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ABSTRACT
The goal of this research study is to examine, through the finite element
method, the efficiency of using two-dimensional (2D) functionally graded mate-
rials (FGMs) in lowering the elastic/thermoelastic stresses acting on cylinders. In
2D-FGMs, the properties are assumed to vary in the radial and tangential direc-
tions simultaneously, which is rarely investigated in the literature. The cylinder
is subjected to asymmetric inner normal traction with/without asymmetric ther-
mal loading. For the considered case studies, results revealed that 2D-FGMs is
beneficial compared to the conventional grading. In case of considering mech-
anical load only, the tangential stress declines by almost 39%. Similarly,
accounting for thermomechanical load resulted in radical falls for the tangential
and axial stresses by around 63% and 61%, respectively. Accordingly, the von
Mises stress declines dramatically with different values allowing for safe load
escalation, and enhancing the cylinder’s durability. Finally, no certain values for
the used tangential function’s parameters are preferred to have maximum
reduction of stresses under all working circumstances, which necessitates per-
forming optimization.
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1. Introduction

Functionally graded materials (FGMs) are extensively used in many engineering applications due to
their sophisticated properties. Many authors investigated the behaviors of different functionally
graded (FG) structures, such as plates, cylinders, and discs. For plates, Cong et al. [1], for example,
showed that the porosity had significant impacts on the thermomechanical buckling and post-buck-
ling of FG cylinder (FGCs). Kouider et al. [2] examined the effects of the volume fraction, geomet-
rical parameters, and heterogeneity index on the bending and free vibration responses of FG
sandwich plates. Others were concerned with the fracture of such structures (e.g., see Refs. [3, 4]).

Regarding FGCs, many parameters were investigated under different load types (mechanical, thermal,
electrical, magnetic, etc.) and conditions (symmetric, asymmetric), see for instance Refs. [5–7]. For
example, Tokovyy and Ma [8] examined the performance of heterogeneous 1D-FGCs (1D: one-dimen-
sional) subjected to partial thermal/mechanical loading with material properties radially graded. In
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addition, Batra and Nie [9] used the polar form of the Fourier expansion and the method of Frobenius
series to solve the differential equations of eccentric hollow FGCs. An exponential grading model was used
by Loghman et al. [10], as well, while scrutinizing the performance of FGCs subjected to nonsymmetrical
magneto-thermomechanical loads. Furthermore, the decelerating behaviors of multilayer 1D-FGCs under
thermoelastic loads were explored while considering the materials’ properties temperature dependency
[11]. Analogous analyses could be found studying the behaviors of 1D-FG discs [12–15].

On a related front, researchers and industry seek lowering the stresses that encounter any mech-
anical structure to raise its lifetime, durability, safety level, and loading capacity. This also reduces
the failure probability. Such goals could be achieved through different means that include but not
limited to: optimization of some parameters 16–18, modifying the microstructure to yield a new
material with desired properties [19] that includes higher strength [20], or developing two-dimen-
sional (2D: two-dimensional) FGMs [21, 22]. This article is concerned with the later method, where
a property becomes dependent on two directions. This method is rarely examined in contrast to the
large number of articles discussing 1D-FG structures. For 2D-FGMs, to name just a few, Nemat-Alla
[23] showed that they yielded improved performance than 1D-FGMs. Researches on 2D-FGMs are
easily found in the Cartesian coordinates, see for instance Refs. [21, 24, 25]. However, in polar coor-
dinates, limited numbers considered it as a combination between both the radial and axial directions
[22, 26–30]. On the contrary, extremely rare articles were devoted to considering the variation with
respect to the radial and tangential directions, see for example Ref. [31, 32].

In view of the aforementioned comprehensive literature review, the goal of this article is to examine
the effectiveness of using 2D-FGMs in alleviating the stresses encountering FGCs, compared to the
traditional 1D-FGCs. The properties would vary in both the radial and tangential directions simultan-
eously. In addition, a finite element (FE) scheme is built to solve the differential equations. Two exam-
ples are presented: one with mechanical load only, and the other includes a thermomechanical load.
For each example, the idea of applying 2D-FGMs is presented, and its associated results are discussed.

2. Problem formulation

Using polar coordinates (r, h, z), a stationary cylinder with inner and outer radii ri and ro,
respectively, is considered. The mechanical equilibrium equations in the radial and tangential
directions are written as [33]:

rrrð Þ, r þ srh, h � rh ¼ 0 (1)

rsrhð Þ, r þ rh, h þ srh ¼ 0 (2)

where a comma denotes partial differentiation. rr, rh, rz, and srh (er , eh, ez, and erh) are the
radial, circumferential, axial, and shear stresses (strains), respectively, which are evaluated via the
constitutive equations (Hooke’s law) as follows [34]:

r ¼ C e� aT½ � (3)

with

r ¼
rr
rh
rz
srh

8>><
>>:

9>>=
>>;, e ¼

er ¼ u, r
eh ¼ uþ #, hð Þ=r

ez ¼ w, z

2erh ¼ #, r þ u, h � #ð Þ=r

8>><
>>:

9>>=
>>; (4)

C ¼
C11 C12 C12 0

C11 C12 0
C11 0

sym C66

2
664

3
775, a ¼ a

1
1
1
0

8>><
>>:

9>>=
>>; (5)
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where a is the thermal expansion coefficient, T is the temperature field (considering 0�C as a ref-
erence temperature), u, #, and w are the radial, tangential, and axial displacements, respectively.
For consistency, it should be noted that the natural shearing strain (erh) is the one used here, and
it is equal to half of the engineering shear strain. Besides, for an isotropic material, Eq. (6) lists
the materials’ stiffness constants (C11, C12 and C66 ¼ C11 � C12ð Þ=2) that are dependent on E
(elastic constant) and v (Poisson’s ratio).

C11 ¼ E
1� v2

, C12 ¼ Ev
1� v2

! Plane stress

C11 ¼ E 1� vð Þ
1þ vð Þ 1� 2vð Þ , C12 ¼ Ev

1þ vð Þ 1� 2vð Þ ! Plane strain

8>>><
>>>:

(6)

In terms of T, it is dependent on the thermal conductivity (k), and is obtained through solv-
ing the steady-state heat conduction equation in the 2D polar coordinates [31]:

1
r
rkT, rð Þ, r þ

1
r2

kT, hð Þ, h ¼ 0 (7)

3. Finite element formulation

The finite element method (FEM) is widely used in modeling the behaviors of complicated problems
in structural mechanics since it is known for its powerfulness and robustness. So, a FE scheme is
developed through Matlab software to obtain u, #, and T: The domain is discretized using the
eight-node (nn ¼ 8) isoparametric 2D elements with three degrees of freedom (u, #, and T) at each
node. In FEM, u, #, and T are approximately related to the corresponding nodal values through
introducing number of shape functions N [35]:

u �
Xnn
i¼1

Ne
i ui, # �

Xnn
i¼1

Ne
i #i, T �

Xnn
i¼1

Ne
i Ti (8)

where Ne
i is the element e shape function at the ith node.

Afterward, the standard Galerkin’s procedures are followed to obtain the following symbolic
FE equation [35]: Kd ¼ R, where K represents the global stiffness matrix, d ¼ fU T g, U
includes both of u and #, and R is the external force vector. In more detail, the FE discretized
equation for a system composed of total number of elements ne is:Xne

e¼1

Ke
UU Ke

UT
Ke

TU Ke
TT

� �
fU

e

Te g ¼ fR
e
U

Re
T
g

� �
(9)

with Ke and Re are the eth element stiffness matrix and force vector, respectively. They are deter-
mined as follows:

Ke
UU ¼

ð
Xe

r BU½ � C½ � BU½ �dXe Ke
UT ¼ �

ð
Xe

r BU½ � k½ � N½ �dXe

Ke
TU ¼ 0 Ke

TT ¼
ð
Xe

r BT½ � k½ � BT½ �dXe

Re
U ¼

ð
C

r N½ �rndC Re
T ¼ 0

(10)

where Xe is the element’s domain such that dXe ¼ drdh, C is part of the boundary with specified
tractions rn, k ¼ Ca, and k is the thermal conductivity matrix. Also, BU is the strain–displace-
ment matrix, and BT is the gradient matrix [36]. These integrations are executed using the gauss
quadrature method with 3� 3 integration points within the element.
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At this stage, the vector d can easily obtained (d ¼ K�1R). Then, strains and stresses are calcu-
lated directly through the standard steps of FEM at the gauss points within the element after
applying the proper boundary conditions, and then extrapolated to the nodes, where they are
averaged based on a node’s location [36].

4. Results and discussion

In this study, the results published by Li and Liu [37] are regenerated to benchmark the accuracy of
the developed FE Matlab code. In Ref. [37], a stationary cylinder with ro ¼ 3ri under plane strain
conditions (ez ¼ 0) was investigated. The power-law model was selected to describe the gradation of
some properties [37]:

b rð Þ ¼ bi þ bo � bið Þ r � ri
ro � ri

� �g

(11)

where b is a generic material property, and g is the heterogeneity index that the impacts of its
variation were extensively examined in prior studies (e.g., see Refs. [38–41]). Also, the two sub-
scripts i and o refer to the property at ri and ro, respectively. Li and Liu [37] only proposed that
E was varying according to Eq. (11), with Ei ¼ 200 GPa and Eo ¼ Ei=3 (Figure 1 shows its distri-
bution), while g ¼ 1, and v was kept constant at 0:28:

For loading, the inner circumference was subjected to a sinusoidal normal traction: rr ri, hð Þ ¼
p0cos nph

� �
, where p0 ¼ 100 MPa is the pressure amplitude, and np ¼ 2 is the normal traction coef-

ficient. Whereas, the cylinder’s outer edge was kept free of stress.
Regarding FEM, different number of elements along the radial and tangential directions was tested.

After checking the mesh dependency, a great agreement is found to occur at ne ¼ 20, 000 (100 and 200 ele-
ments in r and h directions, respectively), as depicted in Figure 2 where dimensionless (normalized) stresses
are plotted. It should be noted that, henceforth, any stress component is divided by p0 to be normalized.

Then, using the same example, the idea of applying the principle of 2D-FGMs is examined to
mitigate the stresses through the cylinder. In other words, b would be a function in both r and h:
This idea has been rarely investigated in the literature as shown previously in Section 2.
Mathematically, this is to be accomplished by implementing a known function f ðhÞ into Eq. (11).
Such function can take any formula, for instance, exponential [31], trigonometric/polynomial [32],
etc. Here, the focus would be directed toward the trigonometric function: cosine, such that:

f hð Þ ¼ cos nhhþ sð Þ (12)

Figure 1. Contour plot for the distribution of E using Eq. (11).
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where the angular (frequency) coefficient nh ¼ 1 or 2 [32], and s is the shifting (phase) angle that
is to be investigated, and its selected values 2 ½�180, 180�: Therefore, Eq. (11) becomes as fol-
lows after being multiplied by f hð Þ [Eq. (12)]:

�b r, hð Þ ¼ f hð Þ � bi þ bo � bið Þ r � ri
ro � ri

� �g
 !

(13)

where �b is the modified property in the r and h directions. However, the nature of the cosine
function would yield negative values of any property and escalates the positive value; hence, com-
paring results would not be reasonable. Thus, the following modification is proposed to keep �b
within the limits (bi and bo):

b r, hð Þ ¼ bi þ
�b r, hð Þ �min �b

� �
max �b

� �
�min �b

� �
 !

bo � bið Þ (14)

To make sure that there is no confusion occurs for the reader, Figure 3 presents, for instance,
the variation of E at nh ¼ 2 and 1 with different values of s, where the harmonic pattern of the
cosine function appears clearly.

At the beginning, the impacts of nh ¼ 2, while s taking either the values of 0�, �30�, �90�,
and 180�, are studied. Using Eq. (11) produces the contours depicted in Figure 4 with rrmax ¼
�rrmin ¼ 1:1, rh max ¼ �rh min ¼ 2:75 and srhmax ¼ �srhmin ¼ 0:67: It should be mentioned
that, henceforth, subscripts max and min are used to refer to a quantity’s upper and lower values,
respectively.

Enhanced results are obtained upon applying Eq. (14). The stresses’ contours for the selected
values of s are presented in Figures 5–8. Evidently, the three stress components experienced dif-
ferent rates of reduction. However, rh is the component that witnessed the significant drop com-
pared to rr and srh:

For rrmax , nearly 7:7% reduction is applicable at s ¼ 0 (Figure 5a). This percentage declines if
another value of s is chosen. However, at such instant (s 6¼ 0), rrmin showed an increase in the
decline percentage hitting 7:6% at s ¼ 180� as depicted in Figure 8a. Regarding srh, its upper and
lower values almost remained static around a value of 60:55 which resembles a moderate decline.
For example, in Figure 6c, both of them declined by nearly 17:3% at s ¼ 0: This percentage
approached 20% at s ¼ �90� for srhmin as shown in Figure 7c.

Then, when it comes to rh, it can be stated that 2D-FGMs are absolutely advantageous.
Numbers reveal that at s ¼ 0� (Figure 5b), rhmax went down steeply by � 39% compared to the

Figure 2. Dimensionless stresses distribution from the current study and Ref. [37]. �rr and �rh are plotted at h ¼ 0� , and �s rh is
plotted at h ¼ þ45�:
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value of 1D-FGMs. Conversely, according to Figure 8b it declined moderately by � 10% at s ¼ 180�:
Similarly, at s ¼ �30�, it is depicted in Figure 6b that rhmax and rhmin declined significantly by
approximately 38% and 12:5%, respectively.

Furthermore, Figure 9 presents the reduction values occurring in the extreme values of each
stress component at nh ¼ 2 and nh ¼ 1 at different values of s: Generally, it is found that there
are no differences obtained when the sign of s changes as f hð Þ has a similar harmonic pattern to
the only present load. Also, in this case of loading, the use of nh ¼ 2 (Figure 9a) produced larger
reductions than nh ¼ 1 (Figure 9b).

Figure 3. Contour plots for E using Eq. (14).

Figure 4. Dimensionless stress contours based on FEM solution for 1D-FGC. (a) Dimensionless radial stress, (b) dimensionless
tangential stress, and (c) dimensionless shear stress.
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It can be stated that all the stress values witnessed different percentages of reduction. Since rh
has higher value compared to rr and srh, the focus would be directed toward it. If a designer
chooses s ¼ 0 (Figure 9a), a reduction of nearly 39% and 10% is applicable for rhmax and rhmin,
respectively. Since, rhminj j > jrhmaxj; therefore, rhmin is the cylinder’s load limit decisive param-
eter if considered individually. However, the small reduction in rhmax is critical in most compo-
sites since metals have limited tensile strength compared to the huge compressive strength of
ceramics that necessitates higher reduction in rhmax: In contrast, Figure 9a depicts that a com-
promise (� 26% reduction) is applicable between the two percentages at s ¼ 690�, which is

Figure 5. Dimensionless stress contours for f hð Þ ¼ cos ð2hþ 0�Þ: (a) Dimensionless radial stress, (b) dimensionless tangential
stress, and (c) dimensionless shear stress.

Figure 6. Dimensionless stress contours for f hð Þ ¼ cos ð2h� 30�Þ: (a) Dimensionless radial stress, (b) dimensionless tangential
stress, and (c) dimensionless shear stress.

Figure 7. Dimensionless stress contours for f hð Þ ¼ cos ð2h� 90�Þ: (a) Dimensionless radial stress, (b) dimensionless tangential
stress, and (c) dimensionless shear stress.
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similar to predictions concluded from Figure 9b at s ¼ 645� and 6135� where a decline by
almost 9% is attainable. Such points can be considered as the optimum points.

Based on the aforementioned results, it can be stated that using 2D-FGMs would significantly
mitigate stresses allowing for load escalation. To make sure that this advantage always happens,
the second example is presented, where thermomechanical loading is present. The following
material properties are considered in addition to the previously mentioned ones with g ¼ 1 : ki ¼
209W=mK, ko ¼ 2W=mK, ai ¼ 23� 10�6=�C, and ao ¼ 10�5=�C [42]. In addition, the following
boundary conditions are used:

rr ri, hð Þ ¼ p0cos nph
� �

Pa, srh ri, hð Þ ¼ 0
T ri, hð Þ ¼ T0 þ 50sin nThð Þ�C

ur ro, hð Þ ¼ uh ro, hð Þ ¼ 0
T ro, hð Þ ¼ 0�C

8>><
>>: (15)

where T0 is the reference temperature, and nT is the temperature’s coefficient.
Figure 10 presents the resulting temperature profile and stresses, for the 1D-FGC at np ¼ nT ¼ 2,

T0 ¼ 100�C, and p0 ¼ 100 MPa: At this stage, another comparing parameter is introduced: the von
Mises stress (rVM) that is calculated according to Eq. (16) [43]. In the dimensionless form, it
becomes: rVM ¼ rVM=p0:

Figure 9. Percentages of stresses reduction at different values of s for f hð Þ ¼ cosðnhhþ sÞ : (a) nh ¼ 2, and (b) nh ¼ 1:

Figure 8. Dimensionless stress contours for f hð Þ ¼ cos ð2hþ 180�Þ: (a) Dimensionless radial stress, (b) dimensionless tangential
stress, and (c) dimensionless shear stress.

66 A. M. ELDEEB ET AL.



Figure 10. Resulting contours of the thermoelastic problem of 1D-FGC (f hð Þ ¼ 1). (a) Temperature, (b) dimensionless radial
stress, (c) dimensionless tangential stress, (d) dimensionless axial stress, (e) dimensionless shear stress, and (f) dimensionless von
Mises stress.

Figure 11. Resulting contours of the thermoelastic problem of 2D-FGC with f hð Þ ¼ cos 2hþ 90�ð Þ: (a) Temperature, (b) dimen-
sionless radial stress, (c) dimensionless tangential stress, (d) dimensionless axial stress, (e) dimensionless shear stress, and (f)
dimensionless von Mises stress.
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Figure 12. Resulting contours of the thermoelastic problem of 2D-FGC with f hð Þ ¼ cos 2h� 30�ð Þ: (a) Temperature, (b) dimen-
sionless radial stress, (c) dimensionless tangential stress, (d) dimensionless axial stress, (e) dimensionless shear stress, and (f)
dimensionless von Mises stress.

Figure 13. Resulting contours of the thermoelastic problem of 2D-FGC with f hð Þ ¼ cos hþ 180�ð Þ: (a) Temperature, (b) dimen-
sionless radial stress, (c) dimensionless tangential stress, (d) dimensionless axial stress, (e) dimensionless shear stress, and (f)
dimensionless von Mises stress.
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rVM ¼ 1ffiffiffi
2

p rr � rhð Þ2 þ rh � rzð Þ2 þ rz � rrð Þ2 þ 6s2rh
	 
1=2

(16)

Figure 10 shows that rr varied between �3:06 and 1, �0:81 � rh � 10:5, �9:8 � rz � �0:8,
and rVMmax stood at approximately 9:98: Also, the upper and lower limits of srh leveled off at

Figure 14. Resulting contours of the thermoelastic problem of 2D-FGC with f hð Þ ¼ cos h� 120�ð Þ: (a) Temperature, (b) dimen-
sionless radial stress, (c) dimensionless tangential stress, (d) dimensionless axial stress, (e) dimensionless shear stress, and (f)
dimensionless von Mises stress.

Figure 15. Variation’s percentage for each stress component for the thermoelastic problem of 2D-FGC with f hð Þ ¼
cos nhhþ sð Þ: (a) nh ¼ 2, and (b) nh ¼ 1:
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60:25: Such results resemble a confirmation of the previous studies that rh has noteworthy influ-
ences on the cylinder’s performance [14, 44].

For 2D-FGMs, only nh ¼ 2 (s ¼ þ90� and �30�) and nh ¼ 1 (s ¼ 180� and �120�) are pre-
sented. The resulting temperature profiles are shown in Figures 11a–14a. It is seen that there are
significant differences in their distributions as they are interconnected with k: Nevertheless, no
impacts on the maximum and minimum T are seen since they are controlled by Eq. (15), and no
heat generation is present in Eq. (7). But, it can be grasped that T in almost all regions tends to
decrease except a small zone around the inner circumference. Consequently, profound effects are
expected to encounter the stresses’ readings that capitalize on T:

These induced stresses are plotted in Figures 11–14. It can be figured out that the usage of
2D-FGMs brought about drastic reductions in rrmin , rh, and rz: Until this juncture, 2D-FGMs
are far better than 1D-FGMs. Two tiny drawbacks are noticed. First, the maximum tensile rr

tends to slightly grow. Second, at certain values of s, srh shows small rise. Nevertheless, the
declines in rh and rz substantially outweigh those increases, which have negligible impacts
on rVM:

In numbers, the values of rrmax witnessed slight growths. Conversely, rrmin , which is critical than
rrmax , dropped significantly. For instance, in Figure 11b, it reached �2:3 at nh ¼ 2 and s ¼ 90� that
resembles about 75:2% of the value of the 1D-FGC. Likewise, rhmax and rhmin experienced substan-
tial plunges. For example, at nh ¼ 2 and s ¼ �30� (Figure 12c), they decreased by around 59% and
51%, respectively. Despite that, rhmin is still the serious one since it has larger absolute value com-
pared to rhmax : Generally, for the selected values of nh and s, the decline percentage for rhmin is con-
fined between the previous percentage (51%) and about half of it (� 25%) (Figure 13c: nh ¼ 1 and
s ¼ 180�). Similar behaviors are noticed for rz: In Figure 14d, for instance, the critical value of rz

went down by � 27% if compared to the value at f hð Þ ¼ 1 shown in Figure 10d. This percentage
rose reaching nearly 38% at nh ¼ 2 and s ¼ �30� (Figure 12d).

Figure 16. Maximum value of the dimensionless von Mises stress (�rVMmax ) reduction’s percentage.

Table 1. The pertinent numerical values of some parameters used while investigating different values of nh of 2D-FGC under
thermomechanical loading conditions.

Case (1) Case (2) Case (3) Case (4)

np 2 1 2 2
nT 2 2 1 1
p0 (MPa) 100 100 100 2
T0 (�C) 100 100 100 1000
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Such declines are considerably beneficial for raising the working loads and avoiding the occur-
rence of plasticity (failure) as appears in the reduction of rVM (Figures 11f–14f). It is evident that
there are variations in the values of rVMmax based on s and nh: Using s ¼ 90� with nh ¼ 2, yielded
a decline in rVMmax by � 22% (Figure 11f). It grew to almost 54% if s is switched to �30�

(Figure 12f). Moreover, nearly two-thirds of that two values are applicable when nh ¼ 1 prevails
with s ¼ 180� (Figure 13f) and s ¼ �120� (Figure 14f), respectively.

Furthermore, Figure 15a,b presents the variations’ percentages occurring in each stress compo-
nent at different values of s at nh ¼ 2 and nh ¼ 1, respectively. First, it is seen that the sign of s
yields dissimilar results in contrast to the previous case (mechanical load only). Second, the
change in rrmax is negligible if compared to the change of rrmin : Third, in Figure 15a, except at
nh ¼ 2 (s ¼ �90�, �120�, �150�), the upper and lower values of �srh experienced gigantic rises.
Despite that, these numbers are tricky since they are less than unity. For example, at nh ¼ 1 and
s ¼ �30� (Figure 15b), srhmax increased slightly from � 0:25 to � 0:7: Fourth, considering f ðhÞ
brought about considerable declines in rzmin which is more important than rzmax since rzminj j 	
jrzmax j: Though the latter also witnessed massive drops, it can be neglected as they are fractions
of one.

Finally, since rhmin as well as rzmin have the largest absolute values compared to other stress val-
ues, the change in rVM is considerably influenced by their variation. In Figure 16, it can be deduced
that rVMmax declined with different ranges despite the often misguiding growth of s and parts of rr:
This decline hits almost 27% at nh ¼ 2 and s ¼ 60�: At that instant as shown in Figure 15a, srhmax

grew by approximately 125% and rhmin fell by � 40%: Moreover, the use of s ¼ �60� produced the
largest decrease for rVMmax (� 63%) at nh ¼ 2: Nearly half of that value is the most applicable
reduction percentage if nh ¼ 1 is used. That shows that nh ¼ 2 is more advantageous than nh ¼ 1:

However, until now, the analyses in the study are restricted to nh ¼ 1 or 2: This forms the
foundation of the next part, where different values of nh are examined, i.e., nh ¼ 61, 62, 63,
65, and 610: Four cases are explored at s ¼ �60�: In this part, along with the variation of nh,
the values of np, nT , p0, and T0 are altered and listed in Table 1.

To avoid redundancy of results, only the variation of rVMmax is presented in lieu of all the
stress components. Figure 17 concludes that it is not always ensured to have nh ¼ 2 to attain the
greatest reduction in rVMmax : In case (1), nh ¼ 2 produced the larger reduction in rVMmax (� 63%)
compared to the other values. This matches the patterns of the loads, where np ¼ nh ¼ 2: In the

Figure 17. Variation of �rVMmax with nh using different values of np , nT , p0, and T0:
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second case, also, nh ¼ 2 is preferable despite changing np to 1 and keeping nT ¼ 2: By moving
to the third case, it is seen that nh ¼ 1 is better and yielded 48% drop in rVMmax : From these
three cases, it can come to a mind that having nh ¼ nT would produce improved rVMmax : But,
this is not constantly true, and this is proven in the fourth case, where np ¼ 2nT ¼ 2: The favor-
able nh is found to be at 65: This stark disagreement in such case with the three previous cases
initiates due to the difference in both p0 and T0: Therefore, it can be understood that they with
np and nh have strategic roles in determining the ideal value of nh to be used.

5. Conclusion

In this study, a FE scheme was developed to check the efficiency of using 2D-FGMs in alleviating
the elastic/thermoelastic stresses of FGCs. The power-law model was used to describe materials’
property variation radially, and it was modified to make properties dependent on both the radial
and tangential directions concurrently.

Interpreting results showed the beneficial role of considering 2D-FGMs in reducing most of
the stress components through the cylinder, which allows for raising the load limits safely.
Eminent findings upon applying 2D-FGMs are listed below:


 The tangential stress has the upper hand in determining the behaviors of cylinders. In the
second place comes the axial stress that arises in plane strain conditions.


 In case of mechanical loading: the radial, tangential, and shear stress components experienced
declines in their values.


 In case of thermomechanical loading: the radial and shear stresses experienced variations in
their readings. Conversely, other stresses decreased significantly. However, a decline in the
von Mises stress was achieved with substantial values.


 Temperature in many regions of the cylinder tended to decline when the tangential variation of the
thermal conductivity was considered, and this was the major cause for the variation of stresses.


 The sign of the shifting angle almost had no impact in the case of mechanical loading. In con-
trast, it had a great role when both thermal and mechanical loads were present together.


 The angular coefficient had significant impacts on the stresses’ variation.

Eventually, different percentages of stresses’ reductions are to be obtained if the gradation function
is changed with its parameters (i.e., heterogeneity (grading) index). Therefore, it is recommended to
optimize the angular coefficient and the shifting angle to obtain the global optimum of the stress com-
ponents. This would be compulsory in case of complex loading and mixed boundary conditions.
However, if 2D-FGMs are used without optimizing its associated parameters, inevitable drops of the
stresses would occur.
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