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A B S T R A C T   

Subcutaneous Implantable Cardioverter-Defibrillators (S-ICDs) are used for prevention of sudden cardiac death 
triggered by ventricular arrhythmias. T Wave Over Sensing (TWOS) is an inherent risk with S-ICDs which can 
lead to inappropriate shocks. A major predictor of TWOS is a high T:R ratio (the ratio between the amplitudes of 
the T and R waves). Currently, patients' Electrocardiograms (ECGs) are screened over 10 s to measure the T:R 
ratio to determine the patients' eligibility for S-ICD implantation. Due to temporal variations in the T:R ratio, 10 s 
is not a long enough window to reliably determine the normal values of a patient's T:R ratio. In this paper, we 
develop a convolutional neural network (CNN) based model utilising phase space reconstruction matrices to 
predict T:R ratios from 10-second ECG segments without explicitly locating the R or T waves, thus avoiding the 
issue of TWOS. This tool can be used to automatically screen patients over a much longer period and provide an 
in-depth description of the behavior of the T:R ratio over that period. The tool can also enable much more 
reliable and descriptive screenings to better assess patients' eligibility for S-ICD implantation.   

1. Introduction 

Sudden Cardiac Death (SCD) is one of the leading causes of death in 
the modern world. Most of these deaths can be attributed to Ventricular 
Arrhythmias (VA) [1]. The key to survival in patients affected by VA is 
adequate Cardiopulmonary Resuscitation (CPR) and early defibrillation 
[11]. Medical guidelines recommend the use of Implantable 
Cardioverter-Defibrillators (ICDs) for prevention of SCD triggered by VA 
in high risk populations [17,23]. Conventional transvenous ICDs (TV- 
ICDs) consist of a can and transvenous leads implanted into the right 
ventricle to treat the arrhythmia by delivering a voltage shock. TV-ICDs 
are associated with the risk of complications with potentially fatal 
consequences. 

The Subcutaneous ICD (S-ICD), which comprises an electrically 
active can and a single subcutaneous lead (see Fig. 1a) was designed to 
avoid complications of the TV-ICD by utilising a totally avascular 
approach. The sensing mechanism of the S-ICD has been shown to be 
equally effective to that of the TV-ICD [4] and demonstrated less inci
dence of device-related complications when compared with conven
tional ICDs [15]. However, a consequence of the algorithm used by the 
S-ICD to detect VA is an inherent risk of T Wave Over Sensing (TWOS), 

whereby the T wave, one of the 5 main waveforms of the PQRST com
plex (the electrocardiogram (ECG) of a single heartbeat) which follows a 
QRS complex (comprised of the Q, R and S waves of a PQRST complex) is 
misinterpreted as a second R wave, which can lead to inappropriate 
shocks. Inappropriate shocks are associated with increased morbidity 
and mortality [28]. 

Not all patients are eligible for S-ICD therapy and eligibility is 
identified during a pre-implant screening process that is undertaken in 
potential S-ICD recipients. Surface ECGs are used as a surrogate marker 
of future S-ICD vectors (as shown in Fig. 1a) to non-invasively assess S- 
ICD eligibility. These ECG recordings are assessed. Vectors with lower T: 
R ratios (the ratio between the amplitude of the T wave and that of the R 
wave) are more likely to pass the screening, while patients with an ECG 
morphology that does not meet this screening criteria are deemed at 
high risk of TWOS and are ineligible for an S-ICD. Despite the current 
screening practice, the most common cause of inappropriate shocks in 
patients implated with S-ICDs remains TWOS [15]. The T:R ratio—a 
major predictor of S-ICD eligibility—is not fixed in the same individual 
because of frequently observed temporal variations in the amplitudes of 
the R and T waves which are influenced by multiple factors [2,9,21,22]. 
In patients with S-ICDs, variations in the T:R ratio often go undetected as 
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“silent” episodes of TWOS in spite of carrying a considerable risk of 
leading to the development of clinically relevant oversensing, which 
manifests in inappropriate shocks. 

Under the current screening process, ECG electrodes are placed on 
the chest wall using the anatomical landmarks which correspond to the 
location of the sensing electrodes of the potential future S-ICD implan
tation shown in Fig. 1b. A short three lead ECG recording (several 
PQRST complexes), corresponding to the three vectors utilised by the S- 
ICD, is evaluated using the manual S-ICD screening tool shown in Fig. 2. 
Henceforth, when discussing leads, we refer only to the three leads 
corresponding to the three vectors used by the S-ICD. The patient is 
deemed eligible for S-ICD implantation if, for at least one of the leads 
(representing one of the S-ICD vectors), the patient's QRST complex (the 
PQRST complex excluding the P wave) sits entirely within the boundary 
of the template. These templates correspond roughly to a maximum 
acceptable T:R ratio of 1:3. As mentioned previously, the T:R ratio could 
fluctuate, as the amplitudes of both R waves and T waves may vary 
according to other factors (e.g, electrolyte levels). Due to the short 
duration (several PQRST complexes) of the current screening, it is 
possible that a patient with a typically high T:R ratio could pass this 
screening and likewise a patient with a typically low T:R ratio could fail 
it. 

1.1. Related works 

Machine learning methods have been used for ECG analysis in a 
variety of applications. There has been a wealth of work in the classi
fication of various Cardiovascular Diseases (CVDs) from ECG data 
[8,14,25–27,29–31,33]. Other applications of machine learning in ECG 
analysis include detecting seizures and heart attacks [18,19], predicting 
patients' blood pressure [24], detecting a patients facial expressions [6] 
and analysis of ECG of the brain has been used for creating brain com
puter interfaces (BCI) capable of detecting which body part the subject 
was completing a task with [5,7]. 

A popular technique for preprocessing ECG data is to create its Phase 
Space Reconstruction (PSR) matrix. Typically, features are extracted 
from the PSR matrix of ECG data which can then be used as inputs for a 
classification model. Box counting as well as column and row statistics 
are features often extracted from the PSR matrix of ECG data. These 
methods have been used in the prediction of CVD [26,27,29,30], 
creating BCIs [5,7] and detecting facial expressions [6]. These ap
proaches are all centred around manually selecting features to extract 
from the PSR matrix. Our proposed method diverges from this by using 

the whole PSR matrix as the input to a model which is itself capable of 
extracting features. Convolutional neural networks (CNN) are an 
example of this. During training, convolutional layers learn to extract 
features of the input image which are most impactful in accurately 
determining the model's output. As such, these models can replace the 
need for time consuming feature extraction and can arrive at much more 
descriptive features. CNNs have been used in ECG analysis for classifying 
heart attacks [19,42], CVDs [38], atrial fibrillation [8,25,41] and other 
arrhythmias and rhythm abnormalities [14,31–33,40] as well as for 
predicting blood pressure [24], locating cardiac accessory pathways 
[35], recognising early signs of heart failure with reduced ejection 
fraction [37] and detecting digoxin toxicity [34], electrolyte imbalance 
[36] and anaemia [39]. CNNs are typically used for the classification of 
2D images and, as such, use 2D filters for feature extraction. All of these 
methods use the filtered ECG as the model input, where each lead cor
responds to a single 1D signal. By creating the PSR matrix for each lead, 
a 2D input is created from each lead. 

1.2. Contributions and outline of the paper 

The work in this paper is a proof of concept designed to demonstrate 
how the adoption of AI in developing an automated screening tool for 
performing prolonged ECG screenings can allow clinicians to better 
scrutinise the S-ICD implantation eligibility of patients from a range of 
patient groups. Our proposed method uses each lead of a Holter 
recording to assess if the corresponding vector has a low enough T:R 
ratio to be a viable candidate for S-ICD implementation. Holter monitors 
are frequently used in the risk stratification assessment for ICDs. In such 
cases, no additional data collection is required for our proposed 
screening tool. In cases where Holter monitors are not already being 
used, the test is considered to be inexpensive, non-invasive and routine. 

In order to ensure that our screening tool is capable of accurately 
predicting T:R ratios in patients suffering from heart conditions which 
make them likely candidates for S-ICD implantation, we require ECG 
data from those patient groups for the training and evaluation of our 
models. To this end, we have collected ECG data from a range of patient 
groups which potential S-ICD implantation candidates are likely to 
belong to. Further details of this data set are given in Section 3.1. This 
new data set, collected for the purpose of this project and related anal
ysis, enables us to train models with a high degree of robustness across a 
range of different patient groups. This automated screening allows for a 
drastically extended screening window which, in turn, can enable cli
nicians to better scrutinise patients' eligibility for S-ICD implantation. 

Fig. 1. (a) S-ICD sensing electrodes and vectors between them. An implanted S-ICD with underlying anatomical features showing the location of the can (pulse 
generator), the proximal (Pr) and distal (D) sensing electrodes and the shocking coil (located between the electrodes). (b) Holter recorder surface ECG positions. 
Images (prior to annotation) © Boston Scientific Corporation or its affiliates. Reproduced with permission. 
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This tool also has the potential to give insight into how the behavior of 
patients' T;R ratios vary between patient groups. 

To be precise, in this paper, we propose an accurate, reliable and 
robust method that utilises the concept of prolonged screening for S-ICD 
eligibility to better scrutinise the selection criteria in an attempt to find a 
cohort of patients with low probability of TWOS and inappropriate 
shocks. Central to this prolonged screening is a deep learning based 
method for predicting the T:R ratio—the main determinant of S-ICD 
eligibility—of a 10-second segment of a single lead ECG. Solving this 
regression problem is at the core of this paper. The aim of our proposed 
screening method is to use the model developed in this paper to analyse 
the T:R ratio of each single lead 10-second ECG segment within a three 
lead 24-hour ECG recording to determine if any of the three leads have a 
suitably low risk of TWOS. For a given lead, should a patient have a T:R 
ratio above 1:3 for a continuous period of at least 20 s (the duration of 
TWOS at which the S-ICD would deliver an inappropriate shock), that 
lead would fail the screening. If all three leads fail the screening, the 
patient would be deemed not eligible for an S-ICD. Temporal variations 
in the T:R ratio make the current 10-second screening process unreli
able. Our proposed method allows for a much more robust screening, as 
it would allow for the analysis of variations in the T:R ratio over a 24- 
hour period. Section 3.4 gives an example of how the model for pre
dicting T:R ratio from ECG segments developed in this paper could be 
used within a screening tool to access patients' eligibility for S-ICD 
implantation. 

In contrast with most of the literature, in which, with only a few 
exceptions (see, e.g., [3]), CNNs are used for image classification rather 
than for regression, we propose using 2D PSR images of the filtered ECG 
signals as input to CNNs with 2D filters. In particular, rather than 
extracting features from PSR images which are then used as model in
puts, as typically done in previous works, we use the entire PSR image as 
input to our models. While CNNs have been used to analyse ECGs, this 
has been only done using data in which each lead corresponds to a single 
1D-ECG signal. To the best of our knowledge, this is the first work in ECG 
analysis where a PSR matrix is generated for each lead that serves as 
input to a CNN based deep-learning model. Further separating this work 
form the literature is our focus on predicting T:R ratios. This is a very 
unique goal in ECG analysis, where various other ECG factors are 
identified and examined. The intuitive approach to calculating T:R ra
tios by detecting and measuring the amplitude of the R and T waves 
individually is vulnerable to the same TWOS problem that the algorithm 

used within the S-ICDs suffers from. Our novel methodology for pre
dicting the T:R ratio does not share this vulnerability as it considers 
multiple PQRST complexes simultaneously. 

In Section 2, we outline the preprocessing techniques used to create 
PSR images of the filtered 10-second ECG segments, detail our selection 
of deep learning model architectures and describe the process we use to 
train and evaluate these models. Section 3, illustrates the results of an 
extensive set of experiments, demonstrating the capabilities of our 
models to predict T:R ratios from PSR images as well as providing ex
amples of how such models could be integrated into a clinical tool. In 
Section 4, we conclude the paper and outline directions for future work. 

2. Methodology 

We propose a new screening process where a Holter®—a portable 
ECG recording device—is used to record 24 h of ECG data from three 
leads corresponding to the three vectors utilised by the S-ICD. This data 
is then split into 10-second segments and an artificial neural-network 
based model is used to predict the T:R ratio for each 10-second 
segment. The cardiologist would then be able to review the behavior 
of the patient’s T:R ratio over the 24-hour period and evaluate their 
eligibility. We rely on a number of filtering techniques for removing 
noise from the ECG signals. We then use PSR, a popular technique in 
waveform analysis, to convert the ECG signal into an image of its PSR 
matrix with which we then train a Convolutional Neural Network (CNN) 
to predict the T:R ratio from these images. 

The most straightforward approach to measuring the T:R ratio is to 
locate the R and T waves and measure their amplitudes. However, by 
explicitly detecting and measuring the peaks of the R and T waves, we 
run the risk of TWOS when the characteristics of the T wave becomes 
similar to those of the R wave. To avoid this, our model aims to predict 
the T:R ratio without ever explicitly locating or measuring the R or T 
waves. 

2.1. Preprocessing 

Preprocessing involves filtering the ECG data, performing trans
formations to emulate the methods used within S-ICDs and creating 
images by plotting the PSR of the data. Fig. 2 gives an overview of the 
preprocessing techniques used to prepare our data for the training of the 
regression models. 

Fig. 2. S-ICD screening tool. The recorded QRST morphology in every vector is then compared to the acceptable templates. The template is aligned to the isoelectric 
line of the ECG, and the QRST complexes are viewed through the appropriately sized template. The R wave peak of the ECG must be placed within either hashed box 
(positive or negative) of any template. A vector passes screening if the remainder of the QRST complex sits entirely within the boundary of the template. (this manual 
screening method is now largely replaced by the manufacturer with an automatic screening tool following the same principals). 

A.J. Dunn et al.                                                                                                                                                                                                                                 



Artificial Intelligence In Medicine 119 (2021) 102139

4

2.1.1. Data structure 
For this paper, we consider data in the form of 10-second segments of 

single lead ECG recordings from Holter leads corresponding to the 
vectors used by the S-ICD. These 10-second ECG segments are annotated 
with the positions of the peaks of the T and R waves occurring in this 
period. 

From these annotations, we are able to calculate the dependant 
variable for our regression problem: the average T:R ratio. As mentioned 
previously, the T:R ratio of a single PQRST complex is simply the ratio 
between the amplitudes of the T and R waves. For the purposes of this 
paper, we will consider this ratio in the form of a fraction. The average T: 
R ratio for a 10-second ECG segment {x(1),…, x(10 ⋅ f)}, where f is the 
sampling frequency of the signal, with T-peak annotations at indexes 
{T1, …, Tn} and R-peak annotations at indexes {R1, …, Rn}, is given by 
∑n

i=1x(Ti)
∑n

i=1x(Ri)
.

When the T wave has negative amplitude, this fraction is negative. 
From a clinical perspective, we are only interested in the magnitude of 
the T:R ratio. However, from a signal processing perspective, there is a 
great difference between a PQRST complex with a negative T wave and 
one with a positive T wave. For this reason, we will preserve the sign of 
the T:R ratio, as the loss of information resulting from considering only 
the magnitude of the ratio would lead to a reduction in the accuracy of 
our models. Having built a model capable of predicting T:R ratios from 
10-second ECG segments, we take the magnitude of this model's outputs 
for use in a clinical tool. Our choice to consider the T:R ratio rather than 
the R:T ratio, which is more common in the literature, is well motivated. 
As the T wave amplitude approaches 0, very small changes in the T wave 
amplitude can result in extreme changes in the R:T ratio. This massive 
variation in R:T ratio for very similar ECG signals makes it inappropriate 
for use as a label in our regression problem. Typically, the R wave is of 
greater amplitude than the T wave. Because of this, the T:R ratios of a set 
of ECG segments are well distributed between 0 and 1. For this reason, 
we use the T:R ratio as our dependent variable in our regression prob
lem. If the situation requires it, the R:T ratio can of course be derived 
from our model by simply taking the inverse of the model's output. 

2.1.2. Filtering 
Fig. 3 gives an overview of the filtering methods we will use to 

remove noise from our ECG signal [20]. 
Firstly, baseline drift correction is implemented using one- 

dimensional Discrete Wavelet Transformation (DWT). The ECG signal 
is decomposed at 9 levels, using the Daubechies 8 (db8) wavelet, then 
reconstructed using only level 9 coefficients. This reconstructed signal is 
the low frequency component for the ECG signal which is assumed to be 
the drifting baseline. Subtracting this from the original signal leaves us 
with an ECG signal with a stable baseline of value 0. 

Adaptive bandstop filtering is used to suppress power-line noise with 
a frequency of 50 Hz, while a lowpass filter is used to remove the 
remaining high-frequency noise. Having applied these filters, the loca
tions of the R and T peak markers may no longer be correct. To account 
for this, a small region around the R peak is searched for a maximum and 
this maximum is taken as the new R peak. Similarly, a small region 
around the T peak is searched and the maximum or minimum value in 
this region is taken as the new T peak if the T peak is positive or negative, 
respectively. 

Fig. 4 gives an example of an unfiltered 10-second ECG segment as 
well as the same segment after filtering has been applied. 

2.1.3. Negative QRS peak flipping 
While R waves are strictly positive, a PQRST complex with a small R 

wave could be prone to the T wave being labeled as an R wave, leading 
to double counting. For this reason, when implementing R peak detec
tion, it may be reasonable to look for both positive and negative peaks 
and simply flip the ECG when the peak detected is negative. This 
approach is followed by the algorithm used in S-ICDs. Fig. 5 shows some 
possible QRS complexes where the amplitude of the Q or the S wave is 
greater than that of the R wave. 

In cases where the peak of greatest magnitude of a QRS complex is 
negative and it is labeled as the R peak, we are, in actuality, labeling 
either the Q or the S peak. In this case, the ECG signal of the entire 
PQRST complex is flipped (multiplied by − 1) and the R peak is assigned 
as the previously negative peak. To implement this on our data, we 
search within a region of each of the R peak markers for a negative peak 
of greater magnitude. If one is found, it is assigned as the new R peak and 
the signal is flipped. Fig. 6a gives an example of a filtered 10-second ECG 
segment while Fig. 6b shows the same segment after the negative QRS 
peaks have been detected, the signal has been flipped and the peaks have 
been reassigned. 

2.1.4. Phase space reconstruction 
Phase space reconstruction is a technique for representing non-linear 

characteristics of a time series set of data using delay maps. For a given 
time series x(1),x(2),…, x(n), the time lagged phase space vectors are 
given by 

X(i) = {x(i) , x(i + τ) ,…, x(i + (d − 1)τ ) }
for i ∈ {1,…, n − (d − 1)τ },

where τ is the time delay between points in the series and d is the number 
of dimensions of the phase space which we are mapping this data to. 
While using high dimensional PSR has given good results in the field of 
BCI [5,7], the majority of the work in ECG analysis uses two- 
dimensional PSR, corresponding to d = 2 [16,26,27,30]. For this 
reason, we transform our time series data into a normalized matrix of 
two-dimensional phase space vectors 

B =

⎡

⎢
⎢
⎣

x(1)/q x(1 + τ)/q
x(2)/q x(2 + τ)/q

⋮ ⋮
x(n − τ)/q x(n)/q

⎤

⎥
⎥
⎦,

where q = max {|x(i) ∣  : i=1,…,n}. 
In two dimensions, the phase space plot corresponding to this matrix 

ranges from − 1 to +1 on each axis. This area can now be divided into N2 

small square areas, g(i, j), of size R × R, for i, j=1,…, N, where R is given 
by R = 2/N and N is an integer number. The phase space matrix C (of 
dimension N × N) is constructed with each of its elements c(i, j) equal to 
the number of phase space vectors in B which fall within the square area 
g(i, j). C is then normalized to give P, wherein each element p(i,j) gives 
the probability of a phase point falling within g(i, j). Formally, 

P =
1
M

C, M =
∑N

i=1

∑N

j=1
c(i, j)

A typical approach is to extract features from these PSR by either 
box-counting [30], calculating the spatial filling index [16] or calcu
lating statistics of the distributions of values within each column of C 
[27]. These features are then used as model inputs for classifying various 
different categories of ECG. In this paper, we use tools typically used for 

Fig. 3. Flowchart of the methods in our data preprocessing step.  
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computer vision to allow us to use the N×N pixel images derived from P 
as the input for our model. 

Fig. 7 gives an example of a PSR image with N = 32 as well as a 
darkened version of the same image for readability. As one can see in the 
darkened image, there are some connected bands of higher probability. 
With values of N greater than 32, these bands become disconnected as 
no phase space vectors land within that portion of the grid. 

2.2. MLP and CNN for regression 

In this section, we discuss the architecture of the models used to 
predict T:R ratios from 32 × 32 pixel PSR images. The general structure 
of each model is laid out in Fig. 8. Each model is made up of N feature- 
extraction blocks, followed by a regression block. 

The regression block is used by all models to derive the T:R ratio from 
the extracted features. The outputs from the preceding feature- 
extraction blocks are flattened to a 1D vector and fed into a series of 
fully connected (dense) layers of neurons to arrive at the final regression 
output: the T:R ratio. Table 1 gives an overview of the layers comprising 

this block. We use batch normalisation for regularisation as it has been 
shown to be superior to dropout for use in CNNs [10]. We perform batch 
normalisation before applying the activation function as proposed in the 
original paper on batch normalisation [13]. 

The first and most basic of our feature-extraction blocks is the MLP 
feature-extraction block shown in Table 2. It is comprised of a single 
layer of fully connected neurons followed by a batch normalisation and 
activation layer. The input and output of these blocks are 1D. As such, 
when using these blocks, we flatten the images before the first feature- 
extraction block rather than before the regression block. 

The basic CNN feature-extraction blocks utilise convolutional layers, 
which exploit the 2D structure of the PSR images, as opposed to fully 
connected layers. These layers are followed by the batch normalisation 
and activation layers mentioned previously and finally a maximum 
pooling layer to reduce the size of the output images. As shown in 
Table 3, the output of each layer and the kernel size of the convolutional 
layer depends on the number of feature-extraction blocks. 

The complex CNN feature-extraction block is based on the basic CNN 
feature-extraction block. The convolutional layer is replaced by a pair of 

Fig. 4. (a) Example of a 10-second ECG segment pre-filtering. R and T peaks shown in red and blue, respectively. (b) The same 10-second ECG segment post-filtering. 
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 5. (a) An example of a normal QRS complex. (b) Examples of QRS complexes in which the R wave is not the wave of greatest amplitude.  

Fig. 6. (a) Example of a filtered 10-second ECG segment. R and T peaks shown in red and blue, respectively. (b) The same 10-second ECG segment post-flipping. (For 
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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convolutional layers with smaller kernels. The maximum pooling layer 
is replaced by an additional convolutional layer with stride equal to 2, 
which reduces the size of the output whilst continuing to extract 

features. Finally, addition skip connections, as popularised in ResNet [12] 
and utilised in other works using CNNs for ECG analysis [36,40,41], are 
added over the first two convolutional layers in order to speed up 
training. Table 4 gives an overview of the layers of this block. 

The Deep CNN feature-extraction block is very similar to the complex 
CNN feature-extraction block. Before the convolutional layer with stride 
equal to 2 which is used for pooling, we include an additional pair of 
convolutional layers with smaller kernels as well as a second skip 
connection. Table 5 gives an overview of the layers of this block. When 
referring to the model, we give the type of feature-extraction block used 
followed by the number of feature-extraction blocks. For example, a 
model comprised of 5 MLP feature-extraction blocks followed by the 
regression block would be referred to as MLP5, while a model comprised 
of 3 Complex CNN feature-extraction blocks followed by the regression 
block would be referred to as Complex CNN3. 

2.3. Model enhancement 

To improve the performance of our models described in the previous 

Fig. 7. (a) Image of the PSR matrix formed from a 10-second segment ECG signal with N = 32 (b) Darkened image of the same PSR matrix.  

Fig. 8. Diagram of a model comprised of N feature-extraction blocks.  

Table 1 
Regression block.  

Layer Type Output size 

1 Dense  256 
2 BatchNorm  256 
3 Activation(Relu)  256 
4 Dense  64 
5 BatchNorm  64 
6 Activation(Relu)  64 
7 Dense  1  

Table 2 
MLP feature extraction block n.  

Layer Type Output size 

1 Dense  1024 
2 BatchNorm  1024 
3 Activation(Relu)  1024  

Table 3 
Basic CNN feature extraction block n.  

Layer Type Output size Kernel size Stride 

1 Convolutional 2n+4×26− n×26− n (7 − n)x(7 − n)  1 
2 BatchNorm 2n+4×26− n×26− n   

3 Activation(Relu) 2n+4×26− n×26− n   

4 MaxPooling 2n+4×25− n×25− n 2 × 2  2  

Table 4 
Complex CNN feature extraction block n.  

Layer Type Output size Kernel size Stride 

1 Convolutional 2n+2×26− n×26− n (6 − n)x(6 − n)  1 
2 BatchNorm 2n+2×26− n×26− n 

3 Activation(Relu) 2n+2×26− n×26− n 

4 Convolutional 2n+2×26− n×26− n (6 − n)x(6 − n)  1 
5 BatchNorm 2n+2×26− n×26− n 

6 Activation(Relu) 2n+2×26− n×26− n 

7 Skip(Input) 2n+2×26− n×26− n 

8 Convolutional 2n+3×25− n×25− n (7 − n)x(7 − n)  2 
9 BatchNorm 2n+3×25− n×25− n 

10 Activation(Relu) 2n+3×25− n×25− n  
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subsection, we consider the following two techniques. 
Firstly, we consider image augmentation, which can strengthen the 

training of models by randomly introducing small distortions to the 
training data, thus resulting in models which are more robust to dis
tortions which may occur naturally in our unaltered data. While there 
are many image augmentation strategies, only a small number of them 
are appropriate for the sort of images we are handling. We test 4 image 
augmentation strategies: shifting, zooming, rotating and shearing. Fig. 9 
gives an example of how each of these augmentations could affect a PSR 
image. When implementing image augmentation, a model may be 
trained on data which, at each mini-batch, is either shifted randomly 
within a range of [1 − ϕ/100,1 + ϕ/100], zoomed randomly within a 
range of [1 − ϕ/100,1 + ϕ/100], rotated randomly by an angle within a 
range of [ − ϕ∘, + ϕ∘] or sheared randomly with a shear angle within a 
range of [ − ϕ∘, + ϕ∘]. We denote the augmentation as either tiny 
(ϕ=2.5), small (ϕ=5) or moderate (ϕ=10). For instance, MLP5 Small 
Rotation would refer to a model consisting of 5 MLP feature-extraction 
blocks followed by a regression block which has been trained on images 
which have been, at each mini-batch, rotated randomly by an angle 
within a range of [− 5◦,5◦]. 

Secondly, we consider ensemble models. In order to avoid over
fitting, 20% of our training data is randomly reserved for validation. 
Models are trained until their accuracy on the validation set is no longer 
increasing. This means that 20% of our original training data is not being 
used for training. To avoid this, we can iteratively reserve a different 
20% of our training data for validation, training 5 models with the same 
architecture but which have all used a different set of data for validation. 
In doing so, while some data may be used for validation by one model, it 
will be used for training by the remaining 4. By taking the average of 
these models' predictions, we aim to obtain a higher prediction accuracy 
than would be archived by any single model. When referring to an 
ensemble model comprised on 5 sub-models, we simply append the 
word ensemble onto the name of the sub-model. 

2.4. Model evaluation 

To evaluate these models, we use 10-fold cross validation. At each 
iteration, 10% of the data is used as the testing set for ultimately eval
uating the models we train, 20% of the remaining data forms the vali
dation set to help avoid overfilling during training and the remaining 
data is used to form the training set. We assess the accuracy of each 
model using mean squared error (MSE), root mean squared error 
(RMSE), mean absolute error (MAE) and STD of errors, respectively 
defined as 

MSE =

∑n

i=1

(

yi − ŷi

)2

n
,

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1

(

yi − ŷi

)2

n

√
√
√
√
√

,

MAE =

∑n

i=1

⃒
⃒
⃒
⃒
⃒
yi − ŷi

⃒
⃒
⃒
⃒
⃒

n
,

STDof errors =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

∑n

i=1

⎛

⎝yi − ŷi −

∑n
j=1yj − ŷj

n

⎞

⎠

2

n − 1

√
√
√
√
√
√
√

,

where y are the true T:R ratios, ̂y are the predicted T:R ratios and n is the 
number of PSR images. 

3. Experiments 

3.1. SGH-ECG and ECG-ID data sets 

Our aim in this study is to show that sophisticated ML tools can be 
used to better scrutinise patients' eligibility for S-ICD implantation. We 
achieve this by constructing deep learning models capable of accurately 
predicting T:R ratios of patients belonging to a range of patient groups; 
namely, patients suffering from congestive heart failure, underlying 
congenital heart disease and “hypertrophic cardiomyopathy”, as well as 
patients with structurally normal hearts. In order to develop such 
models and ensure their accuracy across all of these patient groups, we 
have collected our own data set. We collected this data set at South
ampton General Hospital as part of a study on S-ICD eligibility and as 
such we refer to it as the Southampton General Hospital ECG (SGH-ECG) 
data set. The SGH-ECG data set consists of 390 10-second ECG segments, 
sampled at 500 Hz, annotated with R and T peaks. These signals were 
obtained at random intervals from the 24-hour ECG recordings of 18 
different participants and were collected as a part of a clinical research 
study – HEART TWO1 conducted by the Cardiac rhythm management 
research department at the University Hospital of Southampton. A 
detailed break down of the participants demographics and heart con
ditions can be found in Table 6. The participants ages range from 20 to 
80 years old with a mean of 53.16 years. Using the preprocessing 
methods laid out in Section 2.1, 32 × 32-pixel PSR images and their 
corresponding T:R ratios are derived from these 10 ECG segments. Our 
aim is to build a model capable of accurately predicting T:R ratios from 
these PSR images. 

In order to increase the amount of training data, at each round of 
cross validation, after testing and validation sets have been reserved, we 
bolster our training set by combining it with the 32 × 32 pixel PSR 
images and T:R ratios derived from the ECG Identification (ECG-ID) 
Database. The ECG-ID data set, collected by Lugovaya [20], consists of 
310 20-second ECG segments sampled at 500 Hz, with R and T peak 
annotations for the first 10 heartbeats. These signals are obtained from 
90 participants, 44 men and 46 women, with ages ranging from 13 to 75. 

Table 5 
Deep CNN Feature Extraction Block n.  

Layer Type Output size Kernel size Stride 

1 Convolutional 2n+2 × 26− n × 26− n (6 − n)x(6 − n)  1 
2 BatchNorm 2n+2×26− n×26− n 

3 Activation(Relu) 2n+2×26− n×26− n 

4 Convolutional 2n+2×26− n×26− n (6 − n)x(6 − n)  1 
5 BatchNorm 2n+2×26− n×26− n 

6 Activation(Relu) 2n+2×26− n×26− n 

7 Skip 1(Input) 2n+2×26− n×26− n 

8 Convolutional 2n+2×26− n×26− n (6 − n)x(6 − n)  1 
9 BatchNorm 2n+2×26− n×26− n 

10 Activation(Relu) 2n+2×26− n×26− n 

11 Convolutional 2n+2×26− n×26− n (6 − n)x(6 − n)  1 
12 BatchNorm 2n+2×26− n×26− n 

13 Activation(Relu) 2n+2×26− n×26− n 

14 Skip 2(Skip 1) 2n+2×26− n×26− n 

15 Convolutional 2n+3×25− n×25− n (7 − n)x(7 − n)  2 
16 BatchNorm 2n+3×25− n×25− n 

17 Activation(Relu) 2n+3×25− n×25− n  

1 This study was performed with favourable opinion from the REC (17/SC/ 
0623) and with R&D (RHMCAR0528) approval. This study was conducted in 
accordance with the Research Governance Framework for Health and Social 
Care (2005), Good Clinical Practice and their relevant updates. 
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3.2. Experiment 1: architecture selection 

Our first experiment is to assess which model architectures, as 
detailed in Section 2.2, most accurately predict T:R ratios from 32 × 32 
pixel PSR images. Fig. 10 shows the average accuracy across each of the 
10 rounds of cross validation of some of the best performing models 
using the accuracy metrics laid out in Section 2.4 and the model naming 
convention laid out in Section 2.2. 

As can be seen from the results in Fig. 10, the MLP5 model is capable 
of accurately predicting T:R ratios with a mean absolute prediction error 
of only 0.0558. We recall that T:R ratios range between 0 and 1 and the 
threshold for failing a screening is 0.33. In switching to a Basic CNN 
structure, we see a considerable drop in accuracy. Adding more con
volutional layers by using Complex CNN feature-extraction blocks al
lows us to recoup this loss. The Complex CNN5 model outperforms the 
MLP5 model for all tested metrics. However, continuing to add con
volutional layers by using Deep CNN feature-extraction blocks results in 
a drop in accuracy for all tested metrics. This is likely due to the fact that 
our data set is not sufficiently large to enable the training of such deep 
neural-networks. 

Fig. 10 shows the average cross validation accuracies of only the best 
performing model for each type of feature-extraction block. There are 
several models with architectures utilising the MLP and Complex CNN 
feature-extraction blocks with a MAE under 0.06 indicating that, on 
average, these models are able to predict T:R ratios within 0.06 of their 
true value. 

3.3. Experiment 2: model enhancement 

In this experiment, we test the effect of image augmentation and 
creating ensemble models on our two best performing models from the 
previous experiment: MLP5 and Complex CNN5. We test 4 different 
image augmentation schemes (shifting, zooming, rotating and shearing) 
at three different magnitudes (tiny, small and moderate). We also 
evaluate ensemble models, created by averaging the prediction of 5 sub- 
models which each use a different portion of the training set for vali
dation. The details of both of these methods are given in Section 2.3. 

Neither method for model enhancement had a significant positive 
impact on the accuracies of the Complex CNN5 model. For this reason, 
Fig. 11 compares the average accuracy across the 10 rounds of cross 
validation of the enhanced MLP5 models which were able to outperform 
the base MLP5 model with that of the MLP5 and the Complex CNN5 
models. 

The only two image augmentation schemes which improve the per
formance of the MLP5 model are small rotations and small shears, which 
both only result in small increases in some accuracy metrics, along with 
small decreases in others. The MLP5 Ensemble model gives modest 
improvements in performance, outperforming all other variants of the 
MLP5 model on each metric. However, even the MLP5 Ensemble model 
is outperformed by the Complex CNN5 model on every metric aside from 
MAE, where the MLP5 Ensemble model is able to achieve an error of 

Fig. 9. Examples of how shifting down and to the left by 12.5%, zooming by − 12.5%, shearing with an angle of 15◦ and rotating by 15◦ effect a PSR image.  

Table 6 
Detailed breakdown of the demographics and underlying aetiology of patients in 
the SGH-ECG data set.  

Total number of participants n = 18 
Demographics Mean age [years] 53.16 

Male 9 (50.00%) 
Heart condition Structurally normal heart 4 (22.22%) 

Adult congenital heart disease 3 (16.67%) 
Hypertrophic cardiomyopathy 3 (16.67%) 
Congestive heart failure 8 (44.44%)  

Fig. 10. Performances of the best models using each type of feature extraction block.  
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only 0.460. 
As MSE and RMSE are generally considered better measures of the 

regression capabilities of a model than MAE, we determine that the 
Complex CNN5 model is the best performing regression model as it 
significantly outperforms all tested models on these metrics. An addi
tional drawback to the MLP5 Ensemble model is that, while the MLP5 
model is less computationally expensive to train than the Complex CNN5 
model, due to its more simplistic architecture, training the 5 MLP5 
models required for creating the MLP5 Ensemble model is more 
expensive than training a single Complex CNN5 model. 

Although, individually, rotating and shearing results in improved 
performance for the MLP5 model, we find that using both of these image 
augmentation schemes in concert does not result in improved perfor
mance. Likewise, we do not observe any improvement in performance 
when using image augmentation whilst creating ensemble models. 

3.4. Screening tool 

The previous two experiments have shown that the Complex CNN5 
model outperforms all other tested models and is capable of predicting 
T:R ratios across a range of relevant patient groups within 0.0545 of 
their true value with an average MSE of only 0.122. In this section, we 
illustrate how this model could be used for the purpose of screening 
patients for S-ICD implantation eligibility. 

After recording 24-hour ECG signals on multiple leads, each 
continuous 24-hour signal would be broken into 8640 non-overlapping 
10-second segments which would then be processed using the method
ology detailed in Section 2.1, resulting in 8640 PSR images for each lead, 
which are ordered chronologically. We would then input these images to 
our model and produce predictions for the T:R ratio of each 10-second 
segment represented by a single PSR image. As mentioned previously, 
from a clinical perspective only the magnitude of the T:R ratio is 
considered. Our model would output positive and negative T:R ratios 
(depending on the sign of the T wave), where the magnitude of these 
outputs would be used for the screening analysis. This would enable us 
to examine the T:R ratio for each 10-second segment of each lead from 
the 24-hour screening. To demonstrate this, we use this method to 
predict the T:R ratio for each 10-second segment of each lead of a 3-lead, 
24-hour ECG recording. The primary aim of the screening is to deter
mine if any of the leads are at a low enough risk of TWOS to be used by 
an S-ICD. As stated in Section 1, for a given lead, should a patient have a 
T:R ratio above 1:3 for a continuous period of at least 20 s, that lead 
would fail the screening. This means that, for each lead, if our model 
predicts a T:R ratio of over 0.33 for two or more consecutive 10-second 
segments, then that lead has failed the screening. 

In the event that multiple leads pass the screening, the secondary aim 
of the screening is to determine which of the leads that pass are at the 

lowest risk of TWOS. To examine how the behavior of the T:R ratio 
differs between each lead, we may wish to plot a histogram of what 
proportion of the 24-hour screening period the T:R ratio of a particular 
lead spent in each range of T:R ratios. To give an example of how our 
tool is capable of performing this task, Fig. 12 shows the histogram of the 
T:R ratios predicted by the Complex CNN5 model as well as the histo
gram of true T:R ratios for PSR images reserved for testing in one of the 
rounds of cross validation. As one can see, our model is able to predict 
the proportion of PSR images in the testing set whose T:R ratio belongs 
to each range to within 2.5% of the true value. Fig. 13 contains three 
histograms showing the proportion of the 24-hour screening that each 
lead spent with a predicted T:R ratio in each range. This would enable 
the cardiologist to assess which of the leads that passed the screening 
spends the smallest proportion of the 24-hour screening with high values 
of T:R ratio and, as such, is at the lowest risk of TWOS. 

Additionally, while less directly applicable to the screening, our 
model allows for further analysis of the variation of the T:R ratio over 
the 24-hour screening. Fig. 14 shows one tool that our model facilitates. 
The variation of the T:R ratio is plotted for each lead, over the 24-h 
period. For readability, the lines in this graph are smoothed in such a 
way that each point gives the average T:R ratio for the preceding half 
hour. This could enable a cardiologist to detect any period during the 24 
h where the T:R ratio was consistently high and, as such, the patient was 
at greater risk of TWOS. Our model could also allow cardiologists to 
further examine any single 10-second segment from within the 24-hour 
screening period across all 3 leads and view the ECG signal alongside its 
predicted T:R ratio. This is shown in Fig. 15, where, for a single 10-sec
ond segment, for each lead, the predicted T:R ratio is given alongside a 
plot of the original ECG signal, a plot of the filtered ECG signal and the 

Fig. 11. Comparison between MLP5 model variants and the Complex CNN5 model.  

Fig. 12. Histogram of true and predicted TR ratios of 10-second ECG segments 
in the testing set. 
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Fig. 13. Histogram of the predicted TR ratio over the 24-hour screening preriod for each lead  

Fig. 14. Graph of the variation of the predicted TR ratio over the 24-hour screening preriod for each lead.  

Fig. 15. Visualizations of data from a single 10-second segment of the 24 h ECG recording.  
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PSR image of that filtered ECG signal. 

4. Conclusion 

TWOS is an inherent risk with S-ICDs and can lead to inappropriate 
shocks. The current method for determining if a patient is likely to suffer 
from TWOS is to perform a 10-second screening of the patient’s ECG, 
where the T:R ratio, a major predictor of TWOS, is examined. Temporal 
variations in the T:R ratio make this single 10-second screening 
unreliable. 

In this paper, we have collected the SGH-ECG data set (detailed in 
Section 3.1) consisting of 10-second ECG segments from patients 
belonging to a range of patient groups which S-ICD implantation can
didates are likely to belong to. As is shown in Section 3, we have used 
this data set to train and evaluate a range of deep learning models 
capable of predicting T:R ratios from 10-second ECG segments with a 
high degree of accuracy. The best performing of these models is a con
volutional neural network (CNN) based model for predicting T:R ratios 
from 32x32 pixel PSR images derived from 10-second ECG segments. 
This is a novel approach to ECG analysis. While CNNs and PSR trans
formations have both individually been used in ECG analysis, to the best 
of our knowledge, this is the first work using them both in conjunction. 
We have also shown that this model can be integrated into a clinical tool 
for performing automated screening over much longer periods than the 
10 s window currently used. For example, this tool would enable clini
cians to perform 24-hours screenings. This prolonged screening period 
would enable one to much more reliably determine the normal range of 
a potential implantation candidate’s T:R ratio than the current 10-sec
ond screening, as well as providing insight into the variation of the T: 
R ratio over the screening period. The increased reliability and 
descriptiveness of this tool can allow cardiologists to better assess pa
tients' risk of TWOS and hence their eligibility for S-ICD implantation. 

As future work, we will be using this tool to analyse the ECG of pa
tients belonging to a range of patient groups in order to determine how 
the behavior of the T:R ratio differs between them. We also hope to 
determine if the T:R ratio of a patient's ECG can be an indicator of 
impending cardiac episodes such as VT or VF. Finally, we are looking to 
formally conduct cynical trials to determine if this method can be used in 
place of the current screening procedure. 

Declaration of competing interest 

To the best of our knowledge, the authors declare that there is no 
conflict of interest. 

Acknowledgments 

The work of Anthony J. Dunn is jointly funded by Decision Analysis 
Services Ltd. and EPSRC through the Studentship with Reference EP/ 
R513325/1. The work of Alain B. Zemkoho is supported by the EPSRC 
grant EP/V049038/1 and the Alan Turing Institute under the EPSRC 
grant EP/N510129/1. 

The feedback provided by Sion Cave (DAS Ltd) on the initial draft of 
the paper is gratefully acknowledged. 

References 

[1] Adabag A Selcuk, Luepker Russell V, Roger Véronique L, Gersh Bernard J. Sudden 
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