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Abstract— Traditionally, the farmers manage the crops from 

the early growth stage until the mature harvest stage by 

manually identifying and monitoring plant diseases, nutrient 

deficiencies, controlled irrigation, and controlled fertilizers and 

pesticides. Even the farmers have difficulty detecting crop 

diseases using their naked eyes due to several similar crop 

diseases. Identifying the correct diseases is crucial since it can 

improve the quality and quantity of crop production. With the 

advent of Artificial Intelligence (AI) technology, all crop-

managing tasks can be automated using a robot that mimics a 

farmer's ability. However, designing a robot with human 

capability, especially in detecting the crop's diseases in real-

time, is another challenge to consider. Other research works are 

focusing on improving the mean average precision and the best 

result reported so far is 93% of mean Average Precision (mAP) 

by YOLOv5. This paper focuses on object detection of the 

Convolutional Neural Network (CNN) architecture-based to 

detect the disease of solanaceous crops for robot vision. This 

study's contribution involved reporting the developmental 

specifics and a suggested solution for issues that appear along 

with the conducted study. In addition, the output of this study is 

expected to become the algorithm of the robot's vision. This 

study uses images of four crops (tomato, potato, eggplant, and 

pepper), including 23 classes of healthy and diseased crops 

infected on the leaf and fruits. The dataset utilized combines the 

public dataset (PlantVillage) and self-collected samples. The 

total dataset of all 23 classes is 16580 images divided into three 

parts: training set, validation set, and testing set. The dataset 

used for training is 88% of the total dataset (15000 images), 8% 

of the dataset performed a validation process (1400 images), and 

the rest of the 4% dataset is for the test process (699 images). 

The performances of YOLOv5 were more robust in terms of 

94.2% mAP, and the speed was slightly faster than Scaled-

YOLOv4. This object detection-based approach has proven to 

be a promising solution in efficiently detecting crop disease in 

real-time. 

Keywords— Deep Learning; Convolutional Neural Network; 

Object Detection; YOLOv5; Solanaceous Crops; Crops disease. 

I. INTRODUCTION  

Agriculture has long been a vital economic and social 

sector. It is difficult for manpower to accurately detect crop 

diseases at an early stage to improve the quality and quantity 

of crop production. The causes of crop diseases are more 

likely due to many factors, such as shifting weather, lack of 

nutrition, and pest attacks. In general, crop disease detection 

is carried out manually using visual inspection or microscope 

techniques, which are time-intensive and prone to inaccuracy 

leading to different human vision and error information [1]. 

Mistakes or missteps are usually unavoidable when using 

manpower, especially when classifying the plant's type of 

disease because human eyes are prone to errors and require a 

time-consuming diagnosis. However, disease and pest 

control challenges still haunt some local farmers [1]. As a 

result, disease detection requires regular crop monitoring 

throughout the growing period. One practical approach to 

resolving these issues is the development of an automated 

agricultural robot capable of detecting disease and 

monitoring the field condition by moving around the field. 

The development of the robot's vision is a hurdle. We want 

the robot's vision to mimic the sight of human eyes [2]. The 

robot is expected to improve operational accuracy in the 

farming industry [3]. On top of that, robot motion planning in 

real-time application is also one of the key areas of research 

in computer science and computer geometry [4]. 

Artificial Intelligence (AI) is a suitable algorithm for 

robot vision if we aim for an intelligent system. Since AI 

focuses on developing computer software to make computing 

tasks smarter, AI research applications' ultimate focus is to 

develop computational approaches for intelligent behaviour 

[5]. The demand for an intelligent system with real-time 

control in manufacturing processes and productions is 

increasing rapidly [6]. The increasing powers of computers 

and embedded computing have further contributed to AI 

advancement [7]. The most common application of AI in 

computer vision is face recognition [8] which is heavily 

deployed on the smartphone. AI technology is widely used 

worldwide and positively impacts manufacturing, healthcare, 

and agriculture [9,10]. Agriculture is an extreme industry, 

with 30.7% contributing to economic progress [11]. 

Agriculture is a dynamic sector in which it is impossible to 

generalize situations to propose a standard solution [12]. In 

terms of accuracy and robustness, AI is at its best in 

supporting agricultural systems. An efficient technique of 

utilizing an AI system can help farmers to monitor their 

crops, including detecting any crop disease [13]. 

Deep learning is an AI technique that simulates how 

humans acquire knowledge. Deep learning is a critical 

component of information data science, covering statistics 

and prediction [14, 15]. As the most empowered machine 

learning technique, deep learning has been applied in various 

fields, including robotics and agriculture [16]. Today, deep 
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learning-enabled developments in computer vision have led 

to a situation where disease diagnosis is dependent on 

automatic recognition using a deep learning-based 

monitoring process [10]. Deep Learning models perform 

exceptionally well in prediction and classification because of 

their large learning capacity and highly hierarchical structure 

[11,12]. They are also flexible and adaptable to various 

highly complex (from a data analysis perspective) challenges 

[17]. 

CNN is one of the most prominent deep learning 

approaches [18, 19]. CNN is an algorithm of deep learning 

which take images as input and can extract significant 

features automatically to learn and ultimately classify the 

input images to their suitable output class [20, 21]. Object 

detection acts better for computer vision techniques regarding 

network architecture, training techniques, and optimization 

functions [22, 23]. Object detection has several models, such 

as YOLO [24]. Faster R-CNN used to be the main model for 

object detection. However, the inference speed resulting from 

Faster R-CNN still does not meet the one derived by YOLO 

[22]. YOLO is an object detection method that acts as a real-

time object detector [25]. Joseph Redmon created the original 

model of YOLO (You Only Look Once) in a custom-built 

framework called Darknet. Darknet is a very adaptable 

research framework written in low-level languages that have 

created computer vision that can achieve the most significant 

real-time object detectors, including YOLO, YOLOv2, 

YOLOv3, YOLOv4, and recently, the new one is YOLOv5 

[26, 27]. 

In a previous study, Roy et al. (2021) reported that 

YOLOv3 reached 78% of mAP compared to YOLOv4 and 

86% in detecting various plant disease classes [28]. Wu et al. 

(2021) used YOLOv3 and YOLOv4 toward 2670 images of 

an augmented dataset and achieved an accuracy above 90% 

for each model [29]. Thuan et al. (2021) YOLOv5 shows the 

model fast and reached high accuracy of 93% on train 3422 

images with 100 epochs. One epoch cycle only takes around 

20 seconds to complete [30]. Other related research works on 

robot vision, such as [31] implemented U-Net architecture to 

detect the leaf of the bean images captured in uncontrolled 

environmental conditions. The accuracy achieved was 

91.02%. 

The research contribution is to present a detailed process 

and a suggested solution for problems that arose throughout 

the development of object detection algorithms (YOLOv5 

and Scaled-YOLOv4) to detect the diseases on the leaf and 

fruit of solanaceous crops. The output of this study is 

expected to become the algorithm of the robot's vision in real-

time. The performance comparison of these models is also 

analyzed in terms of precision, recall, mean average precision 

(mAP) and training time. The detailed development for the 

mentioned purpose was discussed in detail. 

This paper starts with the related work and theory, 

methods for completing the whole simulation, results, and 

performance of the YOLOv5 model compared with the 

previous YOLO (Scaled-YOLOv4), and the conclusion of the 

overall works. 

II. RELATED WORKS 

A. Deep Learning 

Deep Learning is a type of machine learning that extends 

traditional machine learning by adding more "depth" 

(complexity) to the model and modifying the data using 

several features that allow data to be represented in a 

hierarchical form through multiple levels of abstraction [32]. 

If large datasets describing the problem exist, these complex 

models used in deep learning can reduce the errors, especially 

in regression problems, and improve classification accuracy 

[33].  

Deep learning has several layers, such as convolution, fully 

connected, pooling, etc. The main feature of deep learning is 

that the features in these layers are learned from data instead 

of just designed by engineers through some learning 

procedures [34]. The organization of the layers will create 

different network architectures, such as Convolutional Neural 

Networks, Recursive Neural Networks, Unsupervised Pre-

trained Networks, and Recurrent Neural Networks [35].  

B. Convolutional Neural Network 

Unlike other Deep Learning architectures, such as 

Recurrent Neural Networks or Long-Short Term Memory, in 

image and video applications, CNN architecture is preferable 

as the architecture design of CNN focuses on the spatial 

correlation of pixel intensities more efficient for images [36]. 

CNN model provides an essential visual feature extractor for 

crop diseases. It consists of three operation layers: 

convolutional layers, max-pooling layers, and fully 

connected layers that act as automatic feature extractors in 

one single module during training [37]. Then it employs 2D 

convolutional layers, making this architecture more ideal for 

interpreting 2D data, such as images, than other machine 

learning (ML) techniques [38]. CNN overcomes the 

limitation of the manual feature extraction process carried out 

by traditional ML techniques and can handle vast amounts of 

data [39]. CNN of its model extracts the data directly from 

images. CNN architecture consists of numerous layers that 

perform image processing operations. These layers include 

input, multiple hidden, and output layers. The hidden layers 

typically comprise several convolutional layers, pooling 

layers, and a set of fully connected layers to perform the 

classification task [40].  

C. Object Detection 

Traditional object detection algorithms use handcrafted 

designs and simple trainable architectures [41]. Their 

performance is easily stagnated by developing complicated 

ensembles that mix several low-level picture features with 

high-level information through object detectors and image 

classifiers. A traditional object detection architecture consists 

of region candidate generation, feature extractions, and 

classification tasks. The detection result from the classifier is 

fed onto the Non-Maximum Suppression (NMS) algorithm to 

optimize the results by combining multiple overlapping 

bounding boxes [42]. With the rapid advancement of deep 

learning, more powerful tools that can learn semantic, high-

level, and deeper features are being offered to address the 

issues that older systems have [43].  

 



Journal of Robotics and Control (JRC) ISSN: 2715-5072 792 

 

A.  H. Nurul Hidayah, Disease Detection of Solanaceous Crops Using Deep Learning for Robot Vision 

Object detection is a computer vision technique for 

identifying and locating objects in images and videos [44]. 

Object detection has been an active research area in computer 

vision for decades [45]. It deals with instances of visual 

detection of any specific class, such as detecting humans, 

vehicles or animals. Object detection may count multiple 

objects in a scene, identify and trace their precise locations, 

and accurately label them with this type of identification and 

localization [46]. In short, an object detection algorithm 

allows us to locate and predict the specific location of the 

desired object using bounding boxes [47]. Object detection 

models can be divided into two categories: a one-stage target 

detection framework based on region proposal or a two-stage 

target detection framework based on regression [48]. One of 

the examples of a one-stage object detection method is the 

variants of the YOLO family. YOLO has been widely applied 

across various industries due to its suitability to be 

implemented in embedded controller systems through 

transfer learning, plus its ability to be a self-adaptive 

algorithm [49]. An adaptive neural network is usually applied 

when there is minimal prior knowledge of the environments 

[50]. The recent version of YOLO is known as YOLOv5. 

Since it was first introduced until now, many researchers and 

industry players have deployed the YOLOv5 model for tasks 

such as crop recognition, yield estimation and many more  

[47], [51]-[55]. 

D. YOLOv5 

Glenn Jocher, the founder of Ultralytics, released an open-

source implementation of the YOLOv5 model in June 2020 

[56]. It is the first in the YOLO family to be released without 

a paper and is still in "continuing development" on its 

repository. The YOLOv5 switched from Darknet to Pytorch, 

achieving 140 frames per second in the Tesla P100, compared 

to 50 frames per second in the YOLOv4. YOLOv5 is suitable 

for real-time object detection and has many advantages over 

traditional object detectors [58]. YOLOv5 offers the same 

benefits as YOLOv4 and has a nearly identical architecture. 

Compared to YOLOv4 and YOLOv5, it is easier to train and 

detect the object [57]. 

The backbone, head, and detection are the three 

fundamental components of YOLOv5. A CNN serves as the 

backbone, gathering and shaping visual features at various 

levels of granularity. The YOLOv5 uses the Center and Scale 

Prediction (CSP) bottleneck to create image features. The 

detection is a method that localizes the bounding box, labels 

class prediction at the image, and uses features from the head 

of the structure [59]. The head comprises layers that 

aggregate image characteristics before being sent into a 

prediction algorithm. The PA-NET is also implemented in 

YOLOv5 for feature aggregation. Fig. 1 shows the 

architecture of YOLOv5.  

 

 
 

 

 

Fig. 1. YOLOv5 Architecture 

III. METHOD 

A. Dataset 

Adequate dataset samples are requisite for all deep 

learning methods to obtain a good generalization result. The 

images for the dataset were collected from a mobile phone 

camera, downloaded from the internet on Kaggle, GitHub of 

Plant Village dataset, and searched by disease of solanaceous 

crops name on Google Image. After collecting the images, 

data separation was carried out according to their classes. The 

classes were named based on either healthy or diseases that 

infected the leaf and fruit. The healthy image was also 

collected for this dataset to make the system differentiate 

whether the solanaceous crops were healthy or infected by the 

disease. The initial number of samples for the dataset is 

around 300 images for each class, and the total number of 

classes consists of 23. These classes are shown in TABLE 1. 

TABLE 1 DETAILS OF DATASET CLASSES 

Solanaceous 

Crops 

Disease and Healthy Fruit 

and Leaf  Name 

Pepper Chili___Healthy_fruit 

 Chili___Healthy_leaf 

 Chili___Anthracnose_fruit 

 Chili___Bacterial_leaf_spot 

 Chili___Mosaic_virus_leaf 

Eggplant Eggplant___Healthy_fruit 

 Eggplant___Healthy_leaf 

 Eggplant___Fruit_rot 

 Eggplant___Cercospora_leaf_spot 

 Eggplant___Colorado_potato_beetle 

Potato Potato___Healthy_fruit 

 Potato___Healthy_leaf 

 Potato___Common_scab_fruit 

 Potato___Alternaria_solani_leaf 

 Potato___Phytopthora_infestans_leaf 

Tomato Tomato___Healthy_fruit 

 Tomato___Healthy_leaf 

 Tomato___Anthracnose_fruit 

 Tomato___Early_blight_leaf 

 Tomato___Late_blight_leaf 

 Tomato___Leaf_mold 

 Tomato___Tomato_yellow_leaf_curl_virus 

 Tomato___Bacterial_spot_leaf 

 

B. Annotate and Labelled 

After collecting the dataset, the images were uploaded to 

the Roboflow.ai website, which provides various functions to 
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improve our dataset. Roboflow also allows access to labeling 

datasets, annotating images, preprocessing, augmentation 

process, and other beneficial functions to handle the dataset. 

Some function mentioned has been applied in this project. 

Roboflow is a free online platform for labeling and 

annotation instead of downloading other software to your 

computer. The purpose is to secure your dataset and enable 

access on several devices, such as tablets or smartphones.  

At the early stage, the images were split into a training set 

(70%), validation set (20%), and testing set (10%) after 

uploading the images to Roboflow. Then, the images are 

labeled by their class name and annotated by drawing a 

bounding box to identify the data features in the area of the 

diseases and healthy leaf and fruit of crops. Fig. 2 shows the 

annotation and labelling process on Roboflow. 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Annotation and Labelling Process on Roboflow 

C. Preprocessing 

Transforming the data from raw data to the desired format 

suitable for the YOLOv5 preprocessing process must occur. 

This procedure eliminates data discrepancies or duplication, 

which could otherwise degrade the accuracy of a model. Data 

preprocessing also guarantees that no inaccurate or lost 

values exist because of human mistakes or bugs. By adding 

image alterations to all the images in this dataset, training 

time can be saved, and performance can be improved. EXIF 

rotations should be removed, and pixel order should be 

standardized with the help of auto-oriented applied for this 

preprocessing method. The image resizes to 416×416 to 

standardize the size, and the smaller file size can help for 

faster training. Auto adjust contrast can help the model to 

detect edges around the object. Roboflow has a function that 

allows you to modify the labeled samples that have been 

labeled mistakenly. Fig. 3 shows the example of 

preprocessing in Roboflow. 

 

Fig. 3. Preprocessing in Roboflow 

D. Data augmentation 

In deep learning, the key feature to improve model 

performance accuracy is increasing the number of samples to 

train the system effectively. At the early stages of this 

process, the dataset only contains 300 images for each class. 

It is considered a small dataset and may lead to low-

performance accuracy at the end of the training process. An 

augmentation process was applied to increase the number of 

samples to overcome this problem.  

 

Fig. 4. Augmentation Process Selected in Roboflow 

The augmentation process was also carried out at the 

Roboflow.ai website, providing an auto-generating function 

for the augmentation image. Based on Fig. 4, these are the 

augmentation techniques selected to increase the number of 

datasets. Random rotation augmentation can aid the model in 

detecting the object, even if the images are not precisely 

aligned. The same goes for bounding box rotation. 

Combining the methods can help the model stay sturdy to the 

camera roll in real-time usage. Grayscale, saturation, and 

exposure can help increase the various colors of the images 

so that when it is tested in real-time, it has learned to detect 

the object even in different lighting. Adding noise to the 

images can prevent overfitting and against adversarial 

attacks. Fig. 5 shows the augmented images auto-generated 

after selecting some techniques to increase the dataset. 

 After applying preprocessing and augmentation method, 

the dataset will be auto-generated, and random images will 

be selected for the training process. The dataset will expand 

to three times from the early total of images. At the end of 

this process, the dataset increases from 6900 images to 16580 

images. The training set, validation set, and test set are 

separated into 88% (15000 images) for training, 8% (1400 

images) for validation, and 2% (699 images) for the testing 

process. This train, valid, and test set is the final subset of the 

dataset applied to evaluate this project's performance. 

 

Fig. 5. Augmented images auto-generated from Roboflow 

E. System Flowchart in Google Colab notebook 

Fig. 6 depicts the flowchart of the whole simulation 
process in the Google Colab notebook. It consists of three 
main parts: set up the Google Colab environment, train the 
YOLOv5 model, and evaluate the performance. 
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Fig. 6. System Flowchart in Google Colab notebook 

1) Google Colab notebook 

Google Colab provides free access to their Graphical 

Processing Unit (GPU). Users must select the Runtime 

operation, either Tensor Processing Unit (TPU), GPU or 

None. However, the upgrade version, Google Colab Pro, 

provides a random GPU, either Tesla T4 or Tesla P100.  

2)  Training YOLOv5 model 

These are the steps involved in training the YOLOv5 

model: 

a) Installing the YOLOv5 environment 

YOLOv5 pre-trained model repository provided by 

Ultralytics GitHub was used to train the dataset and provide 

the library dependencies. PyTorch requires the libraries 

before training the model. This step involves cloning the 

YOLOv5 repository before the Installation of the library 

dependency can be carried out. Fig. 7 shows the example of 

the cloning and installing process. 

b) Download custom object detection in YOLOv5 format from 

Roboflow 

After generating the augmented samples on Roboflow, a 

link was copied from the 'YOLOv5 PyTorch' to import the 

dataset. Before starting the training process, the augmented 

dataset from Roboflow is imported into the Google Colab 

notebook. It should be noted that the Ultralytics 

implementation supports a YAML file that specifies the 

location of the training and test data.  

c) Define YOLOv5 Model Configuration and Architecture 

Then, the YOLOv5 model configuration was defined by 

creating a YAML script that specifies the parameters for the 

YOLOv5 model, such as the number of classes, anchors, and 

backbone layers.  

 

Fig. 7. The cloning and installing process 

d) Training Custom YOLOv5 Detector 

The training process is started when all the previous steps 

have been followed. This work uses the YOLOv5's model 

that runs a parameter of 100 epochs with 16 batch sizes and 

an input image size of 416. The training process will take 

around two to three hours to complete. 

3) Evaluate the performance 

Once the training process has been completed, the trained 

model's performance will be evaluated through the test 

images, whether it reaches 90% or above. If not, the training 

process is revoked by tuning the number of epochs and 

hyperparameters. The test images and videos used in this 

process are images that have never been seen during training. 

The training performance is evaluated through a plotted 

graph, including time taken to finish the training process, 

precision, recall, and mean average precision (mAP). The test 

images and video are verified to check the model's 

performance in detecting the disease of solanaceous crops. 

This training model can be used in real-time detection by 

exporting the trained weights of the network. The file can be 

kept in Google Drive for future use and deployed into real-

world devices such as webcams, Raspberry Pi, Jetson Nano, 

mobile phones, and other supported devices. 

IV. RESULT AND ANALYSIS 

1) Model Comparison 

The training was performed on 16580 images using 100 

epochs and 16 batch sizes on the YOLOv5 and Scaled-

YOLOv4. The performance of YOLOv5 was compared with 

Scaled-YOLOv4. TABLE II shows the comparison of the 

pretrained model used in this project. 

TABLE II COMPARISON PRETRAINED MODEL YOLOV5S AND SCALED-

YOLOV4 

Model YOLOv5s Scaled -YOLOv4 

Backbone CSPDarknet CSPDarknet53 

Neck PANet PAN+SPP 

Layers 283 334 

Parameter (million) 7.2M 53M 

Library Framework PyTorch PyTorch 

 

Ultralytics supports numerous YOLOv5 architectures, 

known as P5 models, which differ primarily in size: 

YOLOv5n (nano), YOLOv5s (small), YOLOv5m (medium), 

YOLOv5l (large), YOLOv5x (extra-large). This project uses 

the YOLOv5s pretrained model to perform the object 

detection training because it is among the fastest model of P5 



Journal of Robotics and Control (JRC) ISSN: 2715-5072 795 

 

A.  H. Nurul Hidayah, Disease Detection of Solanaceous Crops Using Deep Learning for Robot Vision 

models [60]. Meanwhile, this proposed model compared with 

Scaled-YOLOv4 because among of YOLOv4 family, Scaled-

YOLOv4 obtained record-breaking performance on the 

COCO benchmark [61]. YOLOv5s was compared to Scaled-

YOLOv4 to prove this proposed model's effectiveness and 

robustness in detecting the solanaceous crops' disease. The 

backbone of YOLOv5s is CSPDarknet, and the neck uses 

PANet. For Scaled-YOLOv4, CSPDarknet53 is used as its 

backbone and PAN+SPP for the neck. YOLOv5s has 283 

layers, and the parameter of this model is 7.2 million. Scaled-

YOLOv4 has 334 layers and 53 million parameters. Both of 

these models used the PyTorch Library framework for their 

implementation. 

2) Performance Evaluation 

The plotted graph illustrates the time spent between the 

YOLO model to complete the training process and the 

metrics for each method for comparison. TABLE III displays 

each algorithm's training time, precision, recall, and 

mAP_0.5. Fig. 8 and Fig. 9 show the cumulative graph of 

performance characteristics of precision, recall, mAP_0.5, 

and mAP_0.5:0.95 on the YOLOv5's model and Scaled-

YOLOv4 model. 

 

Fig. 8. Precision, Recall, mAP@0.5, mAP@0.5:0.95, of 100 epochs on 

YOLOv5's model 

The performance of the training model evaluates from 

these attributes: precision, recall, and mAP. Precision is a 

means of determining how accurate the predictions are. It is 

the percentage of accurate predictions during the training 

process. Recall means how well it detects all the positives. 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

 

Where TP is True Positive, FP is False Positive and FN is 

False Negative 

 

Fig. 9.  Precision, Recall, mAP@0.5, mAP@0.5:0.95, of 100 epoch on 

Scaled-YOLOv4’s model 

The mean average precision, mAP, acts as an accuracy 

function. mAP computes a score by comparing the detected 

bounding box to the ground-truth bounding box. The greater 

the value, the more accurate the model's detections. The 

mAP@0.5 indicates that IoU is set to 0.5. The average 

percentage of all pictures of each category is calculated, and 

then all categories are averaged. IoU is an acronym that 

stands for interaction over the union. IoU will calculate the 

overlap of the two boundaries.  

The Intersection over Union (IoU) calculates how much 

the estimated boundary overlaps with the actual boundary. 

mAP@0.5:0.95 is the average mAP for different IoU 

thresholds between 0.5 to 0.95 in the step of 0.05. Based on 

TABLE III, the YOLOv5 model performs better than Scaled-

YOLOv4 in terms of accuracy, execution time and 

lightweight. 

𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛 𝑜𝑣𝑒𝑟 𝑈𝑛𝑖𝑜𝑛, 𝐼𝑜𝑈 =  
𝐴𝑟𝑒𝑎 𝑜𝑓 𝑂𝑣𝑒𝑟𝑙𝑎𝑝

𝐴𝑟𝑒𝑎 𝑜𝑓 𝑈𝑛𝑖𝑜𝑛
 

 Fig. 10, Fig. 11, Fig. 12, and Fig. 13 shows detailed 

comparison performance graph of precision, recall, 

mAP@0.5 and mAP @0.5:0.9 that being collected from 

trained process of YOLOv5 and Scaled-YOLOv4. From 

those graphs, it can be seen that YOLOv5 has a slightly better 

result but is much faster than Scaled-YOLOv4, as shown in 

Table III. 
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 Table IV shows the performance achieved by other 

research works utilizing crop dataset for robot vision. As 

shown in the table, the proposed approach has achieved a 

slightly better mAP than the other approaches. Although the 

table is not a fair benchmarking due to different dataset and 

hardware used, the result shows that the proposed approach 

is promising.  

 

Fig. 10.  Comparison graph (Precision) for YOLOv5 and Scaled YOLOv4 

 

Fig. 11.  Comparison graph (Recall) for YOLOv5 and Scaled YOLOv4 

 

Fig. 12.  Comparison graph (mAP@0.5) for YOLOv5 and Scaled YOLOv4 

 

 

 

Fig. 13.  Comparison graph (mAP@0.5:0.95) for YOLOv5 and Scaled 

YOLOv4 

TABLE III PERFORMANCE OF TRAINING TIME, PRECISION, RECALL, AND 

MAP_0.5 ON YOLOV5 AND SCALED-YOLOV4 MODEL 

YOLO 

Version 

Training 

Time 
Precision Recall mAP_0.5 

YOLOv5s 
2 hours 30 

minutes 
92.0% 89.6% 94.2% 

Scaled-

YOLOv4 

3 hours 50 

minutes 
88.9% 86.6% 94.0% 

TABLE IV PERFORMANCE OF OTHER RESEARCH WORKS UTILIZING CROP 

DATASET FOR ROBOT VISION 

Reference Approach mean Average Precision 

(mAP) 

Roy et al. (2021) [28] YOLOv4 86% 

Wu et al. (2021) [29] YOLOv4 90% 

Thuan et al. (2021) 

[30] 

YOLOv5 93% 

Abed et al. (2021) [31] U-Net 91.02% 

Proposed apprach YOLOv5 94% 

 

3) Video Testing 

The video testing was performed to evaluate the detection 

accuracy of these two YOLO models. In Fig. 14 and Fig. 15, 

the video's time has been paused to show the comparison 

between these two models. The YOLOv5 model managed to 

localize each common potato scab that it saw in the 

YOLOv5's model by a bounding box, while the Scaled-

YOLOv4 model could not detect all of the common potato 

scabs. Therefore, YOLOv5 detects more accurately and faster 

than Scaled-YOLOv4, meaning that YOLOv5 is more 

suitable for real-time object detection. 

4) Test Images 

Fig. 16 shows some of the test images detected on healthy 

and diseases class of solanaceous crops performed by the 

YOLOv5 model used in this research.  

5) Results Discussion 

From the results shown previously, the trained model has 

achieved a detection accuracy of around 94.2%. However, 

some bounding boxes are too big for the disease area. The full 

name labeled and prediction does not appear as a whole in the 

image. This is due to the name being set too long, making it 

not fully appear in the images. Therefore, the annotating and 

labeling must be done correctly using a shorter but 



Journal of Robotics and Control (JRC) ISSN: 2715-5072 797 

 

A.  H. Nurul Hidayah, Disease Detection of Solanaceous Crops Using Deep Learning for Robot Vision 

meaningful name. The bounding box should be drawn close 

to the object's area that requires detection. This action can 

help the training algorithm learn only at the bounding box 

area.  

 

Fig. 14. Part of the testing video of the YOLOv5s model 

 

Fig. 15. Part of the testing video of the Scaled-YOLOv4 model 

 

 

Fig. 16. Some of the detection images of diseases and healthy solanaceous 

crops 

V. CONCLUSION 

This study presents the process details and suggestions of 

the problems that arose during the development of crop 

disease detection for robot vision. An efficient object detector 

is required to ensure that the robot's vision mimics the ability 

of human sight. For that purpose, the Scaled-YOLOv4 and 

YOLOv5 were tested in this study. The simulation work was 

carried out using a Google Colab notebook through the 

Pytorch framework. The Roboflow.ai website aids in creating 

the custom dataset by providing annotating, labeling, 

preprocessing, and data augmentation functions. It can also 

help in exporting a particular file format into a format 

required for the training process. Performance has been 

evaluated from training the dataset of 16580 images with 100 

epochs and 16 batch sizes and shows that the mean average 

precision using the YOLOv5 model is 94.2% which is better 

than Scaled-YOLOv4. YOLOv5 also has shown better 

performance in training time and video testing. The outcomes 

demonstrated the potential of YOLOv5 as an important robot 

vision. 

In the future, the designed model can be deployed on a 

real-world device by converting the trained weights of the 

model's network into an embedded device, such as a mobile 

phone. After deployment, this model can assist modern 

farmers with automatic crop disease detection at any time and 

place. Future work should concentrate on detecting diseases 

in various crop parts, tracking disease progression, and 

suggesting information to prevent the diseases. 
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