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Abstract: The current energy crisis raised concern about the lack of electricity during the wintertime,
especially that consumption should be cut at peak consumption hours. For the building owners,
this is visible as rising electricity prices. Availability of near real-time data on energy performance
is opening new opportunities to optimize energy flexibility capabilities of buildings. This paper
presents a reinforcement learning (RL)-based method to control the heating for minimizing the
heating electricity cost and shifting the electricity usage away from peak demand hours. Simulations
are carried out with electrically heated single-family houses. The results indicate that with RL, in the
case of varying electricity prices, it is possible to save money and keep the indoor thermal comfort at
an appropriate level.

Keywords: HVAC system; self-consumption optimization; reinforcement learning; double deep
Q-network

1. Introduction

In line with the EU commitment to global climate action under the Paris Agreement,
the strategic long-term vision for a prosperous and climate-neutral European economy
determined that GHG emissions must be drastically reduced by 2050 [1]. Accordingly, the
European Green Deal (EGD) set a reduction target of 50–55% by 2030 [2]. EU-wide, build-
ings account for 40% of energy consumption and 36% of GHG emissions, and thus there
will be a highly significant portion of potential actions in eliminating GHG emissions [3].
Currently, primary energy consumption in the EU building stock is reducing at a rate of
about 1% per year [4], meaning reaching carbon neutrality by 2030 will require a significant
effort to be able to manage building energy demand. Energy scenarios currently indicate
that the share of renewable electricity for the European countries ranges from 48% to 70%
by 2050, compared to 31% currently [5].

Furthermore, the political and economic situation (due to the war in Ukraine and
several years of COVID) created additional pressure and major energy security and energy
poverty risks worldwide today. Many European countries are facing a deepening energy
crisis as they prepare for a cold winter. Addressing the climate neutrality needs and at the
same time securing affordable energy for all, calls for more radical and dynamic approaches
to optimize energy usage, such as by minimizing the overall energy consumption of
building systems, as well as by optimization hourly usage of energy based on energy prices
and the availability of clean energy sources, as well as directing energy usage out of peak
energy consumption hours.

For example, in Finland, a majority of energy operators offer contracts to their clients
where the price is following the hourly changes on the Nord Pool [6] spot prices. Factors
that affect the prices include available production capacity, fuel prices, emission rights, and
electricity consumption [7]. The most common reason for price fluctuations is the prevailing
weather in Finland, as well as in the countries from which Finland buys electricity. For
example, the abundant rains, especially in Norway, increase the hydropower reservoir level
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and thus lower the price. Similarly, strong winds increase the production of wind turbines.
Additionally, the weather also has an impact on the demand. In cold winters, the price of
electricity remains clearly higher than usual, when there is a greater need for heating. In
the summer, on the other hand, the price of electricity is typically lower, although power
plant maintenance is often carried out during the summer. Therefore, consideration of
electricity spot prices, combined with weather forecast, has a potential to optimize the
energy consumption of building systems, lower electricity prices, and at the same time
reduce the level of CO2 emissions caused by energy production.

As modern buildings are becoming increasingly smart-integrated with sensors, smart
control systems, networking means, and data analyzing platforms, the data collected from
sensors and application of artificial intelligence (AI) and machine learning (ML) algorithms
can support achieving this goal. The electricity cost-based optimization of building energy
consumption while ensuring building occupants’ comfort is the main motivation behind
this research.

Heating, ventilation, and air conditioning (HVAC) equipment is some of the most
extensively used and most energy-consuming systems in the buildings. Accordingly, the
optimal control of HVAC systems can improve electricity usage, lower electricity prices,
and at the same time reduce green gas emissions. The optimization of HVAC functions
is not a new area of research. It is extensively studied as a part of demand response
(DR) management, which also includes approaches towards shifting electricity usage and
dynamic pricing control. Existing methods for improving building HVAC energy efficiency
can be broadly categorized as follows: traditional mathematical rule-based, model-based,
and data-driven (AI). Rule-based controls are simple heuristic methods. They are usually
based on known data and rely on the monitoring of a specific “trigger” parameter (e.g.,
room temperature) on which a threshold value is fixed to control the system according to the
predefined strategy. For example, studies by Alimohammadisagvand et al. [8] investigated
rule-base DR control algorithms in several types of buildings in Finland based on the
electricity prices to control the temperature set point of space heating (real-time hourly
electricity price and previous-/next-hour forecast electricity price). It was reported that
the control algorithm based on the previous hourly electricity prices is the most effective
algorithm in most of the studied cases. When compared with the reference case (the indoor
temperature set point of heating is a constant 21.0 ◦C), the maximum total delivered energy
and cost saved using control algorithms was around 3% and 6–14%, respectively, depending
on the house type, heat distribution systems, and parameters used by algorithms. However,
rule-based DR strategies have the advantage of being simple; they feature several lacks,
usually concerning their poor dynamics. Rule-based models can be hard to maintain due
to potential changes during the building life. Despite this lack of adaptation, dynamicity,
and predictability, rule-based DR strategies account for the majority of DR commercial
implementations [9,10].

In the model-based control algorithms, some of the parameters are predicted, and
this results in a more reliable but complex control strategy. For example, model-based
HVAC control algorithms to minimize total energy costs for end-users were studied by
Avci et al. [11]. However, model-based approaches have limited practical adoption due to
its predictive model complexity and memory footprint required for the online optimization.
Computational complexity exponentially increases with the complexity of the building
and the structure of the energy network [12,13]. Several studies pointed out model-based
approaches overcoming the limitations encountered by simpler rule-based controls and
outperforming them [14,15].

Instead, AI data-driven methods were demonstrated as more flexible [16] and able to
impact HVAC systems operations by adjusting the control parameters (e.g., temperature),
leveraging historical operational and occupancy data of the building, as well as environ-
mental data (e.g., weather). The flexibility comes from the ability of machine learning
algorithms to learn from historical operational data of the building and adjust functions of
HVAC systems accordingly. Additionally, compared to traditional rule-based models, for
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example, data-driven approaches require less domain expert knowledge and no description
of the building’s physical dynamics.

Many data-driven studies utilize supervised machine learning methods. For example,
Liu et al. applied the deep deterministic policy gradient (DDPG) for short-term energy
consumption of HVAC systems for heating and cooling in small office environments [17].
It was reported that the proposed model produced more accurate results than the common
supervised learning models, such as the support vector machine (SVM) and neural network
(NN). Large commercial buildings were studied by Reena [6], where structural equation
modelling (SEM) is proposed to improve the prediction of temperature within a zone to
build energy-efficient HVAC systems.

Analyzing occupant behavior and their interaction with HVAC systems can also help
in better meeting the thermal comfort of occupants saving the energy at the same time.
Raza et al. developed a machine leaning model for space heating that can determine the
occupants’ behavior, which generally results in the wastage of energy in the operation of
HVAC systems [18].

The impact of different occupancy prediction models using ML techniques was an-
alyzed by Esrafilian-Najafabadi [19]. Several ML techniques (decision trees, k-nearest
neighbor, multilayer perceptron, and gated recurrent units) were deployed to predict
the occupancy types and patterns and provide an accurate and reliable evaluation of the
performance of the occupancy model for coupling with HVAC control systems. A few
supervised machine learning models: support vector machines (SVM), artificial neural
network (ANN), logistic regression (LR), linear discriminant analysis (LDA), k-nearest
neighbour (KNN), and classification trees (CT) are proposed by Chaudhury to predict
comfort levels of occupants [20].

Evolutionary algorithms are also used to learn the optimal control parameters, using
historical data. For example, Kusiak in [21] used an evolutionary algorithm to find the
optimal control settings (i.e., supply air temperature and supply air static pressure) of an
HVAC system based on a data-driven model built for system performance.

Nassif [22] proposed the cooling optimization of HVAC systems based on genetic
algorithms for controller optimization and supervised machine learning methods for HVAC
modelling. Optimal price-based control of HVAC systems in multizone office buildings for
demand response is reported by [23]. Occupants’ varying thermal preferences, represented
as a coefficient of a bidding price (chosen by the occupants) in response to price signals, are
modeled using ANN and integrated into the optimal HVAC scheduling. Furthermore, a
control mechanism is developed to determine the varying HVAC thermostat settings in
various zones based on the ANN prediction model results.

The optimizations based on supervised machine learning algorithms may require a
vast amount of labeled data. Accordingly, the performance of supervised ML approaches
depends on the quality of the building’s historical data, which might not be available. In
addition, in case of a change in equipment or users, this data becomes obsolete, and the
performance of trained machine learning algorithms can decrease.

To address these challenges, a data-driven approach that can learn online optimal
control parameters from historical data to optimize HVAC operations, is needed. Re-
inforcement learning (RL) seems promising to address this type of a problem, where a
software agent needs to learn an optimal or a near-optimal policy that would maximize
the user-defined reinforcement signal (i.e., reward). Furthermore, RL-based approaches for
heating and cooling control and optimization of decision-making action in real-time rely
on minimal dependency on historical data.

There are several studies that applied RL control strategy in the operation optimiza-
tion of building HVAC systems [24]. The application of a discrete and a continuous
reinforcement learning-based supervisory control approach, which actively learns how to
appropriately schedule thermostat temperature setpoints based on the occupants’ comfort
profiles, was studied by Fazenda et al. [25]. Liu and Henze [26] used RL, and specifically
Q-learning, to optimize the operation of active and passive building thermal storage inven-
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tory. The intelligent temperature control in the controlled areas of the building, by learning
the characteristics of HVAC equipment and occupant habits, was studied by Barrett and
Linder [27]. Costanzo et al. [28] applied RL controlling strategies to building demand
response to achieve 90% of the mathematical optimum solution. Ruelens et al. [29] applied
RL algorithms to an HVAC system with a heat pump, achieving significant energy sav-
ings. Li and Xia [30] proposed multi-scale RL to accelerate the process of solving optimal
control strategies. Wei et al. [31] proposed a deep RL-based control method of an HVAC
system. It was pointed out by researchers that deep RL controller requires improving in
long learning time. A RL architecture for the efficient scheduling and control of an HVAC
system in a commercial building while harnessing its demand response (DR) potentials
was proposed by [32]. Simulation demonstrated achieving a weekly energy reduction of
up to 22% compared to a baseline controller.

A RL-based energy optimization model applied in factories’ real-time environment
(reported learning time about several weeks) and able to provide around 25% energy sav-
ing on top of a baseline controller was proposed by Biswas [33]. The HVAC optimization
goal was to keep the temperature and (relative) humidity within the prescribed manu-
facturing tolerance ranges, and at the same time, balanced with energy savings and CO2
emission reductions.

A deep reinforcement learning (DRL) approach for building heating control to auto-
mate decision making in real-time with minimal dependency on historical data is proposed
by Gupta et al. [34]. As an input, simulation experiments used real-world outside tempera-
ture data, but constant electricity price. It was reported that the DRL-based smart controller
outperforms a traditional thermostat controller by improving thermal comfort by 15–30%
and reducing energy costs between 5% and 12% in the simulated environment.

In contrast, this research presents a deep reinforcement learning-based model for
HVAC control and optimization, which can optimize the functionality of HVAC systems
considering dynamic electricity costs and weather information towards the minimization of
energy bill costs of the occupant, and at the same time, securing thermal comfort. The results
indicate that in situations with highly fluctuating electricity prices, it is possible to reach
significant cost savings, whereas savings in energy usage remain marginal. The method is
tested by simulations with typical buildings of different ages to test the adaptability and
scalability of the proposed approach.

In the following paper, the methods used to design and develop the cost optimization
support are presented in Section 2. More specifically, the architecture, data analytics, and
algorithms to enable optimization and control features are discussed here. Section 3 is
focused on the obtained results. The strengths of the developed solution and the aspects of
future work are concluded in Section 4.

2. Methods

This work’s objective is to find out if it is possible to reduce electricity cost used for
heating without significantly reducing thermal comfort. A reinforcement learning (RL)-
based method is selected. The algorithm uses measurements from the building, as well as
electricity price and weather forecasts, to estimate the best indoor temperature setpoint.
The system model is presented in Figure 1. In this section, the theoretical background
of reinforcement learning and the implementation to the current case are described in
more detail.

2.1. Reinforcement Learning

Reinforcement learning is a type of machine leaning, where an agent is learning the
best practices by testing different actions, observing its environment, and learning from the
consequences of the made choices. A numerical reward signal is calculated after each action,
but instead of optimizing the direct reward, there is an attempt for it to be maximized in the
long run, since actions taken earlier might also affect the reward further in the future [35].
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The RL algorithm utilized here is called the double deep Q-network (double DQN).
In Q learning [36], selecting the best action is carried out by calculating the quality of all
actions in the current state and selecting the action that is maximizing the value of the
quality function (Q-function).

In double DQN [37] the values of Q-function are estimated and updated with help
of two deep neural networks: Q-network and target network. The Q-network takes the
observations from the environment as input and returns the Q-values for each action as
output. The action with the highest value from Q-network is selected as the best action.

Training the Q-network is conducted with help of the target network and an experience
replay [38]. At each step, the original state (St), selected action (at), as well as the reward
(Rt+1) and resulted state (St+1), are stored in the experience replay database. The Q-network
is updated, based on random minibatches of this data, by calculating the network targets
(Yt) with Equation (1).

Yt = Rt+1 + γQ
(

St+1, arcmax
a

Q(St+1, a; θt); θ
′
t

)
(1)

where Rt+1 is the immediate reward after taking the action, γ is a discount factor defining
the importance of future rewards, θt is the parameters of the Q-network and θ′t parameters
of the target network. This means the Q for the future actions is estimated with the target
network, whereas the action is selected by maximizing the Q-network. The target network
in turn is updated periodically by copying the parameters from the Q-network.

To be able to continually learn, the algorithm must balance between exploitation
(selecting those actions that it already learned to get the best results with) and exploration
(trying actions not yet tested). This is implemented with ε-greedy strategy: with probability
of ε, a random action is taken instead of the one that is optimal based on the current
Q-function [39].

2.2. Implementation of the Algorithm

The implemented reinforcement learning case for finding the best next hour electric
heating setpoint values for achieving optimal reward (electricity bill savings) is shown
in Figure 2.

In this case, the environment is the building, heating system, and the surrounding
world. To measure the state of the environment, we chose observations that could be easily
measured also from real buildings. This includes:

• timestamp (hour of day and day of week);
• weather (outdoor temperature, global radiation, and diffuse radiation) current value

and forecast for next 24 h;
• electricity price and its forecast for the next 24 h;
• and temperature measurements from the building.
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setpoint values for achieving optimal reward (electricity bill savings).

The agent, here the heating setpoint controller, is trying to minimize the electricity bill
by changing the indoor temperature setpoint hour by hour. It has five different options for
valid actions: set points between 19 ◦C and 23 ◦C.

In this study, the reward function is constructed based on the two objectives: minimiz-
ing the cost from electricity usage and retaining thermal comfort. The first part is formed as
the negation of the electricity cost calculated from the hourly electricity price and simulated
heating energy consumption. Thermal comfort is a more complex measure to value. Here,
the occupants are assumed to prefer indoor temperatures higher than 21 ◦C. Therefore, the
situations where the measured indoor temperature gets lower than 21 ◦C are punished with
a correction factor relative to the difference from the desired temperature. The values near
21 ◦C should also be preferred to the lower ones, since then the setpoint is still adjustable in
case an even higher electricity price occurs. However, it is assumed that the penalty is only
needed when the indoor temperature is less than 21 ◦C since the elevated temperatures
are already less desirable through increasing heat consumption. Three different reward
functions are tested: reward based only on the electricity cost (Equation (2)), reward with
linear penalty from temperature difference (Equation (3)), and reward with a second-order
penalty (Equation (4)):

Rt+1 = −(p ∗ E), (2)

Rt+1 =

{
−(p ∗ E) ∗ (1 + β ∗ (21− Tindoor)), i f Tindoor < 21

−(p ∗ E), otherwise
, (3)

Rt+1 =

{
−(p ∗ E) ∗

(
1 + β ∗ (21− Tindoor)

2
)

, i f Tindoor < 21
−(p ∗ E), otherwise

, (4)

where Tindoor is the measured indoor temperature, E is the heating energy consumption, β
is a coefficient to weight the penalty, and p is the electricity price.

The value of the Q function and target Q are approximated with two identical neural
networks. A feed forward net with four hidden layers and 256 neurons is used. The
observations are normalized with a minmax scaler. Algorithms are implemented with Java
utilizing the deeplearning4j [40] library for calculation of the neural networks.
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2.3. Environment

The environment consists of three parts: building simulator, weather measurements,
and electricity price information. The building is simulated with a FastHC building simula-
tor. The FastHC building simulator model is based on an equivalent resistance-capacitance
(R-C) model, including five resistances, five nodes, and one capacitance. The used R-C
model is documented in more detail in EN ISO 13790:2008 standard [41]. The model
also includes methods for calculating energy losses due to ventilation and infiltration in
buildings (EN 15241:2007 [42]) and methods for calculating solar radiation. In addition, the
FastHC Solver simulator environment can utilize a default value database, which includes
typical values for several types of buildings built in different decades. The simulations are
run with a one-hour timestep.

For simulations and algorithm input, the weather measurements of Helsinki provided
by the Finnish Meteorological Institute’s open data service [43] are utilized. The dataset
contains values for outside temperature, as well as global and diffuse radiation, with one
hour sampling time.

Many energy companies in Finland offer contracts that are based on the spot prices of
electricity in Nord Pool. The price in Nord Pool is fluctuating hour by hour and day-ahead
prices are published each day in the afternoon [6]. In the simulations, the spot price history
from ENTSOE platform [44] is used. In real cases, the price per used kWh would be higher
for the end user than just the spot price, due to taxes and energy company margins. Before
2021, the electricity price was cheap and stable, but during the last year, it became radically
more expensive and fluctuating than before (Table 1).

Table 1. Mean, minimum, maximum, and standard deviation of electricity price by year (€/MWh).

2019 2020 2021 2022 (Until 11 September)

mean 44.0 28.0 72.3 139.7
min 0.1 −1.7 −1.4 −1.0
max 200.0 254.4 1000.1 861.1
std 15.3 21.1 66.0 126.1

2.4. Buildings and Performance Tests

The buildings considered here are single-family buildings with direct electricity heat-
ing and no cooling devices. All simulated buildings have a floor area of 120 m2. However,
the building parameters, such as U-values and share of windows, are configured to repre-
sent typical Finnish building for certain time range. Following buildings are calculated:

• typical building of years 2011–2017;
• typical building of years 2001–2010;
• typical building of years 1991–2000;
• typical building of years 1981–1990;
• typical building of years 1971–1980;
• and typical building of years 1961–1970.

For each building, two reference cases with static indoor temperature setpoints are
simulated, 21 ◦C as baseline and 19 ◦C as the easiest way to obtain cost savings, but at
the expense of reduced thermal comfort. These are compared to the heating cost and
indoor temperature resulting from the use of RL. The time range from 1 January 2019 to
9 September 2022 is considered.

A building model representing buildings constructed between 2001 and 2010 is used
for configuring the method and searching proper parameters. The rest of the buildings are
tested with the same parameter set.
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3. Results
3.1. Comparison of Different Reward Functions

Selecting the right reward function is crucial for indoor comfort. If the penalty from
too low indoor temperature is linear (Equation (3)) instead of second-order (Equation (4)),
then the indoor temperature is shifting closer to 19 ◦C (Figure 3). Respectively, in case
the penalty is totally ignored (Equation (2)), the indoor temperature nearly reaches 19 ◦C
(Figure 4). The thermal conditions are clearly most desired in case of second-order penalty
(Figure 5).
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The penalty function has a little less effect on the electricity costs (Table 2). In cases
where the temperature is all the time near the lower limit, there is less reserve to be used,
when the algorithm really would need to reduce electricity usage. With the second-order
penalty, the indoor temperature is kept higher than with the linear penalty, and thus also
the energy usage and further energy cost is higher, especially in cases with less variable
energy price. However, both reward functions reach the same level in savings during
the year 2022. For the rest of the calculations, the second-order penalty (Equation (4))
is selected.

Table 2. Cost savings of building constructed between 2001 and 2010 for different reward functions.

2019 2020 2021 2022 (Until 11 September)

no penalty 12% 17% 13% 21%
linear penalty 11% 23% 17% 27%

second-order penalty −2% 8% 13% 27%

3.2. Indoor Temperature for Different Buildings

The average indoor temperature and standard deviation from the simulations utilizing
varying set points calculated with RL is presented in Table 3. Just the heating season (from
October to end of March) is considered in calculation of these values to prevent distortion
from summertime temperature rise. The average temperature for all RL cases is near 21 ◦C,
which is considered as the pursued temperature.

Table 3. Average indoor temperature and standard deviation of October–March in simulations
utilizing RL.

Building Construction Year avg (Tindoor) std (Tindoor)

1961–1970 21.1 ◦C 0.79
1971–1980 21.0 ◦C 0.78
1981–1990 20.8 ◦C 0.91
1991–2000 20.8 ◦C 0.84
2001–2010 20.8 ◦C 0.89
2011–2017 20.6 ◦C 0.83

Example of the share of different temperatures is presented in the indoor temperature
histogram (Figure 5). The temperature is balancing around the desired value instead of
drifting to lower values. There is no cooling in the simulated buildings, which results in
the high summertime temperatures that can be seen in the histograms as well.

3.3. Cost Savings by Simulation Year

The electricity cost is calculated from the simulated heating electricity consumption
and electricity price. The average cost savings of the buildings for each simulation year
are presented in Table 4, and an example of the cumulative cost for each year is shown
in Figure 6. From the results, it can be seen that in the years 2019 and 2020, the stable
19 ◦C setpoint is outperformed the current RL agent. During this time range, the electricity
price was low and stable; also, at the beginning of 2019, the algorithm started learning
from scratch.

Table 4. Average cost savings from the baseline (21 ◦C) per simulation year.

2019 2020 2021 2022 (Until 11 September)

19 set point 15% 18% 12% 19%
RL −1% 8% 10% 23%
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By the end of year 2021 the RL had nearly reached the same level, and during year
2022, it even obtained higher savings than the low set point option, even though the year
2022 is still ongoing. During the year 2022 and at the end of 2021 the electricity price
was fluctuating significantly and reached many times higher peak values than before, so
delaying heating with one hour can have a major impact to the total electricity bill.

3.4. Cost Savings of Buildings Based on Construction Year

Comparing the savings based on construction year (Table 5), it seems that the per-
centual savings are better the less the building is consuming electricity. Compared to
the stable 19 ◦C, savings with the oldest buildings are lesser. However, also with these
buildings during the last simulation year, the difference decreased significantly.

Table 5. Average annual cost (€) of space heating electricity with stable 21 ◦C set point and savings
(%) with different temperature setpoints.

Building Construction Year sp 21 (€) sp 19 (%) RL (%)

1961–1970 1619 15% 6%
1971–1980 1523 15% 7%
1981–1990 905 16% 15%
1991–2000 920 15% 12%
2001–2010 874 16% 14%
2011–2017 451 16% 17%

3.5. Energy Savings by Simulation Year

The delivered heating electricity is affecting the reward only through the payments,
and thus it is not significantly reduced with the current algorithm. Average energy savings
of each simulation year are presented in Table 6.

Table 6. Average energy savings from the baseline (21 ◦C) of the buildings per simulation year.

2019 2020 2021 2022 (Until 11 September)

19 set point 16% 19% 15% 19%
RL −1% 1% 2% 4%

4. Conclusions

This paper proposes a reinforcement learning-based electricity cost saving method
that increases the heating of an electrically heated building when electricity is cheap and
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reduces the electricity use when it is expensive, in such a way that the resident does not
notice it as thermally uncomfortable.

The results indicate that it is possible to lower heating costs significantly with RL.
Depending on the fluctuations of the electricity price, the savings can reach the same level
as when reducing the stable indoor temperature setpoint by two degrees, or be even higher.
In this study, the algorithm was less successful during the first two years, and performing a
lot better during the years 2021 and 2022. First, in the beginning of the year 2019, the agent
started training the deep neural networks from scratch, and as experience was gained, the
operation began improving. Second, the electricity price level and variability from the end
of 2021 onwards is radically different from the first simulation years. This results in higher
savings from optimizing the heating times.

Here, it is assumed that the occupants prefer indoor temperatures closer to 21 ◦C,
but in real cases, the end users might also suffer from temperature changes. Transitions
in the temperature should be rather small and slow to keep user experience positive.
Presumably, the lags in the heating system and heat capacity of the building and furnishing
are supporting here, but this would require further analysis, e.g., by integrating thermal
sensation calculations with the human thermal model [45] to the simulations.

The agent is not aimed to minimize the total delivered electricity, and consequently,
the consumed electricity is just slightly less than with the 21 ◦C reference case, and with
the stable 19 ◦C indoor temperature higher, energy saving could be reached. However, the
electricity price is also dependent on the production type. Usually, the price is lower when
the share of renewable energy, e.g., from wind power, is high. Thus, it would be interesting
to include some estimate of the emissions based on the production types.

Selecting the right reward function has a high impact on the results. By changing it,
the algorithm can focus on different targets, e.g., energy savings or minimizing emissions.
However, it must balance between the savings and thermal indoor comfort, not only to
keep residents contented, but also to be able to utilize the heat capacity of the building and
retain the controllability of indoor temperature.

For the future work, approaches for fine-tuning the energy cost saving agent for more
complex building energy systems should be investigated, e.g., by taking also hot water
boilers, heat pumps, local energy production, such as PV panels, and energy storages
into account.

In addition, the presented method is tested with building simulation models, which
represent typical Finnish one-family house constructed between 1961 and 1970, 1971 and
1980, 1981 and 1990, 1991 and 2000, 2001 and 2010, and 2011 and 2017. Based on these
tests, the energy cost saving agent can be scaled for different Finnish one-family houses.
However, the tested method does have higher performance with newer buildings. The
oldest buildings have typically less insulation and a lack of heat recovery systems. This
means that they have faster reaction to heating power reductions, which results in a less
dynamical margin for the indoor temperature control. However, it is important to note
that the RL parameters are calibrated with 2001–2010 building, and it is not tested how
the much older buildings would behave with variant configuration. Furthermore, for the
future work, testing with different types of buildings in various climatic conditions should
be performed.

From a practical deployment point of view, the system has several challenges in the
future. The first challenge is related to the initialization of the agent. More specifically, in
real cases, the controller cannot behave randomly for a long time, so it should be studied if
the algorithm can adapt to a new building fast enough, or should the agent be pretrained
with a simulator beforehand. Furthermore, after major renovations, the system should
be able to readjust to the new consumption and be able to forget the old behavior in
descent time.

The second challenge is related to the fact that many buildings do not have an existing
building automation and controller system (BACS) or IoT connected room temperature
controller or smart thermostats and related secure REST API for daily communication with
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a cloud-based electricity cost saving agent. This means the integration of the presented
approach to real use would require some physical installations to be performed.

Overall, scaling this kind of a solution could increase the flexibility in the electricity
market, which is important also from the electricity network balance and related electricity
price point of view.
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