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Abstract

This paper presents an original method of modelling the colour distributions of images using 2D Gaussian functions and its application to
flaw detection in industrial inspection. 2D Gaussian functions are used to model the colours that appear in the non-flawed images in an
unsupervised manner. Pixels under test are compared to the colour distribution from training images. 140 images have been tested and the
results are given. This method has a wide range of applications for detecting colour separable objects in images. It also has great potential in
industrial inspection due to its speed, accuracy and unsupervised training.q 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

This paper describes the use of Gaussian functions in a
2D colour space to perform industrial inspection on
moulded plastic filter casings. The filter casings are manu-
factured in a variety of different colours and structural
designs. They are transparent and have a highly complex
structure, causing many internal shadows. The casings need
to be inspected for small burn marks and discoloration. The
flaws vary not only in size and location but also in colour.
The colours present in a burn cover a range that includes
yellow, green, brown, and black to blue. The parts are small
(approx. 3 cm in diameter) and complicated and, because of
this, manual inspection by humans requires a high level of
concentration. In fact, human inspection has proven to be
very inaccurate; only during the first half-hour are humans
able to perform significantly better than random. Even
though 6–8 different humans inspect each filter casing,
many flawed casings are not discovered, which has created
the need for an automated inspection system.

The casings are manufactured at the rate of 1.4 per
second. Owing to the complexity and real time require-
ments, established vision techniques, which search for struc-

tural defects, are not applicable. Instead of focusing on the
more difficult question of checking the structure, the
approach taken in this paper is to check that the colours
present in an image fall within modelled colours. Pixels
whose colours do not fall into these modelled colours are
considered flaws. It is not necessary that the flaws them-
selves have uniform colour, because the Gaussian functions
model the non-flaw colours, not the flaw colours. If the light
and the background conditions do not change then it can be
assumed that the untrained colours will be flaws. In testing it
has been shown that the program is tolerant to small varia-
tions in the lighting conditions. However, the best results are
achieved when the background is controlled as much as
possible. For example a dust particle in the background
will be detected as a flaw. In the application for industrial
inspection it is not a problem because this system works in a
clean environment (Fig. 1).

The use of colour information in image processing is
becoming more and more common place as the availability
of cheaper technology increases. There have been several
efforts to use colour to segment images. In Ref. [1] a second
order basic function is introduced to pick up the pixels
matching the specified colour. Statistical classification is a
standard method largely employed in which multivariable
Gaussian functions are fitted to the different colours in the
image [2–4]. The colour profile method [5,6] is constructed
by comparing the colour histograms of the images of flawed
components to those of the non-flawed components. All
these methods need supervised learning. In recent years
some unsupervised segmentation methods based on
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competitive learning have been developed. In Ref. [7] a self-
organising map (SOM) is used for the colour segmentation
phase and a multi-layer perceptron is trained to label the
regions produced by the segmentation process in a super-
vised manner. In Ref. [8] a SOM method is applied to the
segmentation process and ak-means algorithm for the label-
ling.

The main contribution of this work is the use of a Gaus-
sian model to approximate the histogram of a colour image
in an unsupervised way. The system has two phases: learn-
ing and testing. In the first phase the different colours of a
non-flawed image are learnt from a set of non-flawed train-
ing images. A Gaussian function is used to model each main
colour [3]. The Gaussian model of the colours appearing in
the non-flawed images can be used to classify pixels whose
colours fall outside the Gaussian functions as flaw pixels.
The model is constructed in two stages: first, the number of

Gaussian functions needed to model the non-flawed images
is found using an approximate colour histogram; second, the
parameters of the Gaussian functions (mean and covariance)
are calculated using a competitive learning strategy. To test
an image for the presence of a flaw each image pixel is
assigned a membership value and a threshold is applied to
this value in order to classify the pixel as flawed or non-
flawed.

2. Learning phase

The system learns the different colours of the non-flawed
images in a non-supervised manner. It is presented with a set
of non-flawed training images. The training images are
analysed and their colours approximated with a set of Gaus-
sian functions. The RGB space is used because the raw
output format of the frame grabber is RGB and therefore a
colour space transformation was not needed. Practical
experiments demonstrated that the blue band in the RGB
space does not have a significant effect during the learning
phase because CCD cameras are less sensitive to blue rela-
tive to red and green. On the other hand, the lighting used
does not have a high blue content relative to red and green.
This is why it was decided to eliminate the blue component
and work in the RG colour space. As light conditions were
quite stable, it was demonstrated that illumination normal-
isation was not necessary. A white balancing in the process
initialisation performs correctly enough to make the system
independent of illumination conditions.

To demonstrate this technique, a specially constructed
image was created by patching together four sections from
real images, and since there were no flaws present in any of
the image areas, flaw pixels from other images have also
been added. Fig. 2(a) shows this image, which, although
artificial, is interesting because it has four clear peaks in
the RG histogram space, which is shown in Fig. 2(b). Fig.
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Fig. 1. Clear filter casing with flaw.

Fig. 2. (a) Image areas, (b) theRGhistogram.



2(b) shows that each colour has a form very similar to a
Gaussian function in the RG space. Indeed these distribu-
tions can be approximated using four Gaussian functions
and it is easy to see that the flaw colours are separable.

The RG histogram of a real transparent non-flawed image
can be seen in Fig. 3. It is not as easy to see the Gaussian
form of this histogram as it was to see those in Fig. 2(b). The
Gaussian form is clearer in the 1D projections of the histo-
gram onto theR and G axis, as in Fig. 4. The image of a
casting, like that of the image in Fig. 1, will have two main
components: the plastic filter and the background. The back-
ground colours can be modelled with a Gaussian near white
in the colour histogram having a small covariance. The filter
casing colours can be modelled with Gaussian functions
having larger covariances. This is because the colours of
the filter casing vary more than the colours of the back-
ground.

An automatic method is required to calculate the Gaus-
sian approximation of the histogram of a non-flawed image.
To achieve this we use a two stage clustering method: in the
first stage, the number of Gaussian functions needed to
model the colours present is calculated; and in the second
stage a competitive learning strategy calculates the
parameters of the Gaussian functions.

2.1. Calculating the number of Gaussian functions in the
model

The main colours in anM by M image are found using a
colour histogram of the image. The user can choose the
resolution of the histogram by specifying the number of
bins, N, along each axis. Each colour axis is divided up
into N intervals of equal size,S, equal to the dynamic
range of the colour axis,P, divided by the number of bins,
N. The histogram will be anN × N matrix and every bin will
be initialised with zero. For every pixel,x� �xR; xG�; of the
image

H� fbin�x�� � H� fbin�x��1 1 �1�
where

fbin�x� � truc
xR

S

� �
; truc

xG

S

� �� �
�2�

The structure of the bins in a colour histogram implies an
equality between the colours. If the histogram has a bin size,
S� P=N; then it is possible that colours less separated thanS
may fall into the same colour bin and will therefore be
considered the same colour. In this application only the
main colours in the image are sought and a 10× 10 histo-
gram has proven optimal for the task.

The number of Gaussian functions to use in the model is
calculated by thresholding the bins in the histogram. In this
application there is a very big bin that contains the back-
ground colour and a big bin that contains the main colour of
the plastic filter. There are also some small bins that repre-
sent marginal colours in the filter and/or in the background.
Fig. 5 shows the approximate histogram for the images of
Figs. 2 and 3. The number of Gaussian functions depends on
the threshold used on the histogram bins. The effect of the
value of the threshold is discussed in Section 4.

This system localises the bins bigger than the threshold in
the histogram and uses the bin position in the colour space to
estimate the positions of the mean of the Gaussian functions.
Of course these positions are not exact but they are a good
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Fig. 3.RGhistogram of a non-flawed image.

Fig. 4. TheR andG projections of the 2D histogram.



approximation and have a maximum error of^P=2N: The
exact means are calculated in a second stage.

2.2. Competitive learning

In order to adjust the parameters of the Gaussian func-
tions a competitive algorithm proposed by Kohonen called
vector quantization, VQ [9] is used. A parameter vector
approximates a large amount of information. In this case
the information is the RG colour values of the pixels and
the vector contains the position of the centres of the Gaus-
sian functions. To apply VQ the number of Gaussian func-
tions and an approximate starting position for each must be
known, which is the case. The initial position parameter is
very important in this method because it can greatly influ-
ence the accuracy of a final result. See Refs. [10,11] for a
discussion on this subject. In this case the algorithm starts
with a good estimate of the final position and this greatly
increases its ability to converge on the true values.

The colours of the pixels of an image are defined as
follows:

X � �x1; x2;…; xn�; n� M × M; xi � �xiR; xiG� �3�
and thec Gaussian functions in the positions defined by the
vi vectors are defined as follows:

V � �v1; v2;…; vc�; vi � �viR; viG� �4�

The VQ method approximates the density functions of like-
lihood, f(x), of a stochastic variablex [ R2 using a finite
number of vectorsV, called nets. Two layers are considered:
the input layer and the competitive layer as seen in Fig. 6.

In order to calculate the best approximation ofX Kohonen
defines a mean square error function shown in Eq. (5). The
minimum of this function is found by applying the gradient
descent method. A recurrent equation, like Eq. (6), is used
for moving the nets in the colour space.

E �
Z

ix 2 vii
2f �x� dx �5�

vi�t 1 1� � vi�t�1 a�t��x�t�2 vi�t�� �6�
The Euclidean distance between each pixel and the

vectors is calculated. The closest vector to each pixel is
selected and this vector is moved closer to the pixel by a
proportional distance to the distance from the pixel. This
process is repeated until the vectors are being moved less
than a threshold defined by the user. The quantity by which
the vectors are moved are controlled by the parametera(t)
and is decreased with the time. Fig. 7 shows the learning
algorithm.

Fig. 8 represents the initial positions of the centres of the
Gaussian functions (marked with dark circles) and the final
positions after the competitive learning (marked with dark
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Fig. 5. Approximate histograms (left Fig. 3 and right Fig. 2).

Fig. 6. Competitive learning.



crosses) for the histograms of Figs. 2 and 3. For the histo-
gram of Fig. 3 a model with two functions has been chosen.

Now that the correct centres of the Gaussian functions are
known, the covariance of each one can be calculated. The
image pixels are clustered using Euclidean distance and the
centres of the Gaussian functions. The covariance of the sets
of pixels assigned to each Gaussian function centre is calcu-
lated. This process is repeated with all the images of the
non-flaws training set and the mean values of all the para-
meters is calculated. These are recorded and used to esti-
mate the non-flawed colours in the testing phase.

3. Testing

In the learning phase a mathematical model of the colours
of the non-flawed images has been constructed and it can be
used to test if the colour value of a pixel belongs to the non-
flawed colours or to the flawed colours. This is achieved by
calculating the value of all the Gaussian functions for each
pixel. Each Gaussian function gives the likelihood that a
pixel belongs to that particular learned colour. Eq. (7) is

used for calculating the likelihood of a pixel belonging to
a colour, wheremi � �miR;miG� andCi are given in Eq. (8).
For every pixel this has to be calculated for each of the
Gaussian functions in the model. If these values are less
than a threshold it can be assumed that the colour of that
pixel is a flaw.

f �x=colori� � 1

2puCi u
0:5 e20:5�x2mi �TC21

i �x2mi � �7�

miR � 1
Mi

XMi

j�1

xiR�j� miG � 1
Mi

XMi

j�1

xiG�j�

Ci �
s 2

R s 2
RG

s 2
GR s 2

G

" # �8�

Good detection depends on having the correct threshold. To
find the correct threshold a set of non-flawed images is
tested and the threshold set so that no flaws are detected.
In this application, 10 non-flawed images have been used.
Fig. 9 shows the detected flaws for two different thresholds
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Fig. 7. The learning algorithm.

Fig. 8. Position of the centres of Gaussian functions (left Fig. 2 and right Fig. 3).



using a model with two Gaussian functions. In image 9(a) a
threshold of 0.01 was used and many non-flawed pixels are
detected. In image 9(b) the threshold is lowered to 0.0001
and then only true flawed pixels are detected. This is a large
enough margin to separate images that contain flaws from
those that do not, even though some individual flawed
pixels, whose colours are very close in colour to trained
colours, are missed.

4. Discussion

It is possible to view the likelihood function of a colour as
an approximation of the Mahalanobis distance

dM�x;mi� � �x 2 mi�TC21
i �x 2 mi� �9�

The likelihood of a colour is inversely proportional to the
Malalanobis distance from the centre of the Gaussian func-
tion and the colour. The colour space can be divided into
two areas, flawed and non-flawed colours. In Fig. 10 the
border of decision between the flawed and non-flawed
areas in function of the number of Gaussian functions in
the model is shown.

The learning phase used 10 non-flawed images. The
border is in red (or dark grey) and the pixels of the non-
flawed images in blue (or light grey). From Fig. 10 it is clear
to see that the best estimation of the non-flawed area is that
obtained with a model that uses two Gaussian functions. In
image (a) the Gaussian cannot converge perfectly on the
non-flawed area because there are two main colours and
they are being estimated with only one function. In image

(b) we see the best approximation for the non-flawed area,
because with two Gaussian functions the colours of the
image can be estimated very well. If more Gaussian func-
tions are used, such as the four in image (c), the estimation is
less accurate. This is because each Gaussian function
specialises in a particular colour area of the image and,
consequently, the non-flawed areas increased due to lateral
colours having a greater effect. Fig. 10 shows that the best
estimation is obtained with two Gaussian functions and this
makes sense because there are two main colours in the
image. With this method the best Gaussian approximation
of a colour histogram is done because the optimal number of
functions are chosen in each case.

5. Results

With non-optimised code running on a P166 with NT OS
the system is able to test a loaded image of 768× 576 pixels
in 1.0 s. The model was tested using the Mahalanobis
distance because it is faster than using Gaussian functions.
Flaws smaller than 0.2 mm (4 pixels) are very unlikely to be
detected by humans, and are therefore not considered real
flaws. On the other hand, casings with small flaws also
cannot be viewed as non-flawed. To avoid this ambiguity
the small flawed casings have been tested in a separate
category, small flaws. The small flaws figures are an artefact
of the resolution of the system and therefore are not a
measure of the technique. As it can be seen in Table 1
different models have been done with one, two and four
functions. The best results are obtained using models with
two Gaussian functions.

A comparison between the results of the proposed method
and the colour profiling one in a RGB colour space [5,6] is
also presented in Table 1.

As it can be seen, the results obtained with the Gaussian
model method for an optimum number of functions are
better than those provided by the colour profiling one, espe-
cially in the small flaws, where the conditions of the classi-
fication are more complex. It is remarkable that the colour
profiling method works in a 3D space (RGB) and the
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Fig. 9. Flaw detection with different thresholds.

Fig. 10. Mahalanobis distance classification.



Gaussian in a 2D (RG). Then, the first method needs a
higher training set (40 non-flawed/40 flawed images) than
the second one (10 non-flawed images). Finally, it was
demonstrated that the colour profiling method is more sensi-
tive to small changes of light conditions than the Gaussian
one.

6. Conclusions

This paper has presented a novel colour approximation
method that models the colour distribution in an image
using Gaussian functions. The positions of the main colours
in the image are estimated and these estimates are used to
initiate a competitive learning strategy. The improved
centres are used to cluster the image and the covariance is
calculated giving the two parameters needed for each Gaus-
sian function. Finally, the model is used to test the member-
ship values of pixels and to classify them as flawed or non-
flawed pixels. This method has obtained better results than
the colour profiling method. It is simpler to train than a
colour profile, because training uses only a reduced number
of non-flawed images. It uses a mathematical function in the
learning stage and, consequently, it is more robust to noise,
more exact, and needs less parameters than the colour profil-
ing approach. The method is similar to SOM because it is
able to learn the colours of an image without supervision,
but better because it is able to know the optimal number of
vectors in the image in order to do the approximation. This
classification method is better than thek-means applied in
Ref. [8], because the Mahalanobis distance has been used as
the distance metric in the testing phase. The method is also
similar to the Bayesian classification in that it is able to
obtain the mathematical functions that best approximate
the real colours and then use these functions in order to
classify the pixels. However, it is an improvement on Baye-
sian methods and the learning vector quantization because it
does not need supervision. In fact the method performs as an
optimal non-supervised Bayesian classifier. The method is
accurate, real-time and can be trained easily and quickly by
the user and it learns in a non-supervised manner, making it
ideal for colour segmentation in industrial inspection tasks.
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Table 1
Results of the system (training set of 10 for Gaussian model and 80 (40/40) for colour profiling)

Clear top filter casings Gaussian model Colour profiling

RG (1G) RG (2G) RG (4G) RGB

Correctly classified flawed 58 95% 60 98% 59 97% 57 93%
Misclassified flawed 3 5% 1 2% 2 3% 4 7%
Correctly classified small flawed 22 69% 25 78% 22 69% 10 32%
Misclassified small flawed 10 31% 7 22% 10 31% 22 68%
Correctly classified non-flawed 43 94% 44 98% 44 98% 44 98%
Misclassified non-flawed 3 6% 2 2% 2 2% 2 2%


