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Abstract—Post-stroke can cause partial or complete 

paralysis of the human limb. Delayed rehabilitation steps in 

post-stroke patients can cause muscle atrophy and limb 

stiffness. Post-stroke patients require an upper limb exoskeleton 

device for the rehabilitation process. Several previous studies 

used more than one electrode lead to control the exoskeleton. 

The use of many electrode leads can lead to an increase in 

complexity in terms of hardware and software. Therefore, this 

research aims to develop single lead EMG pattern recognition 

to control an upper limb exoskeleton. The main contribution of 

this research is that the robotic upper limb exoskeleton device 

can be controlled using a single lead EMG. EMG signals were 

tapped at the biceps point with a sampling frequency of 2000 Hz. 

A Raspberry Pi 3B+ was used to embed the data acquisition, 

feature extraction, classification and motor control by using 

multithread algorithm. The exoskeleton arm frame is made 

using 3D printing technology using a high torque servo motor 

drive. The control process is carried out by extracting EMG 

signals using EMG features (mean absolute value, root mean 

square, variance) further extraction results will be trained on 

machine learning (decision tree (DT), linear regression (LR), 

polynomial regression (PR), and random forest (RF)). The 

results show that machine learning decision tree and random 

forest produce the highest accuracy compared to other 

classifiers. The accuracy of DT and RF are of 96.36±0.54% and 

95.67±0.76%, respectively. Combining the EMG features, shows 

that there is no significant difference in accuracy (p-value 

>0.05). A single lead EMG electrode can control the upper limb 

exoskeleton robot device well. 

Keywords—Upper limb exoskeleton; EMG signal; Raspberry 

Pi; Machine learning; Multi-thread 

I. INTRODUCTION 

The rehabilitation process in post-stroke patients must be 

scheduled and sustainable to accelerate the healing process [1] 

[2]–[9]. If the rehabilitation process is not carried out 

continuously, it can cause muscle shrinkage [10]. In stroke 

hemiplegia, half of the upper limb or lower limb can 

experience paralysis. The rehabilitation process in the upper 

limb can be done passively or actively[11], [12] [13]–[16]. 

Doctors commonly use upper limb exoskeleton devices for 

rehabilitation of the upper limb in post-stroke patients. The 

passive rehabilitation process uses mechanical sensors such as 

a gyroscope and accelerometer [17] [18]–[26]. However, the 

use of mechanical sensors to detect changes in arm movement 

has a slow response. On the other hand, active rehabilitation 

involves muscle contractions that are attempted by the user to 

move the exoskeleton device [27], [28] [21], [26], [29]–[37]. 

On the other hand, the EMG signal generated by the muscles 

when the arm performs flexion and extension movements is 

non-linear so it requires pre-processing the EMG signal to 

produce linear angle predictions. Some researchers use 2 to 8 

electrode leads to predict arm angles based on EMG patterns. 

A large number of leads will result in high computing time. 

Therefore, it is important to design an exoskeleton device that 

can be controlled using a minimal number of EMG electrode 

leads. 

After a stroke, a person can experience total or partial 

paralysis, referred to as hemiplegia. Paralysis of the upper 

limb is suffered by many post-stroke patients so they cannot 

carry out normal activities. Paralysis in this limb can be caused 

by the rupture of blood vessels flowing from the brain to the 

arm causing a loss of coordination function [38]–[40]. 

Therefore, rehabilitation measures are needed in post-stroke 

patients to prevent atrophy or shrinkage of muscle mass. 

Conventionally, a doctor or therapist will rehabilitate post-

stroke patients by regularly training flexion and extension 

movements to prevent upper limb stiffness [41] [42]. The 

weakness of the conventional post-stroke rehabilitation 

process is that it requires a doctor or therapist. In the last 10 

years, stroke cases in the world and Indonesia have increased, 

therefore efforts are needed to overcome this incident. One of 

the proposed efforts is to develop upper limb exoskeleton 

device technology. Several researchers have developed upper 

limb exoskeleton devices with some emphasis either in terms 

of sensors, controls, or exoskeleton frame models. Prediction 

of exoskeleton angle by utilizing EMG signals can be 

approached by several methods including Hill-base muscle 

model  and machine learning [21], [26], [43]–[50]. 

Pang developed elbow angle prediction for exoskeleton 

arm drive by developing a Hill-base muscle model [51]. The 

accuracy obtained in predicting the angle is ranging from 10 

to 30°. However, the weakness in the study is that the 
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prediction accuracy decreases when the angle position 

decreases. This is due to changes in EMG signals caused by a 

decrease in force experienced by the biceps and triceps 

muscles. The weakness is covered by Zhijun, which combines 

the Hill muscle model and the Kalman filter. Zhijun predicts 

the force based on the Hill muscle model [52]. To control the 

upper limb exoskeleton device, EMG signals are extracted 

using mean absolute value (MAV) and wavelength (WL) 

features. Furthermore, EMG features are utilized to predict the 

force to control flexion and extension movements. Kalman 

filter is applied to filter out motion noise caused by changes in 

EMG signal amplitude [53]. In addition to using the Hill 

muscle model [54]–[56] to predict arm joint angle or force, 

several other researchers used machine learning [57]–[60] for 

the development of upper limb exoskeleton devices. Tang 

developed an upper limb exoskeleton device with angle 

prediction using artificial neural network (ANN) and EMG 

features [27]. In the development of the upper limb 

exoskeleton, ANN gets input from EMG features tapped at 

four points of the biceps brachii, brachioradialis, triceps 

brachii, and anconeus. In study, the RMSE value obtained 

varied between 9.67° to 12.42°. Pang [61] developed an upper 

limb exoskeleton with control based on EMG signals. EMG 

signals were extracted using Auto Regression (AR) 

coefficients and then the coefficients were used for ANN 

backpropagation input. The study resulted in an average 

accuracy for three states of upper limb up, hold, and upper 

limb down of 90.74°. In addition to using the Hill muscle 

model approach and the application of machine learning, 

previous researchers applied the EMG feature (zero crossing) 

approach to extract information related to elbow flexion and 

extension movements. Furthermore, the feature extraction 

results were filtered using an infinite impulse response (IIR) 

digital filter to refine the angle prediction. The angle 

prediction information is also used to control the upper limb 

exoskeleton device [62].  

Previous studies have developed upper limb exoskeleton 

devices using the Hill muscle model or machine learning. 

Previous researchers used two to four EMG lead points to 

predict the elbow angle to control the movement of the upper 

limb exoskeleton. Furthermore, some researchers showed 

varying angle prediction results depending on the position of 

the elbow angle. A model of the upper exoskeleton using a 

minimal number of EMG leads would be of great value as it 

would reduce the complexity and computation time. 

Therefore, this research aims to develop single lead EMG 

pattern recognition to control an upper limb exoskeleton. The 

use of single lead EMG will provide advantages in terms of 

hardware and software, namely reducing the complexity of 

signal processing and EMG signal lead wires. Furthermore, 

several supervised machine learning will be evaluated to see 

the best accuracy in predicting elbow angle based on EMG 

features. Therefore, the contribution of this study is as follows: 

a) An upper limb exoskeleton was controlled using single 

lead EMG from biceps muscle to reduce the hardware 

complexity. 

b) Multi thread algorithm (data acquisition, feature 

extraction, classification, and motor driving) was applied 

in the embedded system Raspberry to obtain a real time 

system. 

c) The training and testing stages was implemented online 

in the Raspberry Pi system. 

II. MATERIALS AND METHOD 

A. Experimental Procedure  

The proposed model design is a prototype model of 

developing an upper limb exoskeleton to help patients who 

experience paralysis in the arm caused by bone injury or post-

stroke hemiplegia. At this prototype stage, the upper limb 

exoskeleton model is tested on subjects in good health because 

the development is more focused on machine learning 

software design for embedded Raspberry microcomputers. 

This study involves ten respondents with criteria, final year 

students with an age range of 20.3 ± 2.4 years old, a body 

weight of 65.57 ± 6.45 kg, and no hand disorders. Exclusion 

criteria in this study are people who have heart problems, have 

a history of high blood pressure, and have had an accident on 

the arm. In this study, respondents had filled out an Informed 

consent form before the researcher carries out the 

measurement process.   

Prior to the data collection process, the surface of the skin 
precisely in the biceps muscle is cleaned first from oil using 
an 80% alcohol solution. This is done to reduce the resistance 
on the skin surface and strengthen the contact between the 
sensor and the skin surface. The EMG sensor used in this 
study is a dry electrode. The dry electrode consists of 3 metal 
plates (bipolar mode: two as EMG signal input and one part 
as ground) attached to the biceps using an elastic strap. The 
researcher ensured that the dry electrodes are properly 
attached by sliding them slightly to the right and left in the 
area of the tapping point. After the dry electrode is installed 
on the biceps, the next step is to install the 3D printing upper 
limb exoskeleton on the arm as shown in Fig. 1.  

EMG signal testing is carried out by giving instructions to 

respondents to perform muscle contractions by performing 

repetitive grasping movements. The researcher observed the 

muscle activity (EMG signal) through the computer screen on 

the serial monitor application on the Arduino. The angular 

position of the upper limb exoskeleton is recorded using an 

accelerometer and gyroscope sensor (MPU6050) attached to 

the end of the upper limb exoskeleton. In the data collection 

process, the respondent performs flexion and extension 

movements with a range ranging from 0 to a maximum of 120 

degrees. Furthermore, when recording EMG data and arm 

joint angles, the speed at which respondents perform flexion 

and extension movements follows the metronome 

application's rhythm. Metronome is a software application that 

provides repetitive and periodic movement rhythms.  

The results of EMG signal recording and angular position 

are then used to train machine learning on the computer. EMG 

signals are first extracted using time-domain features 

including mean absolute value (MAV), root mean square 

(RMS), and variance (VAR). Furthermore, the machine 

learning (decision tree (DT), linear regression (LR), 

polynomial regression (PR), and random forest (RF) that has 

been trained will then be embedded on the Raspberry Pi 

minicomputer. This process will be explained in the next 

stage. After recognizing the EMG signal movement pattern, 

the system can control the servo motor attached to the joint to 

follow the flexion and extension movement patterns.  
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B. Data Acquisition.  

The EMG signal recording process is done by tapping the 

muscle activity at the biceps point using dry electrodes (Fig. 

1). In accordance with the characteristics of EMG signals, 

which have a frequency of 0-500 Hz, a voltage range of 0-10 

mv, and a dominant frequency in the 20-150 Hz area, a pre-

amplifier circuit (gain 500 to 1000x) and a bandpass filter with 

a cut-off frequency of 20-150 Hz is required [63]–[66]. EMG 

signal recording is done using the A/D converter MCP3008. 

This A/D converter is connected to the Raspberry Pi B3+ 

system via serial peripheral interface (SPI) communication. 

Regarding the Nyquist rule, the sampling frequency applied is 

at least 2 times the maximum frequency of the EMG signal. 

This research applied a sampling frequency of 2000 Hz for the 

EMG signal recording process [30], [67], [68]. Meanwhile, 

the angular position of the upper limb exoskeleton detected 

using the MPU6050 sensor is recorded at a speed of 100 Hz. 

C. Data Processing.  

EMG signal recordings are raw data that require 

processing steps so that the information contained in EMG 

signals can be used for the upper limb exoskeleton control 

process. There are many feature extraction models used for 

EMG signal extraction. Time-domain feature extraction 

(TDFE) is a step taken for EMG signal extraction so that the 

shape of the EMG signal becomes simpler and the patterns are 

visible according to the given movement.  EMG signal data 

processing and upper limb exoskeleton device control process 

is carried out according to the flow chart as shown in Figure 

2. Before the process runs continuously, the software performs 

an initialization step for all procedures that will run. The 

flowchart (Fig. 2) shows that overall, four procedures will be 

performed by the system: data acquisition, feature extraction, 

machine learning, and servo driving procedures. After all 

treading procedures are executed, the system will run in 

parallel. The output of each thread is sent to a global variable 

so that other threads that need the variable at the same time 

can use it. All threads run continuously indefinitely as long as 

the system is not shut down. For the upper limb exoskeleton 

system to be controlled by EMG signals, EMG signals tapped 

on the biceps muscle are recorded and stored in global 

variables. Furthermore, the recorded EMG signal stored in the 

global variable will be retrieved by the next thread, the time-

domain feature thread. 

D. Time-Domain Features Extraction.  

Time-domain feature extraction (TDFE) is one of the 

features often used by researchers related to EMG signal 

processing [69]–[72]. TDFE has a simple nature and fast 

computation time. TDFE can reduce the complexity of EMG 

signals so that EMG patterns become more recognizable and 

simpler. TDFEs that are often used in EMG signal processing 

are variance (VAR), mean absolute value (MAV) and root 

mean square (RMS) as shown in Equations (1), (2), and (3). 

The TDFE discussed in this paper is TDFE related to energy, 

namely through the calculation of the average value of the 

EMG signal (VAR, MAV, and RMS) [73]. The variance of 

EMG (VAR) is the average power value of the EMG signal. 

VAR is formulated as follows  [73], Eq. (1) 

𝑉𝐴𝑅 =
1

𝑁 − 1
∑ 𝑥𝑖

2

𝑁

𝑖=1

 (1) 
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Fig. 1 Block diagram of embedded learning machine on Raspberry Pi to control the upper limb exoskeleton built using 3D printing technology. 
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Mean Absolute Value (MAV) is the average of absolute EMG 

signal for N window length. The MAV is formulated as  [73], 

Eq. (2). 

𝑀𝐴𝑉 =
1

𝑁
∑ |𝑥𝑖|

𝑁

𝑖=1

 (2) 

Root Mean Square (RMS) represents the mean power of 

signal over a window length of EMG samples. The 

mathematical equation to describe this feature is written as 

follows, Eq. (3) [73]. 

𝑅𝑀𝑆 = √
1

𝑁
∑ 𝑥𝑖

2

𝑁

𝑖=1

 (3) 

where xi indicates the i-th EMG signal and N indicates the 

length of the EMG signal. The EMG signal patterns after the 

TDFE process can be recognised visually but for the system 

to run automatically, the EMG feature patterns must be 

recognised by machine learning.  Furthermore, the machine 

learning decision tree (DT), linear regression (LR), 

polynomial regression (PR), and random forest (RF) will be 

tested for their performance based on the EMG signal feature 

patterns. 

E. Machine Learning  

Conventional machine learning is still widely used in 

some simple applications, this is due to the simplicity of the 

model used and the ease to implemention on various platforms 

including embedded microcontroller systems or Raspberry Pi 

mini computers [74]–[76]. More specifically, supervised 

machine learning will be implemented in this research, using 

a gold standard derived from the angle recordings of the 

MPU6050 sensor used as a label. One of the advantages of 

using conventional machine learning is the fast processing and 

less training time. 

1. Decision Tree 

Decision tree, DT, is one type of conventional supervised 

machine learning. Where it will perform a continuous data 

split process according to certain parameter criteria. The DT 

can be assumed as two parts: decision nodes and leaves, where 

the decision nodes are the beginning of the split data while the 

leaves are the decisions or outcomes. One of the parameters 

used for DT calculation is entropy (s) (4) where Entropy (s) is 

a measure of uncertainty and randomness of data, Eq. (4) [71]. 

𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑠) = − ∑ 𝑝(𝑐)𝐿𝑜𝑔2𝑝(𝑐)

𝑐∈𝐶

 (4) 

where s represents the data set that entropy is calculated, c 

represents the classes in set S, and p(c) represents the 

probability of data points that belong to class c to the number 

of total data points in set S Furthermore, the measure of 

machine learning effectiveness in the training data 

classification process is expressed as information gain as 

shown in Eq. (5). 

𝐼𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛𝐺𝑎𝑖𝑛(𝑆, 𝑎)
= 𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑆)

− ∑
|𝑆𝑣|

|𝑆|
𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑆𝑣)

𝑣∈𝑣𝑎𝑙𝑢𝑒(𝑎)

 
(5) 

where a represents a specific attribute or class label, 

Entropy(S) is the entropy of the dataset, S; |Sv|/ |S| represents 

the proportion of the values in Sv to the number of values in 

the dataset, S; Entropy(Sv) is the entropy of dataset, Sv. 

𝐺𝑖𝑛𝑖 = 1 − ∑ (𝑝𝑖)2

𝑣∈𝑣𝑎𝑙𝑢𝑒(𝑎)

 (6) 

Gini impurity is the likelihood that a random data point in 

the dataset would be classified wrongly if the dataset's class 

distribution determines its label. 

2. Regression Model 

Linear regression (LR) is the simplest prediction method 

that generally works on continuous data. LR can be applied to 

input and output data that are close to linear. Prediction using 

the LR method is shown in equation (7), where 𝑏0 denotes the 

intercept of y, and 𝑏1denotes the slope of the equation. If the 

variables affecting the LR model are more than one, the output 
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Fig. 2. The Flowchart controls the upper limb exoskeleton which is divided into four parts data acquisition, feature extraction, machine learning, and driving 

the servo motor. 
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prediction can be approximated using polynomial linear 

regression, Eq. (8).  Furthermore, if the relationship between 

the input variables x and y is not linear, the prediction process 

can be approached using a polynomial regression Eq. (9) [77]–

[81]. 

𝑦 = 𝑏0 + 𝑏1𝑥 (7) 

𝑦 = 𝑏0 + 𝑏1𝑥1 + 𝑏2𝑥2 + 𝑏3𝑥3+. . . . +𝑏𝑛𝑥𝑛 (8) 

𝑦 = 𝑏0 + 𝑏1𝑥 + 𝑏2𝑥2 + 𝑏3𝑥3+. . . . +𝑏𝑛𝑥𝑛 (9) 

where n is the equation, y is the dependent variable, x is the 

independent variable, and b0 to bn are the parameters you can 

optimize. In this study, because the EMG signal is not linear 

to the arm angle's position, the joint angle's prediction can be 

approached using a polynomial regression equation where x is 

the TDFE of the EMG signal and y is the prediction result.  

3. Random Forest 

Random forest (RF) is composed of several individual 

DTs during the training stage. The prediction results from all 

DTs are collected to determine the final prediction. Since the 

final prediction result is based on the output of several DTs, 

this machine learning is also called an ensemble. Determining 

predictions based on the RF method is by calculating the 

node’s importance for each decision tree using Gini 

Importance as shown in equation (10) [82]. 

𝑛𝑖𝑗 = 𝑤𝑗𝐶𝑗 − 𝑤𝑙𝑒𝑓𝑡(𝑗)𝐶𝑙𝑒𝑓𝑡(𝑗) − 𝑤𝑟𝑖𝑔ℎ𝑡(𝑗)𝐶𝑟𝑖𝑔ℎ𝑡(𝑗) (10) 

where nij is the importance of node j, wj denotes the weight 
number for node j, Cj denotes the impurity of node j, wleft(j) 
denotes the node derived from the separation of node j on the 
left, wright(j) denotes the node derived from the separation of 
node j on the right. Furthermore, the importance value for each 
DT is calculated using Equation (11). 

𝑓𝑖𝑖 =
∑(𝑗: 𝑛𝑜𝑑𝑒 j split on feature i) 𝑛𝑖𝑗

∑(𝑘 ∈ all nodes)𝑛𝑖𝑘

 (11) 

where fii is the importance of the feature i, nij is the importance 

of the node j. The results of the importance value calculation 

are then normalized to a value between 0 and 1 by dividing by 

all feature importance values, as shown in Equation (12). 

𝑛𝑜𝑟𝑚(𝑓𝑖𝑖) =
𝑓𝑖𝑖

∑(𝑗 ∈ 𝑎𝑙𝑙 feature)𝑓𝑖𝑗
 (12) 

Determining the prediction value at the random forest level is 

by calculating the average feature importance value based on 

all DTs involved as shown in Equation (13). 

𝑅𝐹(𝑓𝑖𝑖) =
∑(𝑗 ∈ 𝑎𝑙𝑙 trees)𝑛𝑜𝑟𝑚(𝑓𝑖𝑖𝑗)

𝑇
 (13) 

where RFfi(i) is the importance of feature i calculated from all 
DTs in the random forest model, normfij is the normalized 
importance of feature i in DT j, and T is the total T involved. 

B. Statistical Analysis 

Performance testing or accuracy of upper limb 

exoskeleton device angle prediction is carried out based on the 

TDFE variations used, namely RMS, MAV, and VAR. The 

single factor ANOVA test is applied to see if accuracy is 

different when using a single feature or its combination. 

Furthermore, several machine learning tools including linear 

regression, polynomial regression, decision tree, and random 

forest are compared for accuracy using mean, standard 

deviation, and single factor ANOVA statistical tests. In 

addition, a statistically significant test is conducted by 

comparing the machine learning accuracy when the number of 

datasets is increased by using a single respondent, five, ten, or 

fifteen respondents. The single factor ANOVA statistical test 

uses an alpha value of 0.05.   

III. RESULTS 

A. Raw EMG Signal 

In this study, we explored the placement of electrodes in 

the biceps area rather than in the triceps area. This is because 

the triceps leads do not show significant EMG signal activity. 

EMG signals are tapped at the biceps point using a dry 

electrode where the EMG signal generated is from 1 mV to 12 

mV. In this study, respondents performed repetitive flexion 

and extension movements during the recording process. Fig. 3 

shows that the EMG signal is random but has a repeating 

pattern following the exoskeleton arm movement. When the 

elbow moved from an angle of 0° to 120°, it appears that the 

EMG signal activity also showed a change according to the 

angle of the elbow. This is evident when the upper limb 

exoskeleton is in position 0°, the EMG signal does not show 

significant activity, but when the elbow angle is 120°, the 

EMG signal activity shows the maximum EMG amplitude. 

 
Fig. 3. Raw EMG signals from the biceps muscle when the elbow performs 

flexion and extension movements sequentially. 

B. Time-Domain EMG Features 

EMG signal complexity is reduced after going through the 

time domain feature extraction (TDFE) process. The results of 

TDFE computation on EMG signals show a simpler EMG 

signal pattern compared to the raw EMG signal. Fig. 4 shows 

the TDFE results for feature variance (VAR). The results 

show that the TDFE pattern (red color line) follows the EMG 

signal pattern. Furthermore, the comparison results between 

the angle read using MPU6050 and the TDFE result have a 

different range as presented in Fig. 4. However, this result 

cannot be used for upper limb exoskeleton control. Therefore, 

a machine learning is required to control the upper limb 

exoskeleton. In addition, Fig. 5 shows the TDFE results using 

RMS and MAV features. Each EMG TDFE pattern can follow 
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the joint angle movement well but with different amplitudes. 

The RMS and MAV TDFE patterns show movement patterns 

that coincide with the RMS TDFE pattern with slightly higher 

amplitude than the MAV. 

 
Fig. 4. EMG (VAR) features output when the elbow performs flexion and 

extension movements against the actual elbow position measured using 

MPU6050 (accelerometer and gyroscope sensors). 

 

Fig. 5. EMG feature outputs (RMS and MAV) when the elbow performs 

flexion and extension movements opposite to the actual elbow position 

measured using MPU6050 (accelerometer and gyroscope sensors). 

Each TDFE output has unique characteristics. As shown 

in Fig. 4 and Fig. 5, however, TDFE RMS does not have an 

amplitude offset when compared to the others. It appears that 

the TDFE RMS results always coincide with the actual 

angular position read by the MPU6050 sensor. 

C. Predicted Error 

The performance of the proposed machine learning (linear 

regression (LR), polynomial regression (PR), decision tree 

(DT) and random forest (RF)) has varying accuracy which 

depends on the TDFE (single or combination) used. Prediction 

of arm joint angles to control the exoskeleton device can be 

done using a single lead EMG through the biceps muscle. 

Although there is a considerable error at some measurement 

points, the continuous RMSE value produced is very good. 

Examples of RMSE calculation results using continuous 

prediction data for different features (MAV, MAV_RMS, and 

MAV_RMS_VAR) produce RMSE values of 1.14%, 3.08%, 

and 1.28% respectively (Fig. 6). 

 

 

 
Fig. 6. Error prediction in Decision Tree for different features and 

combinations. The blue line is the actual value of the joint angle measured 

using the MPU6050 sensor, (a) MAV feature, (b) MAV feature and RMS 

combination, and (c) MAV-RMS-VAR feature combination. 
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D. Machine Learning Accuracy.  

Each machine learning (ML) has different accuracy 

depending on the type of ML and TDFE combination used 

(Fig. 7). Machine learning decision tree (DT) and random 

forest (RF) produced higher accuracy than the other two MLs 

(linear regression (LR= 41.21±13.35%) and polynomial 

regression (PR= 49.28±13.10) %) each having a mean 

accuracy of 96.36±0.54% (DT) and 95.67±0.76 (RF). 

Machine learning DT and RF applying the combination of 

MAV, RMS, and VAR features showed that the combination 

of TDFE did not significantly affect the accuracy of the 

proposed model (p-value>0.05). 

 

Fig. 7. Various accuracies were generated from different machine learning 

and EMG feature combinations with 20 respondents. 

Statistical tests are conducted for all types of machine 

learning, this is to see if there is a significant difference in 

mean accuracy when using single or combined TDFE. The 

single factor ANOVA statistical test shows that for different 

features there is no significant difference (p-value=0.99) 

whether tested for the number of respondents 20, 10, 5, or 1 

(Table 1). Furthermore, ANOVA statistical test is also 

conducted among machine learning (LR, PR, DT, RF) to see 

if there is a significant difference in accuracy. The test results 

show that there is a significant difference in accuracy for all 

types of machine learning used (p-value<0.05) both for the 

number of respondents 20, 15, 5, and 1 (Table 2). 

Furthermore, a single factor ANOVA statistical test is also 

conducted to see if there is a significant difference in accuracy 

when the model uses datasets from 1, 5, 10, or 20 respondents. 

The results show that there is a significant difference in 

accuracy (p-value <0.05) for all types of datasets used (Table 

3). 

IV. DISCUSSION 

This research shows that machine learning decision tree 

(DT) and random forest (RF) produce accuracy values of 

96.36 ± 0.54% and 95.67 ± 0.76, respectively. These results 

show that embedded machine learning DT and RF can be 

applied to the Raspberry Pi system because it has a simple 

classifier concept. More specifically, a random forest is able 

to predict continuous data. On the other hand, PR and LR 

machine learning are not able to give good predictions, this 

can be caused because the characteristics of the TDF EMG 

signal pattern in some conditions do not show the same value 

when repeated under the same conditions. In this study, the 

effect of the number of respondents is also tested, namely with 

variations of 1, 5, 10, and 15 respondents. Testing with 

different respondents is intended to see whether adding more 

datasets will positively impact machine learning accuracy. 

The ANOVA statistical test results show that there is a 

significant difference (p-value <0.05) when the dataset for the 

ML training process is added starting from 5, 10, and 15 

respondents. This is in line with the research conducted by 

Caroline, namely the more datasets given, the ability of 

machine learning to learn becomes better. In terms of TDFE, 

the statistical ANOVA test results show that there is no 

significant difference in accuracy (p-value>0.05) when the 

machine learning model uses a single feature or a 

combination. This shows that using a combination of many 
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TABLE 1. SIGNIFICANT ACCURACY DIFFERENCES AMONG FEATURE COMBINATIONS FOR DIFFERENT RESPONDENTS (F1: MAV, F2:RMS, F3:VAR, 
F4:MAV-RMS, F5: MAV-VAR, F6:RMS-VAR, F7: MAV-RMS-VAR) WITH ALPHA=0.05. 

Respondent SS MS F P value Eta-sq RMSSE Omega Sq 

20 (f1, f2, f3, f4, f5, f6, f7) 548.81 91.47 0.095 0.996 0.026 0.154 -0.241 

10 (f1, f2, f3, f4, f5, f6, f7) 293.29 48.88 0.085 0.997 0.024 0.145 -0.244 

5 (f1, f2, f3, f4, f5, f6, f7) 343.52 57.25 0.092 0.996 0.026 0.152 -0.242 

1(f1, f2, f3, f4, f5, f6, f7) 102.57 17.09 0.107 0.995 0.030 0.163 -0.237 

TABLE 2. THE SIGNIFICANT DIFFERENCE IN ACCURACY AMONG MACHINE LEARNING FOR A NUMBER OF DIFFERENT RESPONDENTS 

Respondent SS MS F P value Eta-sq RMSSE Omega Sq 

20 (LR, PR, DT, RF) 18275 6092 60 2.92E-11 0.881 2.916 0.862 

15 (LR, PR, DT, RF) 11532 3844 103 7.69E-14 0.928 3.835 0.916 

5 (LR, PR, DT, RF) 12476 4159 108 4.53E-14 0.931 3.927 0.920 

1 (LR, PR, DT, RF) 3000 1000 51 1.48E-10 0.864 2.697 0.843 

TABLE 3. THE SIGNIFICANT DIFFERENCE IN ACCURACY AMONG A NUMBER OF RESPONDENTS FOR DIFFERENCE IN MACHINE LEARNING 

Machine learning SS MS F P value Eta-sq RMSSE Omega Sq 

RF (20, 10, 5, 1) 16.9 5.6 12.9 3.24E-05 0.617 1.357 0.560 

DT (20, 10, 5, 1) 21.7 7.2 16.6 4.67E-06 0.675 1.541 0.626 

PR (20, 10, 5, 1) 3251.8 1083.9 19.8 1.12E-06 0.712 1.681 0.668 

LR (20, 10, 5, 1) 3621.5 1207.2 8.5 0.000509 0.515 1.101 0.445 
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features in the machine learning model does not guarantee 

increased accuracy. This can be due to the fact that the EMG 

features used are all energy-based time-domain features hence 

they all have the same pattern. 

In this study, the machine learning model only uses a 

single lead in the biceps muscle to recognize the arm joint's 

flexion and extension movement patterns. The EMG signal 

pattern is in line with flexion and extension movements. When 

the arm starts to make flexion movements from an angle of 0 

to 120, it appears that the EMG signal goes from a small signal 

pattern to a large one and vice versa when the arm makes an 

extension movement from 120 to 0, it appears that the EMG 

signal has decreased signal amplitude. This can be explained 

that when the arm performs flexion movements, the arm tries 

to lift the forearm through the bicep muscle so that muscle 

contraction increases and EMG signal activity also increases. 

This research shows that machine learning decision tree 

(DT) and random forest (RF) produce accuracy values of 

96.36 ± 0.54% and 95.67 ± 0.76, respectively. These results 

show that embedded machine learning DT and RF can be 

applied well to the Raspberry Pi system because it has a simple 

classifier concept. More specifically, random forest is able to 

predict continuous data. On the other hand, PR and LR 

machine learning are not able to provide good predictions, this 

can be caused because the characteristics of the TDF EMG 

signal pattern in some conditions do not show the same value 

when repeated under the same conditions. In this study, the 

effect of the number of respondents is also tested, namely with 

variations of 1, 5, 10 and 15 respondents. Testing with 

different respondents is intended to see whether adding more 

datasets will positively impact machine learning accuracy. 

The ANOVA statistical test results show a significant 

difference (p-value <0.05) when the dataset for the ML 

training process is added starting from 5, 10 and 15 

respondents. This is in line with the research conducted by 

Caroline, namely the more datasets given, the ability of 

machine learning to learn becomes better. In terms of TDFE, 

the statistical ANOVA test results show that there is no 

significant difference in accuracy (p-value>0.05) when the 

machine learning model uses a single feature or a 

combination. This shows that using a combination of many 

features in the machine learning model does not guarantee 

increased accuracy. This can be due to the fact that the EMG 

features used are all energy-based time-domain features so 

they all have the same pattern. 

In this study, the machine learning model only uses a 

single lead in the biceps muscle to recognize the arm joint's 

flexion and extension movement patterns. The EMG signal 

pattern is in line with flexion and extension movements. When 

the arm starts to make flexion movements from an angle of 0 

to 120, it appears that the EMG signal goes from a small signal 

pattern to a large one and vice versa when the arm makes an 

extension movement from 120 to 0, it appears that the EMG 

signal has decreased signal amplitude. This can be explained 

that when the arm performs flexion movements, the arm tries 

to lift the forearm through the bicep muscle so that muscle 

contraction increases and EMG signal activity also increases. 

The results of this study can be compared with several similar 

studies using machine learning. Tang used four EMG leads to 

develop an upper limb exoskeleton based on an artificial 

neural network (ANN) with an accuracy of 9.67 to 12.42° 

[27]. However, the accuracy of the prediction of the elbow 

angle of the exoskeleton varies for several different speed 

modes. Another researcher developed prediction of elbow 

angle for three positions of limb up, hold, and upper limb 

down by combining feature regression coefficient (AR) and 

ANN classifier [61]. In this study, the accuracy of 90.74° was 

obtained. Although this study has succeeded in controlling the 

upper limb exoskeleton using single lead EMG, there are 

several limitations to this study. This study did not consider 

the effect of muscle fatigue on the developed machine learning 

model. This is in line with the results of previous studies, 

namely if there is fatigue in the car, the amplitude and 

frequency of the EMG signal will be affected, as well as will 

affect the EMG feature and classifier output results [83]. This 

upper limb exoskeleton device was tested on humans in good 

health. The signal generated by the patient in the poststroke 

state may produce a significant difference [84]. In this study, 

matters related to the speed of movement of the exoskeleton 

device have not been considered, so it still requires further 

investigation. 

In this study, the exoskeleton was developed using 3D 

printing technology so that the design can be tailored to the 

needs. The strength of the exoskeleton printed material 

depends on the setting of several parameters, including infill 

and support settings, which in this study used 20% infill 

settings and custom support. The 3D printing of the 

lightweight exoskeleton device will not burden the patient. 

Furthermore, this product can be implemented for post-stroke 

patients, especially those with upper limb paralysis or 

hemiplegia, either independently or in a rehabilitation clinic. 

In the future, with the realization of cheap and easily available 

exoskeleton devices, it will reduce the paralysis rate for post-

stroke patients and speed up rehabilitation steps. 

V. CONCLUSION  

This research aims to develop an upper limb exoskeleton 

using one lead EMG pattern recognition. The results showed 

that the highest performance is obtained in the machine 

learning decision tree (DT) and random forest (RF) with 

accuracy values of 96.36 ± 0.54% and 95.67 ± 0.76%, 

respectively. The single factor ANOVA statistical test shows 

that there is no significant difference in accuracy when the 

features used are single or combined (p-value<0.05). Each 

machine learning used (LR, PR, TD and RF) has different 

accuracy and the single factor ANOVA statistic shows that 

there is a significant difference in accuracy (p-value <0.05). 

Increasing the number of datasets as input for machine 

learning training shows that there is a significant change in 

accuracy (p-value <0.05). The design of the upper limb 

exoskeleton based on EMG pattern recognition opens many 

opportunities for development. Modern machine learning 

applications such as deep learning can be further applied to 

improve the performance of joint angle prediction. 

Furthermore, an ML model using a convolution neural 

network can be applied to embedded machine learning 

implementation to eliminate the TDFE stage. 
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