 𝑦 directions respectively and ∆𝑧 is the distance

the stage is moved between the capture of subsequent images in the vertical direction;

𝑛𝑥 and 𝑛𝑦 take the range of 0 to 𝑁𝑥 - 1 and 0 to 𝑁𝑦 - 1 where 𝑁𝑥 and 𝑁𝑦 are the

number of pixels in the 𝑥 and 𝑦 directions respectively and 𝑛𝑧 takes the range of 0 to

𝑁𝑧 -1 where 𝑁𝑧 is the total number of images recorded. For the sake of brevity the
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above equation is rewrote where the ∆𝑥, ∆𝑦 and ∆𝑧 parameters are omitted:

𝑓(𝑛𝑧) =
1

𝑁𝑥𝑁𝑦

𝑁𝑥−1∑︁
𝑛𝑥=0

𝑁𝑦−1∑︁
𝑛𝑦=0

|𝐼 (𝑛𝑥, 𝑛𝑦, 𝑛𝑧) − 𝐼 (𝑛𝑥, 𝑛𝑦 − 1, 𝑛𝑧)| (2.2)

This notation is employed for the remainder of this thesis.

2. Square Gradient:

𝑓(𝑛𝑧) =
1

𝑁𝑥𝑁𝑦

𝑁𝑥−1∑︁
𝑛𝑥=0

𝑁𝑦−1∑︁
𝑛𝑦=0

[𝐼 (𝑛𝑥, 𝑛𝑦, 𝑛𝑧) − 𝐼 (𝑛𝑥, 𝑛𝑦 − 1, 𝑛𝑧)]
2 (2.3)

The two metrics given above in Eqn(2.2) and Eqn(2.3) are related to the gradient

of the image. In image processing, the gradient represents the rate of change of the

image in a given direction. For a non-transparent image that is in-focus and therefore

contains high frequency detail, the magnitude of the gradient (the difference between

the grey-scale values of a pixel with its’ horizontal neighbour) will be larger than the

magnitude of the gradient for out-of-focus images.

3. Netten’s Filter[45]:

𝑓(𝑛𝑧) =
1

𝑁𝑥𝑁𝑦

𝑁𝑥−1∑︁
𝑛𝑥=0

𝑁𝑦−1∑︁
𝑛𝑦=0

[𝐼 (𝑛𝑥 + 1, 𝑛𝑦, 𝑛𝑧) − 𝐼 (𝑛𝑥 − 1, 𝑛𝑦, 𝑛𝑧)]
2 (2.4)

This metric is similar to the previous two metrics and compares the difference in

grey-scale values between neighbours along the vertical direction.

4. Energy Laplace:

𝑓(𝑛𝑧) =
1

𝑁𝑥𝑁𝑦

𝑁𝑥−1∑︁
𝑛𝑥=0

𝑁𝑦−1∑︁
𝑛𝑦=0

[𝐴 (𝑛𝑥, 𝑛𝑦, 𝑛𝑧)]
2 (2.5)

𝐴(𝑛𝑧) = 𝐼(𝑛𝑧) *

⎡⎢⎢⎢⎣
−1 −4 −1

−4 20 −4

−1 −4 −1

⎤⎥⎥⎥⎦ (2.6)

This metric makes use of the discrete convolution of the image with the Laplace mask,

shown above in Equ(2.6), to compute the second derivative 𝐴(𝑛𝑧). The value of 𝑓(𝑛𝑧)
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is given by the sum of the squares of the result of this convolution.

5. Laplacian:

𝑓(𝑛𝑧) =
1

𝑁𝑥𝑁𝑦

𝑁𝑥−1∑︁
𝑛𝑥=0

𝑁𝑦−1∑︁
𝑛𝑦=0

[𝐼 (𝑛𝑥, 𝑛𝑦 − 1, 𝑛𝑧)−2𝐼 (𝑛𝑥, 𝑛𝑦, 𝑛𝑧)+𝐼 (𝑛𝑥, 𝑛𝑦 + 1, 𝑛𝑧)]
2 (2.7)

This metric is based on the sum over the image of the squared second derivatives and

has been previously used by Muller and Buffington[46]. In the Fourier domain, the

transfer function of a second order difference filter (Laplacian) enhances the higher

spatial frequencies more strongly than the first-order difference filter (Gradient)[47].

6. Tenenbaum gradient:[48][49]

𝑓(𝑛𝑧) =
1

𝑁𝑥𝑁𝑦

𝑁𝑥−1∑︁
𝑛𝑥=0

𝑁𝑦−1∑︁
𝑛𝑦=0

[𝑇𝑥 (𝑛𝑥, 𝑛𝑦, 𝑛𝑧)]
2[𝑇𝑦 (𝑛𝑥, 𝑛𝑦, 𝑛𝑧)]

2 (2.8)

𝑇𝑥(𝑛𝑧) = 𝐼(𝑛𝑧) *

⎡⎢⎢⎢⎣
1 2 1

0 0 0

−1 −2 −1

⎤⎥⎥⎥⎦ (2.9)

𝑇𝑦(𝑛𝑧) = 𝐼(𝑛𝑧) *

⎡⎢⎢⎢⎣
−1 0 1

−2 0 2

−1 0 1

⎤⎥⎥⎥⎦ (2.10)

This metric convolves the image with Sobel operators, and then sums the square of

the gradient vector components.

7. Image Power:

𝑓(𝑛𝑧) =
1

𝑁𝑥𝑁𝑦

𝑁𝑥−1∑︁
𝑛𝑥=0

𝑁𝑦−1∑︁
𝑛𝑦=0

[𝐼 (𝑛𝑥, 𝑛𝑦, 𝑛𝑧)]
2 (2.11)

This metric squares the grey scale value of each pixel.
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8. Variance:

𝑓(𝑛𝑧) =
1

𝑁𝑥𝑁𝑦

𝑁𝑥−1∑︁
𝑛𝑥=0

𝑁𝑦−1∑︁
𝑛𝑦=0

[𝐼 (𝑛𝑥, 𝑛𝑦, 𝑛𝑧) −𝑚𝑒𝑎𝑛{𝐼(𝑛𝑧)}]2 (2.12)

Variance measures how far the value of the pixels deviate from the mean. Large values

of variance indicate distinct high frequency content in the image. On the contrary,

small values of variance indicate homogeneous low spatial frequency image content.

The metrics 9 to 11, that follow are slight variations of the variance metric and require

no further discussion.

9. Normalized Variance:

𝑓(𝑛𝑧) =
1

𝑁𝑥𝑁𝑦[𝑚𝑒𝑎𝑛{𝐼(𝑛𝑧)}]2

𝑁𝑥−1∑︁
𝑛𝑥=0

𝑁𝑦−1∑︁
𝑛𝑦=0

[𝐼 (𝑛𝑥, 𝑛𝑦, 𝑛𝑧) −𝑚𝑒𝑎𝑛{𝐼(𝑛𝑧)}]2 (2.13)

10. Absolute Variance:

𝑓(𝑛𝑧) =
1

𝑁𝑥𝑁𝑦

𝑁𝑥−1∑︁
𝑛𝑥=0

𝑁𝑦−1∑︁
𝑛𝑦=0

|𝐼 (𝑛𝑥, 𝑛𝑦, 𝑛𝑧) −𝑚𝑒𝑎𝑛{𝐼(𝑛𝑧)}| (2.14)

11. Normalized Absolute Variance:

𝑓(𝑛𝑧) =
1

𝑁𝑥𝑁𝑦[𝑚𝑒𝑎𝑛{𝐼(𝑛𝑧)}]2

𝑁𝑥−1∑︁
𝑛𝑥=0

𝑁𝑦−1∑︁
𝑛𝑦=0

|𝐼 (𝑛𝑥, 𝑛𝑦, 𝑛𝑧) −𝑚𝑒𝑎𝑛{𝐼(𝑛𝑧)}| (2.15)

12. Vollath’s F4:[50]

𝑓(𝑛𝑧) =
1

𝑁𝑥𝑁𝑦

[
𝑁𝑥−1∑︁
𝑛𝑥=0

𝑁𝑦−1∑︁
𝑛𝑦=0

𝐼(𝑛𝑥, 𝑛𝑦, 𝑛𝑧) × 𝐼(𝑛𝑥 + 1, 𝑛𝑦, 𝑛𝑧)−

𝑁𝑥−1∑︁
𝑛𝑥=0

𝑁𝑦−1∑︁
𝑛𝑦=0

𝐼(𝑛𝑥, 𝑛𝑦, 𝑛𝑧) × 𝐼(𝑛𝑥 + 2, 𝑛𝑦, 𝑛𝑧)]

(2.16)
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13. Vollath’s F5:[51]

𝑓(𝑛𝑧) =
1

𝑁𝑥𝑁𝑦

𝑁𝑥−1∑︁
𝑛𝑥=0

𝑁𝑦−1∑︁
𝑛𝑦=0

𝐼(𝑛𝑥, 𝑛𝑦, 𝑛𝑧) × 𝐼(𝑛𝑥 + 1, 𝑛𝑦, 𝑛𝑧) −𝑚𝑒𝑎𝑛{𝐼(𝑛𝑧)}2 (2.17)

Vollath proposed two focusing metrics with good performance in the presence of

noise[50]. F4 is based on the autocorrelation function while F5 is based on the stan-

dard deviation function.

14. Contrast:

𝑓(𝑛𝑧) =
𝑚𝑎𝑥{𝐼(𝑛𝑧)} −𝑚𝑖𝑛{𝐼(𝑛𝑧)}
𝑚𝑎𝑥{𝐼(𝑛𝑧)} + 𝑚𝑖𝑛{𝐼(𝑛𝑧)}

(2.18)

where 𝑚𝑎𝑥{𝐼(𝑛𝑧)} and 𝑚𝑖𝑛{𝐼(𝑛𝑧)} are the maximum and minimum values of the

entire image. Contrast is a commonly used metric to measure image quality. Mathe-

matically, it equals the difference between maximum and minimum grey-scale values

divided by the sum of the maximum and minimum grey-scale values. For an in-focus

image containing a high content of image detail the contrast is expected to be rel-

atively large, while for a defocused monotone image it is expected to be relatively

small.

15. Histogram Entropy:

𝑓(𝑛𝑧) = −
255∑︁
𝑖=0

𝑝𝑖 × 𝑙𝑜𝑔2𝑝𝑖 (2.19)

where 𝑝𝑖 is the probability of number of pixels’ grey-scale value equal to i. It is

expected that an in-focus image that has a high content of detail will have an in-

homogeneous intensity pattern and will therefore have a broad histogram. In the

case of an out-of-focus image which will appear to be more homogeneous a narrower

histogram is expected. Considering the limiting cases where (i) all of the pixels have

only one constant value, and (ii) all of the pixel values share an equal probability

in the image; For the first example, 𝑓(𝑛𝑧) will equal zero since log2 1 = 0. For the

second example 𝑓(𝑛𝑧) = −256 × ( 1
256

× 𝑙𝑜𝑔2
1

256
) = 8. If investigated image contains

highly varying values, its histogram entropy will be greater than for the case where
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the image is more homogeneous.

In the following section how these metrics can be applied to image data is demon-

strated. By applying any metric above to a sequence of images, whereby the micro-

scope stage is moved in the 𝑧 direction between captures, the value of 𝑓(𝑛𝑧) can be

calculated for 𝑛𝑧=0 → 𝑁𝑧 − 1. In general, for images of opaque absorbing objects,

it can be shown that the value of 𝑛𝑧∆𝑧 which corresponds to the maximum value of

𝑓(𝑛𝑧) is the most in-focus image. However, for transparent objects this is not the

case. As shown below, the value of 𝑛𝑧∆𝑧 that corresponds to the minimum value of

𝑓(𝑛𝑧) represents the most in-focus image.

2.2 Comparison of autofocus metrics for unstained

transparent cells and absorbing objects

In this section, the 15 metrics introduced in Section 2.1 are applied to stacks of

images recorded from (i) an absorbing object and (ii) an unstained transparent cell.

In both cases, the autofocus curve, 𝑓(𝑛𝑧) are plotted. In the experiments, various

metrics discussed in Section 2.1 are applied to each image in a stack, whereby one

focus measurement value is computed for each image in the stack. In all of the results

that follow in this chapter, the measured value 𝑓(𝑛𝑧) against the layer numbers 𝑛𝑧 is

plotted, which corresponds to the position in the stack.

In the case of stained cells or fluorescently labelled cells, previous studies have

shown that the position 𝑛𝑧, resulting in the maximum value of 𝑓(𝑛𝑧) corresponds to

the correct in-focus plane. For stained cells, the defocused images inherently have

less information content than well focused images [52]. Therefore, focus metrics such

as those discussed in Section 2.1 respond to the best focal position with a global

maximum. In order to demonstrate the behaviour of autofocusing applied to an

absorbent object, 𝑁𝑧 = 50 images of a USAF resolution chart are recorded. Images

were recorded using a Nikon Diaphot 300 inverted microscope operating in brightfield

mode. The microscope objective that was used in this experiment was a Reichert Plan
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Fluor 100×/0.95NA ∞/0. The digital images were captured using a Basler CMOS

camera (acA2000-340km) with 𝑁𝑥=2040 and 𝑁𝑦=1088 and pixel sizes of 5.5𝜇m in

both the 𝑥 and 𝑦 dimension. The path of light through the microscope provides

an additional ×2 magnification which results in an effective pixel size of ∆𝑥 = ∆𝑦

= 27.5nm. Images were recorded with a sampling interval of ∆𝑧 = 1𝜇m. In Fig.

2-1(a), (b) and (c), the recorded image shown for 𝑛𝑧 = 22, 25, and 28 respectively

corresponding to the image just before, at, and just after the focal plane. In Fig.

2-1(d), 𝑓(𝑛𝑧) is plotted using the variance metric, given in Eqn (12) which is widely

used in autofocusing algorithms. It is clear that there exists a clear increase in the

value of 𝑓 as 𝑛𝑧 approaches the focal plane followed by a clear decrease as the object

moves out of focus. The position 𝑛𝑧, at which the image is most in focus is defined

by an obvious maximum in 𝑓 .

It is usually expected that autofocus algorithms fail to work for transparent objects

such as unstained cells. In order to investigate the behaviour of the various focus

metrics for a transparent object, the same approach was applied to an unstained

cell on a glass slide. In this experiment, a bladder cancer cell (T24) was grown in a

cell culture medium and deposited on a glass slide. For this experiment, the same

microscope, objective and camera were used but this time the number of images was

increased to 𝑁𝑧 = 200 and the sampling interval was reduced to ∆𝑧 = 0.25𝜇m

In Fig. 2-2(a), (b), (c) and (d), the recorded image for four different values of 𝑛𝑧

are shown. In Fig. 2-2(a), 𝑛𝑧 = 98, the image is not in focus and appears blurred.

The dark circle around the nucleus and bright circle around the cytoplasm indicate

that this image is recorded in an out-of-focus plane. In Fig. 2-2(b), 𝑛𝑧 = 106, it is

clear that the cell cytoplasm has reduced in visibility and the bright circle around

cytoplasm has disappeared, suggesting that this part of the cell has come into focus.

Dark features that are visible around the nucleus indicate that this part of the cell

remains out-of-focus. Moving to Fig. 2-2(c), 𝑛𝑧 = 110, the nucleus is now in-focus; the

dark features around it have disappeared and some detail inside the nucleus appears

in this image. Finally in Fig. 2-2(d), 𝑛𝑧 = 115, the entire cell is once again out-of-

focus. Applying the variance metric to this stack of images provides the autofocus
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curve shown in Fig. 2-2(e). It is clear that there is an obvious global minimum in

the variance curve at the most in-focus position, 𝑛𝑧. This phenomenon results from

the image of the cell becoming increasingly homogeneous as it nears the focal plane

making it difficult to distinguish the cell from the background and in this case the

variance reduces. As described previously, in Fig. 2-2(a) to (d), as the cell moves out

of focus, detail in the image develops with corresponding increases in the value of the

variance.

In order to compare all of the metrics discussed in Section 2.1, all of them were

applied to both the stack of images of the resolution chart and the unstained cyto-

spinned T24 bladder cancer cell in and Fig. 2-3(a) and (b) respectively.

As shown in Fig. 2-3(a), all of the metrics provide reasonable performance for

the absorbent object, except for metrics (14) and (15). The result of metric (14)

is a straight line because the minimum value of the images is always zero in this

particular case, leading to the constant contrast((𝑚𝑎𝑥𝑖𝑚𝑎− 0)/(𝑚𝑎𝑥𝑖𝑚𝑎 + 0) = 1).

Unexpectedly, metric (15) provides a global minimum in this case, where as could

have expected a global maximum. This is because the resolution chart image in Fig.

2-1(b) is more homogeneous than Fig. 2-1(a) and (b), which have a greater range of

different grey-scale values. Since the histogram entropy decreases when homogeneity

increases, It can be seen that for this particular absorbent object this metric provides

a global minimum at the correct in-focus plane. This behaviour is dependent on

the specific object used in this experiment, whereby the in-focus image essentially

contained only two grey scale value. In general, it is expected that this metric will

provide a maximum for stained cells.

In Fig. 2-3(b), the same set of results are shown for the stack of images of the

unstained T24 cell; It is clear to see that metric (2), (5), (7) are the poorest, since

they didn’t provide any readable spacial extremum. It can be identified that metrics

(1), (3), (4), (6), (12) and (14), all have a local minimum around the correct focal

position but are not well pronounced. However, six of the metrics: (8), (9), (10), (11),

(13) and (15) all provide smooth and distinctive global minima values corresponding

to the most in-focus image. Among those six metrics, four of them, (8), (9), (10) and
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Figure 2-1: Focus steps: (a) under in-focus plane; (b) in-focus plane; (c) above in-focus
plane; (d) autofocus curve of resolution chart using variance metric where the posi-
tion of the planes shown earlier have been indicated using arrows. The sizes of micro-
scope images shown in (a),(b) and (c) are identical which is 20.4𝜇m (width)×18.5𝜇m
(height) each.
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(11) are all based on variance and they all display similar characteristics. Metric (11)

is selected from this group of four for further study as its curve shows the greatest

difference between maximum and minimum focus measurement values.

Comparing Fig. 2-3(a) and (b), the most significant difference is that transparent

cells return a minimum rather than the maximum for the case of the absorbent

object. In the next section, three of the best behaving metrics were selected for

further evaluations namely; (11) normalized absolute variance, (13) Vollath’s F5 and

(15)histogram entropy for further evaluation.
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Figure 2-2: Focus steps: (a) under in-focus plane; (b) cytoplasm in-focus; (c) nucleus
in-focus; (d) above in-focus plane; (e) Autofocus curve of the bladder cancer cell using
the variance metric where the focus planes that are shown in this figure are clearly
indicated using arrows. The sizes of microscope images shown in (a),(b),(c) and (d)
are identical which is 12.57𝜇m (width)×14.3𝜇m (height) each.
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Figure 2-3: Result of the metrics in Section 2.1 applied to (a) the stack of 50 images of
the USAF resolution chart; (b) the stack of 200 images of the unstained T24 bladder
cancer cell.
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Figure 2-4: (a):In-focus images of cheek cell, 𝑛𝑧 = 97, size is 35.26𝜇m
(width)×28.66𝜇m (height); (b): Comparison of the three selected metrics applied
to the cheek cell; (c): In-focus images of Blast cell, 𝑛𝑧 = 99, size is 17.66𝜇m
(width)×14.38𝜇m (height); (d): Comparison of the three selected metrics applied
to the Blast cell; (e): In-focus images of bladder cancer cell, 𝑛𝑧 = 107, size is 17.66𝜇m
(width)×14.38𝜇m (height); (f): Comparison of the three selected metrics applied to
the Bladder cancer cell.
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2.3 Evaluation

To confirm the repeatable performance of the results shown in Section 2.2, three of

the best behaving metrics were proceeded to be selected and apply them on different

unstained cells. All the images were recorded using the same Nikon Diaphot 300

microscope used in the previous experiment, once again operating in brightfield mode.

The experimental parameters for the three cells are shown below in Table. 1, and all

the focus curves shown in Fig. 2-3 are normalized by first subtracting the minimum

value followed by dividing by the maximum value of the result in order to visualize

all three metrics on the same scale.

Cell Magnification NA 𝑁𝑥 𝑁𝑦 𝑁𝑧 ∆𝑥 ∆𝑦 ∆𝑧

Cheek 50 0.8 2040 1088 200 55nm 55nm 0.1𝜇m

Blast 100 0.95 2040 1088 200 27.5nm 27.5nm 0.25𝜇m

T24 100 0.95 2040 1088 200 27.5nm 27.5nm 0.25𝜇m

Table 2.1: Experimental parameters for three unstained cells

From Fig. 2-4, it is clear to see that all three metrics repeatedly provide very

obvious and reliable minima for all three cells. This result is similar to any other cells

that were tested, which are not described in this chapter. Normalized absolute vari-

ance, Vollath’s F5, and histogram entropy are proven to provide robust performance

for autofocusing where a minimum indicates the most in-focus distance, as opposed

to the more traditional case of finding a maximum value for opaque absorbent ob-

jects. In order to compare the computational speed of all three metrics, they were

tested using an Intel Core i7 2.4GHz processor by implementing them in MATLAB

R2013b. For the images sizes indicated in Table 1, Vollath’s F5 required twice as

much processing time as the other two metrics. Histogram Entropy is slightly faster

than Normalized absolute variance.
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2.4 Conclusion

In this chapter the first comprehensive investigation on the application of autofo-

cusing metrics to images of unstained transparent cells obtained using brightfield

microscopy was provided. In Section 2.1 15 autofocus metrics were reviewed and in

Sections 2.1 and 2.2 all of them were applied to stacks of images obtained from (i) an

opaque absorbent object in the form of a USAF resolution chart and (ii) an unstained

bladder epethelial cell. It was found that instead of obtaining a local maximum at the

correct focal distance for the case of an absorbent object, a local minimum is found

for unstained transparent cell indicating the correct in-focus plan. After comparing

the performance of all 15 metrics, three were selected for further study: normalized

absolute variance, Vollath’s F5 and Histogram Entropy. These three metrics appear

to provide reliable autofocusing are for unstained cell images recorded by brightfield

microscope since they have smooth focus curves with a very obvious global minimum

at the correct distance. This conclusion was confirmed in Section 2.3 by applying the

three metrics to three different cells: a cheek cell, a blast cell and a second bladder

cancer cell respectively. Finally, took computation time into consideration: normal-

ized absolute variance and histogram entropy require approximately half the time

of Vollath’s F5. The work presented in this chapter has been published in a recent

conference proceeding[44].
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Chapter 3

Recovering the three dimensional

morphology of unstained cells using

brightfield microscopy

In the previous chapter, the phenomenon that unstained cells are often effectively

transparent and appear to have an homogeneous intensity profile when they are in

focus has been addressed. In this chapter, a method is proposed to recover infor-

mation about the morphology of an unstained cell using brightfield microscopy and

the autofocus algorithm introduced in chapter 2, which is based on recording a stack

of images where the sample is mechanically moved by sub-micron amounts between

captures. The implementations of proposing algorithm is provided using both central

processing unit(CPU) and graphic processing unit(GPU). The experimental results

demonstrate the usefulness of the method. This approach is expected to have appli-

cation in various forms of clinical cytology and as a useful adjunct in the automation

of Raman and FTIR micro-spectroscopy systems.

The idea of applying autofocusing to regions across a stack of microscopic images

is not new. In Ref. [53], B. Forster et. al. concluded that there are three different

approaches for the purpose of extracting information on the three dimensional shape

of the object under investigation: (i) Pixel-based methods[54] compare pixels with

same coordinates across each image in the stack and the most in-focus plane for a
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given pixel is determined by applying a maximum selection rule on the grayscale value

of pixels; (ii) Region-based methods[55] apply a metric to a block of pixels across each

image in the stack. The most in-focus plane for that region is determined according

to a given selection rule and that depth is assigned to the pixel at the centre of that

region; (iii) Multiresolution-based methods[56] are based on the assumption that in-

focus regions contain more high frequency components. Among the multiresolution

methods, the wavelet transform offers good performance[53]. All of the methods

proposed to date for the recovery of three dimensional images from stacks of two

dimensional microscopic images have been based on the principle that areas that are

in focus contain more detail than areas that are out of focus. However, in the case

of unstained transparent cells, this is not true and all of these algorithms fail[53].

In this chapter, an adaptation of the region based method is investigated such that

three dimensional images can be recovered from phase only objects. This algorithm

is based on recent work where the application of autofocus algorithms to unstained

cells was investigated[44].

In Chapter 2, (and also in a recent publichation [44]) the application of auto-

focusing algorithms are investigated to images of unstained cells using brightfield

microscopy. Although autofocusing has a long history in microscopy,[42][43] previous

investigations focused on objects that absorb light; after recording a stack of images

where between captures the object is moved relative to the microscope objective, a

metric is then applied to each image in the stack and the image that results in this

metric having a maximum value is taken to be the most in-focus image. These metrics

universally work based on the idea that when the image is in focus, more image detail

can be observed and so they often quantify the amount of high frequency content

or variance in the image. However, for the class of objects that appear to have an

homogeneous intensity pattern such as transparent cells, it is well known that these

metrics fail. In the previous chapter and the corresponding paper[44], the application

of fifteen well known autofocusing metrics to unstained cells were investigated and

the behaviour of these metrics were compared with that of an opaque object, also

recorded using brightfield microscopy. How these metrics can be adapted to work
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for transparent cells were demonstrated and which metrics provide the best results

were determined. In this chapter follow-on investigations are conducted in order to

show that these metrics can be applied in a similar manner to sub-regions within

the image, thereby providing a spatial resolution on the focal depth of the unstained

cell which in turn enables us to extract information on the three dimensional cellular

morphology.

In Raman micro-spectroscopy, it is often preferable to select a point within the

nucleus when recording the spectrum of a cell for the purpose of diagnostics or for

comparing biochemistry across different cells. Staining of cell nucleus is not an option

in this case as the additional chemicals corrupt the recorded spectrum and may give

rise to either fluorescence or photo-damage. Without staining is difficult to estimate

the depth and position of the nucleus using brightfield microscopy. The failure to

align the nucleus with the source laser can lead to reduced sensitivity for Raman

diagnostics[12]. The method proposed in this chapter can be used as a useful tool

for the optimal alignment of cells for Raman microspectrosocpy. Furthermore, it may

be possible to employ this algorithm as part of an automated process for preforming

Raman based cytology for high throughput diagnostics[12][14].

3.1 Autofocus of sub-regions for unstained cells

The core part of this proposing algorithm is the application of an autofocusing metric

to images of unstained cells introduced in Chapter 2. In the previous chapter, fifteen

commonly used autofocus metrics were investigated for images of unstained cells

and three optimal autofocus metrics were identified: normalized absolute variance,

Vollath’s F5 and histogram entropy. The mathematical expressions of these three

metrics are shown below:

1. Normalized Absolute Variance:

𝑓(𝑛𝑧) =
1

𝑁𝑥𝑁𝑦[𝑚𝑒𝑎𝑛{𝐼(𝑛𝑧∆𝑧)}]2

𝑁𝑥−1∑︁
𝑛𝑥=0

𝑁𝑦−1∑︁
𝑛𝑦=0

|𝐼 (𝑛𝑥∆𝑥, 𝑛𝑦∆𝑦, 𝑛𝑧∆𝑧) −𝑚𝑒𝑎𝑛{𝐼(𝑛𝑧∆𝑧)}|

(3.1)
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where 𝐼 represents the image recorded by a digital camera; 𝑛𝑥 and 𝑛𝑦 take the range

of 0 to 𝑁𝑥−1 and 0 to 𝑁𝑦−1 where 𝑁𝑥 and 𝑁𝑦 are the number of pixels in the 𝑥 and

𝑦 directions respectively; ∆𝑥 and ∆𝑦 represent the camera pixel size in the 𝑥 and 𝑦

directions respectively and ∆𝑧 is the distance the stage is moved between the capture

of subsequent images in the vertical direction; 𝑛𝑧 takes the range of 0 to 𝑁𝑧−1 where

𝑁𝑧 is the total number of images recorded.

Large values of variance indicate distinct high frequency content in the image.

Conversely, small values of variance indicate homogeneous low frequency image con-

tent. In Ref. [44] it was demonstrated that for images of high contrast opaque objects

the variance has a maximum value when the image is in focus, while for homogeneous

phase only objects the variance has a minimum value.

2. Vollath’s F5:[51]

𝑓(𝑛𝑧∆𝑧) =
1

𝑁𝑥𝑁𝑦

𝑁𝑥−1∑︁
𝑛𝑥=0

𝑁𝑦−1∑︁
𝑛𝑦=0

{︂
𝐼(𝑛𝑥∆𝑥, 𝑛𝑦∆𝑦, 𝑛𝑧∆𝑧)

× 𝐼(𝑛𝑥∆𝑥 + 1, 𝑛𝑦∆𝑦, 𝑛𝑧∆𝑧) −𝑚𝑒𝑎𝑛{𝐼(𝑛𝑧∆𝑧)}2
}︂
(3.2)

This metric is based on the standard deviation function which compares the difference

between the product of a pixel and the grayscale value of its neigboring pixels with

the square of the mean grayscale value. It has been demonstrated to provide good

performance in the presence of noise[50][51].

3. Histogram Entropy:

𝑓(𝑛𝑧∆𝑧) = −
255∑︁
𝑖=0

𝑝𝑖 × 𝑙𝑜𝑔2𝑝𝑖 (3.3)

where 𝑝𝑖 is the probability of a pixels’ grayscale value equal to i. It is expected that

an image that has high detail content will have an inhomogeneous intensity pattern

and will therefore have a relatively broad histogram. In the case of an image that is

more homogeneous, a narrower histogram is expected.
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In Chapter 2, these metrics were applied to each image in a stack of images, where

the object was moved in the vertical direction between captures. In this section, a

similar analysis are applied, but this time the investigation is focused on sub regions

within the images in the stack. In order to determine which metric provides the best

performance, all three metrics are applied to a number of different regions located in

different areas within the image of the cell. The size of the region is an important

parameter in this investigation and so the analysis was repeated for a range of different

block sizes in order to establish the best performing block size. The result is shown in

Fig. 3-1, where in regions that are representative of different focal depths are marked

with different colours and the same colours are used in the corresponding focus curves.

The sample used in this experiment is an unstained bladder cancer cell with 200

images in total. Images were recorded using a Nikon Diaphot 300 inverted micro-

scope operating in brightfield mode. The microscope objective that was used in

this experiment was a Reichert Plan Fluor 100×/0.95NA ∞/0. The digital images

were captured using a Basler CMOS camera (acA2000-340km) with 𝑁𝑥=2040 and

𝑁𝑦=1088 and pixel sizes of 5.5𝜇m in both the 𝑥 and 𝑦 dimension. The path of light

through the microscope provides an additional ×2 magnification which results in an

effective pixel size of ∆𝑥 = ∆𝑦 = 27.5nm and the translation stage was moved in the

vertical direction between captures with a sampling interval of ∆𝑧 = 0.25𝜇m. The

highlighted grey area on the curves represent the full depth of field that is selected

for further analysis, which corresponds to the images in the stack given by 𝑛𝑧= 92 →

122. This range is selected based on the global in-focus image, which is determined

to be at 𝑛𝑧= 107, and the range of interest that estimated using a priori knowledge

of the approximate cell height. The first column in Fig. 3-1 displays the focus curves

generated for all three metrics using a block size of 10 by 10 pixels. The normalized

absolute variance and Vollath’s F5 have clearly identifiable local minima (red and

yellow) at the correct focal planes but regions inside the nucleus (green, blue and

black) return no significant features on the curves. The histogram entropy performs

poorly for all of the regions but the general performance improves when a 30 by 30

block size is used as shown in the second column in Fig. 3-1. However, it remains
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difficult to identify discernible minima for regions inside the nucleus. However, when

the block size is increased to 50 by 50 pixels, the minima are clearly identifiable for

all cases, indicating the correct focal planes. Thus, a trade-off exists between the

accuracy of results in the z directions and the spatial resolution of the depth map in

the horizontal plane. Repeated experiments have shown that a 50 by 50 pixel block

size is the best compromise for the testing system in order to guarantee reasonable

performance. However, it has been found that the block size should be varied on

a case by case basis, as factors such as magnification, numerical aperture, camera

pizel size and cell type can impact on the performance for a given block size. The

normalized absolute variance was selected for further investigation, as it appear to be

the most accurate of the three metrics in general.

In order to automatically identify the correct local minimum on the focus curve

within the range of interest, the Savitzky-Golay filter[57] is used to smooth the data.

The difference between the original curve and the Savitzky-Golay filtered curve high-

lights the sharp changes in the original focus curve; in this way the correct focal

plane is indicated by a global minimum instead of a local minimum which facilitates

simpler automatic identification. In Fig. 3-2, the application of the Savistky-Golay

filter is illustrated to focus curves corresponding to two regions within the cell; the

data shown in red corresponds to a relatively higher region in the cell nucleus and

the data in blue corresponds to a lower region in the cytoplasm. In Fig. 3-2 (b) and

3-2 (c), it is shown that the original focus curve using normalised absolute variance

and the filtered version of the same curve corresponding to the higher region in the

cell. It is clear that, within the region of interest, the original focus curve does not

return a global minimum at the correct plane, but this is found to be the case for

the filtered data. However, for lower regions it is found that, specifically within the

cytoplasm, which contains very little image detail when in-focus, the global minimum

of the Savitsky Golay filtered data does not correspond to the correct focal plane;

rather in this case, the global minimum of the original autofocus curve is more reli-

able. This is illustrated in Fig. 3-2 (d) and Fig. 3-2 (e). In general, it has been found

that combining both approaches returns the most accurate depth map for the entire
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Figure 3-1: Comparison of performance of three autofocus metrics: Normalized ab-
solute variance, Vollath’s F5 and histogram entropy with three different block sizes:
10 by 10, 30 by 30, 50 by 50 pixels. The sizes of microscope images shown in the first
row are identical which is 12.57𝜇m (width)×14.3𝜇m (height).
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cell. For a given region, the location of the global minimum of the autofocus curve

within the region of interest is taken to correspond to the correct focal plane, except

when that location is higher than the global in-focus plane of the overall image; for

these higher regions the location of global minimum of the filtered curve is used.

(a)

Figure 3-2: Examples of failed regions using normalised absolute variance global min-
imum and Savitzky-Golay filtered global minimum (a) two example problem regions
of a bladder cancer cell, image size is 12.57𝜇m (width)×14.3𝜇m (height); (b) nor-
malized absolute variance curve of red region; (c) Savitzky-Golay filtered normalized
absolute variance curve of red region; (d) normalized absolute variance curve of blue
region; (e) Savitzky-Golay filtered normalized absolute variance curve of blue region.

3.2 Algorithm for recovering 3D cell morphology

3.2.1 Methodology

In this section, a basic algorithm is proposed for the recovery of a continuous 3D

morphology of an unstained cell using the principles developed in Section 3.1. Two

different approaches are considered; the relatively simpler case where the regions

are non-overlapping and the more computationally intensive case where overlapping

blocks were considered. In the non-overlapping case, illustrated in Fig. 3-3 (a), each

image in the stack is divided into many small non-overlapping blocks with uniform
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size. The previously described autofocus metric is applied to each block throughout

the stack, revealing the correct focus depth for each particular region. The focal depth

for a given block is assigned to the centre pixel in that block and the resulting depth

map has a low spatial resolution, with 𝑁𝑥/𝐵𝑥 and 𝑁𝑥/𝐵𝑥 samples with sampling

intervals of ∆𝑥𝐵𝑥 and ∆𝑦𝐵𝑦 in the x and y directions respectively, where 𝐵𝑥 and 𝐵𝑦

denote the block size in pixel numbers. For the overlapping case, the block window

moves pixel by pixel and the focus depth that is computed for a given block is assigned

to the middle pixel in the block, as illustrated in Fig. 3-3(b). At the end of this

process, a new image with the same size of the original image is generated in which

the value of each every pixel in the new image corresponds to the focal depth of

the corresponding block. Clearly the non-overlapping case provides a low resolution

depth map but it has the advantage of being relatively light in terms of computation.

The overlapping case on the other hand can provides a high-resolution depth map

has a heavy computational load.

Figure 3-3: (a) non-overlapping and (b) overlapping methods to apply autofocusing
algorithms

Regardless of which if these two methods is used to generate the depth map, the

same autofocus metric is applied to each block, as discussed in Section 3.1. Following

calculation of the raw depth map, thresholding is necessary in order to identify those

pixels which correspond to background and contain no meaningful object data. The
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focus curve relating to background pixels is highly random and has a low amplitude

relative to data from object pixels. For this reason, basic thresholding can be applied

to identify background pixels and a constant depth value is assigned to these pixels

equal to the minimum value that is calculated from the object pixels. A trade-off

where high threshold values result in a cleaner background but have the drawback

of incorrectly assigning some object pixels as background, thereby creating holes or

gaps within the object depth map. Thus, a tunable threshold is built into the GUI

that was designed for this application. When selecting the choice of threshold, small

holes are tolerable in order to ensure a clean background. The final step in proposing

algorithm is to fill small holes.

3.2.2 Fast algorithm

As previously discussed in section 3.2.1, the overlapping method is very timeconsum-

ing. For an image of size (𝑁𝑥,𝑁𝑦) = (1088,2040) and a block size of (𝐵𝑥,𝐵𝑦) = (50,50),

the non-overlapping method results in approximately 840 separate block calculations

while the overlapping case results in over two million. Comparing the speed of apply-

ing normalized absolute variance and the histogram entropy metric on a single 50 by

50 block in MATLAB 2013b, normalized absolute variance takes 2.2s to generate the

focus curve, which is faster than 2.7s using the histogram entropy metric. The most

significant part of this process involves opening and closing each image in the stack,

which is necessary due to the large amount of data involved compared with available

RAM. Applying the normalised variance metric to all blocks in the overlapping case

for the image size and block size metioned above requires a stack of approximately

70 seconds with MATLAB. Applying the same approach to the non-overlapping case

results in a time of approximately 100 days of computation time. However, it is possi-

ble to implement the overlapping method in a significantly shorter time by employing

the Fast Fourier Transform (FFT) algorithm as described below.

Taking another look at Equation (3.1), a core element in the calculation of the

autofocus metric is to numerically calculate the mean value of a given block. For

the overlapping case, this process needs to be repeated for every overlapping block
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of 𝐵𝑥 by 𝐵𝑥 pixels. This process is recognised as equivalence as convolving the

image with a rectangular function of width 𝐵𝑥 and 𝐵𝑦 in the x and y directions and

height 1/(𝐵𝑥𝐵𝑦). The value of each sample in the resulting 2D image represents the

mean value for a block centred at that sample location. Such a convolution can be

implemented using the FFT algorithm; convolution with a rectangular function in

the space domain is equivalent to multiplication with a sinc function in the spatial

frequency domain[58]. The process of calculating the mean values of each block can

be described as follow as follows

𝑀 (𝑛𝑥∆𝑥, 𝑛𝑦∆𝑦) = ℱ−1 {𝐵𝑥𝐵𝑦𝑆𝑖𝑛𝑐 (𝐵𝑥𝑚𝑥∆𝑓𝑥, 𝐵𝑦𝑚𝑦∆𝑓𝑦) ×ℱ {𝐼 (𝑛𝑥∆𝑥, 𝑛𝑦∆𝑦)}}

(3.4)

where ℱ{·} and ℱ−1{·} denote the operators for the Discrete Fourier Transform

and Inverse Discrete Fourier Transform respectively, both of which can be imple-

mented using the FFT algorithm; ∆𝑓𝑥 = 1/(𝑁𝑥∆𝑥) and ∆𝑓𝑦 = 1/(𝑁𝑦∆𝑦) and 𝑀 de-

notes the matrix containing the mean values of each block. Appropriate zeropadding

is required before the first DFT, see [58]. The multiplication step in the equation

above denotes element-by-element multiplication and not matrix multiplication, i.e.

𝑎(1, 1) = 𝑏(1, 1) × 𝑐(1, 1).

The overall process of obtaining the depth map can be calculated according to the

following equation:

𝐷(𝑛𝑥, 𝑛𝑦, 𝑛𝑧) =
|𝐼 (𝑛𝑥, 𝑛𝑦, 𝑛𝑧) −𝑀 (𝑛𝑥, 𝑛𝑦, 𝑛𝑧) |

𝑁𝑥𝑁𝑦𝑀 (𝑛𝑥, 𝑛𝑦, 𝑛𝑧) ×𝑀 (𝑛𝑥, 𝑛𝑦, 𝑛𝑧)
(3.5)

Again, the multiplication and division in the above equation are element-by-

element and not matrix operations. The above equation is calculated for each value of

𝑛𝑧 in the stack, providing the raw data that is then analysed as described in Section

3.1. Simple averaging is requires 𝐵𝑥𝐵𝑦 additions and for the overlapping methods this

averaging needs to be repeated 𝑁𝑥𝑁𝑦𝑁𝑧 times which results in 𝐵𝑥𝐵𝑦𝑁𝑥𝑁𝑦𝑁𝑧 numeri-

cal operations. Using the FFT approach this reduces to approximately 2𝑁𝑧𝑁𝑥𝑁𝑦(log2𝑁𝑥+

log2𝑁𝑦), assuming a radix 2 FFT. This accounts for approximately a 60 times speed
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up over the direct approach.

3.2.3 GPU implementation

Although fast algorithm is implemented to speed up the computation time, the total

calculation is still need more than an hour to get result from MATLAB using a con-

tinuous way. Thus, the proposing 3D morphology recovery algorithm is implemented

using GPU.

The forward and inverse FFTs for the fast evaluation of the convolution operations

for the mean and variance calculations of the normalized absolute variance autofocus

metric are carried out using GPU computation. CUDA[59] programming language is

used for the GPU implementation and highly optimized CuFFT library[60] is used for

the FFTs. Since the input and output data are real valued for these convolutions, real

to complex 2D FFTs for the forward case and complex to real 2D FFTs for the inverse

case are used to reduce the computation amount by half using the mirror symmetry

observed in these types of FFT operations. The mean kernel multiplication between

the forward and inverse FFTs is also carried out on the GPU device avoiding the

transfer of the intermediate data between the host computer and the GPU device.

The complete GPU computation of the autofocus metric includes the following steps

for each separate image of the stack: 1) Initial image pixel values are transferred

to the GPU memory and zero padded to make the dimensions suitable for GPU

computation. 2) Convolution for the mean calculation is carried out using forward

and inverse FFTs and intermediate kernel multiplication is applied as described above.

3) Convolution for the variance calculation is carried out by the repetition of the

previous step. The input for this second convolution is calculated as the mean image

pixel values subtracted from the original image pixel values (absolute value is taken

after the subtraction). 4) Calculated variance image pixel values are divided by the

square of the mean image pixel values.

The autofocus metric is calculated for the stack of images on the GPU. The resul-

tant autofocus metric images are gathered together as a 3-dim stack and transposed

to establish data locality in the z-axis which holds the data for the focus curves
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(autofocus metric values of separate images for a specific pixel). The transposed 3

dimensional stack data is transferred to the host computer for Savitzky-Golay filter

application on the CPU. The local minima identification is carried out on the GPU

for each pixel after the Savitzky-Golay filtered curves are subtracted from the original

focus curves and transferred back to GPU memory. Each GPU thread is responsible

for a separate focus curve in the local minima identification GPU kernel and thus

a high degree of parallelization is established. The depth map image is constructed

from the local minima values for each pixel and a median filter is applied to smoothen.

This resulted depth map image is transferred back to host computer.

3.3 Experimental Results

All the images were recorded using the same Nikon Diaphot 300 microscope and

digital camera described in Section 3.1, once again operating in brightfield mode.

The other variable parameters are listed in table 3.1. Two cells were investigated; the

first was a fresh cheek cell smeared onto a glass slide and the second was a bladder

cancer cell cultured, and dropped onto a glass slide.

Cell Magnification NA Pixel size ∆𝑥 Pixel size ∆𝑦 Step size ∆𝑧 𝑛𝑧

Cheek 50 0.8 0.055𝜇m 0.055𝜇m 0.1𝜇m 200

Blast 100 0.95 0.0275𝜇m 0.0275𝜇m 0.25𝜇m 200

Table 3.1: Experimental parameters for two unstained cells

Fig. 3-4 shows the result of applying the algorithm described in previous sections

to a normal cheek cell using both the non-overlapping and the overlapping methods.

In this experiment, normalized absolute variance is used and a block size given by

(𝐵𝑥,𝐵𝑦) = (50,50). In Fig. 3-4(a) and (b) the depth maps recovered from both

methods is shown. It can be seen that they both provide a similar morphology but

with different spatial resolutions; (a) can be considered as a down sampled version

of (b). Fig. 3-4(c) is the most in-focus image in the stack without any processing

and Fig. 3-4 (d) is extended depth-of-focus image that is generated by using the
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most in focus values for each pixel value throughout the stack, according to the depth

map. Interestingly, there is even reduced image detail visible in the extended focus

image, further highlighting the point that a transparent cell is a phase only object

and detail can only be observed indirectly by analysing an out-of-focus image. Fig.

3-4(e) illustrates a contour map that overlies the original unprocessed cell image and

highlights regions of similar depth. It is interesting to note that the cell can be

segmented accurately using this contour map. Finally, in (f), the original image with

the highest area marked in green is shown, presumably the cell nucleus. This image is

similar to staining and it is of particular interest in the context of those applications

where identification of the cell nucleus is important and where it is preferable not to

perform chemical staining.

Fig. 3-5 shows the result of applying 3D morphology recovery algorithm on a blad-

der cancer cell in both non-overlapping and overlapping case. In this case, the block

size is increased to 60 by 60 pixels to show that 50 by 50 pixels is the recommended

minimum block size but slightly increasing the size is acceptable and will lead to

smoother morphology. Fig. 3-5 (a) and (b) are the non-overlapping and overlapping

3D plot respectively and again, they are very similar and (a) is the down-sampled

version of (b). Fig. 3-5 (c) is the original most in-focus image without any image

processing. It is clear to see that the enlarged dark nucleus in the center of the cell

which is clearly not in focus. Fig. 3-5 (d) is the extend depth of focus image of this

cell where everything are in focus including the partial cell in the upper left corner.

Fig. 3-5 (e) and (f) are the contour and highlighted nucleus on top of global in-focus

image obtained by applying different thresholding on the non-overlapping depth map.

Basiclly, with the depth map, any part of the cell can be identified and segmented

like nucleus and cytoplasm very easily.

3.4 Conclusion

In this chapter, a 3D morphology recovery algorithm was introduced for unstained

cells recorded using brightfield microscopy that is based on the results in Chapter

54



(a) (b)

(c) (d)

(e) (f)

Figure 3-4: Normal cheek cell (a) non-overlapping 3D morphology plot; (b) over-
lapping 3D morphology plot; (c) global in-focus image; (d) extended depth of focus
image; (e) contour map; (f) highlighted nucleus image. The size of microscope im-
ages shown in (d),(d),(e) and (f) are identical which is 112.2𝜇m (width)×59.84𝜇m
(height).
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(a) (b)

(c) (d)

(e) (f)

Figure 3-5: T24 bladder cancer cell (a)non-overlapping 3D morphology plot;
(b)overlapping 3D morphology plot; (c)global in-focus image; (d)extended depth of
focus image; (e)contour map; (f)highlighted nucleus image. The size of microscope
images shown in (d),(d),(e) and (f) are identical which is 56.1𝜇m (width)×29.92𝜇m
(height).
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2, where the application of autofocus metrics to images of unstained cells was inves-

tigated. Making use of the special property that unstained cells become effectively

transparent when they are in-focus an autofocus algorithm for unstained cells was

developed. In this chapter, the application of the metrics discovered in Chapter 2 to

sub-regions with cell image was investigated in order to identify the focal depth of

small areas in the image. In this way, a depth map can be created that reveals infor-

mation about the three dimensional cellular morphology. Two different approaches

were developed and they were applied to non-overlapping and overlapping regions to

achieve depth map with low and high resolutions respectively. The overlapping case

provides a depth map with a significantly higher resolution than the non-overlapping

case with the caveat that it takes considerably more time to generate the results. For

the sake of improving the efficiency of the overlapping case, the algorithm has been

implemented using a parallel GPU solution based on the CUDA programming envi-

ronment. As shown in section 3.3, the proposed algorithm provides excellent results

and the depth map that is generated can be used to identify or segment any part of

the cell in a straightforward manner and in particular the nucleus can be identified

and an image showing a type of virtual staining can be generated. This algorithm is

very useful for any application that requires the automatic identification of a cell nu-

cleus for unstained cells using brightfield microscopy. The work presented in Chapter

3 is not directly used in the automated Raman system that is presented in Chapter

4. In Chapter 4, a simple image processing technique was employed based only on

the global in-focus metrics that are investigated in Chapter 2. However, it may be

possible to ensure more accurate alignment of the nucleus by incorporating the algo-

rithm presented in this chapter into the automation process. This is considered to

be a viable course of future work but insufficient time was available in this research

masters to implement this. Finally, the work presented in this chapter is the subject

of a jounral paper in preparation.
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Chapter 4

Automated Raman Cytology System

In this chapter, an automated Raman micro-spectroscopy system that is capable of

identifying unstained cells on a slide using image processing and automatically align-

ing the nuclei with the source laser for recording a spectrum is described. This work

follows from the previous chapters where the methods of autofocusing was developed

for unstained cells. The automation process is built around the open source Micro-

manager software system and can be adopted by any lab using a commercial Raman

micro-spectroscopy system or a custom built one. This methodology will help in the

standardization of Raman cytology and its adoption into the clinic.

Raman spectroscopy can be used to evaluate the biomolecular composition of

tissue and cell samples in a non-invasive manner. This technique is based on inelastic

light scattering as a result of the interaction between incident monochromatic light

and a biological sample. The majority of photons undergo elastic Rayleigh scattering

whereby the emitted photons have the same energy to the incident photons. However,

approximately one in 107 photons undergo inelastic Raman scattering[61], whereby

the photon either gains energy (Anti-Stokes) or loses energy (Stokes) during this

scattering process. The magnitude of the change in energy of the Raman photons

is dependent on the rotational and/or vibrational energies of the molecules in the

biological sample. By analyzing the shift in wavelength of the Raman photons, it

is possible to infer information on the molecular composition of the sample being

investigated. Specifically, the shift in wavelength of the photons and the magnitude of
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the photons that have undergone this shift are indicative of a particular chemical bond

and the concentration of that chemical bond respectively. For a complex mixture of

different chemicals, such as in a biological sample, a highly varying Raman spectrum

can be observed.

A basic Raman spectrometer is made up of four core components: (i) A suitable

laser with a narrow linewidth is necessary to provide the excitation; (ii) A delivery

system composed of a series of optical elements is required to transfer the excitation

source to the sample; (iii) A collection system transfers the Raman scattered pho-

tons into a spectrograph. This collection system is once again made up of a series of

optical elements, this time including an optical filter (such as a long pass or a notch

filter) that is capable of attenuating the Rayleigh scattered photons while allowing

the higher wavelength Raman scattered photons to pass through; (iv) The final com-

ponent is the spectrograph. The entrance to the spectrograph is usually a slit that is

imaged to a highly sensitive detector, via a diffraction grating that disperses the light

into its constituent wavelengths. In a confocal Raman micro-spectrometer a Raman

spectrometer is combined with a microscope; in this case both the delivery and col-

lection systems make use of a microscope objective with a high numerical aperture.

The microscope objective focuses the laser to a microscopic point on the sample and

then efficiently collects the Raman scattered photons from this location. The point

is imaged to a confocal aperture is in the collection path that selectively isolates

the light emanating from the desired point on the sample and thereby reduces the

background signal from the microscope objective and the sample substrate. Usually

the microscope lamp must first be turned off before recording a spectrum. A more

detailed description of a confocal Raman microspectrometer is given in Section 4.2.1.

Raman spectroscopy can be applied to analyze the molecular difference between

various tissue and cell types. The first step in this process is usually to apply post-

processing methods: (i) to reduce the background signal in the spectra; (ii) to cal-

ibrate the wavelength axis; (iii) to normalize the spectra; and (iv) to remove and

smooth any cosmic rays. If subtle differences between similar datasets of spectra is

wished to be identify, e.g. healthy and cancer cell types, multivariate statistical al-
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gorithms may be applied following this post-processing. These algorithms enable the

numerical classification of seemingly similar spectra, which enables the identification

of an unknown cell type, given a database of spectra taken from known cell types.

The method of Principal Component Analysis (PCA) followed by Linear Discrimi-

nant Analysis (LDA) is most commonly employed for the classification of diseased

tissue or cells[62][63][64]. and this topic is discussed further in the following section.

The breakdown of this chapter is as follows. In Section 4.1, the basic physical

principle of Raman micro-spectroscopy is introduced and its application to the clas-

sification of cell types. Two particular forms of cytology that can be augmented by

Raman based classification are highlighted: namely screening for Cervical intraep-

ithelial neoplasia (pap smear) and diagnosis of bladder cancer from samples of voided

urine. In Section 4.2, a detailed description of the setup is provided and the methods

on which the proposed automated Raman cytology system is based. In Section 4.3,

a brief conclusion of this chapter is offered.

4.1 Raman Micro-spectroscopy for cell classification

4.1.1 Classification Algorithms

In order to identify the cell type associated with a particular Raman spectrum, the

spectra obtained are initially subjected to pre-processing methods before undergoing

further multivariate statistical analysis as discussed in the last sub-section. In the

proposing automation algorithm, PCA, LDA and cross validation are employed for

classification of cell types, but other techniques have also been demonstrated.

- Principal components analysis: PCA is a powerful statistical tool used to reduce

the number of variables within a data set. To do this, PCA transforms the spectral

data into a set of variables called principal components (PCs), whereby all PCs are

orthogonal to each other and they are generated in such a way as to represent as

much variance within the dataset as possible. Computationally, PCs are found by

determining the covariance matrix of the data set, and calculating the eigenvectors
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and eigenvalues of this covariance matrix. Further analysis can then be applied to

these PCs to organize them into groups, or clusters, representing different cell or

tissue pathologies; techniques such as LDA or logistic regression analysis (LRA) are

often utilized.

- Linear discriminant analysis: LDA, also known as Fisher’s discriminant analysis,

is a supervised multivariate technique used to optimize class separability by finding

the direction that provides the best separation for two or more groups of data. LDA is

often applied to PC scores to further reduce the dimensionality of the data set. This is

achieved by finding a linear combination of vectors that maximize the ratio of between-

group variance and within-group variance[65]. By maximizing this ratio, LDA is

able to provide the optimum separation for each group, thus improving classification

results.

- Cross validation: Cross validation is often used to estimate how accurately the

diagnostic model will perform. This is achieved by assessing the results of the statis-

tical algorithm when applied to a validation set of data. The most commonly method

is leave-one-out cross validation. Leave-one-out is based on using a single spectrum

as the validation set, and the remaining spectra are used as the training set for the

algorithm. This is repeated to test each spectrum in the dataset, and can be used to

determine how accurate the model is at predicting the pathological status of the sam-

ple. Blind testing and double blind testing can also be applied[12]; these are based on

concealing pathological information from the data in order to remove observer bias.

4.1.2 Application of Raman Micro-spectroscopy to Cancer Cell

Classification

Raman micro-spectroscopy has been shown to be a powerful diagnostic method for the

investigation of various cancer related diseases[66][67] including brain metastases[7],

prostate[8], breast[9], esophagus[10], skin[11], bladder[12], oral[13], cervical[14] and

lung[15] cancer. In many cases, the results have shown a significant increase in sen-

sitivity and specificity for tissue and cell classification using Raman spectroscopy
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when compared with other diagnostic approaches. This chapter is focused on the

automation of Raman micro-spectroscopy for the analysis of epithelial cells. This

automated system will have applications in the area of cytology, also known as cy-

topathology, which refers to the study of cellular disease and the diagnosis of disease

by analyzing cellular changes. The most common example of this branch of pathology

is the Pap smear[68] which can be used to screen for precancerous cervical lesions.

Pap staining[69] is the multichromatic staining technique that used in this procedure

to feature nuclear details and assure the transparency of cytoplasm. This staining

method consists of a nuclear stain haematoxylin[70] and two counterstains OG-6 and

Eosin Azure. Hydration prepares the cell sample for uptake of the nuclear dye; de-

hydration prepares the cell sample for uptake of the counterstains. Dehydration and

clearing solutions result in cellular transparency and prepare the cell sample for the

final steps: mounting and coverslipping. Generally, the purpose of Pap staining is to

differentiate cells and reveal nuclei details. The nucleus of the cell is an important fo-

cal point for cytology. For a cancerous cell, the morphology of the nucleus can become

larger and less uniform and it can appear darker. This physical change, resulting from

altered DNA activity, can often be identified by qualitative inspection of microscopic

images of the cell by a trained histopathologist. In many cases, staining is used to

enhance the image contrast. In the paragraphs that follow in this subsection, the

specific cases of cytopathology which have been shown to be improved using Raman

micro-spectroscopy is highlighted. Although other forms of cytopathology are maybe

expected to be benefit from Raman spectroscopy, these two branches are underlined

as strong candidates for a fully automated Raman cytology system.

Approximately 471,000 women are diagnosed with invasive carcinoma of the cervix

each year and 233,000 die from the disease worldwide[23]. Cervical cancer is preceded

by a precancerous condition called Cervical Intraepithelial Neoplasia (CIN) that can

be easily treated if detected. It is therefore important to identify CIN, which can be

achieved using a screening test called a ’Pap smear’. An abnormal Pap smear is fol-

lowed by colposcopic examination, biopsy and histological confirmation of the clinical

diagnosis. This usually involves the visual examination of histological sections[62].
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The grading characteristics are highly subjective and pre-malignancy may not be vi-

sually perceptible. A more recent innovation is the introduction of automated imaging

systems (ThinPrep Imaging System or Focal Point Slide Profiler) that automatically

scan the slide for large and dark nuclei which are features of abnormal cells. The Thin-

prep Imaging system has been shown be at least equivalent to manual screening[71]. In

1998, Mahadevan-Jansen and colleagues realized the potential use of near-IR Raman

spectroscopy to distinguish cervical cytology grades[72]. They developed a compact

fibre-optic probe to measure the in-vivo Raman spectra of cervical tissue[73]. Further

studies have shown promising results for the application of this method in grading

cervical pre-cancer [74]. In a recent study, a total of 1240 Raman spectra were ac-

quired from 84 cervical patients. Confocal Raman micro-spectroscopy coupled with

PCA-LDA modelling yielded a diagnostic accuracy of 84.1% (a sensitivity of 81.0%

and a specificity of 87.1%) for in-vivo discrimination of dysplastic cervix[19].

Bladder cancer is the fourth most common cancer in men, with about 74,690 new

cases of bladder cancer diagnosed in 2014 in the United States[75]. Cystoscopy is

the most widely used diagnostic method within present clinical techniques, whereby

a small tube is inserted into the bladder through the urethra to examine the lining

of the bladder and urethra. Cytoscopic identification of bladder cancer has a sensi-

tivity and specificity of between 62% - 84% and 43% - 98% [22]. Cystoscopy has a

number of disadvantages; firstly it is inherently an invasive procedure and secondly

it produces a significant number of false negatives due to the abnormal appearance

of the urothelium in patients with inflammation, which makes the identification of

carcinoma in situ problematic. Urine cytology, whereby microscopic images of epithe-

lial cells that have been retrieved from urine samples are qualitatively inspected has

been shown to be a useful adjunct for bladder cancer diagnosis[76]. While it has the

obvious advantage of being entirely non-invasive, it only achieves a high sensitivity

and specificity for high grade cancers. The sensitivity reduces significantly for low

grade cancers, which represent the majority of cases[77]. Recently it has been shown

that standard bladder cytology, which has a 80% to 90% sensitivity and 98% to 100%

specificity for high grade[20] and 20%-50% sensitivity for low grade cancer[21] can
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be significantly improved using Raman micro-spectroscopy to achieve 92% sensitiv-

ity and 91% specificity for low grade and 100% sensitivity for high grade bladder

cancer[12][22]. Clearly, Raman cytology has a strong potential to become a standard

clinical diagnostic technique.

One important reason that explains why Raman micro-spectroscopy has not yet

become an everyday clinical tool for disease diagnosis and cell classification is that

there exists a lack of consistency and standardization in terms of equipment, con-

sumables, and methodologies across different research groups, which results in con-

siderably varying spectra. One solution that may help to mitigate the lack of stan-

dardization could be to implement a fully automated Raman cytology system thereby

minimizing user variability. In addition, a higher throughput of cellular analysis could

be expected from such a system and with a reduction in manpower and cost.

4.2 Automated Raman Cytology

4.2.1 Experimental set-up for automated Raman

Conventional Raman micro-spectroscopy involves the use of a microscope and a con-

focal aperture in order to isolate the Raman spectrum from a specific microscopic

three-dimensional point in a specimen. The laser beam can be delivered at 180∘ to

the sample surface or at 90∘, in either a back scattering- or transmission-based sys-

tem. Biological samples can be measured both in vitro and ex vivo with this method

by mounting them onto a substrate.

Fig. 4-1 illustrates the system for automated Raman micro-spectroscopy that has

been custom built in the lab. A state of the art Raman microscope will cost in the

order of at least $100,000 (can be much more) but an equivalent one can be built

from basic elements for less than half this amount.

The basic optical design in the lab is as follows; The delivery path (red path in

Fig. 4-1) begins with a laser with a sufficiently narrow bandwidth (Sacher Laser TEC

520 7080-100, wavelength 785 nm, power 120 mW) first passing through a computer
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Figure 4-1: Automated Raman cytology system setup
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controlled filter wheel. The reason for this filter wheel is to allow blocking or reduction

of the laser when performing image capture and image processing which constitutes

a core component of the automation process. An electronic shutter or iris could

perform the same function. Following the filter wheel, an optical isolator OI (Sacher

Laser, ISO-35-0780) ensures elimination of any back reflections from the set-up that

may return into the laser cavity and damage the laser head. A line pass filter LP

(Semrock LL01 785-12.5) is placed after the isolator, which removes any spurious lines

from the laser. Only the line at 785nm is allowed to reach the neutral density filter

ND (Edmund Optics) which can be rotated enabling the power of the laser beam to

be varied. This is followed by two lenses, L1 and L2 (Thor Labs), that are used to

expand the laser beam such that the diameter of the collimated beam is approximately

equal to the back aperture of the microscope objective MO (UMPlanFl 50x/0.85)

The collimated beam is directed onto a dichroic beam splitter DB1 (Semrock

LPD01-785RS) which reflects light at 785 nm but transmits higher wavelengths.

This facilitates reflection of the laser beam into the microscope while allowing the

backscattered Raman photons to pass through towards the spectrograph. DB1 re-

flects the beam towards a mirror, M (MaxMirror), and then onto a second dichroic

mirror, DB2, which relects all wavelengths above 650 nm and transmits all shorter

wavelengths. DB2 is carefully aligned such that it reflects the beam directly into the

back of the microscope objective. The microscope objective is chosen such that it has

a high numerical aperture which is important for delivering a tightly focused illumi-

nation spot and for recovering as many Raman backscattered photons as possible. It

is also important that the microscope objective efficiently transmits light in the NIR

as this will also impact on the system to recover a strong Raman signal; plan fluorite

microscope objectives provide good performance. The microscope objective focuses

the beam to a tightly focused spot on the sample S approximately 1-2𝜇m in diame-

ter. The sample is placed on a translation stage, TS (ASI, LS-2000 and LS-50), that

enables sample positioning relative to the laser spot. For the application of cellular

classification, it is desirable to position the cell such that the spot is located within

the cell nucleus as this results in optimum classification sensitivity.
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The collection path (shown in orange in Fig. 4-1) originates at the sample plane

where the backscattered Raman photons (785-1050 nm) travel back through the mi-

croscope objective, are reflected by DB2 and then pass through the dichroic beam

splitter DB1. A holographic notch filter HN (Kaiser HNF-785.0-1.0) is used to remove

Rayleigh scattered light at 785 nm that has passed through the dichroic beam splitter

while simultaneously transmitting all other wavelengths. A third lens L3 (Thor Labs)

focuses the light to a 100𝜇m confocal aperture CA (Thor Labs) that is used to ensure

that light reaching the spectrograph has originated from a three dimensional point

within the object in the order of 1𝜇m in all three dimensions, thereby enabling 3D

localization of the Raman signal from the sample. The lens L4 (Thor Labs) forms

a one-lens imaging system from the plane of the confocal aperture to the plane of

the entrance slit SL of the spectrograph (Andor Shamrock 500), which provides 0.25

magnification, thereby ensuring that the spot size entering the spectrograph is equal

to the pixel pitch of the spectrograph camera (25𝜇m). The system was designed such

that the angle of light entering the spectrograph is matched to the f number of the

spectrograph (6.5). A long pass filter, LP (Semrock LP02-785RU-25), is placed near

the entrance slit in order to further reduce any Rayleigh scattered/laser light that has

reached the spectrograph. The image of the slit is projected onto a cooled electron

multiplying CCD camera CCCD (Andor DU420A-BRDD) via a collimating mirror

CM, a diffraction grating DG, and a focusing mirror FM. Each row of pixels records

an image of the slit corresponding to a specific wavelength, and in this way the Raman

spectrum is recorded using the Andor Solis software system. It is important to use a

high quantum-efficiency, low-noise, cooled CCD in order to recover the weak Raman

signal with minimal noise.

Independently, a separate imaging path shown in green in Fig. 4-1, allows the

sample to be imaged directly onto a second digital camera. A 100-W halogen lamp

passes through a green filter GF (Nikon) and then through an Abbe condenser MC

(Nikon) which focuses the light onto the sample and into the microscope objective.

Since the green light has a wavelength less than 650 nm, the light passes through DB2

and then through a short pass filter SP (Semrock FF01-775/SP-25), which is designed
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to transmit all wavelengths shorter than 775 nm thereby blocking the laser light. The

lens L5 images the object plane onto a digital camera, DC (Basler acA2000âĂŞ340km

with 1088×2040 pixels with size 5.5𝜇m in both dimensions), that is fixed to the front

exit port of the microscope. This short pass filter can be removed if the laser spot

imaged onto the camera is wished to be seen, which can be useful for one form of

automation mentioned below; it has been found that the optimal scattering plane

can be determined by processing images of the sample where the laser illumination

spot is visible. However, it is possible to determine this optimal plane in other ways,

thereby allowing SP to be utilized and thus removing the need for the filter wheel,

W, to eliminate the presence of the laser spot when capturing images of the sample.

This is regarded as a subject for further study.

4.2.2 Method of Automation

In the proposing automated system, the following elements are controlled using a

single software package:

∙ The microscope halogen lamp can be switched on and off electronically . The

lamp must be turned on for imaging the cells and automatic alignment of the

cells with the laser but it must be turned off when recording a Raman spectrum

as some of the light will make its way to the spectrograph and swamp the Raman

signal.

∙ A filter wheel, W, or electronic shutter is used to block the laser when recording

images of the cells on the digital camera. The laser must be on when recording

a spectrum but it must be turned off when recording images of cells to be used

in the image processing algorithms as part of the overall automation process.

∙ The CMOS digital camera can record images of the sample.

∙ The cooled CCD camera can record spectra.

∙ The 𝑥𝑦𝑧 translation stage can be controlled electronically to align a cell following

from image processing algorithms.
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∙ The angle of the grating in the spectrograph can be controlled in order to change

the wavelength range that is recorded. It is also possible to change the grating

itself if different resolutions/spectral bandwidths are required.

∙ In this chapter, a method that entails one manual step involving a change in

microscope objective is described. This enables changing from low to high

magnifications at different stages of the automation process. It is possible for

the microscope objective to be changed automatically using an electric turret

wheel on a motor.

The automation process consists of a number of steps that are illustrated in

Fig. 4-2. All of these steps are implemented using a single software package called

Micromanager[24] which can integrate all of the hardware and software that is dis-

cussed in the previous section. The initial series of steps, shown on the left side of

Fig. 4-2, are applied using a lower magnification objective; in this case a Nikon x20

plan fluor objective is used. This allows us to scan a relatively large field of view

on the slide which facilitates an automated selection process where cells are chosen

for Raman spectroscopy based on some quality metric. All images recorded using

x20 magnification result in an equivalent pixel size of 0.275𝜇𝑚 in both of the in-

plane dimensions, 𝑥 and 𝑦. This value of effective pixel size decreases by a factor of

5 times when the microscope objective is switched to the x100 magnification which

gives 0.055𝜇𝑚.

The initial set of operations are implemented at x20 magnification and the pro-

cesses begin by manually choosing a good starting position (𝑥0, 𝑦0, 𝑧0).(𝑥0, 𝑦0) is ar-

bitrary so long as the chosen area has enough candidate cells and is not very close to

the edge of the substrate. For full automation, the centre of the substrate can simply

be selected but basic manual alignment to an area with cells will speed up the overall

process. However, the initial position in the 𝑧 direction, 𝑧0, is required to be the global

in-focus plane. This can be automated using a basic autofocus algorithm[44]. Once

(𝑥0, 𝑦0, 𝑧0) is selected, the following process in x20 magnification is automatically per-

formed using a script written in Micromanager. The initial steps are designed for the
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Figure 4-2: Flow chart of automation process.
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purpose of quickly scanning a relatively large field of view in order to identify good

candidate cells from all of the cells in the field. At the end of the first stage, a list of

coordinates of suitable cells are generated according to some metric. Suitable metrics

include (but are not limited to) the following:

∙ The distance between neighbors whereby the cell that is most distant from its

neighbors (i.e. most isolated cell) will rank first. This can enable us to be sure

that cells are not overlying one another which can result in problems in spectra

recording. This is the metric that is applied in the experimental validation

presented here.

∙ Some other aspects of morphology eg. the overall cell size, the nucleus size or

the cytoplasm to nuclues ratio. These values could be determined using other

segmentation algorithms that are not discussed here or they could be inferred

in some way from the bright spots that are described below.

∙ The appearance of new cells in a particular area if a sequence of images are

captured with cell growth occuring between captures. Such new cells could be

quickly identified using the bright spot methodology described below.

The nucleus of cells are often spherical or ellipsoidal in shape and are more dense

that the surrounding cytoplasm. One effect of this morphology is that the cell ef-

fectively behaves like a small crude lens that approximately focuses the microscope

illumination to a point spot at a short distance below the cell (assuming an inverted

microscope configuration.). This lens effect leads to the appearance of bright white

spots in a plane that is slightly below the image focus plane for an inverted microscope

(slightly above for an upright microscope.) The (𝑥,𝑦) location of this spot indicates

the (𝑥,𝑦) location of the nucleus. An example of this effect is provided in Fig. 4-3

below. The experimental parameters need to be described here: bladder cell line T24,

x20 magnification, Basler camera. The z shift between image (a) and (b) in 𝜇𝑚.

Similar methods have previously been applied to count unstained cells using

brightfield microscopy. In Ref. [40] the spatial coherence of the source illumination
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Figure 4-3: Unstained bladder epithelial cells on a Calcium Fluoride slide shown
in-focus on the left image and a slightly out of focus image is shown on the right.
The bright spots in the image approximately overly the centres of the nuclei of the
cells. The sizes of microscope images shown above are identical which is 280.5𝜇m
(width)×149.6𝜇m (height).

was considered to be an important factor in the appearance of the spots. However, It

has been found that for the cells have been investigated, standard Kohler illumination

provides satisfactory results. To choose the best white spot plane automatically, a

stack of images along the vertical direction is firstly recorded and saved starting from

a position 35𝜇𝑚 below the focal plane with a step size of 2.5𝜇𝑚. In total, 30 steps

are taken; 14 images are below the focal plane and 15 images above. The variance

of each image is calculated in order to find the maximum value which corresponds

to the plane which is considered to have the optimally bright spots that can be used

in the subsequent processing steps. The plot of image variance versus 𝑧 position is

shown in Fig. 4-4. The stage is then moved to the plane resulting in the maximum

image variance.

For the steps shown on the left side of flowchart in Fig. 4-2, only the x20 magni-

fication is employed and the 𝑧 position of the translation stage remains unchanged.

The stage is scanned in the 𝑥 and 𝑦 directions in order to record a grid of contigu-

ous images. In practice, some overlap between the images are required in order to

facilitate stitching into a larger image. In the example presented in Fig. 4-5 3x3 im-

ages were recorded by moving translation stage 14.96𝜇𝑚 up or down and 28.05𝜇𝑚 left
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Figure 4-4: Variance plot for the stack of images in the vertical direction. The
maximum value corresponds to the plane with the optimally bright spots, which is
then used for locating cell nuclei.

which corresponds to the half image height and width respectively. These nine images

are then stitched together using a correlation algorithm[12]. The result of stitching

these images together is to create a larger image of approximately 2176× 4096 pixels

which corresponds to an area of 0.25𝑚𝑚×0.5𝑚𝑚 in size, which covers a large portion

of the cells on investigated slide. From this large image, the positions of the local

maxima is detected in the image where a threshold is included in order to make sure

that only suitably bright spots are targeted. In this way, the approximate horizontal

coordinates of the cell nuclei can be identified. The cells are then ranked according to

some metric as discussed above. In this case, cell candidates are ranked according to

isolation, thereby ensuring that manually overlying cells are not included, the spectra

of which may be corrupted. The process is illustrated in Fig. 4-5.

In the second stage of the automation process, the microscope objective is changed

from from x20 to x100 magnification and immediately an autofocus algorithm is

applied to again detect the best focal plane. The automation algorithm now moves

the stage to the coordinate of the first cell in the list. A minor adjustment is necessary

to relocate the target cell nucleus to the center of the laser spot due to an offset in
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(a) (b)

Figure 4-5: (a) Illustration of the recording of a grid of images with 50% overlap.
In this example nine overlapping images are recorded (8 shifts are shown); (b) The
larger image made up of the nine record images. This stitched image size is 561𝜇m
(width)×299.2𝜇m (height). All of the cell nuclei are found using the bright spot
method, as shown using the red targets.

the experimental setup that is brought about by changing the microscope objective.

To align correctly, a stack of images along the z axis is recorded and saved, once

again using a step size of 2.5𝜇𝑚 and again the image corresponding to the maximum

variance is found in order to determine the best white spot plane. The stage is moved

to align the white spot with the laser spot. The horizontal position of the stage is

now correctly aligned but the 𝑧 position is not yet ideal for recording a Raman signal

of the cell nucleus. Two options are presented for optimal 𝑧 positioning:

∙ The best 𝑧 position of the cell nucleus can be empirically determined using the

most in focus plane and/or the white spot plane as a reference. This can be

achieved by recording a Raman spectrum for a stack of different 𝑧 positions,

using a relatively short exposure time of approximately 5 seconds and qualita-

tively deciding best spectrum. This could be repeated for a number of different

cells and the best 𝑧 position, relative to the focal plane or the white spot plane,

can be empirically estimated in this way. The optimal position can then be used

for each new cell using the most in-focus plane and/or the white spot plane as

a reference. Alternatively the procedure could be repeated for every cell, where

a relatively short exposure time is used to record a series of images in the z di-

rection; the best z position could be decided by quantitatively inspecting each

recorded spectrum and deciding on the best one by applying a simple criteria
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based on expected cell peaks. Once the best z position is determined, a longer

exposure time can be used in this position.

∙ The microscope lamp can be automatically switched off and the laser can be

automatically switched on . Then a stack of images can be recorded and ob-

serve the scattering of the laser spot for different 𝑧 positions. The 𝑧 position

corresponding to the least amount of scattering is the optimal plane; see Fig.

4-6. This plane can be identified again using variance or mean value. This is

the method we employed in the example presented here.

Figure 4-6: Image of the laser spot at the z position resulting in least scattering. This
image size is 56.1𝜇m (width)×29.92𝜇m (height).

Once alignment in all three dimensions has been achieved, the alogirthm switches

off the microscope lamp, switches on the laser and records a spectrum for a predefined

exposure time using the cooled CCD camera. An additional step that could be

included to test the quality of the spectrum and to decide whether or not to save

or record another spectrum. Finally, the laser is switched off using the filter wheel,

the lamp is turned on and the 𝑥𝑦 stage moves the slide to the position of the second

cell on the list. The process is repeated until some pre-defined number of cells are

investigated or there are no more cells on the list. Finally, when all of the spectra

have been recorded, an algorithm to reduce the background[78][79], remove cosmic

rays[80], and to area normalize is automatically applied. The code for preprocessing

is written in matlab which is automatically called from the Micromanager script.
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4.3 Conclusion

In this chapter, an automated Raman cytology system built around the Microman-

ager software system was introduced which integrates various hardware and software

components including an autofocusing algorithm that was proposed in Chapter 2 and

a number of image processing steps. The experimental validation using several cell

lines is currently being investigated at the time of writing this thesis. The content of

this chapter is the subject of a journal paper in preparation.
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Chapter 5

Conclusion and Future perspectives

In this thesis, an automated Raman cytology system has been developed which is built

around the open source Micro-manager software system. This system is made up of

a conventional confocal Raman micro-spectroscopy system and controls a translation

stage, an illumination lamp, a filter wheel, a spectrograph, and two cameras that are

connected to the computer. Automation is realised by scanning a slide and recording

a series of images using standard brightfield microscopy; the images are then stitched

together to form a large mosaic, which is then input to an image processing algorithm

that is capable of identifying the cell positions and recording them for further analysis.

The nucleus of cell provides the most reliable spectrum for diagnostics and proposed

algorithm is capable of identifying the nucleus without the need for staining. The

process involves a number of image processing algorithms for autofocusing, image

stitching and for identification of approximate centre of the cell nucleus.

Chapter 2, an analysis of autofocusing algorithms was provided for unstained

cells by investigating 15 commonly used autofocus metrics that have been previously

applied to stained or fluorescent cell images. For the first time that the position of

the global minimum on the autofocus curve corresponds to the correct focal plane is

identified for unstained cells instead of the position of the global maximum which is

the well known case for opaque objects. The reason for this is that the unstained cells

are described by an approximately phase-only transmission function and they appear

effectively transparent when they are in-focus and in this plane there exists very little
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image contrast; however, as moving away from this focal plane, either above or below,

high contrast features appear in the image. These high contrast out-of-focus details

result from the effect of a phase-only function that is propagated a short distance. A

simple example of this is the imaging of a lens; imaging of the lens plane will provide

an image with no detail but the image of the focal plane of the lens will contain a

a region of focused light, assuming a light source is behind the lens. This example

is not chosen arbitrarily. The nucleus of a cell behaves like a miniature lens and

approximately focuses the microscope illumination to a crude bright spot in a plane

that is a short distance from the correct image plane. This effect is used to identify

the positions of the cell nuclei, which in turn facilitates optimal alignment of the cells

with the source laser for Raman micro-spectroscopy. It has been determined that

the best plane to image these "bright spots" can be located at the maximum value of

certain autofocus metrics which further simplifies the overall process. In Chapter 3, an

algorithm was presented for recovering the 3D morphology of a cell using brightfield

microscopy, where once again the autofocus metrics that were investigated in Chapter

2 are used. In this case, a stack of images in recorded where the slide is moved along

the vertical axis and the metrics are applied to sub-regions in the image planes. In this

way, the most in-focus depth for each smaller region can be determined and a depth

map of the cell can be estimated. Two algorithmic approaches were demonstrated

with different advantages in terms of computational time and spatial resolution and

the more intensive case was implemented using GPU processing in order to speed up

the overall process by almost two orders of magnitude. At the time of writing this

thesis, this algorithm hasn’t been incorporated into proposed automation procedure,

but it should be envisaged that more accurate cell alignment could be achieved by

doing so and this is considered to be a viable route for future research. We believe

after recording a set of spectra, cosmic ray removal algorithm, background subtraction

algorithm and classification algorithm like PCA and LDA can be applied afterwards

to get diagnostic results.

At the time of writing this thesis, the research is in the stage of testing proposed

automated Raman cytology system on a number of cell lines, but this work is not
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sufficiently complete for presentation in this thesis. Over the coming weeks, we hope

to complete experimental work and to test and validate the automated Raman cy-

tology system on a number of bladder cancer and breast cancer cell lines in order

to achieve high sensitivities and specificities for each case using PCA and LDA. In

future work, we would like to combine the 3D morphology algorithm with the au-

tomation system for superior nucleus alignment and we would also like to test the

proposing system on patient samples for a true diagnostic test. In the longer term,

we envisage the development of more sophisticated image processing algorithm that

may be capable of distinguishing between different cell types in the image for a more

targeted approach. Such an algorithm is necessitated by the presence of other cell

types in bladder and cervical cytology, e.g. blood cells. We are also considering

the development of a digital holographic microscope that is built around the existing

confocal Raman micro-spectrometer that would be capable of providing very reliable

information on cell shape and morphology.
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