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ABSTRACT 

COMPARING AUTUMN PHENOLOGY DERIVED FROM FIELD 

OBSERVATIONS, SATELLITE DATA, AND CARBON FLUX 

MEASUREMENTS IN A NORTHERN MIXED FOREST 
 

by  

Bailu Zhao 

The University of Wisconsin-Milwaukee, 2019  

Under the Supervision of Professor Mark D. Schwartz 

 

In this project, autumn phenological transition dates and senescence rate (derived from 

field observation, satellite data and carbon flux measurements) are compared in a northern 

Wisconsin deciduous forest. Field data cover 2010 and 2012 for the northern site and 2010, 2012 

and 2013 for the southern site, with leaf coloration and leaf fall recorded. Satellite indices are 

EVI and NDVI obtained from the MODIS V006 product via Google Earth Engine platform, 

covering 2000 to 2017. Carbon flux indices are NEE and GPP covering 1997 to 2017. Field data 

and normalized satellite data are fitted by a two-section logistic model while carbon data are 

fitted by a double-logistic model to derive three transition dates and senescence rate parameters. 

Comparison among these dates and parameters suggests: (a) Generally, the transition dates 

derived from NDVI is closest to the transitions of leaf coloration and leaf fall; (b) The 

senescence rate based on NDVI is also closest to the rate of leaf coloration and leaf fall; (c) In 

year-to-year comparisons, either NEE or GPP can be the least accurate approach in estimating 

leaf coloration and leaf fall progress; while in long-term comparisons, the accuracy order of EVI, 

NEE and GPP is variable; and (d) NDVI-based senescence rate is faster, while the senescence 

rate derived from the other three approaches don’t differ a lot.  
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Speculations on the reasons for these findings are as follows: (a) canopy senescence is 

asynchronous, so the timing of first observed leaf coloration from above-canopy and below-

canopy can be different; (b) Compared with NDVI, EVI is more sensitive to the subtle canopy 

change in early autumn and is less affected by soil noise in late autumn, resulting in longer 

senescence duration; (c) Photosynthesis starts to decrease before visual senescence due to 

environmental and leaf physiological change, which leads to the bias between field data and 

carbon data derived transition in early autumn; and (d) The life activities of shrubs and 

coniferous trees cause carbon exchange to continue changing after deciduous tree senescence 

terminates.  
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1. Introduction 

Phenology has various definitions. The basic definition is “the art of observing life cycle 

phases or activities of plants and animals in their temporal occurrence throughout the year” 

(Gratani et al., 1986). Furthermore, the US/IBP Phenology Committee defined phenology as “a 

study of the timing of biological events and their relationship to seasonal climate change” (Gates, 

1969), pointing out the connection between phenophase development and environmental 

conditions. Furthermore, Lieth also treated phenology as an aspect of analysis and management 

of ecological systems or ecosystems (Lieth, 1974), thus endowing phenology with ecological 

meaning. Currently, phenological measures “have become prime indicators of documenting 

altered life cycles due to environmental change in disciplines from biology to climatology, 

geography, and environmental history” (Demarée & Rutishauser, 2009). 

One of the primary goals of studying phenology is to better understand climate change. 

Climate change has piqued people’s attention for decades. Global temperature has increased by 

0.85C from 1880 to 2012, and the Northern Hemisphere has probably experienced the warmest 

30-year period during the last 1400 years (IPCC, 2014). The relationship between phenology and 

seasonal climate change is one scope of phenological studies (Lieth, 1974). Significant statistical 

correlations exist among vegetation phenological timing and climate factors, such as surface 

daily maximum temperature, insolation, and precipitation (Schwartz, 1990; Schwartz & Karl, 

1990; Cong et al., 2013; Liu et al., 2016). In mid to high latitude temperature forest regions, 

temperature and insolation are the prime limiting factors to growth, rather than 

precipitation(Zhang et al., 2004; Sparks et al., 2006). In South American tropical evergreen 

forests, radiation could be more important than precipitation (Xiao et al., 2006). Therefore, 

vegetation phenology in these regions is widely used as an indicator of climate change, 
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especially climate warming (Schwartz, 1994; Menzel, 2003; Feng & Hu, 2004; Chapman et al., 

2005). For example, both satellite data and meteorological models show earlier green-up in the 

Northern Hemisphere (Myneni et al., 1997; Schwartz, 1998) is associated with an extended 

growing season length (GSL) in mid-northern latitudes (White et al., 1999), which is evidence of 

the impacts of global climate change.  

A range of methods have been applied to record phenology, such as in situ observation 

(Dahl & Langvall, 2008), satellite data (Reed et al., 1994), carbon flux measurements (Piao et al., 

2008), LAI-2000 Plant Canopy Analyzer (Ahl et al., 2006), and PhenoCam network (Richardson 

et al., 2018). Among these, the first three approaches are popular and discussed in this project. 

However, each approach has its own properties and more importantly, limitations. In summary, 

direct field observation describes ground truth most precisely, but the records are spatially and 

temporally discontinuous, and only focus on individual plants. Conversely, satellite data and 

carbon flux measurements are temporally continuous and have large spatial coverage, but their 

resolutions are so coarse that various species and land cover can be included in a single pixel or 

one carbon tower footprint, resulting in great uncertainties in estimating phenology. Based on 

these limitations, a comparison among these three approaches is necessary. The questions to 

answer through these comparisons are: 

1. How best to compare satellite data and carbon flux data to in situ observation data? 

2. How best to evaluate the accuracy of satellite data and carbon flux data in relation to in 

situ observation data?  

3. What differences can be found when satellite data and carbon flux data are compared to 

observation data? 
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4. What differences can be found when satellite data and carbon flux data are compared to 

each other? 

5. What environmental and physiological factors may explain these differences? 

This thesis addresses the above questions in order. The literature review section examines 

the properties and limitations of in situ observation data, satellite data and carbon flux data. The 

methodology section will focus on question 1 and 2, where data source and data processing 

procedures will be presented. The results section will answer question 3 and 4, where the 

accuracy of approaches will be explored. Finally, the discussion section will deal with question 

5, where the results will be explained in relation to environmental factors and plant physiological 

properties.  
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2. Literature Review 

2.1 Studying Climate Change with Phenology throughout the World 

Many studies using plant phenology as an indicator of climate change have been 

conducted in Europe. In Germany, a summary of 50 years of phenological observation data 

integrated with climate data shows leaf unfolding and flowering stages advanced by 2.5 to 6.7 

days per C in response to warmer springs, while autumn phenology is less influenced by 

temperature (Menzel, 2003). Similarly, another German study argues that phenophases in 

Saxony, German would advance by 3 to 27 days on average by 2050, while the trend in autumn 

is not as obvious as spring and summer (Chmielewski et al., 2005). In Hungary, flowering stage 

advanced by 3-8 days in response to spring temperature change (Walkovszky, 1998). In 

Switzerland, long-term observation records have shown obvious earlier spring appearance dates 

and a relatively weak delay tendency in autumn (Defila & Clot, 2001). An investigation of 943 

phenological records in Estonia suggests 5-20 days advance of plant and bird phenophases in 

spring, which may be a consequence of winter temperatures, radiation change and human 

impacts (Ahas & Aasa, 2006). Earlier olive flower phenology across Spain is detected via a 

thermal model (Galan et al., 2005). First flowering dates advanced by 4 days on average per 

degree in England (Fitter et al., 1995). The earlier beginning of growing season detected by 

certain species indicate climate change across Ireland (Donnelly et al., 2006). At the continental 

scale, a study analyzing over 125,000 observation records covering 21 European countries 

showed 78% of the records reflect earlier leafing, flowering and fruiting stages, which efficiently 

corresponds with the warming tendency in 19 countries (Menzel et al., 2006). Similarly, an 

eight-day advance trend of growing season start occurred over the last 30 years across Europe, 

corresponding to the changes in temperature and circulation (Chmielewski & Rötzer, 2001). 
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Overall, earlier spring and later autumn were measured in Europe (Menzel & Fabian, 1999). 

Research based on satellite data also found an 18-day extension of growing season in Eurasia, 

similarly, because of an earlier spring and later autumn (Zhou et al., 2001). 

Similar trends were also shown in North America. Earlier first-bloom tendency occurred 

in southwestern and central/eastern Wisconsin (Zhao & Schwartz, 2003), and 55 phenophases 

showed a trend of -0.12 day per year in southern Wisconsin (Bradley et al., 1999). Increasing 

vegetation cover during the growing season was observed in southeast and upper Midwestern 

USA (Zhou et al., 2001), together with extended growing seasons due to later autumn in the 

USA (Dragoni et al., 2011; Dragoni & Rahman, 2012). In Canada, earlier white spruce bud break 

date was reported (Colombo, 1998); and a long-term regression of phenological observation data 

indicated an earlier first-flowering trend in Edmonton, Canada, corresponding with El Nino 

events and ocean temperatures (Beaubien & Freeland, 2000). Generally, the growing season has 

been extended for 12 days in North America (Zhou et al., 2001) with earlier starts and later ends 

(Reed, 2006).  

In China, among 1263 phenology time series generated by a study, 90.8% showed earlier 

spring and summer phenology and 69.0% later autumn phenology (Ge et al., 2015). Advanced 

last spring frost in northeast China and later first autumn frost date in north-central China are 

reported, consistent with regional temperature records (Schwartz & Chen, 2002). In temperate 

zones of China, growing season start became 4 days earlier per decade, while growing season 

end was 2.2 days later per decade (Chen & Xu, 2012). 

 At the global scale, earlier green-up in the Northern Hemisphere (Myneni et al., 1997; 

Schwartz et al., 2006) and extended growing season length (GSL) are reported in northern mid-

latitudes (White et al., 1999).  
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All these studies, whether focusing on specific phenophases or the growing season, draw 

the same conclusion: spring phenophases tend to advance, leading to earlier growing season 

onset, while autumn phenology shows weaker trends of delay, resulting in later growing season 

end. These two changes lead to longer growing seasons. This phenomenon is broadly observed 

across the Northern Hemisphere, which is related to the overall warmer climate during the past 

few decades. 

Table 1. Terms used in following sections 

Acronyms Terms Category 

LP Landscape Phenology Large-scale Observation phenology  

(Liang et al., 2011) 

LSP Land Surface Phenology Satellite phenology 

 (De Beurs & Henebry, 2004) 

NDVI Normalized Difference 

Vegetation Index 

Vegetation indices 

(Rouse et al., 1974) 

EVI Enhanced Vegetation Index Vegetation indices 

(Huete et al., 2002) 

EVI2 Two-band Enhanced 

Vegetation Index 

Vegetation indices 

(Jiang et al., 2008; Zhang, 2015) 

MODIS Moderate Resolution 

Imaging Spectroradiometer 

Satellite dataset 

NEE Net Ecosystem Exchange Carbon flux indices 

GPP Gross Primary Production Carbon flux indices 
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SOS Start of season or 

Start of Spring 

Seasonal marker 

EOS End of Season or 

End of Spring 

Seasonal marker 

 

2.2 History of Field observation in Phenological Studies 

Visual observation is the conventional approach to studying phenology. One of the 

earliest phenological records date back to 1180 in China, when Lv Zuqian records the flowering 

and fruiting date of 24 species in Gengzi·Xinchou Diary. The longest phenological record is 

cherry-tree flowering dates recorded since the 11th century in Japan (Aono & Omoto, 1994; 

Mikami, 2008). The longest phenological record in Europe, which is also the first systematic UK 

record, contains plant and bird observation data from 1736 to 1958, covering over two centuries 

(Margary, 1925; Sparks & Collinson, 2008). Records in Finland can be traced back to 1896 

(Linkosalo, 1999). 

In 18th century, the first phenological network was established in Sweden, followed by 

the Swiss network in 1759 (Dahl & Langvall, 2008). During the 19th century, the European 

network already covered Netherlands, Italy, France, Great Britain, Ireland and Switzerland 

(Schnelle, 1956). In 1882, German scholar Hoffmann published guidelines for standard 

observations, facilitating the development of systematic phenological observation networks in 

Germany and other European countries (Kaspar et al., 2014). In 1957, German phenologist F. 

Schnelle established the International Phenological Gardens, monitoring plant development in 

different climate regions (Defila & Clot, 2001).  
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Currently, phenological observation networks are available in many countries. The earlier 

mentioned International Phenological Gardens (IPG) now contains 89 gardens in 19 European 

countries, covering 28 degrees of latitude and 37 degrees of longitude(http://ipg.hu-

berlin.de/ipg/faces/index.xhtml). Furthermore, Global Phenological Monitoring (GPM) gardens 

were set up in 1998, covering countries beyond Europe (Pagenkopf, 2010). In the U.S., the 

National Phenology Network (USA-NPN) was established in 2007 (USA-NPN National 

Coordinating Office, 2016), including 908 plant species and around two million plant 

observation records by 2017 (https://www.usanpn.org/data/dashboard). In China, under the 

directory of Zhu Kezhen, a Chinese Phenological Observation Network (CPON) was set up in 

1963, now covering 30 observation sites and 162 plant species (http://www.cpon.ac.cn/).  

Othersinclude French Observatory of Seasons (http://www.obs-saisons.fr/), Canada Nature 

Watch (https://www.naturewatch.ca/plantwatch/map-of-observations/), Nature’s Calendar in the 

U.K. and Ireland (https://naturescalendar.woodlandtrust.org.uk/) and ClimateWatch in Australia 

(http://www.climatewatch.org.au/). 

Numerous phenological studies are based on large-scale long-term observation data from 

these networks (Beaubien & Johnson, 1994; Linkosalo, 1999; Ahas & Aasa, 2006; Menzel et al., 

2006). However, issues related to observation are also discussed. Observation results might be 

influenced by the observers’ backgrounds. Although there are also studies indicating the 

performance of junior and senior staff in grading plant development are quite similar, botanists 

do provide a more consistent result compared with non-botanists (Sparks et al., 2006). Moreover, 

since observational data are limited in coverage, both spatially and in species, and may be 

temporally discontinuous, it becomes problematic when applying observation data to global 

studies (Schwartz, 1994).  

http://ipg.hu-berlin.de/ipg/faces/index.xhtml
http://ipg.hu-berlin.de/ipg/faces/index.xhtml
http://www.cpon.ac.cn/
http://www.obs-saisons.fr/
https://www.naturewatch.ca/plantwatch/map-of-observations/
https://naturescalendar.woodlandtrust.org.uk/
http://www.climatewatch.org.au/
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2.3 Remote Sensing Applications in Phenology Studies 

In recent decades, with the advance of remote sensing techniques, satellite images have 

enabled phenological monitoring to address some of the shortcomings of observation data (Reed 

et al., 1994), especially monitoring large-scale geographic areas with a high level of accuracy. 

Together with the development of remote sensing indices and models, it’s now one of the most 

popular approaches in terms of large-scale phenological studies.  

A variety of Vegetation Indices (VI) have been developed and used as measures of 

satellite-derived phenology. The most common VI is the Normalized Difference Vegetation 

Index (NDVI). Vegetation absorbs most of the energy in the red band while reflecting most of 

the energy in the near-infrared band. Based on these characteristics, NDVI showing the contrast 

between red and near-infrared bands was developed as a sensitive indicator of vegetation cover:  

NDVI = (NIR-RED)/(NIR+RED)  

NDVI corresponds to specific phenophases with models developed to describe such 

relationships. Current NDVI models include NDVI threshold models, where a threshold of 

normalized NDVI is used to represent the onset and offset of greenness (0.5 in White 1997, and 

0.35 in Krishna & Prasad 2006) or leaf expansion (0.6 to 0.7 in Nagai 2010). NDVI increase 

models use the intersection of line-smoothed NDVI time series and moving-averaged NDVI time 

series, together with the curve direction to define the onset and end of greenness (Reed et al., 

1994). Minimum NDVI value model uses derivative NDVI time series and define the date when 

it switches between positive and negative at the beginning and end of the vegetation cycle 

(Moulin et al., 1997). Finally, maximum curvature models define the points when maximum 

curvature of smoothed NDVI time series exist to determine onset of vegetation growth, end of 

growth, onset of senescence, and onset of dormancy (Zhang et al., 2001). Compared to fitted 
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Fourier series and asymmetric Gaussian function, double logistic fitting, which is built based on 

the maximum curvature model, has smaller root mean square errors (Beck et al., 2006). 

However, there are limitations to NDVI, for example, some factors unrelated to 

ecosystems may be interpreted as vegetation, such as satellite drift, differences between sensors 

in different satellites, atmosphere background variations, and cloud contamination may cause 

bias, whereas temporal resolution may fail to capture detailed monitoring of short-term 

phenological events (Reed et al., 1994; Zhou et al., 2001). More recently, the enhanced 

vegetation index (EVI) was developed:  

  

where , , and   are corrected surface reflectance, L is the canopy 

background adjustment, C1 and C2 are the aerosol resistance coefficients, and G is a gain factor 

(Huete et al., 2002). Compared with NDVI, EVI reduces the impact of soil and atmosphere on 

the vegetation signal while retaining the sensitivity to canopy change. Furthermore, maximal 

curvature of the logistic-fitted EVI time series model is used to identify seasonal transition points 

(Zhang et al., 2004) and demonstrates a comparatively high level of accuracy in estimating the 

timing of full bud burst dates of deciduous forests (Liang et al., 2011; White et al., 2014).  

Nevertheless, EVI is designed for sensors with blue bands, while due to data availability, 

sometimes working with datasets without a blue band is required. Meanwhile, although NDVI 

requires only red and NIR bands, its reliability is questionable as discussed before. EVI2 has 

been developed as a substitute to EVI, which can be computed from only red and near infrared 

bands but performs equally well for phenology compared with EVI (Jiang et al., 2008; Zhang, 

2015). The definition of EVI2 is as follows: 
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Despite the constant improvement in VI model accuracy, some limitations persist. Thus, 

the reliability of remote sensing data have been discussed. To demonstrate the ability of remote 

sensing phenology to capture in situ observations, direct comparisons are often made between 

them. Nevertheless, the scale differences between the data derived from remote sensing pixels 

and field observations inhibits those comparisons. In addressing this problem, gap-filling 

approaches are necessary. For example, White et al. compared Landsat TM images to extensive 

field observations (White et al., 2014), and Liang and Schwartz (2009) used land surface 

phenology (LSP) to hierarchically upscale the field individual-level observation data to 

community-scale phenological records. Using these techniques and applying these methods can 

indicate the accuracy of remote sensing data capturing in situ vegetation phenology. 

2.4 Applying Carbon Flux Measurements to Phenology 

Carbon flux is the transfer of carbon from one carbon pool to another (Karsenty et al., 

2003). Vegetation plays an important role in the carbon exchange between the biosphere and 

atmosphere, mainly through photosynthesis (as carbon up-take activity) and respiration (as 

carbon emission activity). Light plays an important role in photosynthesis and it is also the 

physical foundation of satellite imagery. Consequently, light transmission processes link satellite 

data, carbon flux and plant physiology together. Specifically, solar radiation reaches canopies, 

with part of the spectrum absorbed or transmitted and another part reflected back. The reflected 

radiation is then detected by satellite sensors to produce satellite images. On the other hand, for 

the radiation absorbed, part is functional for photosynthesis, which is called absorbed 

photosynthetically active radiation (APAR, Goetz et al. 2000). APAR provides source energy for 
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primary production, with the carbon assimilation amount per unit APAR varying among species, 

plant morphological features, phenology and environment (Tucker & Sellers, 1986; Hunt & 

Running, 1992; Goetz & Prince, 1996; Cramer et al., 1999; Wehr et al., 2016).  

To monitor carbon flux, energy flux and water flux as well as improve the accuracy of 

satellite-estimated flux indices, an international network called FLUXNET (covering 526 sites 

on five continents) was established (Baldocchi et al. 2001, Figure 1). Eddy covariance is the 

most popular carbon flux measurements method in the FLUXNET system. It’s suitable for 

steady and open landforms with relatively uniform vegetation. The above-canopy sensor detects 

net matter exchange between vegetation and the lower atmosphere. Errors arise from 

atmosphere, surface and systematic or random instrumental effects (Goulden et al., 1996; 

Running et al., 1999). Since the eddy covariance method is designed to measure NEE, which is 

also determined by autotrophic respiration and heterotrophic respiration apart from gross 

production (Goetz & Prince, 1999), additional environmental measurements and models are 

required to estimate GPP (Lasslop et al., 2010).  

Since both carbon flux measurements and satellite data are open-accessed, globally 

covered datasets, and are fundamentally related by light transmission, estimating carbon flux by 

satellite data across various scales are possible. For example, net primary production  can be 

estimated by Advanced Very High Resolution Radiometer (AVHRR) data and a semi-

mechanistic GLO-PEM model (Goetz et al., 2000; Cao et al., 2004); Cramer et al. compared 17 

biochemical models and satellite-based models in estimating net primary production , finding net 

primary production  pattern and net primary production-climate relationship are consistent 

globally (Cramer et al., 1999); Running et al. discuss the potential of Earth Observing System 

(EOS), of which the primary data source is MODIS images, to be integrated with flux 
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measurements (Running et al., 1999); similarly, Moran et al. discuss the potential of applying 

satellite data and ground measurements to estimate biomass production (Moran et al., 1995). On 

the other hand, comparison between these two measurements in phenology studies is also 

popular. Myneni used NDVI as the indicator of growing season and suggests there are significant 

statistical correlations among NDVI variation, biomass and carbon dioxide variation (Myneni et 

al., 1997; Myneni et al., 2001). The Northern Hemisphere growing season estimated from net 

primary production, NDVI and carbon uptake is generally consistent, suggesting stronger 

photosynthesis activity (Angert et al., 2005). A phenology index derived from NDVI and NDII 

(normalized difference infrared index) shows agreement with carbon flux measurements in terms 

of SOS and EOS (Gonsamo et al., 2012).  

 

Figure 1. 562 active FLUXNET sites in 2016.  
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Data source: Falge, E., M. Aubinet, P.S. Bakwin, D. Baldocchi, P. Berbigier, C. Bernhofer, T.A. Black, R. 

Ceulemans, K.J. Davis, A.J. Dolman, A. Goldstein, M.L. Goulden, A. Granier, D.Y. Hollinger, P.G. Jarvis, N. 

Jensen, K. Pilegaard, G. Katul, P. Kyaw Tha Paw, B.E. Law, A. Lindroth, D. Loustau, Y. Mahli, R. Monson, P. 

Moncrieff, E. Moors, J.W. Munger, T. Meyers, W. Oechel, E.-D. Schulze, H. Thorgeirsson, J. Tenhunen, R. 

Valentini, S.B. Verma, T. Vesala, and S.C. Wofsy. 2017. FLUXNET Research Network Site Characteristics, 

Investigators, and Bibliography, 2016. ORNL DAAC, Oak Ridge, Tennessee, USA. 

https://doi.org/10.3334/ORNLDAAC/1530  

As for the connection between carbon flux and forests, multiple studies suggest temperate 

forests work as a major carbon sink (Goulden et al., 1996; Schimel et al., 2015), while the 

capability of carbon storage varies with stand age, successional diversity, stem radius, and height 

(Gower et al., 1996; Baldocchi et al., 2001; Caspersen & Pacala, 2001; Desai et al., 2005). Since 

both vital paths of carbon flux (photosynthesis and respiration), are physiologically related to the 

stage of leaf growth and senescence in terms of chlorophyll content and carbon assimilation 

capability, annual carbon flux variation is then linked with plant phenology (Goulden et al., 

1996; Falge et al., 2002; Wehr et al., 2016). Importantly, advanced spring vegetation activity 

caused by warmer springs will lead to increased spring carbon uptake, which is offset by less 

summer uptake due to hot and dry conditions (Angert et al., 2005; Wolf et al., 2016). Richardson 

et al. found that prolonged duration of the start and end of season results in a simultaneous 

increase in gross ecosystem production and evaporation rate, further leading to a slower increase 

in net ecosystem production (NEP) (Richardson et al., 2010). Autumn phenology also plays a 

role in carbon flux, as the quantitative relationship between photosynthesis and respiration in 

autumn will influence annual carbon accumulation. For instance, Dragoni et al. reported an 

extended autumn and extended growing season, then suggesting this change in phenology 

explains 50% of the annual carbon flux variation (Dragoni et al., 2011). Piao et al.  reports 

https://doi.org/10.3334/ORNLDAAC/1530
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increasing photosynthesis and respiration due to warmer autumns, with respiration overriding 

photosynthesis and offsetting 90% of increased spring carbon uptake (Piao et al., 2008).  

This consistency between phenology and carbon flux makes estimating phenology 

transition dates from carbon flux indices possible (Cleland et al., 2007). Models designed for this 

target can be roughly divided into two types: threshold models and fitting models. Threshold 

models define phenological transition dates as the intersection of carbon flux indices curves and 

a pre-defined threshold. For example, transition points between positive and negative NEE 

values can be treated as the dates of SOS and EOS (Richardson et al., 2010; Garrity et al., 2011; 

Wu, Chen, et al., 2013; Wu et al., 2017). Threshold models defining the Spring green-up derived 

from a GPP threshold method shows good agreement with MODIS EVI data (Peng et al., 2017). 

As to GPP, multiple methods are available to define the transition line of the growing season, for 

example, a constant threshold of 1 g C m-2 day-1, a threshold of 10% of maximum annual GPP 

value, or degree-day indicator and cumulative temperature sum (Wu, Gough, et al., 2013) . 

Like satellite data, two-section logistic fitting models can also be applied to carbon flux 

data (Liu et al., 2017), and the points with swift transitions are taken as seasonal markers. In 

addition, double-logistic models developed from two-section logistic models are also applicable. 

A description of double logistic model is given in Fisher et al. (2006), where a two-section 

logistic model is simplified into a single curve composed of two logistic components, with one 

minus and the other one positive. However, this model is still applied to VI indices. Later, 

Soudani et al. (2008) rewrote this double-logistic function into an asymmetric double-sigmoid 

function, with a hyperbolic tangent subfunction. The rewritten function enables researchers to 

derive two inflection points when NDVI is in the middle of its amplitude directly from fitting 

parameters. Then Garrity et al. (2011) applied this function to carbon flux measurements, and 
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further derived six inflection points from it. However, different from Zhang et al. (2003), the 

inflection points in this case are defined by the minimum and maximum of the second derivative, 

not the change of curvature. 

Annual carbon flux variation has biases when estimating phenophases for three reasons. 

First, as discussed earlier, eddy covariance measurements will inevitably include environmental 

or instrumental error. Moreover, eddy-covariance measurement has strict requirements for the 

terrain and vegetation type, which are unlikely to be obtained in the real world. Under less than 

ideal conditions, large errors may occur (Baldocchi, 2003). Second, eddy-covariance measured 

NEE values are also influenced by other factors such as soil microbial respiration (Shi & 

Marschner, 2017) and human activity (Solaymani, 2017). Even for an ecosystem in which the 

functional vegetation cover is identified as deciduous forest, other ecosystem components will 

certainly influence the carbon budget. Third, the footprint of eddy covariance towers usually 

varies between 1.1 and 5 km2 around the tower (Chen et al., 2011). As a result, this measurement 

tends to reveal a large-scale, regional average of all ecosystem activities, encompassing many 

species differences and spatial distribution patterns. 

2.5 Crucial Seasonal Markers Showing Phenological Stages 

In terms of phenology, spring and autumn phenophases are key parameters because they 

indicate the start and end of the growing season respectively and impacts of climate change on 

vegetation can be detected through recording variations in the timing of spring and autumn 

phenological events. Spring phenological processes include bud, shoot, stem, leaf and flower 

development (Group, 2001; Yu et al., 2016), while autumn phenology includes both fruiting and 

leaf senescence stages (Liu et al., 2015). Start of season (SOS) in spring and end of season (EOS) 

in autumn are used as two markers of growing season duration derived from VIs. Based on the 
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models applied, SOS and EOS correspond with certain ground-based phenophases. For example, 

spring indices (SI) models estimated SOS corresponding with first-leaf date or first-bloom date 

(Zhao & Schwartz, 2003), EVI-based SOS (computed with a logistic function) corresponded 

with deciduous full bud burst dates (Liang et al., 2011; White et al., 2014), and a spring NDVI 

threshold of 0.5 matched leaf emergence dates (White et al., 1997).  

Seasonal markers are not limited to SOS and EOS. Reed also defined time of maximum 

NDVI as a marker (Reed et al., 1994). Later, with the earlier mentioned algorithm detecting the 

day-of-the-year dates of maximal curvature, seasonal markers are further broadened into eight 

transition points: green-up onset, green-up stability, maturity onset, maturity stability, senescence 

onset, senescence stability, dormancy onset, and dormancy stability--providing a more 

comprehensive overview of annual phenology variation (Zhang et al., 2001). Depending on the 

study goals, these eight seasonal markers can be simplified into four: green-up onset, maturity 

onset, senescence onset and dormancy onset (Zhang et al., 2004). 

2.6 Significance of Autumn Phenology 

Compared with spring phenology, autumn phenology has been less studied. In the 

purview of climate change, the number of studies on how climate factors impact spring 

phenology exceeds the number of such studies on autumn phenology (Richardson et al., 2006; 

Donnelly et al., 2017). Nevertheless, autumn phenology is complicated, and the discoveries of 

spring phenological research can’t be simply applied to autumn. For example, a NDVI threshold 

of 0.6-0.7 may correspond with the spring leaf expansion stage, while no suitable NDVI 

threshold in autumn could be defined for a certain phenophase (Nagai et al., 2010). Remote 

sensing and PhenoCam are more consistent in spring than in autumn (Zhang et al., 2018). 

Similarly, satellite-derived mid-senescence has little overlap with observed leaf coloration 
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(Donnelly et al., 2018). Although spring phenological advance is broadly observed, the autumn 

delay trend is always weaker (Defila & Clot, 2001; Chmielewski et al., 2005; Menzel et al., 

2006). Furthermore, lack of understanding about autumn senescence mechanisms (White et al., 

2002) inhibits the development of reliable models. Temperature plays an important role in spring 

phenology (Caffarra & Donnelly, 2011; Caffarra et al., 2011), while not as clear an effect in 

autumn (Schaber & Badeck, 2003). Nevertheless, some studies argue temperature increases may 

delay autumn phenology (Menzel et al., 2003). As to precipitation, there is a study suggesting no 

clear relationship exists between EOS and precipitation (Dragoni & Rahman, 2012), as well as a 

study asserting that drought in summer and autumn may lead to earlier leaf coloring and leaf fall 

(Chmielewski et al., 2005). Some scholars indicate chilling time and photoperiod might control 

leaf senescence, though models introducing chilling time as a variable are less accurate in 

predicting autumn phenophases than those using temperature to predict spring phenophases 

(Richardson et al., 2006; Yu et al., 2016).  

Although studies of autumn phenology are restricted by the accessibility of previous 

work and the complexity of physical mechanisms, autumn phenology still plays an important 

role in the carbon budget between atmosphere and biosphere, as discussed in the carbon flux 

section. However, what one can conclude for now is the clear need for further research on 

autumn phenology. 
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3. Study Area 

The study site is in the Park Falls Range District of the Chequamegon National 

Forest of northern Wisconsin, where the vegetation type is characterized as a mixed 

temperate/boreal forest with both deciduous (70%) and coniferous (30%) species (Haugen et al., 

1998). The land cover type within the footprint of this tower is identified as mixed forest while 

the net primary production land cover type and land function type are classified as deciduous 

broadleaf forest. Annual daily average temperatures range from -18°C to 25°C, with annual 

precipitation lowest in February (21mm) and highest in August (114mm) 

(http://www.intellicast.com/Local/History.aspx?location=USWI0531). There were two study 

plots with slightly different vegetation composition. The north study area is an upland forest 

dominated by sugar maple (Acer saccharum), red maple (Acer rubrum), basswood (Tilia 

americana), balsam fir (A. balsamea) and white cedar (Thuja occidentalis). The south study area 

is a lowland forest dominated by quaking aspen (Populus tremuloides), speckled alder (Alnus 

rugosa), red maple, white birch (Betula papyrifera), balsam fir (A. balsamea), white cedar 

(Thuja occidentalis) and red pine (Pinus resinosa, Hanes 2011). 

These study sites are mainly composed of 80-year-old mature hardwood forest which is 

representative of a significant northern temperate carbon sink and are within the footprint of a 

447-m WLEF AmeriFlux tower (45.94°N, 90.27°W, 473m in elevation), which has been 

operated by the Chequamegon Ecosystem Atmosphere Study group (ChEAS) to record carbon 

flux data since 1995 (Desai 2005). The WLEF tower is included in NASA’s Earth Observation 

System (EOS) and NOAA’s Climate Monitoring and Diagnostics Laboratory (CMDL) network, 

thus, enough related research and source data relating to this region are available (Liang 2009, 

https://ameriflux.lbl.gov/). 
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Figure 2. Study Site.  

This map was generated by QuickBird (2.4m) false color composite (September 27th, 2012). The black lines are the 

boundaries of the northern and southern study sites, with the WLEF Flux Tower in the middle of the 
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4. Data Source and Methodologies 

4.1 Data collection 

4.1.1 Field data 

Field data were collected during 2010-2013, which will be used to evaluate the accuracy 

of the RS and carbon flux approaches in estimating autumn phenology. Specifically, for the 

northern sites, autumn phenological data were available for 2010 and 2012; and for the southern 

sites, data were available for 2010, 2012 and 2013. Field data collection was conducted in two 

625m*625m areas, using a two-dimensional cyclic sampling scheme (Burrows et al., 2002). A 

3/7 cyclic scheme was applied for longitudinal and latitudinal dimensions to the whole 

600m*600m area, with 25m as the unit of sampling space. Within each sampling plot, the three 

largest trees of the dominant species within a 10-meter radius were selected (each yellow point in 

Figure 1 represents for a 10-meter radius circle) and monitored regularly. The information on 

field data collection is available on Table 2. 

Table 2. Field data collection information 

Site  Year 
Number of 

trees used 

Collection 

period 

(DOY) 

average 

collection 

frequency (days) 

Collection 

frequency range 

(days) 

Phenophases 

recorded 

North 2010 336 263-291 3.5 1~4 

Leaf 

coloration 

and leaf 

fall 

North 2012 335 260-294 4.25 4~5 

South 2010 274 265-293 4 4 

South 2012 270 262-292 4.29 4~5 

South  2013 264 256-291 2 2~3 
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The phenophases are recorded using a quantity protocol drawing from the German 

Biologische Bundesanstalt, Bundessortenamt, and Chemical Industry scheme (BBCH), but 

adapted to fit the phenology merits of native species (Liang et al., 2011). The scheme is 

described as follows: 

Autumn scheme (Schwartz, 2003; Yu et al., 2016): 

800 =Leaf coloration <10% 

810 =Leaf coloration 10~50% 

850 =Leaf coloration 50~90% 

890 =Leaf coloration >90% 

900 =Leaf fall <10% 

910 =Leaf fall 10~50% 

950 =Leaf fall 50~90% 

990 =Leaf fall >90% 

4.1.2 Satellite data 

To derive phenology from satellite data, several criterions should be met. First, enough 

radiometric resolution is available to produce the vegetation indices. Second, sufficient temporal 

resolution exists to mitigate cloud cover interference. Among all the available sensors, only 

SPOT (Vegetation sensor), NOAA, and MODIS meet these requirements, with MODIS having 

superior spatial and radiometric resolution compared to the other two. The MOD13Q1 006 

NDVI and EVI products, with 250m 16-day resolution, are broadly applied to acquire phenology 

data (https://lpdaac.usgs.gov/dataset_discovery/modis/modis_products_table/mod13q1_v006). In 

this project, the MOD13Q1 006 dataset was selected for processing satellite-based phenology. 
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4.1.3 Carbon flux data 

Carbon flux data are available on the AmeriFlux website (http://ameriflux.lbl.gov/). The 

tower provides one-hour interval carbon flux measurements including original (deficient) NEE, 

GPP records and gap-filled NEE, GPP records, with the gap-filled record dating back to 1996. 

No data is available for autumn 2005, so this year is not included in the analyses. In addition, the 

carbon tower didn’t operate in the latter half of 2010, and the gap-filled data is problematic with 

an apparent abnormal decrease, so autumn 2010 carbon data are also omitted. 

Table 3. Data summary 

Data type Category  Indices/phenophases Time period Footprint  

Field data Direct Leaf coloration 

Leaf fall 

North: 2010, 2012 

South: 2010, 2012, 2013 

Point data 

Satellite data Indirect NDVI, EVI 2000-2017 250m*250m 

Carbon flux Indirect  NEE, GPP 1997-2017 (no 2005, 2010) 5km radius  

 

4.2 Methodologies 

4.2.1 Deriving landscape phenology 

Landscape phenology (LP) is derived from leaf coloration and leaf fall time series to 

represent field observation-based phenology. The methodology is described in Liang and 

Schwartz (2009). Basically, the procedure can be divided into two parts: a) determination if 

spatial autocorrelation exists, and b) hierarchically upscaling of field phenology data if no spatial 

autocorrelation is found. 

The examination of spatial autocorrelation aims to reveal if vegetation phenology follows 

Tobler’s First Law of Geography: Everything is related to everything else, but near things are 

more related than distant things. Spatial autocorrelation in phenology would indicate that the 
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environmental factors in this study area have a significant impact on plant phenology, which 

overrides the between and within species differences determined by genes. If not, then the 

opposite conclusion will hold. In previous studies, spatial autocorrelation was not found (at the 

25m scale of these data) in either spring or autumn phenology (Liang et al., 2011; Liu et al., 

2015). Therefore, it is reasonable to assume that between and within species genetic difference 

play a more important role than environmental factors in phenology development at this scale.  

Based on this result upscaling can be performed as follows: 

First, derive population phenology, which is simply calculating the arithmetic average of 

individuals of each species since no spatial autocorrelation adjustment is needed. 

Second, derive community phenology. Considering the various species and 

environmental components in different communities, the phenology in each community is 

calculated separately. The manipulation can be divided into two steps: delineating the boundaries 

of communities and getting the proportion of each component within each community; and 

applying a weighted average algorithm for each community. For the first step, community 

boundary information was obtained from previous work by Liang (2009), where a 1m resolution 

merged IKONOS image was applied to generate a highly-supervised community classification 

output. The components in the study areas are categorized into deciduous, coniferous and bare 

land. Then two QuickBird images were used to conduct a subpixel classification, with 

multitemporal linear spectral unmixing models adopted. The community boundary file and 

subpixel classification file are overlaid to get the proportion of deciduous, coniferous and bare 

land in each community. For the second step, the dominant deciduous species phenology in each 

community are averaged, then multiplied by the deciduous proportion obtained in the first step to 

get the community phenology. For communities with relatively large proportion of shrubs, grass 
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and open canopies, speckled alder is included as a substitute. Evergreen coniferous species are 

not included in the calculation since they don’t show observable phenology in autumn. 

Finally, landscape phenology is derived in two steps. First, calculate the average 

community phenology weighted by community areas. Second, divide the average by deciduous 

proportion in the entire study area to eliminate unit issues.  

Raw landscape phenology time series are be kept since it is the most precise description 

of what is happening on the ground. However, each time series, representing leaf coloration or 

leaf fall, is fitted to a logistic model. This is based on the following considerations: 

 First, when fitting landscape phenology with logistic model, the goodness of fit is high, 

the time series, indicating fitting model will influence the precision of raw data in an acceptable 

degree. 

Second, the parameters derived from the fitted model provide information on the 

senescence rate and peak time which raw data series omit. These parameters can be used to 

compare with the other two approaches. 

 Third, the model fitting equation can be used to estimate the phenology stage at any given 

DOY. Different from satellite data and carbon flux measurement, the estimation results provide 

information with specific phenology significance, which is the percentage of leaves reaching 

coloration or fall stage. With this information, real-time ground-based data correspondence with 

satellite or carbon flux derived start of autumn (SOA), middle of autumn (MOA) or end of 

autumn (EOA) becomes possible.  

 Finally, for satellite and carbon flux measurements, the model derived transition dates 

correspond to dates when the rate of senescence accelerates or slows down, rather than the dates 

when senescence first occurs or stops. Therefore, applying fitting model to field data also returns 
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dates when the rate of leaf coloration or leaf fall suddenly accelerates or slows down. By doing 

so, comparing transition dates among different datasets with fixed physical and mathematical 

meaning are possible, and retains consistency among the approaches. Meanwhile, the DOY when 

start or end of leaf coloration or leaf fall are first observed can still be determined from raw field 

data. 

4.2.2 Deriving satellite phenology  

a. Acquiring and pre-processing satellite data based on the Google Earth Engine platform 

In this project, MODIS006 vegetation index (VI) data were selected for deriving satellite 

phenology. In contrast to conventional data processing procedures, the Google Earth Engine 

(GEE) was used for easier data access and processing. GEE is a cloud-based platform which 

enables users to process large datasets with a limited number of lines of codes (Gorelick 2017). 

An online Integrated Development Environment (IDE) based on JavaScript API is available, and 

the provided python API makes it possible to code offline in a python environment 

(https://developers.google.com/earth-engine/). In this project, coding was based on online IDE. 

The GEE platform proved beneficial to this project for following reasons: 

1. The data covers a relatively long duration (1997 to 2017) and since the temporal 

resolution of the MODIS data is 16-days, roughly 24 images will be needed each year. As 

a result, conventional downloading will require up to 100GB of storage, and 

manipulating nearly 500 layers would be labor intensive. However, GEE computation 

service enables users to select data with an import function, then process with a few lines 

of codes, with the final output exported into a csv file for further analysis. Therefore, 

having enough storage space is no longer an issue, and labor is greatly reduced. 
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2. Raw MODIS images use a Sinusoidal (SIN) projection, which, in this project, requires a 

reprojection before being clipped by the polygon shapefile of the study area. A MODIS 

reprojection tool (MRT) is available 

(https://lpdaac.usgs.gov/tools/modis_reprojection_tool) to convert the MODIS image 

projection and format into more commonly-used types. However, when dealing with 

many images, this reprojection and format converting process could be labor intensive, 

but the GEE platform greatly reduces the time needed to complete this task. First, by 

entering latitude and longitude of four corners of the plot, I can identify the boundary of 

the plots and create one polygon geometry for each. Then the geometries can be imported 

as variables for later use. Second, The ReduceRegions function is designed to process 

data within a defined region, which refers to the geometries for my cases. By applying 

this function, I don’t need to clip each image with a polygon, so reprojection and format 

conversion are not required either.  

3. Since the plots are relatively small, carrying out a relatively precise estimation based on 

limit pixels, the VI value of each pixel is weighted by their area of intersection within the 

plot (Liang et al., 2011). The ee.Reducer.mean() function provided by the GEE platform 

calculates a regional average weighted by intersection areas between each pixel and 

geometry, which frees users from computing the weight of each pixel manually.  

Finally, based on these requirements, the exported result is in a csv file with attributes 

including calendar day, day of year (DOY), mean NDVI, mean EVI, standard deviation of NDVI 

and standard deviation of EVI. 

The “DayofYear” column of the table is computed by the average day of year when the 

image is acquired. Therefore, the DOY value of the last record in an annual time series might be 

https://lpdaac.usgs.gov/tools/modis_reprojection_tool
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invalid. For example, in 2000 for the northern plot, the penultimate day of year was 337, while 

the last day of the year is 202. That’s because in the last row, some pixel data were acquired in 

the last several days of 2000, while the other data were acquired in the first days of 2001. As a 

result, the average day of year is unusually small, and the standard deviation is as great as 170.  

To get a reliable DOY, I selected 16 evenly-distributed points in each plot and extracted 

their data into separate files. The GEE platform will return the data of pixels covering the points 

of interest. Then the pixel data acquired at the end of the year will be used to replace the invalid 

DOY values in the multi-pixel average files. In the previous example, the day of year value 

“202” will be replaced by “362”.  

b. Two different data processing methods before applying a model are required 

The original data processing method is to put the raw data directly into the logistic model 

for regression analysis. Before processing the regression, initial parameter values should be 

identified for iteration. The output of the estimated parameters is sensitive to the initial input. To 

improve the efficiency of logistic regression model, two options were tested to manipulate the 

data before applying the model. 

The first option is to use VI raw data directly for analysis, while the second option is to 

normalize the VI values following equation (1) as described in White 1997: 

               (1) 

The normalized VI value ranges between 0 and 1, so the minimum and maximum of VI 

time series are fixed. As a result, the regression model is simplified since fewer parameters are 

estimated. Furthermore, the uncertainty caused by the parameters is reduced. 
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In this project, original raw data and normalized data are applied to the regression model 

respectively, using twenty years of autumn data (1997-2017) used. The goodness of fit of the 

logistic model for these two options are compared using paired-sample T tests. If a significant 

difference is found (P<0.05), the option with higher goodness of fit will be selected for further 

analysis. Otherwise, if neither of these two methods is higher than the other one, the simplest 

one, which is the normalized data, will be chosen. 

c. Applying two-section logistic models to derive SOA, MOA and EOA  

The VI time series are dissected into two sections, the increasing section during spring and 

the decreasing section during autumn. Division of these two periods is identified as the 

corresponding date of year (DOY) when the minimum root-mean-square error (RMSE) value is 

found. In the original raw data, for the decreasing autumn section, a logistic-regression model is 

applied following equation (2), where t is time in days, y(t) is the VI value at time t, a and b are 

fitting parameters, and c + d is the maximum VI value (Zhang et al., 2003). 

               (2) 

Then the rate of change of curvature (CR) could be computed from equation (3), where 

, 

  (3) 

The DOY shows two minimum CR values in the decreasing section which represent the 

date of the start of autumn (SOA) and end of autumn (EOA), while the DOY corresponding to 

the maximum CR value represents the middle of autumn (MOA).  
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In normalized data, c and d are replaced by 1 and 0 respectively, which simplifies 

equation (2) and equation (3) into equations (4) and (5): 

                (4) 

       (5) 

4.2.3 Deriving carbon flux phenology 

a. Data acquiring and pre-processing 

Carbon flux data for Park Fall can be downloaded from the AmeriFlux website. The data 

include hourly-interval raw and gap-filled records. In this project, only daytime records 

reflecting productivity were selected for processing since nighttime GPP is supposed to be zero 

and nighttime NEE tends to show the intensity of night respiration. Daytime is defined by the 

time of sunrise and sunset, which can be computed based on latitude of the carbon tower and day 

of year. Records are removed if day length is shorter than eight hours. However, no day length is 

shorter than eight hours in the study area, so all records are kept. Then all daytime records within 

a day are averaged to get the daily average NEE and GPP.  

b. Fitting model deriving phenology based on carbon flux indices 

In this project, a double-logistic function is applied to derive three inflection points 

during autumn: start of autumn (SOA), middle of autumn (MOA) and end of autumn (EOA). The 

function is described as equation (6), which originates from the double logistic function in Fisher 

(2006) and the two-section logistic model in Zhang et al. (2003). 
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            (6) 

 Where y(t) is the carbon flux indices value at time t, a, b, c, d, e, f, g are fitting 

parameters (b, c, and d are spring parameters while e, f, and g are fall parameters). Different from 

satellite data, carbon flux data are abundant but noisy. Therefore, a, d, and g are not set by the 

minimum and amplitude of carbon flux variation, although these are still their physical 

meanings. Instead, all parameters are estimated by non-liner regression. 

 Similar to satellite time series processing, carbon flux indices are normalized using 

equation (7) and equation (8). 

           (7) 

           (8) 

 Where NEEnor and GPPnor represent normalized NEE and GPP, and range between -1 to 0 

and 0 to 1 respectively. Therefore, the double-logistic function is simplified into equation (9): 

            (9) 

Twenty-year time series are regressed for both original function (6) and simplified 

function (9), then goodness of fit are compared by paired-sample T tests. Subsequently, the 

option with either significantly higher accuracy (P<0.05) or simplicity (normalized data) will be 

selected to derive SOA, MOA and EOA. 
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Based on the algorithm developed by Zhang et al. (2003), transition dates are derived 

from the minimum and maximum values of change of curvature (10): 

               (10) 

 Where the two maximum values represent for SOA and EOA respectively, and the 

minimum represents MOA. 

 

Figure 3. An example of annual NEE and change of curvature (CR) variation. 

Source data: unnormalized NEE time series in 2016. 
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4.2.4 Comparison among three measurements 

Satellite data are useful when they provide researchers with possibilities to monitor 

phenology where no field data are available. That advantage also facilities phenological studies 

at continental or global scales. However, the reliability of satellite data is a debatable issue. First, 

orbit errors and cloud cover can affect the accuracy of satellite data. Second, the monitoring 

frequency is restricted by the temporal resolution of satellites (Sellers et al., 1992). Furthermore, 

the accuracy of satellite-derived phenology varies with attributes of the model themselves (Beck 

et al., 2006; White et al., 2014).  

As for carbon flux measurements, NEE is an indicator of the carbon exchange rate 

between an ecosystem and atmosphere, while an ecosystem is composed of trees, grass, animals, 

soil bacteria, and other lifeforms. GPP is the productivity of all producers, although deciduous 

forest plays the predominant role in this study area. Therefore, NEE and GPP values are 

contributed by living activities of various organisms, but not only those measured in this study. 

Thus, the accuracy of estimating forest phenology based on NEE and GPP needs to be clarified. 

For each measurement, a comparison with ground-based reference data is conducted for 

available years. When no field data is available, comparison between satellite data and carbon 

flux indices is conducted. The comparison can be classified into two types: comparison of 

phenology transition dates and comparison of senescence rate parameters. 

a. Comparison of phenology transition dates 

For each measurement, SOA, MOA and EOA are computed. In the years when field data 

is available, root mean square error (RMSE) and bias (Soudani et al., 2008) between field 

observation and other measurements are calculated for each transition date.  
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             (11) 

Where Mi is the transition date for a certain measurement (field data, satellite data or 

carbon flux indices), Oi is the transition date of observation, n is the pair of comparisons. Apart 

from that, for each year, the DOY of each seasonal marker is put into field-derived fitting model 

to get a corresponding field phenology.  

When field data are unavailable, for each seasonal marker, the RMSE and bias between 

satellite data and carbon flux data is calculated.  

4.2.5 Comparison of parameters 

Logistic regression is non-liner regression, so simply doing linear correlations among the 

logistic fitted curves of different approaches might not show their mechanistic relationships. 

However, logistic models are exponentially linear models, which can be converted into a linear 

form using logarithms. The extracted linear part in a two-section logistic model includes only 

two parameters (a and b), each of which has a biological meaning (Zhang, 2015). In a two-

section logistic model (equation (2)), the absolute value of parameter b is the rate of vegetation 

growth or senescence, while the absolute value of a/b is the peak of growth or senescence, which 

equals to MOS or MOA. Similarly, in double-logistic functions, the absolute value of parameter 

c and f are the rate of vegetation growth or senescence, while the absolute value of b/c and e/f are 

the peak of growth or senescence (Beck et al., 2006). Therefore, the linear correlation of linear 

parameters derived from different approaches shows the difference and relationship of these 

approaches in measuring the rate and peak of vegetation growth and senescence.  
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For satellite data and carbon data, linear correlation of senescence rate parameters is 

conducted. In the linear regression model, the constant is manually set as zero since an intercept 

doesn’t have any physical meaning while the slope shows how many times the rate derived from 

one approach is compared to another approach. RMSE is used to evaluate the quality of model 

instead of R square because the latter in not applicable in a non-constant regression model. 

Similarly, the significance (P value) for the model is derived from T test rather than F test for the 

same constant issue.  

In the years with field data, RMSE and bias are used for rate parameters from three 

approaches rather than linear regression, considering the field data covers up to three years.  

The peak of the senescence parameter, which is a/b, b/c or e/f depending on the case, 

derived from each approach, as discussed earlier, is the same as MOA. Therefore, the 

comparison is accomplished in an earlier section and is not analyzed separately.  
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5. Results  

5.1 The influence of normalization  

5.1.1 Satellite data 

 For the raw and normalized satellite time series, neither parameters nor R square values 

show significant differences (Table 4). Especially for parameter a in the south site, values are the 

same within the first few decimals, so the standard error of difference is taken to be 0. A T value 

cannot be computed under this situation, explaining the N/A value in Table 4. The similarity in 

parameters suggests the fitted curves derived from raw and normalized datasets are nearly the 

same and perform equally effectively for estimating phenology transition dates. Consequently, 

normalization doesn’t have a significant impact on the quality of time series. Considering 

normalization simplifies the fitting model, normalized datasets are used to derive satellite-based 

phenology transition dates. 

Table 4 Comparison of parameters and goodness of fit for raw and normalized datasets 

  
a 

 
b 

 
R2 

 

 

 
mean P value mean P value mean P value 

north EVI 0.078 0.269 -20.297 0.435 0.970 0.257 

EVInor 0.078 -20.297 0.969 

NDVI 0.219 0.331 -58.427 0.071 0.981 0.189 

NDVInor 0.219 -58.427 0.984 

south EVI 0.065 N/A -16.758 0.331 0.973 0.498 

EVInor 0.065 -16.793 0.974 

NDVI 0.190 N/A -50.484 0.042 0.962 0.720 

NDVInor 0.190 -50.622 0.963 
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5.1.2 Carbon data 

 For both GPP and NEE, the goodness of fit for normalized datasets is significantly lower 

than for raw datasets. For GPP, dataset mean R square slightly decreases by 0.006 after 

normalization, while the difference is 0.102 for normalized NEE. This result suggests 

normalization has less impact on GPP than on NEE, although even this small impact is 

significant in terms of data accuracy (Table 5).  

Table 5. Comparison of goodness of fit for raw and normalized datasets 

Variables GPP GPPnor NEE NEEnor 

Mean 0.942   0.936 0.827 0.725 

P value 0.000 0.000 

 

 To further investigate raw and normalized dataset differences, the model fitted curve and 

corresponding change of curvature are provided in Figure 4. For both GPP and NEE, normalized 

curves show different shapes, which are revealed by their change of curvature. For modeled 

NEE, shape differences are obvious in both spring and autumn. For raw datasets, both decreasing 

and increasing sections show three transition points. However, for normalized datasets, there are 

only two transition points throughout the year (Figure 4 (a), (b)). Although Figure 4 is based on 

2016 data, similar patterns occur in all available years. From autumn 1997 to 2016, among 18 

available time series, three years have two transitions (1997, 1999 and 2006) while the other 

years only have one transition. However, all years have three transitions in raw time series 

(except 2015, with only one transition). Therefore, it will be problematic to use normalized NEE 
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to derive autumn phenology transition dates. As for modeled GPP in 2016, shape differences are 

not obvious in spring, as both raw and normalized datasets show three transition points on 

change of curvature. However, in autumn, although both raw GPP time series and normalized 

time series produce three transition points, the transitions in raw time series are defined by two 

maximum and one minimum while in the normalized time series they are defined by one 

maximum and two minimums (Figure 4 (c), (d)). This indicates the shape of fitted curve are 

different despite the number of transition point staying the same. Among the 18 available time 

series, six years produce three valid transitions (1997, 1998, 1999, 2009, 2014, 2016), seven 

years produce two transitions (2000, 2001, 2002, 2003, 2004, 2012, 2015) and the others produce 

only one transition. Therefore, although normalization has a weaker impact on GPP compared 

with NEE, it will still be problematic to apply normalized GPP in deriving phenology transition 

dates. Thus, for both NEE and GPP, raw time series are used for further analysis.  
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Figure 4. Modeled carbon flux time series and change of curvature.  

The dotted lines show carbon flux indices (scale on right axis), and dashed lines show change of curvature (scale on 

left axis). (a) is modeled NEE raw time series and its change of curvature in 2016, and (b) is for normalized NEE 

time series in 2016. (c) represents for GPP raw time series in 2016 while (d) represents for normalized GPP time 

series in the same year.  

5.2 Year-by-year comparison with field data 

5.2.1 Transition dates 

 For the north site, start of autumn (SOA) dates derived from all four datasets are earlier 

than the first transition of leaf coloration and leaf fall. Among them, NEE shows the most 

advanced gap (as much as 78 days from leaf coloration and 83 days from leaf fall). For 
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normalized satellite data, EVI has a larger bias than NDVI. As for middle of autumn (MOA), all 

four indirect measurements are still earlier than the second transition of leaf coloration and leaf 

fall, but all the absolute bias errors are smaller than for SOA. The gap between indirect 

approaches and observation shows the order of NEE> GPP>EVI> NDVI, which is consistent 

with the order found in SOA. As for end of autumn (EOA), NEE derived EOA is eight days 

earlier than leaf coloration while 16 days earlier than leaf fall. Normalized EVI results in later 

EOA than leaf coloration while it predicts leaf fall perfectly. On the contrary, normalized NDVI 

always results in earlier EOA than leaf coloration. The bias error between indirect measurements 

and observations is further reduced at the end of senescence, indicating the physiological stage of 

deciduous trees, ground spectral feature and ecosystem activity intensity become more 

consistent. 

For the south site (like north site), start of autumn (SOA) and middle of autumn (MOA) 

derived from the four approaches are all earlier than both leaf coloration and leaf fall. For both 

SOA and MOA, (and both leaf coloration and leaf fall stage), the order of bias error follows the 

same pattern as for the north site, which is NEE>EVI>NDVI. However, a GPP bias error is 

available for the south site. For SOA, the absolute bias of GPP is smaller than that of normalized 

EVI. The absolute bias error between GPP and leaf coloration or leaf fall stage is lower than EVI 

by 24 days. For MOA, GPP bias error still falls between normalized EVI and normalized NDVI. 

GPP bias errors are four days less than EVI for the leaf coloration and three days less for the leaf 

fall stage. As for end of autumn, the smallest absolute bias errors from leaf coloration and leaf 

fall are in NEE while the greatest are in GPP which are as much as 26 days later than leaf 

coloration and 21 days later than leaf fall. For EVI and NEE, the gap from both leaf coloration 
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and leaf fall becomes smaller with phenological progression, while this trend is not found in GPP 

and NDVI. 

Table 6. Average bias error of transition dates 

    Leaf Coloration Leaf Fall 

  Site  Start Middle End Start Middle End 

EVInor N -31 -11 9 -36 -14 0 

S -52 -20 13 -56 -24 7 

NDVInor N -9 -7 -5 -15 -9 -14 

S -4 -7 -6 -12 -11 -12 

NEE N -78 -49 -8 -83 -56 -16 

S -66 -39 4 -71 -44 -1 

GPP N N/A -30 N/A N/A -37 N/A 

S -28 -16 26 -32 -21 21 

For the north site, field data are available for 2010 and 2012. Since carbon data in 2010 is unavailable, the carbon 

bias error is based only on data from 2012. In autumn 2012, GPP model provides only one output, which is taken as 

MOA, then the comparison for the other two transition dates are inapplicable.  For the south site, field data are 

available for 2010, 2012, and 2013, so carbon bias error is computed from the average of 2010 and 2013 data. 

5.2.2 Senescence rate  

 Table 7 shows the senescence rate derived from field observation and indirect 

approaches. For the south site, average rate based on normalized NDVI is faster than that of leaf 

coloration and leaf fall. However, under all the other situations, the average rate derived from 

indirect approaches are slower than either leaf coloration or leaf fall. The reliability of each 

approach can be evaluated by the difference between the computed ratio and one--the shorter 
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distance representing better estimation. Thus, the reliability of EVI derived leaf coloration and 

leaf fall rate for the north site is better than for the south site. Meanwhile, NDVI, NEE and GPP 

perform better in estimating south site leaf coloration and leaf fall rate than for the north site. In 

the north site, reliability of approaches in estimating both leaf coloration and leaf fall rate follows 

the order of NDVI> EVI> NEE and GPP. For the south site, the reliability of approaches follows 

the order of NDVI> EVI> GPP > NEE.  In both sites, satellite data performs better than carbon 

data, while for satellite data, NDVI performs better than EVI. In addition, in both sites, the 

reliability of NEE and GPP are similar, with ratio varying between 9.88 to 9.95 for north leaf 

coloration, and 7.76 to 9.32 for south leaf coloration; for leaf fall, the ratio varies between 9.11 to 

9.17 in north site and between 7.25 to 8.49 in south site. However, the reliability order of these 

two indices could switch, which probably depends on the community composition of these two 

plots. 

Notably, the reliability of approaches in estimating senescence rate can’t solely determine 

their accuracy in studying phenology. In fact, rate only determines the distance between start and 

end of autumn, which is the length of senescence. The midpoint of senescence, which is also 

MOA (discussed in last section), determines the time of year of senescence. To thoroughly 

compare different datasets, considering both senescence rate and midpoint time is necessary. In 

Table 6, NDVI derived MOA for both sites shows smaller bias error from the midpoint of leaf 

coloration and leaf fall than the other approaches. Together with the higher reliability in 

estimating senescence rate parameter (Table 7), it’s reasonable to conclude that the NDVI time 

series can more accurately describe both leaf coloration and leaf fall than the other datasets. As 

for EVI, NEE and GPP, (in both the north and south sites), both leaf coloration and leaf fall 

stages show the greatest midpoint bias errors for NEE, while the bias order of EVI and GPP are 
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not fixed. Conversely, the senescence rate difference between field data and either NEE or GPP 

is greater than EVI, while only small differences exist between the former two. Therefore, NEE 

can be treated as the least reliable approach with slightly lower performance than EVI and GPP, 

while the accuracy order of EVI and GPP is hard to determine.  

In conclusion, the accuracy of the four datasets can be summarized as: NDVI is the most 

reliable one in terms of senescence rate and senescence time of the year and the least reliable one 

is NEE. The accuracy of EVI and GPP are variable and might be altered by the properties of the 

plots. However, EVI performs better in estimating senescence rate than GPP. 

Table 7. Senescence rate parameter for each approach from 2010 to 2013 

Year Site EVInor NDVInor NEE GPP LC LF 

2010 

North 0.13 0.32 

N/A N/A 

0.43 0.28 

South 0.06 0.18 0.41 0.27 

2012 

North 0.07 0.37 

0.05 0.05 

0.50 0.58 

South 0.06 0.24 0.45 0.55 

2013 South 0.05 0.83 0.04 0.05 0.36 0.29 

        

Average ratio to field observation 

LC North 4.62 1.35 9.88 9.95 - - 

 South 6.98 0.97 9.32 7.76 - - 

LF North 4.26 1.24 9.11 9.17 - - 

 South 6.35 0.88 8.49 7.25 - - 

LC represent for leaf coloration and LF represent for leaf fall. 



44 

5.3 Long-term comparison between satellite data and carbon data 

5.3.1 Transition dates 

Since long-term field observations are unavailable, a potential compensation for this is to 

use available observation data as a proxy long-term record. This approach assumes that 

observation record-available years are not abnormal over the long-term. To test this assumption, 

the z value of start, middle and end of autumn derived from normalized EVI, normalized NDVI, 

NEE and GPP were computed. If a z value exceeds three, then the corresponding record is 

treated as an outlier. Results show for all four approaches and three transition dates, the z values 

in 2010, 2012 and 2013 are smaller than three, suggesting the transition dates in these three years 

are normal and consistent within long-term records (Appendix A, B and C). Therefore, the 

average of observation transition dates in these years (2010 and 2012 for north site and 2010, 

2012 and 2013 for south site) are computed and taken as representative of a long-term field 

record which is then compared with transition dates computed from long-term indirect 

approaches. 

The phenological transition dates derived from normalized EVI, normalized NDVI, NEE 

and GPP during 1997 to 2017 were compared. The available field data are used as reference lines 

in Figure 5. For start of autumn, for both the north and south sites, all four indirect approaches 

show an earlier average start than either leaf coloration or leaf fall starts. In the north site, bias 

error from both leaf coloration and leaf fall stages (shown by the distance between mean of each 

approach and the two observation-based reference lines), is greatest for NEE and smallest for 

NDVI. The bias error based on EVI, NEE and GPP varies within seven days (36 to 43 days for 

leaf coloration stage and 41 to 47 days for leaf fall stage) while the bias error for NDVI is lower 

(9 days for leaf coloration stage and 14 days for leaf fall stage). In the south site, greatest bias 
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error is for EVI, which exceeds NEE bias by three days and GPP bias by nine days. Meanwhile, 

the smallest bias error is still from NDVI (Figure 5 (a), (b)). For middle of autumn, all eight 

means from the two sites are earlier than the second transition of leaf coloration and leaf fall. For 

both sites, bias error is greatest for NEE and smallest for NDVI. In the north site, NEE bias error 

is ten days larger than EVI and nine days larger than GPP. In the south site, NEE bias error is 

five days larger than EVI and ten days larger than GPP (Figure 5 (c), (d)). For end of autumn 

(except for the mean derived from NDVI overlapping with the third transition of leaf fall in south 

site and being earlier than that transition by one day in north site), all the other six means from 

two sites are later than the third transition of leaf coloration and leaf fall. In both sites, the bias 

error is smallest for NDVI, and GPP biases are the largest, exceeding EVI bias by four days in 

the north site and three days in the south site; while exceeding NEE bias by six days in both sites 

(Figure 5 (e), (f)).  

In general, NDVI shows the minimum bias error with leaf coloration and leaf fall in all 

stages and both sites, while the maximum bias error can come from either NEE or GPP. The bias 

derived from EVI, NEE and GPP differ by up to ten days (north site middle of autumn and leaf 

fall stage, between EVI and NEE).  
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Figure 5. SOA, MOA and EOA are start of autumn, middle of autumn and end of autumn respectively.  
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Dot-dash lines show the first, second and third transition of leaf coloration, while the dotted lines show the first, 

second and third transition of leaf fall. Data are from the average of all field data available years at each site. The 

star in each box represents mean values and hollow dots represent outliners.  Numbers below each label show bias 

errors between mean values of each approach and leaf coloration/leaf fall stage. Although bias errors are calculated 

using mean dates of one approach minus leaf coloration or leaf fall date (which results in both positive and negative 

numbers), the absolute value is used for convenience.   

5.3.2 Progression rate 

 Like transition dates, the z values of long-term progression rate for the four datasets were 

computed. Result show the south site NDVI derived progression rate in 2013 is an outliner (z 

value = 3.62). However, since z values derived from the other three approaches in that year are 

relatively small (-0.49 for EVI, -0.80 for NEE, 0.25 for GPP), this abnormal large value in NDVI 

is not enough to judge 2013 as an abnormal year (Appendix D). Therefore, the field record in 

2013 is still treated as a representative of long-term observations and utilized to generate mean 

leaf coloration and leaf fall rate.  

 Different from year-to-year comparison, long-term comparison suggests all four indirect 

approaches underestimate leaf coloration and leaf fall rate at both sites. However, indirect 

approaches still perform better in estimating leaf coloration rate than leaf fall rate. Moreover, 

NDVI remains the highest reliability for both sites and stages. Conversely, the reliability orders 

of EVI, NEE and GPP differ between sites. For both leaf coloration and leaf fall stage, in the 

north site, the reliability order is NDVI> EVI> GPP> NEE, while in the south site, the order is 

NDVI> GPP> EVI> NEE. Although the orders are inconsistent, the difference between long-

term EVI, NEE and GPP decrease rate is relatively small.  Specifically, for the north site, the 

ratio varies between 5.97 to 7.23 in estimating leaf coloration and 5.50 to 6.67 in estimating leaf 
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fall; for the south site, the ratio varies between 5.56 to 6.30 in estimating leaf coloration and 5.07 

to 5.74 in estimating leaf fall (Table 8).  

Table 8. Progression rate ratio between field data and indirect approaches 

Year Site EVInor NDVInor NEE GPP 

LC North 5.97 2.11 7.23 6.38 

 South 5.50 1.95 6.67 5.89 

LF North 6.19 2.12 6.30 5.56 

 South 5.64 1.93 5.74 5.07 

LC represent for leaf coloration and LF represent for leaf fall. 

Apart from their reliability in estimating leaf coloration and leaf fall rate, when not 

considering field data, the linear relationships between progression rate derived from four 

indirect approaches can be computed. Over the long-term, normalized EVI rate is slower than 

normalized NDVI rate. Specifically, in the north site, EVI rate is 30.3% of NDVI rate, while in 

the south site, EVI rate is 34.1% of south rate. The rate derived from EVI and carbon 

measurements are close, where EVI rate is 1.015 times as much as NEE rate in the north site, 

while 0.886 times as much of NEE rate in the south site. EVI rate is slightly faster than GPP rate, 

being 0.246 times higher in the north site and 0.142 times higher in the south site. Conversely, 

NDVI rate is much faster than the two carbon measurements. Markedly, NDVI rate is 2.053 to 

1.159 times faster than NEE and 2.316 to 2.551 times faster than GPP. The rate of NEE and GPP 

are nearly the same with a ratio of 1.021. All these regressions are very significant (P<0.01), and 

RMSE varies within 0.021 and 0.138, suggesting stable relationships with low error levels. 
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Figure 6. The linear relationships of progression rate derived from four indirect measurements (normalized NDVI, 

normalized EVI, NEE and GPP).  

For either site, two of these four approaches are selected, and their rate parameters are regressed. The intercept of 

each regression is set as zero, and the slope below each subplot represents for the numerical relationship between the 

rate of the regressed two datasets. If slope is greater than one, then the rate derived from the vertical axis dataset is 

faster than that of the horizontal axis dataset, and vice versa.  Significance and RMSE show the quality of 

regressions. Since the same NEE and GPP dataset are shared by north and south site, only one regression is 

computed. 

 From these linear regressions, the order of long-term progression rate can be described 

as: NEE≈ GPP≈ EVI< NDVI. However, the reliability of indirect approaches to reflect canopy 

change is also determined by bias errors between their midpoint and second transition of leaf 

coloration and leaf fall. This bias is represented in Figure 5, where the bias is smallest in NDVI, 

largest in NEE while the order of EVI and GPP differ between plots. NDVI decrease rate is 

closest to canopy autumn progression although it’s still slower. At the same time, the midpoint of 

NDVI decrease is closest to the midpoint of leaf coloration and leaf fall. Integrating middle of 

autumn and autumn progression rate, it’s reasonable to conclude NDVI has the highest temporal 

consistency with canopy change.  

The midpoints of all the other three approaches are a few days later than the second 

transition of leaf coloration and leaf fall, showing delayed development of autumn canopy 

phenology. Meanwhile, their decrease rates are all slower than leaf coloration and leaf fall, 

resulting in earlier start of autumn, later end of autumn and longer timespan than observed 

canopy autumn progression duration. Considering their close decrease rate and flexible bias 

order, the reliability of EVI, NEE and GPP are similar in terms of estimating observed canopy 

phenology, which are all lower than that of NDVI. In addition, their similarity in terms of 



51 

sensitivity to canopy change indicates higher accuracy in estimating carbon flux indices from 

EVI than NDVI in a forest ecosystem.  

In general, the conclusion from year-to-year comparisons is reinforced: NDVI shows the 

highest accuracy in estimating observed phenology while the order of the other three approaches 

is not fixed. 
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6. Discussion 

6.1 Issue with incomplete time series  

Ideally, the intersection of curves and phenology in the leaf coloration stage would be 

800, representing leaf coloration having not started in an earlier day of year (DOY). However, 

the intersections are higher than 800 in north site years 2010 and 2012, as well as for south site 

years 2010 and 2012. This could be a result of the late start of observations. When observation 

started in the north site, DOY was 263 in 2010 and 260 in 2012; for the south site, DOY was 265 

in 2010 and 262 in 2012. Further, most species had already entered leaf coloration stage. 

Specifically, for the north site, except for Tamarack in 2010 and Basswood in 2012, the 

population phenology of all the other species are higher than 800. For the south site, at the time 

when observation started, the population phenology for all species are greater than 800. 

Following population phenology, the first record of landscape phenology was higher than 800. 

Therefore, for these four time-series, the leaf coloration values earlier than the first day of 

observations overestimate the true leaf coloration stage. However, this problem disappears after 

the observations start, which means values occurring later than the first day of observation are 

reliable. A similar problem exists in 2013, in the south site, when observations ends before full 

leaf coloration and full leaf fall are observed on every tree. By the end of observation, most of 

the species have shown full leaf coloration and full leaf fall except for S. Alder. This matches 

with the report of Alder leaves staying green (and attached) until early November, and finally 

being killed by frost rather than naturally falling (Koike et al., 2001). The late phenology of S. 

Alder, when reflected by landscape phenology, causes leaf coloration and leaf fall phenology 

ending before full leaf coloration and full leaf fall. This would lead to the underestimation of leaf 

coloration and leaf fall proportion at the end of growing season.  
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6.2 Field observation and satellite data 

6.2.1 Field observation corresponds with satellite phenology transition dates 

For EVI, in the north site, when EVI detects increase in progression rate, the ground leaf 

coloration proportion is 8% in 2010 and 5% in 2012. In the south site, the first transitions 

detected by EVI correspond with 14% of leaf coloration in 2010, 5% of leaf coloration in 2012 

and 0% of leaf coloration in 2013. However, considering the issue with late start of observations, 

the true leaf coloration stage is better reflected by the slope of transition dates, which are quite 

flat in all five situations, indicating the leaf coloration haven’t started yet. EVI derived middle of 

autumn (MOA), although later than start of autumn (SOA), still corresponds with a flat slope in 

all five situations. In the north site, in 2010, EVI derived MOA overlaps with the first transition 

of leaf coloration, when leaf coloration proportion is 19%; in 2012, EVI derived MOA 

corresponds with 5% of leaf coloration, but the flat slope still suggests the leaf coloration hasn’t 

started. Similarly, in the south site, EVI derived MOA occurs earlier than the first transition of 

leaf coloration in all three years, with a flat slope suggesting the observed leaf coloration 

progress hasn’t started. However, EVI derived end of autumn (EOA) occurs at the late phase of 

leaf coloration. In all five situations, EVI derived EOA occurs later than the third transition of 

leaf coloration, after full leaf coloration. The same phenomenon is found for leaf fall. Since leaf 

fall tends to be a few days later than leaf coloration, it’s reasonable to find EVI derived SOA and 

MOA are earlier than the first transition of leaf fall, meaning EVI decreases during this period 

has a minimal relationship with leaf fall processes. In the north for year 2010, EOA derived from 

EVI is only one day ahead of the third transition of leaf fall, while in the other four situations, 

EOA are all later than full leaf fall. Consequently, the latter half of EVI decrease covers the time 

span of the leaf autumn progression, and leaf coloration and leaf fall are likely to causes this 
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decrease. However, judging by the fact that EVI stops decreasing a few days after full leaf 

coloration and full leaf fall, if not quite close to it, other signals in addition to deciduous leaf 

progression are also detected by EVI.  

For NDVI, the order between satellite transition dates and field transition dates are not 

fixed. In 2010, for both the north and south sites, NDVI derived start of autumn (SOA) occurs 

before leaf coloration and leaf fall first transits. In the north site, the corresponding leaf 

coloration proportion is 9% while in the south site it’s 14%; the proportions of leaf fall are 1% 

for both sites. The slopes are all flat. In 2012, SOA also occurs before the first transition of leaf 

coloration and leaf fall, corresponding with leaf coloration proportion of 5% and 7%; and leaf 

fall proportions 4% in both sites, where the slopes are also flat. In 2013, SOA is later than the 

first transition of leaf coloration and one day before the first transition of leaf fall, where the leaf 

coloration proportion is 10%, leaf fall proportion is 15% but slopes show increasing trends. 

Overall, SOA corresponds with low leaf coloration and leaf fall proportions and flat slopes. 

Similar to EVI results, SOA occurs when leaf coloration and leaf fall processes haven’t been 

observed yet. However, compared with EVI, the differences between NDVI and the first 

transition of leaf coloration and leaf fall are smaller. Interestingly, middle of autumn (MOA) is 

quite close to the first transition of leaf coloration and leaf fall. Specifically, in terms of leaf 

coloration, for south site year 2010, NDVI derived MOA overlaps with the first transition of leaf 

coloration, while in north site year 2010, they differ by only one day. The differences in south 

site year 2010 is three days, while the difference between north site year 2012 and south site year 

2013 are greater (both six days). In terms of the difference between NDVI derived MOA and the 

first transition of leaf fall, the differences vary between two to eleven days. In general, the first 

half of NDVI decrease occurs before leaf coloration and leaf fall starts, and when NDVI decrease 
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rate reaches its peak, leaf coloration and leaf fall either has just started accelerating or will 

accelerate shortly. NDVI derived EOA in all five situations occurs before the last transition of 

leaf coloration and leaf fall. In 2010, it’s close to the last transition of leaf coloration, 

corresponding with 75% and 80% of leaf coloration in both sites. At that time, leaf fall 

proportion in the north site is 24% and 53% in south site. In 2012, end of autumn (EOA) 

corresponds with 20% of leaf coloration in the north site, which is earlier than the second 

transition of leaf coloration, while leaf fall hasn’t started yet. In the south site, EOA corresponds 

with 41% and 7% of leaf coloration leaf fall proportion. In 2013, EOA occurs when leaf 

coloration proportion is 36% and the second leaf coloration transition is in one day. On the other 

hand, leaf fall proportion is 15% and the second transition is in five days. Summarizing these 

five situations, the second half of NDVI decrease corresponds with the early section of leaf 

coloration and leaf fall. The midpoint of NDVI decrease is close to the first transition of leaf 

coloration and leaf fall, suggesting NDVI decrease and leaf coloration process starts temporally 

overlap after NDVI reaches it midpoint. Therefore, leaf coloration and leaf fall may play an 

important role in the second half of NDVI decrease. However, in all five situations, NDVI stops 

decreasing when leaf coloration and leaf fall is still in process, suggesting NDVI loses the signal 

of canopy change near the halfway point of leaf progression.  

6.2.2 The reason of mismatch between field observation and satellite data 

Both EVI and NDVI start to decrease before leaf coloration and leaf fall start, with half 

of EVI and NDVI decline having no overlap with observed leaf coloration and leaf fall duration. 

This mismatch can be caused by different leaf phenology between top-canopy and bottom-

canopy. It is argued that canopy senescence pattern in autumn can be inner type or outer type. 

Leaves of an inner type canopy senesce from bottom to top, and vice versa (Koike, 1990). For 
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inner type canopies, the ground upwards-observation will detect earlier senescence than satellite 

downwards-observation, while ground observation will be later than satellite information for 

outer-type canopies. Maple is reported to be an outer-type species (Koike et al., 2001), which is 

the largest population proportion in the north site and second largest in the south site. This may 

cause earlier VI decrease than observed leaf senescence. However, the reports on inner-type and 

outer-type species are limited, with no information reported for Aspen, which is the largest 

population in the south site. It will be helpful to explore the canopy senescence pattern of more 

species to understand the difference between ground observation and satellite-based phenology. 

A possible way to do this could be utilizing PhenoCam network data. Compared with satellite 

data, PhenoCam images are not influenced by the atmosphere and clouds, providing near-surface 

digital information with better resolutions (http://explore.phenocam.us/). The fine resolution 

enables species-specific above-canopy analysis, which is suitable to category the canopy 

senescence pattern of different species. In addition, PhenoCam data are also used for comparison 

with satellite data (Richardson et al., 2007; Dragoni et al., 2011; Richardson et al., 2018).  

The difference between EVI and NDVI is shown by the earlier start and later end of EVI 

time series. The earlier decrease of EVI could relate to its higher sensitivity for canopies with 

high leaf area indices (LAI). It is argued that NDVI is only sensitive to canopy change when LAI 

is less than 2. Once LAI progresses beyond this range, NDVI will saturate and stay stable during 

the middle of the growing season (Gamon et al., 1995; Motohka et al., 2010; Goswami et al., 

2015), so the early leaf coloration and leaf fall will not be detected. EVI, in contrast, avoids this 

issue due to its overall lower values, and can detect canopy change in the early period of leaf 

progression when LAI values are higher (Huete et al., 2002).  
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Meanwhile, EVI and NDVI also differ at the end of growing season, when NDVI 

decrease stops halfway through leaf autumn progression, while EVI stops decreasing after full 

leaf coloration and full leaf fall, if not quite close to them. The reason NDVI stops decreasing 

when leaf coloration is still in process might be related to the sensitivity of NDVI to soil and 

litter, and leaf spectrum property change during leaf coloration. NDVI is reported to vary from 

0.5 to 0.85 when LAI is 2 in response to soil lightness and land cover (Gao et al., 2000) and 

ground brown millet litter produce great vegetation equivalent noise for NDVI (Van Leeuwen & 

Huete, 1996). As for leaf spectrum properties, when leaves turn from green to yellow or red, 

NDVI shows obvious decreases (Motohka et al., 2010). However, the NDVI response of maples, 

which are dominant species in both sites, is different. Although NDVI still significantly declines 

in the early phase of senescence (colors turning from green to yellow), NDVI increases when 

color changes from yellow to red (Junker & Ensminger, 2016), which can be related with the 

increase of anthocyanins (Vina & Gitelson, 2011). The increase of red leaf NDVI may offset the 

decrease of yellow leaf NDVI, resulting in NDVI declines stopping in the second transition of 

leaf coloration. However, these speculations need further examination. As for EVI, it declines 

after full leaf coloration and sometimes even after full leaf fall, considering EVI is not sensitive 

to coniferous late autumn phenology since they don’t change color (Huete et al., 2002; Yuan et 

al., 2018), this decline may be more related to the understory. EVI reduces sensitivity to soil 

background while keeping the sensitivity to vegetation by incorporating the blue band (Huete et 

al., 2002), which means it may detect understory vegetation under open canopy in late autumn 

with low noise. From 2010 to 2013, after full leaf coloration, this decline lasts for nine days on 

average in the north site and twelve days on average in south site until understory senescence and 

EVI loses all vegetation signals (Table 6).  
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In earlier comparisons, the start and middle of autumn derived from NDVI showed better 

consistency with the first and second transition of leaf coloration and leaf fall than EVI. Based 

on previous analyses, the higher consistency of early transition dates may be a result of both 

NDVI decrease and ground bottom-to-top observed leaf coloration starting later than the leaf 

coloration of top canopy. However, this phenomenon doesn’t exist at the end of progression, so 

the differences between the bias between end of autumn, derived from NDVI and EVI 

respectively, and the third transition of leaf coloration or leaf fall become smaller (Table 6, 

Figure 5). The delayed observed leaf coloration and NDVI start-of-decrease, and the closeness of 

bias in the end of progression contribute to the overall similarity of NDVI and observation 

derived progression rate (Table 7, Table 8).  
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Figure 7. Field phenology correspondence with transition dates derived from four indirect approaches.  

Dot-dash lines are the fitted curves of field phenology, with leaf coloration in the left column and leaf fall in the 

right column. R square values shown are the goodness of fit of these curves. The horizontal axes show transition 

dates derived from different approaches while the vertical axes show the field phenology value on that day. Circles 
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represent start, middle and end of autumn derived from normalized EVI, stars represent transitions derived from 

normalized NDVI and triangles represent field phenology.  The three dotted lines in each chart represent 10%, 50% 

and 90% of leaf coloration or leaf fall, based on the observation scheme.  

6.3 Field observation and carbon flux measurements 

6.3.1 The variation of carbon flux during observed autumn progression 

 As expected, photosynthesis declines during leaf coloration and leaf fall. In 2012, NEE 

derived end of autumn (EOA) and the duration of leaf coloration and leaf fall are close, 

indicating leaf coloration and leaf fall happen at the end of NEE increase. Specifically, EOA 

derived from NEE is one day later than the first transition of leaf coloration in the north site and 

six days later than that for the south site. From the first to the last leaf coloration transition, NEE 

increases from -0.70 to -0.45 µmolCO2 m
-2 s-1 in the north site while from -0.77 to -0.38 

µmolCO2 m
-2 s-1 in south site. During the entire leaf fall progress, conversely, NEE increases 

from -0.55 to -0.28 µmolCO2 m
-2 s-1 in the north site while from -0.58 to -0.30 µmolCO2 m

-2 s-1 

in the south site. This tiny change is due to:  1) the duration of leaf coloration and leaf fall only 

plays a small role in the duration of NEE increase; and 2) NEE increases are slow near EOA. 

Meanwhile, although GPP doesn’t produce seasonal markers, the GPP differences between the 

first and last transition of leaf coloration and leaf fall are trivial, indicating GPP decrease has 

almost stopped during leaf coloration and leaf fall. In particular, during the entire leaf coloration 

progress, GPP decreases by 0.55 µmolCO2 m
-2 s-1 in the north site and by 0.84 µmolCO2 m

-2 s-1 

in the south site. During leaf fall progress, GPP decreases by 0.55 µmolCO2 m
-2 s-1 in the north 

site and by 0.57 µmolCO2 m
-2 s-1 in the south site.  

In 2013, leaf coloration and leaf fall occur between NEE derived middle and end of 

autumn, and GPP derived middle of autumn overlaps with leaf coloration and leaf fall duration in 
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the south site. NEE increases from -1.92 to -1.00 µmolCO2 m
-2 s-1 during leaf coloration and 

from -1.67 to -0.79 µmolCO2 m
-2 s-1 during leaf fall; GPP decrease from 8.50 to 5.41 µmolCO2 

m-2 s-1 during leaf coloration and form 7.78 to 4.58 µmolCO2 m
-2 s-1 during leaf fall. Compared 

with 2012, leaf coloration and leaf fall in 2013 occur in earlier stages of the carbon exchange 

decline, and the NEE and GPP differences between the first and third transition of leaf coloration 

and leaf fall are greater (Figure 8). In these two years, photosynthesis consistently starts to 

decrease before the first transitions of leaf coloration and leaf fall, while carbon exchange keeps 

declining even after full leaf coloration and full leaf fall. 

6.3.2 The reason of mismatch between field observation and carbon flux measurements 

The time mismatch before the first transition of leaf coloration may partly be caused by 

the asynchronous canopy senescence. The canopy top senescence starts before leaf coloration 

can be observed from the bottom, which contributes to the carbon exchange decline before 

observed leaf coloration. In addition, photosynthesis is reported to decline before coloration. For 

example, maximum rate of carboxylation, which is an indicator of photosynthetic capacity, starts 

to decrease since mid-summer when leaf nitrogen and leaf area are constant (Wilson et al., 

2001); photosynthetic capacity per unit area of R. Maple and S. Maple in Wisconsin peak in 

summer (Reich et al., 1991). Largest reductions of maximum carboxylation rate occur 6-8 weeks 

before observed leaf progression (Wilson et al., 2000b), corresponding with NEE derived start of 

autumn occurring 9-11 weeks in average before the first transition of leaf coloration in year-to-

year comparison, and 6 weeks earlier in long-term comparison in this study (Table 6, Figure 5). 

Photosynthesis decreases after the summer solstice (when leaves are still green) can be explained 

by the shortening photoperiod (Bauerle et al., 2012). Except for photoperiod, photosynthetic 

capacity is also limited by drought and temperature (Weber & Gates, 1990; Wilson et al., 2000a; 
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Busch et al., 2008). In addition to environmental factors, photosynthetic capacity declines as 

leaves grow older, and leaf thickness also impacts photosynthesis (Reich et al., 1991; Wilson et 

al., 2000b; Peterson et al., 2001). These factors may explain the overall decrease of carbon 

exchange before observed leaf coloration.  

During visual leaf progression, as expected, carbon exchange keeps decreasing with the 

decomposition of chlorophyll. However, NEE and GPP keep declining after full leaf coloration 

and full leaf fall, when NEE is still negative and GPP is still positive, indicating the 

photosynthesis of coniferous and understory in the ecosystem overrides the overall respiration. 

The phenology of understory vegetation, unfortunately, is not recorded in this study. However, 

previous research suggests understory shrubs last longer than canopy, contributing to ecosystem 

carbon deposition after full leaf fall (Gill et al., 1998; Kawamura et al., 2001). The 

photosynthesis of evergreen species, on the other hand, is not related to their canopy phenology, 

but is more influenced by temperature (Tanja et al., 2003; Richardson et al., 2009). Therefore, 

the decline of carbon exchange after full leaf fall can be caused by shrub autumn progression as 

well as declining coniferous photosynthesis under decreasing temperature.  
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Figure 8. NEE increase and GPP decrease variation.  

The solid lines show NEE while dot-dash lines show GPP. The unit of NEE and GPP are both µmolCO2  m-2 s-1. The 

vertical dotted lines correspond with the first, second and third transitions of leaf coloration and leaf fall progress, 

while vertical dash-dot lines are EOA derived from EVI. Hollow circles on NEE curves are start, middle and end of 

autumn derived from NEE, similarly, black asterisks on GPP curves are start, middle and end of autumn derived 

from GPP. 2010 is not included since there is no reliable data.  
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6.4 Satellite data and carbon flux measurements 

 For both sites, the progression parameters derived from NDVI congregate on the upper 

right corner of Figure 9, while the data points of other three approaches mix and concentrate in 

the lower parts of the graphs. This distribution indicates EVI has higher consistency with NEE 

and GPP than NDVI. This conclusion is supported by Wu et al. (2017), suggesting NDVI 

derived phenology has poor correlation with carbon derived end of growing season, especially 

for mixed forests; and Peng et al. (2017), suggesting EVI based spring onset has higher 

consistency with carbon flux measurements than NDVI.  

The discrepancy between NDVI and carbon flux in early autumn progression could be 

caused by NDVI saturation at high LAI, as discussed earlier. Furthermore, NDVI shows a 

logarithmic relationship with chlorophyll content in sugar maple (Junker & Ensminger, 2016) 

and grassland, shrubs and trees in California (Gamon et al., 1995). NDVI also saturates when 

chlorophyll content is as low as 7.0 nmol/cm2 in horse chestnut and Norway maple (Gitelson & 

Merzlyak, 1994) and the overall correlation between NDVI and pigment content is poor in 

Eucalyptus species (Datt, 1998). Compared with NDVI, EVI has a similar log relationship with 

chlorophyll content but has a higher saturation threshold (Schlemmer et al., 2013); and when 

chlorophyll content is greater than 1 g/m2, EVI crop canopy noise is lower than NDVI (Peng et 

al., 2017). These features indicate EVI has higher accuracy in estimating chlorophyll content 

than NDVI in highly vegetated areas. This phenomenon probably contributes to its higher 

consistency with carbon flux variation than NDVI, especially in terms of SOA when vegetation 

thrives (Table 6, Figure 5 (a)(b)). However, it should be noted that the green band is not included 

in either EVI or NDVI, which is sensitive to chlorophyll (Gitelson & Merzlyak, 1994; Datt, 

1998). Indices that include the green spectrum show higher consistency with chlorophyll content 
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variation than NDVI (Gitelson et al., 1996; Lichtenthaler et al., 1996; Motohka et al., 2010), and 

lower noise than EVI (Peng et al., 2017). Therefore, EVI and NDVI are not the best indices to 

extract chlorophyll content. Furthermore, chlorophyll content alone can’t determine the intensity 

of photosynthesis. Climate factors such as photoperiod, temperature, drought and physiological 

factors such as leaf age and leaf thickness, as discussed earlier, can impact photosynthesis 

intensity. These factors may lead to the start of autumn gaps between VIs and carbon flux indices 

in early autumn progression (Table 6, Figure 5 (a)(b)).  

 By the end of autumn progression, NDVI is interfered with by canopy background and 

fails to detect vegetation signals, which result in further discrepancies between NDVI and carbon 

flux indices. EVI derived end of autumn tends to occur later than full leaf fall, when carbon 

exchange declines at a slow pace (Figure 8). After full leaf coloration and full leaf fall, EVI 

keeps following at least a portion of shrub progression, during which period coniferous 

photosynthesis declines decline with cooling temperature until losing the vegetation signal 

altogether, as discussed earlier. This result in the higher temporal consistency with carbon flux 

indices than NDVI. However, since there is no available data on shrub phenology, it can’t be 

determined whether understory vegetation is still green when EVI stops decreasing. 
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Figure 9. Middle of autumn and progression rate parameter distribution of four indirect measurements (normalized 

NDVI, normalized EVI, NEE and GPP).  

The progression parameters derived from NDVI congregate on the upper right corner, while the data points of other 

three approaches mix and concentrate in the lower parts of the graphs.  
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7. Conclusions 

7.1 Summery of findings 

 First, both satellite data and carbon data time series were normalized and compared with 

the raw time series. When normalization didn’t reduce data accuracy, then normalized time 

series were applied to further analysis so as to simplify the fitting model. Otherwise, raw time 

series were applied. As a result, normalized time series of satellite data and raw time series of 

carbon data were chosen for analysis. 

 NDVI and EVI were selected for satellite data, and NEE and GPP were selected for 

carbon data. Together with LC and LF data, six types of time series were generated. For each 

time series, three transition points and progression rate were derived. For satellite data and 

carbon data, these transition points represented SOA, MOA and EOA respectively; while for 

field data, these transition points represented three phases in the LC and LF processes.  

When field data were available, year-specific comparisons were conducted. NDVI 

showed the highest consistency with LC and LF time series, while NEE showed the lowest 

consistency. EVI performed better than GPP in estimating progression rate. When field data 

were not available, then long-term comparisons between satellite data and carbon data were 

conducted. The average transition dates of existing field data were used as references. 

Summarizing transition dates and progression rate, NDVI was closest to LC and LF processes. 

When field data were not considered, satellite data were compared directly to carbon data. The 

progression rate derived from NDVI was the fastest, and the progression rate derived from EVI, 

NEE and GPP didn’t differ a lot.  
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Based on the comparative results, I have concluded that NDVI is the best approach 

among the selected four in estimating LC and LF. However, in the discussion section, I 

investigated the proportion of LC and LF (corresponding with SOA, MOA and EOA derived 

from these four datasets) to get more information. Both NDVI and EVI detected earlier autumn 

progression than field observation, which may relate to some species undergoing senescence 

from top to bottom. Furthermore, EVI tends to detect earlier senescence than NDVI. In the later 

half of senescence, NDVI loses canopy signal before senescence is complete while EVI keeps 

decreasing. The performance difference at the start and end of senescence suggests NDVI is less 

sensitive to canopy change than EVI. Therefore, both NDVI and field observation detect later 

senescence than EVI, which leads to the greater consistency between NDVI and field data.  

In the result, carbon data showed greater differences with field data in terms of transition 

dates and senescence rate. These discrepancies were further analyzed in the discussion. In early 

autumn, NEE starts to increase and GPP starts to decrease before visual leaf senescence starts.  

Part of the reason is some species start coloration from the top, which is detected by CO2 

variation but not field observations, as mentioned earlier. Apart from that, photosynthesis is 

reported to decline before coloration due to photoperiod, temperature, water insufficiency and 

leaf property changes. In late autumn, the decline of coniferous and shrubs photosynthesis may 

also result in the changes in NEE and GPP after full leaf fall. When comparing satellite data and 

carbon data directly, EVI showed higher consistency with carbon data, which may relate to its 

higher sensitivity to LC in early autumn and lower noise interference in late autumn.  

The major limitation of this project was lack of data. First, the field data period didn’t 

overlap completely with the leaf visual senescence period. The observations could start after LC 

starts, or end before LF ends. As a result, the estimation of LC and LF transition points could be 
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imprecise. Furthermore, LC and LF proportion corresponding with the first transitions may be 

overestimated while the proportion corresponding with the third transition may be 

underestimated. Second, plant asynchronous senescence may lead to the difference between field 

data, satellite data and carbon data in early autumn, but there is no direct record on the 

senescence properties of the studied plants. Third, shrubs and coniferous trees are important 

factors influencing vegetation indices and carbon exchange in late autumn, especially after 

deciduous senescence is complete. However, there is no available record on shrubs and 

coniferous trees. Therefore, the explanation of differences among field data, satellite data and 

carbon data in late autumn is limited to theoretical speculations. 

7.2 Future Research  

The limitation of relative records on canopy asynchronous senescence, early and late 

autumn phenology and understory phenology makes it difficult to verify the speculations in this 

thesis. Therefore, further research, if possible, should focus on supplementation of related field 

records. These records include (1) deciduous species autumn phenology time series with longer 

duration, which start earlier and end later than the ones used in this project. These records would 

provide us with more precise information on the time of start and end of leaf coloration and leaf 

fall, as well as on the rate of canopy senescence; (2) the senescence pattern of different 

deciduous species (top to bottom or bottom to top). This information will help explain the 

differences found between bottom-to-top field observation and top-to-bottom satellite data. In 

addition, the senescence pattern may also partly contribute to the earlier decrease of carbon 

exchange than the start of field observed senescence. Therefore, if this information is available, 

identification of the partial contribution of senescence pattern, vegetation index sensitivity to 

vegetation and environmental interfere in the difference between field observation and satellite 
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data may be possible. Similarly, estimates of the partial contribution of senescence pattern and 

plant physiology (when photosynthesis decrease without visual senescence) in the difference 

between carbon flux measurement and field observation can also be produced; and (3) the 

phenology records of understory including shrubs can be recorded, which may help explain the 

decrease of EVI and carbon flux measurements after full leaf coloration and full leaf fall. 
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Appendices  

Appendix A: Z values of start of autumn derived from indirect appraoches in both sites.  

Year 
North 

EVInor 

South 

EVInor 

North 

NDVInor 

South 

NDVInor 
NEE GPP 

1997 N/A N/A N/A N/A 0.696 -0.123 

1998 N/A N/A N/A N/A 0.885 0.012 

1999 N/A N/A N/A N/A 1.026 0.617 

2000 0.246 -1.774 0.412 0.900 0.932 -0.257 

2001 -0.100 0.491 1.552 1.479 1.545 0.617 

2002 1.006 1.623 0.032 0.553 0.602 0.483 

2003 -1.758 1.925 -1.299 0.090 -1.190 -0.594 

2004 -1.827 -1.019 0.412 -0.489 -0.530 0.214 

2005 -0.860 0.717 0.032 -0.026 N/A N/A 

2006 0.798 0.793 -0.348 0.321 -0.860 -2.141 

2007 1.006 0.113 -2.249 -0.952 -0.719 -1.132 

2008 -0.791 -0.491 -0.729 -0.836 0.130 -0.257 

2009 1.904 1.170 -0.158 -0.604 0.366 2.635 

2010 1.213 -0.491 0.222 0.206 N/A N/A 

2011 -0.238 -1.095 0.792 0.784 -1.709 -1.064 

2012 -0.445 -0.642 -0.158 0.437 -1.567 N/A 

2013 -0.307 -0.566 0.982 2.058 -0.719 0.415 

2014 -0.307 -0.944 -0.919 -2.109 0.083 -0.190 

2015 0.798 0.566 1.933 0.090 N/A 0.483 

2016 0.177 -0.113 0.222 -1.067 1.026 0.281 

2017 -0.514 -0.264 -0.729 -0.836 N/A N/A 

EVInor = normalized EVI, NDVInor = normalized NDVI; N/A = not applicable. 
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Appendix B: Z values of middle of autumn derived from indirect appraoches in both sites.  

Year 
North 

EVInor 

South 

EVInor 

North 

NDVInor 

South 

NDVInor 
NEE GPP 

1997 N/A N/A N/A N/A 0.855 0.890 

1998 N/A N/A N/A N/A 0.793 0.890 

1999 N/A N/A N/A N/A 0.855 0.018 

2000 0.370 -1.471 -0.527 -0.634 0.732 -0.200 

2001 -0.197 0.390 0.323 1.167 1.040 0.563 

2002 0.228 0.247 0.323 0.167 0.732 -1.398 

2003 -1.046 1.392 0.039 0.167 -0.808 -0.744 

2004 -0.338 0.819 1.172 1.367 -1.054 0.890 

2005 0.370 1.964 1.597 2.168 N/A N/A 

2006 -0.197 -0.183 -0.810 -1.234 -0.808 -1.398 

2007 -0.055 -0.469 -2.085 -2.035 -0.315 -0.309 

2008 -0.480 -0.326 0.039 -0.033 0.178 0.345 

2009 3.201 1.964 1.597 0.367 1.040 0.999 

2010 0.370 -0.756 -0.669 -0.634 N/A N/A 

2011 -0.197 -1.042 -0.244 -0.033 -1.917 -0.962 

2012 -1.188 -1.042 -1.094 -0.834 -1.855 -2.161 

2013 -0.480 -0.469 0.039 0.567 -0.500 1.108 

2014 -1.329 -0.756 -1.235 -0.233 0.178 -0.309 

2015 1.077 0.390 1.172 0.767 N/A 1.108 

2016 0.228 -0.469 0.606 -0.834 0.855 0.672 

2017 -0.338 -0.183 -0.244 -0.233 N/A N/A 

EVInor = normalized EVI, NDVInor = normalized NDVI; N/A = not applicable. Values greater 

than three were bolded. 
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Appendix C: Z values of end of autumn derived from indirect appraoches in both sites.  

Year 
North 

EVInor 

South 

EVInor 

North 

NDVInor 

South 

NDVInor 
NEE GPP 

1997 N/A N/A N/A N/A 0.225 0.986 

1998 N/A N/A N/A N/A -0.378 0.722 

1999 N/A N/A N/A N/A -0.378 -0.927 

2000 0.150 0.250 -0.801 -1.182 -0.550 -0.268 

2001 -0.111 -0.043 -0.231 -0.005 -0.808 -0.202 

2002 -0.981 -1.801 0.340 -0.341 0.139 -2.445 

2003 1.020 -0.727 0.665 0.079 -0.722 -0.466 

2004 1.803 2.496 1.154 1.425 0.741 0.590 

2005 1.542 1.812 1.888 1.930 N/A N/A 

2006 -1.242 -0.727 -0.883 -1.266 1.515 -0.004 

2007 -1.416 -0.825 -1.453 -1.098 0.139 1.315 

2008 0.324 0.152 0.340 0.584 -0.464 0.392 

2009 1.542 1.129 1.888 0.836 1.601 -1.719 

2010 -1.068 -0.434 -0.801 -0.678 N/A N/A 

2011 -0.024 -0.141 -0.638 -0.593 -0.464 1.118 

2012 -0.807 -0.727 -1.127 -1.098 -2.098 N/A 

2013 -0.198 0.054 -0.312 -1.098 0.483 0.524 

2014 -1.155 0.250 -1.127 1.425 -0.636 -0.466 

2015 0.237 -0.239 0.502 0.668 2.032 0.590 

2016 0.150 -0.532 0.584 -0.005 -0.378 0.260 

2017 0.237 0.054 0.014 0.416 N/A N/A 

EVInor = normalized EVI, NDVInor = normalized NDVI; N/A = not applicable. Values greater 

than three were bolded. 
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Appendix D: Z values of progressioin rates derived from indirect appraoches in both sites.  

Year 
North 

EVInor 

South 

EVInor 

North 

NDVInor 

South 

NDVInor 
NEE GPP 

1997 N/A N/A N/A N/A 0.205 0.385 

1998 N/A N/A N/A N/A 0.853 0.306 

1999 N/A N/A N/A N/A 0.965 -0.083 

2000 -0.231 -0.953 1.128 0.850 0.978 0.243 

2001 -0.320 0.063 0.907 0.037 2.653 0.076 

2002 1.375 2.905 -0.704 -0.085 0.202 -0.680 

2003 -1.223 1.940 -1.148 -0.358 -0.528 0.271 

2004 -1.366 -1.178 -1.045 -0.619 -0.952 0.281 

2005 -1.096 -0.527 -1.332 -0.639 N/A N/A 

2006 1.292 0.655 0.631 0.406 -1.091 0.448 

2007 1.987 0.209 0.166 -0.247 -0.561 0.523 

2008 -0.762 -0.489 -0.872 -0.553 0.080 0.315 

2009 0.189 -0.042 -1.344 -0.567 -0.413 -3.857 

2010 1.825 -0.304 1.049 -0.068 N/A N/A 

2011 -0.408 -0.652 1.364 0.152 -1.012 0.549 

2012 -0.165 -0.245 1.563 0.288 -0.564 0.364 

2013 -0.378 -0.486 0.522 3.622 -0.798 0.247 

2014 0.085 -0.708 0.685 -0.712 0.215 0.176 

2015 0.073 0.227 -0.115 -0.474 -1.199 0.221 

2016 -0.226 -0.047 -0.804 -0.499 0.965 0.217 

2017 -0.651 -0.369 -0.652 -0.535 N/A N/A 

EVInor = normalized EVI, NDVInor = normalized NDVI; N/A = not applicable. Values greater 

than three were bolded. 
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