2019 International Symposium on Lightning Protection (XV SIPDA), Sdo Paulo, Brazil, 30™ September — 4™ October 2019.

The Usage of Julia Programming in Grounding Grids

Simulations
An alternative to MATLAB and Python

‘Rodolfo A. R. Moura, “Marco A. O. Schroeder, *Samuel J. S. Silva, “Erivelton G. Nepomuceno, “Pedro H. N. Vieira
and "Antonio C. S. Lima.

‘Department of Electrical Engineering (DEPEL)
Federal University of Sdo Jodo del-Rei (UFSJ)
Sdo Jodo del-Rei, Brazil

moura@ufsj.edu.br, schroeder@ufsj.edu.br, samuelsj 1 0@ufsj.edu.br, nepomuceno@ufsj.edu.br,
pedrohnv@hotmail.com

°Department of Electrical Engineering (DEE)
Federal University of Rio de Janeiro (UFRJ)
Rio de Janeiro, Brazil
acsl@dee.ufrj.br

Abstract—Matlab and Python have been widely used in
science field, mainly used by scientists who are involved in
numerical and technical computing. However, other
programming languages have arisen in recent years aim to create
a combination of power, and efficiency for free. In light of this,
this work presents a comparison between three computational
environments (MATLAB, Python and Julia) — on the study of
grounding grids for lightning transients — to evaluate the best
programming language (among all studied). The main parameter
presented on this paper is computational time. The results
showed Julia programming language provided simulations six
times faster than Matlab and twenty-eight faster than Python.

Keywords—Computational Efficiency;
Earthing; Transients; Numerical Solution.

Grounding and

1. INTRODUCTION

When dealing with power systems, one element that must
be accurately modeled is grounding grids. Its low-frequency
response is relatively well-known [1]. Nevertheless, when
request by faster transients (such as lightning) it presents a very
complex response. One well-known technique to obtain such
response is the Hybrid Electromagnetic Model (HEM) [2]. This
particular method deals with an extensive matrix system
requiring Electrical Engineers and researchers to use
computational simulation.

To simulate such problems there are several computational
environments, each one with its particularity. Among all
programming languages, according to IEEE Spectrum [3],
Python is the most popular. Moreover, according to Mathworks
(developer of MATLAB) [4], MATLAB is a just-in-time
compiled language fast to work with Matrices.

With the
programming

proposal
languages,

of overcoming all scientific
Julia is a daring-just-in-time

978-1-7281-1891-8/19/$31.00 ©2019 IEEE

compilation and open source option. It is a newborn language
with strong inspiration of C, FORTRAN, Python, MATLAB
among others. Its basis is written in C language, however its
standard library is written in Julia itself [5].

Thereby, the main idea behind this paper is to present a
comparison between MATLAB, Python and Julia for
grounding grids studies with a “native” computer
implementation, i.e. straightforward use without much effort
given to performance optimization. To analyze it, this paper is
divided into four sections, including this introduction. The
second section handle numerical model and the usage of each
language, the third one shows the results obtained for the
studied case and finally a conclusion is presented.

II. GROUNDING GRIDS MODELING

A. Hybrid Electromagnetic Model (HEM)

The HEM is a model proposed to evaluate impedance,
overvoltage and electromagnetic fields generate by current that
flows along conductors. It can be applied in several
applications, such as overhead transmission lines [6],
groundings [7] and lightning channel modeling [8].

Basically, it consists of two parts: 1) discretizing the
conductor element into cylindrical segments and, for each
element, obtaining an average potential and a voltage drop; ii)
applying electrical circuit theory to determine the node
voltages. Although it seems an easy task, there is a heavy
burden on the computational processing since, for all
discretized element, double integral needs to be solved to relate
the average potential and the voltage drop. Eq. (1) and (2)
illustrate two parameters that compute each entity, Zr
(associated with average potential) and Z; (associated with

Authorized licensed use limited to: Maynooth University Library. Downloaded on January 16,2023 at 16:46:00 UTC from IEEE Xplore. Restrictions apply.

voltage drop), between segments R (receptor segment) and S
(source segment). More details can be found at [2,9].

ZT(RS) le dls (1)

1
4rlo(w)+joe(w)] L I -[

Z,yins) == J“’” H —dt odl @)

where /; and /, are the segment lengths; » is the distance

between the infinitesimal segments d/; and dl,; o ,& and
are the conductivity, permittivity and permeability of the

soil, respectively; ® =27f is the angular frequency;
y(w)=\[joulc+jwe] is the propagation constant.

Furthermore, the main interest of this paper is analyzing the
usage of HEM for studies of grounding electrodes. Thus, since
the grounding electrode is found close to a boundary of two
half-spaces (earth and air), the method of images is used [10].

B. Computational enviroment

Several software were developed to solve computational
issues, such as numerical integration. One may highlight two
easy general-purpose programming languages well-known
among electrical engineers and researchers, MATLAB and
Python. The first one is well-known for its applicability and
manipulation with matrices while the other has a vast
community to help, has shown usage in almost every area of
engineering and is open source.

Released at 2012 by Massachusetts Institute of Technology
a new language has been presented, Julia. It presents syntax
similar to MATLAB, however, free and faster (according to its
creators, velocity similar to C programming) [5]. Moreover, it
is expected to deal similarly and faster with matrices than
MATLAB. For now, the biggest disadvantage of Julia
programming lies on: lack of users when compared to other
popular languages, few books and courses as it got out of
development recently, on August 2018, when version 1.0 was
released. Currently it is on version 1.1.1, released on May
2019.

In this paper the double integrals were numerically solved
by the Gauss-Legendre method [11]. This method was chosen
because among all integral tested, this presented the fastest
convergence. Since this kind of system respect the rec1pr001ty
theorem, only upper diagonal elements of each matrix is
calculated, to improve computational efficiency.

To ensure comparability, all routines were written by the
same programmer and the same algorithms compared. Besides,
the same system were simulated 100 times (for each
programming language) to guarantee a convergence on the
average values of computational time. It was used a computer
with I5-8250U (1.6 GHz) processor and 8§ GB RAM (2133
MHz). Same simulations took place on both Linux (Mint 19.1)
and Windows 10 (home version 1803) operating systems.

III. RESULTS

A. Premisses and test case

The main objective of study in this paper is grounding
when requested by lightning currents. Thus, one parameter of
utmost importance is harmonic impedance (Z(®)). Therefore,
to evaluate the computational effort, the case test is a simple
grounding grid composed of four squares of 25 m? (total of 100
m?), as illustrated in Fig. 1. The soil resistivity is 100 Q.m and
permittivity of 10, each electrode presents radius of 7 mm.

Fig. 2 depicts the module of Z(®) considering the injection
point of current in any of the four corners. Its values were
found for every computational environment leading to the
conclusion that the correct result is obtained, regardless of any
programming language adopted here. Fig. 3 illustrate the
percentage difference, considering Julia as the reference, with
simulations performed on Windows and Linux operating
system, respectively. These figures were plotted considering
Eq. (1). For both cases, the maximum difference was less than
0.5%.

Z(w)—Z w 1
() Reference()* 100 ()
ZReference(w)

According to Fig. 3, Julia programming has a better match
with MATLAB for the lower frequency range. On the other
hand, for the higher frequency spectrum, Python presents a
better match. However, it is important mention that comparing
Julia and MATLAB the differences seem to be more
systematic, i.e., with a monotonic growth.

dif f[%] =

Further, it is important mentioning that, no parallel
computation, i.e., only sequential loops were used. It was
simulated in both operating systems and for every

programming language considered on this paper (Julia,
MATLAB and Python). Each simulation was made considering
a frequency range from 100 Hz to 10 MHz logarithmically
separated in 32 points.

B. Computational time

Table 1 and Table 2 depict it for the three computational
environments considering, respectively, Windows and Linux
operating system. According to the results, regardless of
operating system, for the grounding system analyzed, Julia is
the fastest one while Python is the slowest.

Even more, it is possible to realize that, for every case,
windows consume more computational time. Apparently, there
are many tasks running in the background slowing the main
algorithm down.

C. Performance

It is important mentioning that the authors know that one may
achieve higher performance using MATLAB and Python when
properly vectorizing the code instead of using "for loops". For
further studies, the authors intend to implement parallel
computing and vectorization to reevaluate the studied case.
Such vectorization seems to be unneeded in Julia due to its
type inference system. As Bezanson notes:

Authorized licensed use limited to: Maynooth University Library. Downloaded on January 16,2023 at 16:46:00 UTC from IEEE Xplore. Restrictions apply.

It is not that "for loops" are inherently slow in themselves. The
slowness comes from the fact that in the case of most dynamic
languages, the system does not have access to the types of the
variables within a loop. Since programs often spend much of their
time doing repeated computations, the slowness of a particular
operation due to lack of type information is magnified inside a
loop [12, p. 78].

Table 1 - Computational time for each computational environment.
Windows operating system.

Programming Language Average Time [s] Standard deviation

Julia 2387 0.745
MATLAB 147.91 2.138
Python 615.28 1.738

Table 2 - Computational time for each computational environment.
Linux operating system.

Programming Language Average Time [s] Standard
deviation

Julia 22.04 0.640
MATLAB 133.15 1.924
Python 565.43 1.597

100

751

50

25}

00} x x

0.0 25 50 75 10.0

Figure 1 - Grounding grid configuration.

1. CONCLUSION

This paper deals with the usage of few computational
environments for programming. The results shown that, for the
particular study proposed in this paper, Julia is the fastest
solution to deals with extensive matrices. Of course, to present
a more incisive conclusion, other programming languages
should be implemented (such as FORTRAN and C). However,
the scope of this paper is to work with high-level syntax
programming languages.

Moreover, in this specific case presented Linux provided
more efficient than Windows. The authors strong believe that it
occurs due to background tasks. Therefore, it is concluded that
the best option for studying grounding grids is using Julia on
Linux.

Finally, it is important to comment that other grounding
configurations (such as tower groundings, bigger grids,
horizontal electrode) were studied. The same pattern was found
leading to the same conclusions presented on this paper.

Future works will deal with parallel programming (to
enhance results) and low-level syntax languages (such as C and
FORTRAN).

[Z(w)] [£2]

L L N L L
1] 1

107 10 1077 10 10 10
Freauency [MHz1

Figure 2 — Module of Z(w) of the grounding grid understudy.
Frequency range from 100 Hz to 10 MHz.

0.5 T T T T T T T T T

Matlab
Python

0.4 |

03t |
0.2t

01t S

Difference between programming languages [%]

0 1 2 3 4 5 6 7 8 9 10
Frequency [Hz] «10%

Figure 3 — Perceptual differences between Julia and both Matlab and
Python programming languages for calculating harmonic impedance.

II. ACKNOWLEDGMENT

This study was financed in part by the Coordenacdo de
Aperfeicoamento de Pessoal de Nivel Superior - Brasil
(CAPES), Finance Code 001. It also was partially supported by
INERGE (Instituto Nacional de Energia Elétrica), CNPq
(Conselho Nacional de Desenvolvimento Cientifico e
Tecnoldgico), FAPEMIG (Fundagdo de Amparo a Pesquisa do
Estado de Minas), and FAPERJ (Fundagdo Carlos Chagas
Filho de Amparo a Pesquisa do Estado do Rio de Janeiro).

Authorized licensed use limited to: Maynooth University Library. Downloaded on January 16,2023 at 16:46:00 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

IEEE Guide for Safety in AC Substation Grounding, IEEE Std. 80-2013,
May 2015.

S. Visacro, A. Soares and M.A.O. Schroeder, “An interactive
computational code for simulation of transient behavior of electrical
system components for lightning currents”, in 26th International
Conference on Lightning Protection, Cracow, Poland, 2002, pp. 732-
737.

“Interactive: The Top Programming Languages 20187, Internet:
https://spectrum.ieee.org/static/interactive-the-top-programming-
languages-2018, Jul. 31, 2018 [Apr. 10, 2019].

“Why MATLAB?”,
https://www.mathworks.com/products/matlab/why-matlab.html,
10, 2019].

“Julia 1.1 Documentation”, Internet: https://docs.julialang.org/en/v1/,
[Apr. 10, 2019].

R. A. R. Moura, “Representacdo de linha de transmissdo com
geometrica ndo uniforme para estudos de sobretensdes atmosféricas
[Modeling nonuniform overhead transmission lines for lightning

Internet:
[May.

(8]

1

[10]

(]

[12]

overvoltages studies]”, D. Sc. thesis, COPPE, UFRJ, Rio de Janeiro -
Brazil, 2018.

M. A. O. Schroeder, M. T. C. Barros, A. C. S. Lima, M. M. Afonso and
R. A. R. Moura, Evaluation of the Impact of different frequency
dependent Soil models on lightning overvoltages, Electric Power
Systems Research, v.159, p. 40-49, 2018.

S. Visacro and F. H. Silveira, Evaluation of current distribution along
the lightning discharge channel by a hybrid electromagnetic model,
Journal of Electrostatics, Vol. 60, no. 2-4, pp. 111 - 120, 2017.

S. Visacro and A. Soares, “HEM: A model for simulation of lightning-
related engineering problems”, IEEE Trans. Power Delivery, Vol. 20,
no. 2, pp. 1206-1207, 2005.

V. Arnautovski-Toseva and L. Greev, On the Image Model of a Buried
Horizontal Wire, IEEE Trans. Elec. Comp., vol. 58, n.1, pp. 278 - 286,
2015.

M. Abramowicz, L.A. Stegun (Eds.), "Handbook of Mathematical
Functions", Dover Publications, 1964.

Bezanson, J., Edelman, A., Karpinski, S., & Shah, V. B. (2017). Julia: A
fresh approach to numerical computing. SIAM review, 59(1), 65-98.

Authorized licensed use limited to: Maynooth University Library. Downloaded on January 16,2023 at 16:46:00 UTC from IEEE Xplore. Restrictions apply.

