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ABSTRACT 

MICROBIAL ECOLOGY OF URBAN SEWERS 

by 

Emily Lou LaMartina 

 

The University of Wisconsin-Milwaukee, 2022 

Under the Supervision of Dr. Ryan J. Newton 

 

Municipal sewage provides a glimpse into the health and activities of a human society. For more 

than a century, sewage exploration has helped expose the sources of disease outbreaks and track 

disease progression over time. Recent advancements in wastewater surveillance born from the 

COVID-19 pandemic have potential to enhance mitigation efforts against the decades-long global 

health crisis of microbial antibiotic resistance. However, critical knowledge gaps exist in 

wastewater surveillance, stemming from a lack of understanding in sewer microbial ecology. 

Ecology reveals trends in how communities respond and adapt to change, which has far-reaching 

implications for identifying effective strategies for disease control. However, with little knowledge 

about sewer microbial communities, including its residents, community dynamics, and functions, 

no baseline picture of the sewer microbiome exists. The goal of this dissertation was to characterize 

the sewer microbiome using an ecological approach. The specific aims were to determine if (1) 

microbial communities in urban wastewater exhibit seasonal patterns in assembly; (2) if seasonal 

community assembly is driven by environmental bacteria responding to changes in water 

temperature; and (3) if temperature-driven communities modulate the composition and abundance 

of antibiotic resistance genes in wastewater. Results show that microbes in sewers have seasonal 
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community dynamics akin to other natural environments, and they have adapted to this stressful 

environment by acquiring and maintaining mechanisms of antibiotic resistance. Using only well-

established methods in DNA sequencing and analyzing a wastewater dataset covering expansive 

temporal and spatial scales, this dissertation builds the foundation of a baseline sewer microbiome 

in the United States. All data collected and analyses used were made publicly available to aid 

standardizing methods in global strategy plans.  Together, standardizing methods and sharing data 

related to the sewer microbiome will improve predictive models, guide interventions, and make 

other public health breakthroughs in wastewater surveillance. 
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CHAPTER I 

INTRODUCTION 

 

Sewage: a nexus of the urbanized and natural worlds 

In 1854, a deadly illness swept across London, England, that claimed 500 lives in the first 10 days1. 

Patients suffered from a distinctive “rice water” diarrhea that led to severe dehydration and 

oftentimes death. Breathing air from the squalid river Thames was blamed as causing the disease, 

om a now-defunct theory known as miasma. A local anesthesiologist, John Snow, rejected miasma 

and sought to identify its true source. Snow placed dots on a map of London at residences of 

afflicted persons. The density of dots exposed disease hotspots that clustered around water pumps. 

With this discovery, Snow argued that diseased waste was contaminating the London water supply 

and spreading the epidemic1. 

 

The culprit to what is now known as the Broad Street cholera outbreak of 1854 was a bacterium 

that to this day plagues communities with limited access to clean water – Vibrio cholerae. Snow 

used the distribution and frequency of disease occurrences to track its source. This was a 

substantial feat, considering Louis Pasteur did not discover that some diseases are caused by 

microorganisms for another ten years2. Wastewater ultimately became a vital tool for 

epidemiology, one that takes snapshots of the guts of a human society. Today, it can help monitor 

public calamities such as the frequency of disease3, obesity rates4, and illicit drug use5. The utility 

of wastewater monitoring came especially to light during the COVID-19 pandemic6,7, once its 

potential for tracking the SARS-CoV-2 virus was proposed8,9, implemented10, and optimized11,12 
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to such a degree that population-wide occurrences could be predicted13,14, leaving lasting 

improvements on water distribution15,16 and treatment17,18. With a widespread monitoring effort 

established, it has been shown that disease outbreaks can be mitigated before disaster strikes. This 

was recently demonstrated in New York City, where wastewater monitoring revealed the presence 

of the polio virus, the first time it had been detected in thirty years19.  

 

The concepts of disease caused by microorganisms may be relatively new to human history, but 

sewers, storm drains, and other water sanitation systems have existed for millennia. Around 600 

BC, the Romans engineered Cloaca Maxima, a sewer that directs waste from the city to the River 

Tiber20. Water sanitation in the United States is comparatively young, but its progress has been 

exponential. Chicago and Brooklyn were the first to build sewerage systems, starting in the 

1850s21. In 150 years, sewers in the US had expanded to more than 1.3 million miles22. Each day, 

34 billion gallons of sewage is collected and diverted to wastewater treatment plants (WWTPs)23, 

but the US infrastructure, now inadequate and corroded, leaches 7% of untreated sewage into the 

environment each year24. Contaminated water is linked to 7.2 million illnesses annually25. In 1993, 

in Milwaukee, WI, Cryptosporidium in drinking water caused more than 400,000 gastrointestinal 

illnesses, 4,000 hospitalizations, and 100 deaths26. 

 

Throughout most of history, wastewater treatment could be summarized with the adages, “the 

solution to pollution is dilution” and “out of sight, out of mind.” As societies developed, humans 

dumped their waste in local waterways20 and buried it in cesspools27. During the agricultural 

revolution, sewage was used to water and fertilize farmland28. Urbanization soon followed, and 
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with people densely packing into cities, this type of sanitation was no longer sufficient (a la, the 

Broad Street cholera outbreak). Scotland built the first municipal sewage treatment plant in the 

early 1800s, utilizing a sand filtration system29. Fifty years later, in Kent, UK, chlorine bleach was 

added to the water main to control a typhoid outbreak30, the first use of chlorine to sanitize a public 

water. 

 

Microorganisms majorly contribute to wastewater treatment in two distinct compartments, 

activated sludge and anaerobic digesters31. In activated sludge, wastewater is aerated to allow 

microbes to oxidize organic materials, breaking them down and forming flocs. Flocs settle in tanks 

to facilitate solids filtration. Anaerobic digestion is a specialized microbial process that breaks 

down organic matter for energy in the absence of oxygen. Anaerobic digesters in WWTPs cultivate 

these special communities to convert waste, such as food, oil, and manure, into biogases, mainly 

methane and carbon dioxide32. Advanced facilities can conserve energy and reduce greenhouse 

gas emissions by using sequestered biogases as a power supply33,34. Milwaukee, WI, was actually 

the first city to use anaerobic digestion in a full-scale WWTP and resell its sludge as a garden 

fertilizer, Milorganite (Milwaukee organic nitrogen)35. Together, filtration (primary treatment), 

activated sludge (secondary treatment), and chlorination (tertiary treatment) make up the 

foundation of modern wastewater treatment plants, which boast a pathogen removal efficiency of 

99%36. 
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Microbial ecology and its paradigms 

Anaerobic digestion is one example of many that showcase how microorganisms influence life on 

earth. At a global scale, microbes contribute some part to all biogeochemical cycles. Microbes 

biologically convert atmospheric nitrogen (N2) to ammonia (NH3) and strip phosphates (PO4
3-) 

during decomposition, offering essential biosynthesis building blocks for all other organisms. 

Bacteria in the ocean produce 20% of atmospheric oxygen (O2)37, and their role in the sulfur cycle 

even helps the formation of clouds38. The study of these microbial processes, along with the 

interactions between the microbes and their environment, is known as microbial ecology. 

 

Microbial ecology is an important topic in both human and environmental health. Microbes are 

major forces in climate change because they can produce and consume greenhouse gases. In 

medicine, critical connections have been made between human health and the microbes that inhabit 

the body, or the microbiome. For example, in a fecal transplant, the gut microbiome from a healthy 

person colonizes the gut of a patient whose microbiome has been wiped out by a Clostridium 

difficile infection, effectively curing the disease39. Chronic conditions such as obesity40 and 

depression41 can also be linked to the structure of a microbiome. A person carries more bacterial 

cells than human cells42, so the potential for further medical advancements coming from 

microbiome research seems limitless. 

 

Microbial ecology relies on empirical evidence. Observations generate questions, questions are 

framed as hypotheses, then experiments are designed to test the hypotheses. There are a multitude 

of variables that can cause any given effect, so empirical evidence is used to identify thresholds, 
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metrics, and indicators that best reflect the function of interest43. These variables are often arbitrary 

but nonetheless necessary to emphasize some effects while ignoring others. For example, 

Escherichia coli is a commonly used indicator of risk related to beach closures. E. coli is abundant 

in human feces, therefore its presence in beach water can indicate sewage pollution. There are 

thousands of different fecal bacteria that could have been chosen, but E. coli was the most 

applicable because it is easy, fast, and inexpensive to quantify in a lab. Over time, data collected 

on E. coli levels, weather patterns, hospital visits, and other metrics have accumulated. Mounting 

empirical evidence and advancements in technology are improving beach-closure risk 

assessments, thus more accurate indicators of human fecal pollution have been proposed44–46.  

 

DNA sequencing technology is integral to microbiome research. It translates the arrangement of 

constituent DNA molecules (i.e., the deoxynucleotides deoxyadenosine, deoxythymidine, 

deoxycytosine, and deoxyguanosine) to legible symbols (i.e., letters A, T, C G). First-generation 

sequencing in the 1970s was laborious, slow, and could only output the composition, not order, of 

one-thousand nucleotides47. Despite the challenges, significant medical breakthroughs were made 

in just a few years, including the genetic origin of Huntington’s disease48. Second-generation 

sequencing dramatically improved efficiency by recording nucleotides during DNA synthesis, 

omitting the need for arduous, follow-up visualization techniques. Currently, so-called next-

generation sequencing has been so systematically optimized, the rate it generates data greatly 

exceeds what was considered technically possible47,49,50. Of course, with increased accessibility 

comes decreased cost, and a prime example of this was demonstrated by the Human Genome 

Project (genome.gov/human-genome-project). In 2003, the complete human genome with 3 billion 
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nucleotides was sequenced, a triumph that took 13 years and cost 3 billion dollars. Ten years later, 

a human genome could be sequenced in 2 weeks for only one-thousand dollars51.    

 

In ecology, genomic differences are used to study phylogeny, or relatedness, of genes and 

organisms based on their inferred evolutionary distance from a common ancestor. When dealing 

with a group of closely related organisms, comparing whole genomes may be impractical, given 

that most DNA sequences will be shared (human and chimpanzee genomes, for example, are 99% 

identical52). Marker genes are ones shared by all organisms in a group of interest and are a more 

practical tool for assessing phylogeny at a community level. Phylogenetic distance between 

organisms increases as sequences in hypervariable regions in marker genes become less similar. 

Study of the microbial marker gene proposed in 1977 by Woese and Fox53 has greatly expanded 

knowledge of the tree of life54. The 16S rRNA gene encodes the small subunit of ribosomes in 

bacteria and archaea, and hypervariability in non-conserved loop regions create nine distinct 

regions, V1 through V9, that are useful for community analysis. Taxonomic cutoffs for microbial 

groups are harder to discern than for organisms that sexually reproduce, so the limitations of 16S 

rRNA marker genes are debated55–57. Nevertheless, recent opinions support that sub-regions can 

effectively differentiate species-level differences (≥ 97% similarity) and sequencing the entire 16S 

rRNA gene can allow strain-level comparisons (> 99%)58. For relatively low cost and minimal 

computational demand, 16S rRNA gene sequences infer taxonomy at resolutions fine enough to 

reveal complex and influential ecosystem dynamics59–63.  
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The antibiotic resistance crisis: an ecological perspective 

Since the discovery of penicillin almost 100 years ago, antibiotics have added 23 years to the 

average human lifespan64. In the beginning, new antibiotics were regularly being discovered and 

applied without prudence. However, new discoveries peaked by the 1950s, and the current arsenal 

of antibiotics has provided minimal defense against the escalating cases of resistant superbugs. By 

2001, the World Health Organization declared antibiotic resistance a top global health threat65,66 

and promising therapies were kept closely guarded and controlled. However, the efficacy of novel 

treatments is still relentlessly brief. In the recent case of daptomycin, an Enterococcus faecium 

infection was unperturbed by treatment only two years after the drug was introduced67. 

 

The term antibiotic is actually a misnomer68. There are few ecological examples of biomolecules 

having antibiosis functions69 and naturally-occurring antibiotics in soil and marine habitats exist 

at such a low levels, growth inhibition is rarely achieved70,71. Sub-lethal levels have been shown 

to trigger multiple metabolic pathways in bacteria, so it is possible that antibiotics have alternative 

ecological roles, such as cell-cell signaling72–74. For example, in quorum sensing, pathogens pick 

up signals from neighboring cells that at a certain density will initiate a host infection. Signal 

molecules interact with metabolic machinery in a cell, which regulates the expression of virulence 

genes. A study by Goh et al.75 produced similar metabolic responses from antibiotics. In the study, 

Salmonella typhimurium and E. coli were exposed to sub-lethal doses of rifampicin and 

erythromycin. Exposure repressed virulence gene expression in S. typhimurium and E. coli that 

were resistant to the antibiotics, and conversely, virulence gene expression was activated in those 

susceptible to the antibiotics. Therapeutically, rifampicin and erythromycin treat infections by 
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directly disrupting metabolic machinery (RNA polymerase and ribosomes, respectively). This 

suggests that, at high doses, these antibiotics inhibit growth by interfering with cell metabolism, 

but at environmentally relevant doses, they regulate metabolism by interacting with cell 

machinery. Exploring alternative ecological roles of these compounds was often understandably 

overlooked at the onset of antibiotic therapies, because of the immediate value of these ‘miracle 

drugs’ that can eliminate deadly infections without harming the human host. 

 

An important metabolic pathway that responds to external signals is the microbial stress response. 

The stress response encompasses a cascade of metabolic changes that help populations adapt to 

changing environments. Normal functions are swapped out and replaced by ones that enable the 

genome to diversify, which in turn can facilitate the development and dissemination of antibiotic 

resistance genes (ARGs). Stress responses with potential to propagate ARGs include (1) arresting 

error-correcting DNA polymerases, increasing the likelihood of favorable mutations on antibiotic 

target sites76; (2) accelerating horizontal gene transfer (HGT) of plasmids carrying ARGs77–79, even 

between distantly related taxa80; (3) reshuffling gene cassettes on mobile genetic elements 

(MGEs), bringing ARGs closer to the promoter and increasing their expression81; (4) triggering 

biofilm formation, where the dense packing of cells allows HGT to occur more readily, and where 

an extracellular matrix creates a protective barrier against antibiotics82.  

 

Given these features of the microbial stress response, it is possible for novel ARGs to develop in 

stress-inducing environments, including those contaminated with antibiotics at sub-lethal 

levels83,84. However, certain obstacles must be overcome (in no specific order) for environment-
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derived ARG to take hold in a human pathogen. First, in order for an ARG to become fixed in a 

community, it faces a founder effect, where its function must not only be new, but required85. 

Second, the benefit of the ARG must outweigh the cost of maintaining and expressing it. Third, 

the ARG must become mobilized on a plasmid or MGE capable of transfer from the environmental 

bacterium to a human pathogen. Finally, the pathogen must have the ability to translate the ARG 

to a functioning protein86. 

 

Sewage offers routes that circumvent obstacles between environment-derived ARGs and 

pathogens. Sewers collect antibiotic residues in their active form in the waste of humans and 

animals receiving treatment. These residues can trigger stress responses that allow mutations, 

which can lower the cost of expressing the ARG and promote its dissemination in the community. 

Human pathogens that use sewers as a main habitat carry the greatest risk for propagating ARGs, 

since they can mediate ARG transfer between environmental bacteria and other pathogens86. 

Members of the genera Arcobacter87 and Aeromonas88 are emerging pathogens worth noting that 

are ubiquitous in urban waters and have exhibited multidrug resistance87,88.  

 

Despite their potential importance as vectors for ARGs89–92, influencers of wastewater treatment93, 

polluters of recreational waters94, and corroders of sewer pipes95–99, little is known about microbial 

communities that use sewers as a main habitat. Only recently were sewer microbial communities 

characterized100 and proposed as ecosystems ten years later101. Within WWTPs, microbial 

communities have been extensively studied102–106 but fewer have focused on pre-treatment, 

resident sewer microbes. Previous work identified major taxa that consistently comprise these 



 

 

 

 

10 

communities4,100, but without further investigating sewage collected across broad space and time 

intervals, whole community dynamics remain unclear.  

 

It is not yet known if sewer microbial communities have a stable structure, fluctuate stochastically, 

or change in response to environmental stimuli. This lack of understanding hinders our ability to 

determine the fate of microbes in sewage pollution, identify those most responsible for spreading 

antibiotic resistance, or understand how the environment influences microbial functional capacity, 

particularly related to risk to human and animal health. Moreover, insight gained from wastewater 

monitoring is limited without an established “baseline” community. It is impossible to confidently 

suggest that one variable is the major driver of an observation without first understanding the 

fundamental dynamics of the system.  

 

Aims, research strategy, and significance of this dissertation 

This dissertation defines sewer microbial ecosystems using ecology fundamentals: whole 

community dynamics, community functions, and major community members. The goal was to 

discern a baseline picture of the sewer microbiome. To achieve this goal, wastewater samples 

representing broad temporal and spatial scales were analyzed with microbial marker gene and 

metagenomic DNA sequencing. In the end, major taxonomic groups were characterized; 

predictable community changes over time and space were revealed; and consistencies and 

deviations of ARGs in relation to predictable community changes were identified. The specific 

aims of this research were to: 
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1. Determine if seasonal community assembly is driven by environmental taxa that 

respond to changes in wastewater temperature.   

a. Show seasonal clustering of samples in a 16S rRNA gene sequence dataset from a 

multi-year time series of pre-treatment wastewater. 

b. Parse human-associated sequences to separate the resident-sewer bacterial 

community.  

c. Identify bacterial groups that are indicators of each seasonal steady state. 

d. Test hypothesis that indicator groups are environmental/resident-sewer taxa. 

e. Test hypothesis that relative abundances of indicators are predictable each year, 

whereas human-associated groups are not, in time series analysis. 

f. Design quantitative assays for droplet digital PCR (ddPCR) to analyze fluctuations 

of indicator groups observed in sequence data. 

g. Test the hypothesis that temperature also influences community assembly in a 

dataset covering significant geographic distances and multiple time points. 

 

2. Determine if temperature-driven microbial communities modulate the composition 

and abundance of antibiotic resistance genes in wastewater. 

a. Mine ARGs from pre-treatment wastewater metagenomic datasets from multiple 

locations and time periods. 

b. Test hypothesis that locations harbor unique pools of ARGs. 

c. Test hypothesis that ARGs in those pools fluctuate over time in patterns that reflect 

seasonal changes in the host community. 
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d. Clarify that identified wastewater ARGs are clinically relevant. 

e. Quantify ARGs with ddPCR to support abundance changes appear coupled to the 

warm-dominating microbial community.  

 

The studies addressing these aims (Aim 1, Chapter II and Aim 2, Chapter III) are foundational 

to establishing a baseline understanding of the sewer microbiome. In Aim 1, Chapter II, temporal 

variability was captured by sequencing 16S rRNA genes from wastewater samples collected 

monthly from two WWTPs in Milwaukee, WI. Spatial variability of wastewater microbial 

communities was captured by sequencing 16S rRNA genes from samples collected from WWTPs 

across the USA, as well as manholes from several neighborhoods in Milwaukee, WI. The resident 

sewer community was estimated by determining 16S rRNA gene sequences that were not found 

in the Human Microbiome Project database. To support compositional changes observed with 

DNA sequence analysis, quantitative PCR assays were designed to target bacterial groups that 

exhibited seasonal abundance patterns. A follow-up resource announcement with full-length 16S 

rRNA gene sequences from select samples is described in Appendix A. Aim 2, Chapter III used 

metagenomic sequencing to mine all possible ARGs from wastewater samples from several 

locations and time points. Again, quantitative PCR supplemented DNA sequence analysis by 

showing seasonal abundance patterns of ARGs. 

 

This dissertation also sets up future aims to compare genomes of a major resident sewer group. 

Aim III, Appendix B describes progress towards a pangenome analysis of Flavobacteria: 
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1. Determine if resident-sewer Flavobacteria are genetically distinct from relatives in 

other freshwater environments. 

a. Isolate and cultivate bacteria in non-targeted freshwater medium (R2A) from pre-

treatment wastewater during the fall and spring community steady states. 

b. Choose isolate candidates based on colony morphology with known Flavobacteria 

characteristics (e.g., yellow-orange color, gliding on surfaces). 

c. PCR-screen candidate isolates using custom sewer-specific Flavobacterium 

primers. 

d. Sequence full-length 16S rRNA genes from isolates identified as Flavobacterium. 

e. Select isolates with most distinct 16S rRNA gene sequences to undergo full-

genome sequencing. 

f. Compile other freshwater Flavobacteria genomes from public genome repositories. 

g. Conduct pangenome analysis of Flavobacteria genomes. 

h. Highlight genomic similarities and differences of sewer Flavobacteria to its 

relatives. 

 

Appendix C lists collaborations completed during the years of dissertation research. All of these 

projects honed skills necessary for this dissertation, particularly in DNA sequence analysis.  
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Abstract 

Microorganisms in urban sanitary sewers exhibit community properties that suggest sewers are a 

novel ecosystem. Sewer microorganisms present both an opportunity as a control point for 

wastewater treatment and a risk to human health. If treatment processes are to be improved and 

health risks quantified, then it is necessary to understand microbial distributions and dynamics 

within this community. Here, we use 16S rRNA gene sequencing to characterize raw influent 

wastewater bacterial communities in a 5-year time series from two wastewater treatment plants in 

Milwaukee, WI; influent wastewater from 77 treatment plants across the USA; and wastewater in 

12 Milwaukee residential sewers. In Milwaukee, we find that in transit from residences to 

treatment plants, the human bacterial component of wastewater decreases in proportion and 

exhibits stochastic temporal variation. In contrast, the resident sewer community increases in 

abundance during transit and cycles seasonally according to changes in wastewater temperature. 

The result is a bacterial community that assembles into two distinct community states each year 

according to the extremes in wastewater temperature. Wastewater bacterial communities from 

other northern US cities follow temporal trends that mirror those in Milwaukee, but southern US 

cities have distinct community compositions and differ in their seasonal patterns. Our findings 

provide evidence that environmental conditions associated with seasonal change and climatic 

differences related to geography predictably structure the bacterial communities residing in below-

ground sewer pipes. 
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Introduction 

Urban sewers collect wastewater from a variety of sources, including stormwater, industrial waste, 

and residential sewage. Sewer pipes transport wastewater to wastewater treatment plants 

(WWTPs), where nutrients and microorganisms are removed and select microorganisms are 

cultivated to aid treatment processes107. Imbalanced WWTP microbial communities can disrupt 

treatment and create challenging and costly problems. For instance, WWTPs typically settle 

activated sludge to separate it from treated wastewater, but overgrowth of filamentous bacteria 

causes poor settling, which deteriorates effluent quality and may require significant process 

alterations to remedy108. The goal of wastewater treatment is to foster beneficial microbial 

communities and remove problematic ones, and WWTP influent can be a source of each3-5.  

 

Sewers serve as more than conveyance for wastewater. The consistency in sanitary sewer 

microbial community composition suggests that sewers represent a recently formed ecosystem112. 

Some resident sewer microbes induce pipe corrosion95,99, display pathogenic lifestyles113, or 

propagate antibiotic resistance genes114,115, including those that survive treatment and persist in 

receiving waters12-15. Aging and inadequate infrastructure also introduces sewer bacteria to the 

environment by leaching wastewater through corroded pipes16-18 or through deliberate release 

during sewer overflows122,123. Sewage discharge regularly impairs recreational waters, causes 

coastal beach closures, and poses a significant risk to human health124. Despite the potential 

importance of resident sewer bacteria, there is not a thorough understanding of whether most of 

these microorganisms exhibit predictable abundance patterns through time or among sewer 
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systems, partition to various substrates in wastewater, or survive for prolonged periods in natural 

aquatic systems after discharge.  

 

Many aquatic ecosystems undergo seasonal changes that drive biological change, which in turn 

creates repeating and predictable microbial community structures and ecosystem services22-25. As 

sewers are a primarily aquatic environment, it is possible the resident microbial communities also 

exhibit temporal community assembly patterns. Initial studies suggest this may be the case. Guo 

et al.129 revealed diurnal trends in WWTP influent microbial communities that were driven by 

change in flow rate between day and night, where low flow resulted in less sloughing of pipe 

bacteria and thus a change in composition. Although this study provided evidence of repeatable 

microbial dynamics, these dynamics were driven by short-term physical factors. To the best of our 

knowledge, no study has analyzed whether pre-treatment wastewater microbial communities are 

also impacted by longer-term changes (months or years) to their environment. Uncovering patterns 

of assembly by sewer microbial communities will aid in designing models to predict wastewater 

composition, enable targeted treatments for microorganisms of interest, and identify whether 

temporal community variation relates to altered human and/or environmental health risks from 

untreated discharge.  

 

To address this knowledge gap, we used 16S rRNA gene sequencing to analyze bacterial 

communities in three wastewater datasets: (1) a 5-year time series of WWTP influent sampled 

once per month from two facilities in Milwaukee, WI, USA; (2) WWTP influent from 77 facilities 

in the USA sampled during three seasons in a single year; and (3) wastewater from 12 sewers in 
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four distinct residential Milwaukee neighborhoods. To assess the mixing of microbiomes, or the 

“community within a community,” we identified the human-associated bacterial assemblage in 

wastewater and analyzed it independently from the rest of the bacterial community. We 

hypothesize that (1) most sewer pipe bacteria are not from human waste and persist year-round; 

(2) wastewater resident bacterial communities follow predictable, seasonal patterns in assembly; 

and (3) temporal community assembly trends in Milwaukee will be similar to wastewater from 

other northern US cities.  

 

 

Material and Methods 

Sample collection and DNA extraction 

Milwaukee time series 

We collected 24-h flow-proportional composite samples of WWTP influent once a month for 5 

years from Jones Island (JI) and South Shore (SS) water reclamation facilities in Milwaukee, WI, 

USA (Table 1). At JI, 100 mL aliquots from continuous water sampling at three sample points 

were combined into a final composite sample. Each sampling point has variable sampling 

frequencies depending on flow at that location. Under low flow (range = 10 million gallons per 

day (MGD) to 120 MGD depending on sample point), the volumes that trigger an aliquot collection 

are (1) 0.2 MG, (2) 0.5 MG, and (3) 0.6 MG, respectively, while under high flow (range => 60 

MGD to > 120 MGD) the volumes that trigger an aliquot collection are (1) 0.8 MG, (2) 1.0 MG, 

and (3) 1.4 MG. At SS, a single composite sample was collected. Under low flow conditions (< 

100 MGD) a 100-ml aliquot is collected at 0.7-1.9 MG, while under high flow conditions (≥ 100 
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MGD) an aliquot is collected at 1.9-4.0 MG. JI influent samples spanned each month from January 

2013 to February 2018, except 2 months (November 2014 and March 2015; n = 60). SS influent 

samples spanned October 2014 to December 2017, except 5 months (November 2014, March 

2015, May 2015, November 2015, and June 2017; n = 34). After collection, we filtered 10-ml onto 

0.22-μm mixed cellulose ester filters (47-mm diameter, Millipore Sigma) and stored at -80 °C for 

up to 5 years before extracting DNA. The Milwaukee Metropolitan Sewerage District measured 

environmental parameters in each sample.  

 

Milwaukee residential sewers 

We collected 5-h time-paced composite (0400-0900 h, with 50 mL aliquots taken every 15 min) 

samples from three sewers in each of four neighborhoods, Elm Grove, South Milwaukee, North 

Milwaukee, and New Berlin in the Milwaukee sewerage district on the 15th and 17th of December 

2015 (n = 24; Fig. 1 and Table 2). Each residential sewer sample represented a 200-600 house-

hold drainage area. From these samples, we filtered 25-ml onto 0.22-μm mixed cellulose ester 

filters (Sigma Millipore) and stored them at -80 °C for up to 3 months before extracting DNA. 

 

Across USA 

As described previously in Newton et al. 20154, sewage influent samples (n = 204) were collected 

from 77 wastewater treatment plants (WWTPs) in 72 US cities around August 2012, January 2013, 

and May 2013 (Fig. 2 and Table 3). Wastewater samples included a variety of collection setups, 

ranging from single time-point grab samples to 24-h flow weighted composites. All samples were 

collected, stored in a refrigerator on site for < 24 h and shipped overnight to our lab for immediate 
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filtering onto 0.22-μm mixed cellulose ester filters. For specific sample collection details, see 

Newton et al. 20154.  

 

For each sample set, we crushed frozen filters in their storage tubes using a sterile metal spatula, 

added a bead-beating matrix and buffers from the FastDNA Spin Kit for Soil (MP Bio), and bead 

beat for 1 min. We then extracted DNA following the FastDNA Spin Kit for Soil protocol.  

 

PCR and amplicon sequencing 

We amplified the V4-V5 region of bacterial 16S rRNA genes in wastewater samples using primers 

518F and 926R130. The following setup was used: 12.5-μl 2x KAPA HiFi HotStart ReadyMix PCR 

(Roche), 1.5-μl of each 5-μM forward and reverse primer working solutions, 7.5-μl sterile water, 

and 2-μl 100x-diluted DNA template. PCR was run on a vapo-protect Mastercycler pro S 

(Eppendorf) under the following conditions: 95 °C for 5 min; 22 cycles of 98 °C for 20 s, 55 °C 

for 15 s, 72 °C for 1 min; 72 °C for 1 min; 4 °C hold. We included one negative control (PCR 

blank) and one mock community (#HM-782D, BEI). Triplicate PCRs were pooled and cleaned 

with Agencourt AMPure XP beads (Beckman Coulter), following the manufacturer’s protocol. 

Sample libraries were prepared according to the Illumina MiSeq protocol in the Nextera XT Index 

kit (Illumina). Indexed PCR amplicons were cleaned with AMPure beads and normalized with the 

SequalPrep Kit (ThermoFisher). Sequencing was carried out on an Illumina MiSeq with 2 x 250 

chemistry at the UW-Milwaukee Great Lakes Genomics Center (UWM GLGC; Research 

Resource Identifier: SCR_017838; greatlakesgenomics.uwm.edu) for the Milwaukee time series 

samples and the Marine Biological Laboratory for the residential sewers and USA samples. 



 

 

 

 

21 

 

Sequence processing 

Forward and reverse reads were quality-filtered using FastQC131 and primers were trimmed with 

Cutadapt132. We processed the three wastewater datasets simultaneously with the R package 

DADA2133, with the following specifications: during filtering, reads were truncated at 230 bp, and 

reads with quality scores lower than 10 were removed; after merging, sequences were removed 

that did not have lengths within 5% (355 to 393) of the median sequence length (374 bp). 

Taxonomy was assigned to resulting amplicon sequence variations (ASVs) using SILVA v.132134. 

ASVs that were not classified as bacteria or were classified as mitochondria or chloroplasts were 

removed. Contaminant ASVs from the mock community and negative control were identified with 

the R package decontam135 and subsequently removed. 

 

Primer design 

We designed primers to target unique 16S rRNA V4-V5 gene regions belonging to one 

Cloacibacterium and one Flavobacterium ASV (Table 4). Non-target ASVs of the same genus 

were included as negative controls for primer design and PCR amplification. MEGA7136 was used 

to align target and non-target sequences and identify the most variable regions for primer design. 

We used Primer3137 to design primer sequences and calculate annealing conditions. Target 

specificity was checked against RDP Probe Match138.  

 

Gene quantitation 

Quantitative PCR (qPCR) 
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Target ASVs were quantified in all 60 samples of the JI time series using droplet digital PCR 

(ddPCR). Reactions were set up as follows: 11-μl EvaGreen Supermix (Bio-Rad), 1.3-μl 5-μM 

forward and reverse primers, 6.4-μl sterile water, and 2-μl 100x-diluted DNA template. PCR was 

run on a vapo-protect Mastercycler pro S under the following conditions: 95 °C for 5 min; 40 

cycles of 95 °C for 30 s, 58-60°C for 1 min; 4°C for 5 min; 90°C for 5 min; 4°C hold. The human 

Bacteroides marker139, a human fecal marker in the genus Bacteroides, was quantified in the first 

48 samples of the JI time series using qPCR following methods described previously45.  

 

Droplet digital PCR (ddPCR) 

Target ASVs (flavo11, flavo42, cloaci08, cloaci32) were quantified in all 60 samples of the JI time 

series using droplet digital PCR (ddPCR). Reactions were set up as follows: 11-μl EvaGreen 

Supermix (Bio-Rad), 1.3-μl 5-μM for- ward and reverse primers, 6.4-μl sterile water, and 2-μl 

100x-diluted DNA template. PCR was run on a vapo- protect Mastercycler pro S under the 

following conditions: 95°C for 5 min; 40 cycles of 95°C for 30 s, 58-60°C for 1 min; 4°C for 5 

min; 90°C for 5 min; 4°C hold. Gene blocks of V4-V5 sequences (IDT) were used as positive 

controls (Table 5). 

 

Partition reads from the human microbiome 

We pulled Human Microbiome Project (HMP) studies 16S-PP1 and 16S-PP2 from the HMP 

resource page (https://hmpdacc.org/hmp/). HMP sequence IDs were uniquely de-replicated by 

their URL address and concatenated into a single FASTA. A tool was created to reduce unique 

sequences that occurred at least 10 times with at least one subject and sample ID available for 
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each, with at least 1 subject and sample ID available for each uniquely filtered sequence. A 

parallelized, exact-identity sequence aligner was implemented and employed to align the sewage 

ASVs against the curated HMP reference database. We identified 491 human-associated ASVs 

within 35,332 total wastewater ASVs. For this study, the remaining ASVs were considered 

sequences from resident sewer microorganisms. Human-associated ASVs were binned by source 

body site (Table 6). 

 

Due to sequencing errors and potential microorganism transfer among source environments, we 

established a threshold to identify and partition low-abundance, uncommon human-associated 

reads that were common in sewer samples. Among ASVs that were shared between WWTP 

influent and the HMP, if the minimum relative abundance across samples (5th-percentile) of a 

wastewater ASV exceeded the maximum relative abundance across samples (95th-percentile) of 

that ASV in the human microbiome, it was reclassified as a sewer-associated sequence. If the 

minimum abundance (5th-percentile) of a wastewater ASV was less than the maximum abundance 

(95th-percentile) of that ASV in the human microbiome, it was considered a human-associated 

sequence. After the filtering procedure, we moved 33 ASVs from a human-associated to a sewer-

associated classification. In the final dataset, 458 ASVs in the wastewater samples were classified 

as human-associated.  

 

Statistics and graphics 

The Shannon diversity index, a measure of alpha diversity, Bray-Curtis dissimilarity, a measure of 

beta diversity, and ordinations were calculated using the R package vegan140. We also used Mann-
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Whitney U tests, hierarchical clustering, autocorrelation function, linear regression, Shapiro-Wilk 

tests, and ANOVA to examine statistical relationships in the data, and these were performed using 

the R stats141 package. We identified indicator ASVs with the R package indicspecies142. To reduce 

dataset complexity and examine the predominant bacteria, only ASVs with a maximum relative 

abundance of 1% or greater were considered in the indicator analyses. Principal coordinate 

analyses (PCoA) were conducted with the R package ape143. All figures were made in R with 

ggplot2144. 

 

More specifically, we performed the following analyses to visualize and/or test statistically for 

differences in the community composition and abundance (qPCR/ddPCR) datasets: (1) a non-

paired Mann-Whitney U test to compare Shannon diversity values between the US city and 

Milwaukee WWTP influent time-series datasets and the Milwaukee neighborhood and WWTP 

influent time-series datasets, 2) a non-paired Mann-Whitney U test to compare Bray-Curtis 

dissimilarity values between the US city and Milwaukee WWTP influent time-series datasets and 

the Milwaukee neighborhood and WWTP influent time-series datasets, (3) a Principle Coordinate 

Analysis (PCoA) of the Milwaukee time-series dataset to examine temporal patterns in community 

composition, (4) an indicator analysis (indicspecies142) to identify ASV relative abundance 

patterns that are indicative of groups of months, here set at exactly three consecutive month 

groupings in the Milwaukee time-series dataset, (5) a PERMANOVA test to identify if the month-

based seasonal groupings of community composition are different statistically in the Milwaukee 

time-series dataset, (6) a correlation of environmental and sample metadata to the Bray-Curtis 

dissimilarity of bacterial community composition (envfit in R package vegan140) in the Milwaukee 
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time-series dataset, (7) an examination of seasonality in abundance patterns of individual ASVs 

using hierarchical clustering of z-score normalized ASV relative abundances, where each ASV 

was relativized to its relative abundance values across the Milwaukee time-series samples, (8) the 

autocorrelation function (ACF) with 60 1-month time lags to test for data self-similarity with a 

defined time-lag; i.e., a test of significant seasonal patterns in the relative-abundance of particular 

ASVs, (9) Spearman rank correlations to test for relationships between ASV relative abundance 

data and the quantitative PCR data for select ASVs, and (10) a Mann-Whitney U test for seasonal 

differences in the US city community composition data (e.g., cold period northern city vs. warm 

period southern city). For more detailed information on the specific functions used, see Table 7 or 

visit https://github.com/NewtonLabUWM/Sewage_TimeSeries. 

 

Results 

Wastewater bacterial community diversity scales with time and space 

The Shannon diversity index was similar between samples collected in the Milwaukee time series 

and US city WWTP influent datasets (Mann-Whitney U, p = 0.33; Fig. 3a), which indicates there 

is a relatively consistent number/evenness of bacterial taxa that co-inhabit these municipal sewer 

systems. In contrast, Shannon diversity was greater in the Milwaukee neighborhood wastewater 

samples than in the Milwaukee WWTP influent samples (Mann-Whitney U, p = 4.9 • 10-11; Fig. 

3a).  

 

Contrasting the alpha diversity measure, the bacterial community composition was not similar 

across the WWTP influent datasets. Bray-Curtis dissimilarity increased as the sample set included 
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more WWTPs or time points covering a greater proportion of a year in a single treatment plant 

(Fig. 3b). The range of Bray-Curtis dissimilarity values was similar between residential wastewater 

samples and the Milwaukee WWTP influent samples (Mann-Whitney U, p = 0.12) but was greater 

in the US city dataset (Mann-Whitney U, p < 2.2 • 10-16). This result indicates that differences in 

environmental conditions among sewers have a larger influence on community composition than 

localized, within-system environmental differences.  

 

Resident sewer bacterial communities are distinct from the human microbiome 

Bacteria associated with human stool became a lesser part of the overall community as wastewater 

traveled from neighborhood sewers to the WWTP (Fig. 4a). For example, Bacteroides was on 

average the most abundant genus in human stool (53% of community). It decreased to 11% in 

Milwaukee residential sewer communities and 3.4% in Milwaukee WWTP influent. Acinetobacter 

was the most abundant genus in WWTP influent communities in Milwaukee (11% of community) 

and across the US (8.8%). Acinetobacter was not as dominant in residential wastewater (5.3%) 

and was virtually absent (4.5 • 10-3 %) in human stool. Other abundant stool-associated genera, 

including Alistipes, Faecalibacterium, and Parabacteroides, also decreased in their contribution 

to the overall community as they moved from the human host, into the sanitary sewer system, and 

to the WWTP. Their dominance was replaced by genera not common to the human microbiome, 

such as Arcobacter, Trichococcus, and Flavobacterium (Fig. 4b).  

 

The majority of wastewater bacteria were not associated with the human microbiome (Fig. 4c). In 

residential sewer communities, 35.9 ± 7.5% of reads belonged to ASVs attributed to the human 



 

 

 

 

27 

microbiome, but in the 5-year time series of two Milwaukee WWTPs, the proportion dropped to 

11.0 ± 2.8%. Similarly, across the USA, only 12.4 ± 5.7% of reads were human-associated. Of the 

human microbiome sources, stool was the greatest contributor of ASVs to WWTP influent (9.0 ± 

4.7%; Fig. 4d). Overall, we find that the majority of reads in wastewater were assigned to ASVs 

that were not associated with the human microbiome (88.0 ± 5.0%), and we considered them to be 

sewer-associated for subsequent analyses.  

 

Wastewater bacterial communities assemble into seasonal steady states 

Milwaukee WWTP influent bacterial communities repeatedly assembled into two community 

states each year (Fig. 5a), and the pattern was consistent for both of Milwaukee’s WWTP facilities 

(Fig. 5b). In a PCoA, all samples from January through May had Axis 1 scores less than 0, while 

samples from August through November had Axis 1 scores greater than 0. Samples from June, 

July, and December had both positive and negative Axis 1 scores. Typically, samples from April 

to May and September to October harbored the most distinct community compositions (Fig. 5a). 

 

We conducted an indicator analysis to identify ASVs that had relative abundance patterns that 

were indicative of chronologic 3-month groups. Only ASVs with a maximum relative abundance 

≥ 1% were considered. With this analysis we identified 14 indicator ASVs. The indicator results 

also supported the monthly groupings of the PCoA, as we only found indicators of month groups 

including February through June and August through December. No indicator ASVs were found 

for 3-month groups containing July or January, suggesting these are periods of transition between 

community types. For this reason, we described wastewater from February through June as the 
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spring steady state and wastewater from August to December as the fall steady state, with the 

primary differentiating months being February-May and August-November. We also assessed the 

statistical strength of these month-based community groupings with a PERMANOVA test on the 

Bray-Curtis distance matrix for the following groups: (1) spring = February to June, (2) fall = 

August to December, and (3) mix = January and July. The PERMANOVA test also supported the 

idea of these months having distinct bacterial communities (R2 = 0.212, p = 0.0099). 

 

Wastewater temperature was very tightly coupled to the change in community composition at both 

Milwaukee WWTPs (environmental fit, JI R2 = 0.96, SS R2 = 0.97; Fig. 5b) and appears to be the 

primary driver of the observed seasonal change in community composition. For the other measured 

environmental parameters, we saw differences between the WWTPs in their relationship to 

bacterial community composition. At SS, which receives only wastewater from a separated sewer 

system, all variables tested (flow rate, ammonia, total suspended solids, air temperature, 

phosphorus, biological oxygen demand, precipitation, and year) were significant predicators 

(environmental fit R2 range = 0.35-0.85) of influent bacterial communities but were less strongly 

related to community change than temperature. At JI, which receives combined sewer wastewater, 

the environmental parameters measured were much less indicative of the community composition 

(environmental fit, R2 range = 0.0035-0.28).  

 

Sewer bacteria drive temporal trends in WWTP influent 

Seasonal bacterial community variation was driven more by abundance changes of common 

sewer-associated ASVs than by human-associated ASVs. Dendrogram clustering of normalized 
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sewer-associated ASV abundances (Milwaukee time-series) illustrated that many common 

wastewater bacteria (e.g., Acinetobacter, Arcobacter, Cloacibacterium, Flavobacterium, 

Lactococcus) exhibited repeating temporal patterns of high/low or low/high abundance in the 

spring and fall states (Fig. 6). In contrast to the seasonal abundance pattern clustering of sewer-

associated ASVs in the influent samples, common human ASVs exhibited less dramatic temporal 

fluctuations, and these changes were not predictable temporally or with the wastewater 

environmental data. Instead, human ASV relative abundance patterns often clustered by taxonomic 

affiliation (Fig. 6).  

 

We identified two sewer-associated ASVs that exhibited significant seasonal abundance variation 

and one ASV matching a human fecal indicator that did not. The two sewer organisms were (1) 

ASV8, an indicator of September-October-November (fall-warm period) classified to the genus 

Cloacibacterium; and (2) ASV42, an indicator of February-March-April (spring-cold period) 

classified as Flavobacterium. The human fecal indicator was classified as a Bacteroides (ASV44). 

This ASV has 100% sequence identity to the “Human Bacteroides marker”, a well-established 

marker for tracking human fecal pollution in the environment139. We ran autocorrelation function 

(ACF) with 60 1-month time lags to verify the observed seasonal relative abundance patterns of 

the Cloacibacterium and Flavobacterium ASVs. The autocorrelation function confirmed the 

repeated seasonal cycle for these two ASVs across the 5-year time series (Fig. 7a). The human 

specific Bacteroides did not show significant autocorrelations (p value = 0.05) at any time lag (Fig. 

7a).  
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ASV-specific gene quantifications demonstrated relative abundance patterns observed in the 

sequence-based datasets translated to actual abundance change. The Cloacibacterium ASV had 

the highest relative and absolute abundance ranking in WWTP influent (1.1 ± 0.69%, 1.5 • 106 ± 

1.1 • 106 copies/ml), followed by the Flavobacterium (0.41 ± 0.25%) and Bacteroides (0.21 ± 

0.07%) ASVs (Fig. 7c). Absolute abundance quantification matched relative abundance patterns 

for Cloacibacterium (Spearman rank correlation, rho = 0.85; Fig. 7b), Flavobacterium (rho = 0.83) 

and Bacteroides (rho = 0.49). These measurements also support the observation that water 

temperature drives fluctuations in the resident sewer bacterial community, in that Cloacibacterium 

and Flavobacterium concentrations were correlated to wastewater temperature (Spearman rank 

correlation, rho = 0.90 and -0.89, respectively; p = 2.8x10-9 and 6.4 • 10-9, respectively), while 

Bacteroides concentrations were not (rho = -0.22, p = 0.30).  

 

Milwaukee wastewater seasonality is supported spatially across the United States 

Northern and southern US cities had distinct bacterial WWTP influent communities (Fig. 8). 

Seasonal change altered the magnitude of this regional community composition difference. For 

example, communities in northern cities (a cold region) during August (a high temperature period) 

were more similar to communities from southern US cities (a warm region) than they were to other 

northern communities when it was cold (Mann-Whitney U, p < 2.2 • 10-16). This similarity was 

greatest when southern cities experienced their coldest temperatures. Also, southern US cities, 

which experience less dramatic seasonal temperature change, had WWTP influent communities 

that were less variable than the northern cities.  
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Discussion 

Wastewater conveyance represents a unique ecosystem in urban environments. Sewers maintain a 

“resident” community of microorganisms, while transient organisms continuously wash in from 

urban waste, runoff, and the human microbiome. In a study of a single WWTP, human gut 

microorganisms represented a relatively small fraction of the influent community (~7%)129. Our 

work across dozens of facilities supports this observation; we observe roughly 10-15% of the 

community is human-derived. The wastewater community also changes in relation to its location 

in the system. Human-derived microorganisms represent a larger fraction (~36%) of the 

community “up-the-pipe” (i.e., neighborhood sewers), but as wastewater flows through the system, 

resident bacteria become dominant, reaching > 85% of the assemblage. We believe this shift results 

from a significant increase in resident sewer bacteria, rather than a decay in human-associated 

microorganisms during transit. In our relatively limited testing, we found resident sewer organisms 

increased 2.7- to 19-fold from neighborhood sewers to the treatment plant, while human-associated 

bacteria stayed relatively constant (1.3-fold change).  

 

We note that we did not attempt to partition what we term the “resident community” into organisms 

washing in from urban waste versus those that are truly sewer residents. Others have suggested 

soil bacteria may make up a significant fraction (>20%) of sewer microbes129. We agree that this 

is likely, but it is not clear if these organisms are sewer residents having originated from soil or 

represent transient flux into the system. Truly transient sewer organisms should have highly 

variable distributions in time, and nearly all of the abundant organisms in our defined resident 

fraction were present consistently. More work is needed to further identify the true permanent 
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sewer residents and the possible origins for these residents. Understanding these details would 

contribute to both the development of markers for sewage pollution tracking145,146 and further the 

understanding of which organisms are universally present and thus likely metabolically active 

inside these pipes.  

 

There are numerous places in conveyance systems that can accumulate high concentrations of 

actively growing sewer microbes. Biofilms attached to interior pipe surfaces represent one 

potentially large reservoir of resident organisms, and several studies have examined these 

communities (reviewed by Li et al. 2019147). Community compositions of sewer pipe biofilm and 

WWTP influent suggest there is considerable interactions between the two environments, but 

additional sewer habitats, such as sediments, may be contributing even larger microbial loads to 

the wastewater112. An already significant effort has been put forth to understand the products of 

sewer biofilm activity147, as concrete corrosion from these activities costs more than $1 billion 

globally each year148. More work is needed in a single system to eliminate cross-system variability 

so that unique habitats can be identified and described.  

 

Predominant sewer microorganisms were consistent across all the systems we examined, and also 

seem to be common in systems globally112,129. Although the same genera are present, there are 

stark differences in the actual bacterial composition among sewer systems, and clear diversity 

patterns similar to those found in other aquatic ecosystems systems like lakes or the ocean. We 

found that alpha diversity in WWTP influent samples remains relatively constant, but up-the-pipe, 

the diversity was often greater. Because human microbiome contributions were greater up-the-
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pipe, individual variations in these samples and household waste streams presumably increases 

this diversity, but this remains to be tested. Meanwhile, we believe the large, integrated water 

network of conveyance systems homogenizes community inputs, obscuring rarer members prior 

to sampling of WWTP influent. We also found that beta diversity of influent increases as more 

sites or more times of the year are included, but not as more years are included. This pattern is 

very similar to the seasonal river, lake, or oceanic basin microbial community patterns where 

communities predictably cycle each year, but each system has its own unique community structure 

and timing of community change22,52-54.  

 

Our time series revealed sewer resident communities exhibit significant and repeatable temporal 

community change, which manifested as a seasonal cycle. This was surprising to us, as surface-

water seasonal cycles such as those in temperate lakes are driven by changes in a combination of 

temperature and light availability, which influence primary production and ultimately start a 

cascade of change through the food web152. Sewers are below-ground and thus are buffered to 

large temperature changes (e.g., in Milwaukee ~8 °C difference across a year), no light is available, 

and there are constant exogenous nutrient inputs, so it appears much of the seasonal regime is tied 

to wastewater temperature change. Indeed, in Milwaukee, the seasonality of the influent 

wastewater bacterial community composition at both treatment plants (JI and SS) was clearly 

driven by wastewater temperature. Some of the other measured physical-chemical parameters also 

correlated to the community change (48-h precipitation, flow, ammonia, BOD, total phosphorus, 

TSS; Table 8), but the majority of these relationships were significant at only one of the two 

treatment plants (the SS plant, a separated sewer system), and the correlations were weaker than 
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that found for water temperature. To us, it is clear that temperature is a primary driver of bacterial 

community change in at least some wastewater conveyance systems.  

 

In Milwaukee, sewer wastewater temperature change follows the change in air temperature, 

resulting in a roughly 3-month delay between the lowest/highest average air temperatures and the 

lowest/highest temperatures in the wastewater. This results in the bacterial community 

composition being most distinct at the wastewater temperature extremes, which occur in April 

(cold, ~10 °C) and October (warm, ~18 °C). Although we do not have long-term time series data 

from other cities, it appears water temperature plays a primary role in structuring and 

geographically partitioning sewer bacterial communities across vast geographical distances. 

Communities from northern (cold) and southern (warm) US cities were strikingly distinct, but they 

became more similar in comparisons of warm periods in the north to cold periods in the south. The 

regional warm periods in the north and cold periods in the south occur asynchronously, so there is 

no apparent period of community convergence across these distinct temperature regions. Also, we 

do not have seasonal wastewater temperatures for any southern cities, so it is unknown if the pace 

and timing of community change in these systems matches the two-season (warm-fall to cold-

spring) setup observed in the Milwaukee dataset. It also appears that southern US cities, which 

have smaller air temperature ranges than most northern cities, have correspondingly less variable 

bacterial communities. We presume these two conditions are related, but the question of how the 

magnitude of wastewater temperature change impacts community composition remains to be 

tested.  
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Conclusions 

Temperature dependence is clearly driving large-scale changes to the bacterial community 

composition in municipal wastewater conveyance systems. The temperature change results in a 

bacterial community that exhibits striking seasonality, but this seasonal cycle occurs in a below-

ground and built/engineered system. Seasonality is more typically described for surface 

communities, which experience both light and temperature changes over a year. This community 

pattern indicates the microbial communities in built infrastructure have emergent properties 

comparable to the rest of the aquatic microbial biosphere; and therefore, further examination of 

how these microbial communities adapt to built water infrastructure is warranted. Going forward, 

it also needs to be determined whether temperature-driven cycles in wastewater impact 

engineering processes at treatment plants or alter sewer pipe corrosion rates. Wastewater treatment 

plant performance can vary seasonally, but it is still unclear how much of this is driven by changes 

in the entering community. Additionally, seasonal change in wastewater communities may 

represent a change in the levels of human or environmental health risk during untreated sewage 

release. Although the human fecal bacteria remain fairly constant temporally, the seasonal 

abundance shifts for common sewer organisms could be used to develop more sensitive seasonal 

or regional specific indicators for sewage pollution tracking. Overall, we advocate for applying 

microbial ecological theory developed from natural ecosystems to sewer systems. Much like in the 

relatively new discipline of urban ecology, there are likely theories that apply across natural and 

built system boundaries, but also unique paradigms that exist only in the built systems. Sewers 

allow for some operational control and thus could prove useful in testing theories across 
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boundaries, but also for understanding how urban environments alter microbial community 

assembly, activity, and adaptation.  
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Figures 

 

ArcGIS skills courtesy of Emily R. Koster. 

 

  

Figure 1. Map of Milwaukee sewer access. 
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Sampling campaign for Newton et al., 2015. WWTP influent was collected during three sampling periods designated as August, 

January, and May. Because influent was not collected from all three periods at each WWTP, “coverage” indicates which sampling 

periods that influent was collected for each location. See Table 1 for more information. 

 

  

Figure 2. Map of sampled USA wastewater treatment plants. 



 

 

 

 

39 

(A) Alpha diversity (richness) was calculated with the Shannon diversity index and (B) beta diversity (dissimilarity) was calculated 

with Bray-Curtis distance metrics. Diversity was measured in wastewater treatment plant influent in the five-year time series of JI, 

in Milwaukee, WI; in JI and SS in Milwaukee, WI; from 77 WWTPs across the US; and in wastewater collected from residential 

Milwaukee neighborhood sewers. Boxes depict the median and first and third quartiles. Whisker lines extend to interquartile ranges 

x1.5 and points are outlier values. 

 

  

Figure 3. Community richness and dissimilarity over time and space. 
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(A) Stacked bar plots showing the most abundant genera (top 5 from each dataset) among human stool samples from the Human 

Microbiome Project, wastewater from Milwaukee residential sewers, influent from a five-year time series of two Milwaukee 

WWTPs, and WWTPs from across the US. Bar height indicates the proportion of that genus among the abundant genera visualized. 

Bar colors denotes the genus. (B) Proportion of abundant genera from Figure 2A in all WWTP influent samples. (C) Proportion of 

all human-associated ASVs in the three wastewater datasets. (D) Proportion of ASVs from human microbiome body site sources 

among all wastewater samples. For B-D, circles indicate sample value and lines indicate dataset mean. 

 

  

Figure 4. Microbial community changes across sources. 
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(A) Principal coordinate analysis (PCoA) of influent bacterial communities from two Milwaukee WWTPs sampled once a month 

for five years. Points indicate influent bacterial community samples, color denotes the month sampled, and shape indicates the 

source WWTP. Axis 1 is set as the y-axis for visualization purposes. (B) PCoA Axis 1 scores from both WWTPs over time (solid 

grey lines) plotted with wastewater temperatures (blue dashed lines). 

 

  

Figure 5. Microbial community dissimilarity coupled to water temperature. 
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Dendrograms and heatmaps of abundant (maximum relative abundance >1%) sewer-associated (left) and human-associated (right) 

ASVs in a five-year time series of JI influent. Heatmap colors denote within-ASV Z-scored normalized relative abundances. 

 

  

Figure 6. Common taxa clustering based on temporal abundance patterns.  
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(A)  Time-dependent autocorrelations of relative abundance change for select ASVs performed with 60 1-month time lags from 

the Jones Island wastewater influent dataset. Bar height indicates autocorrelation score at each time lag, and grey dashed lines 

indicate autocorrelation significance level (± 0.26 at p = 0.05). (B)  Line graph of quantitative PCR measurements targeting these 

ASVs in JI influent. Vertical lines extend to standard deviations. (C)  Quantitative PCR measurements in Milwaukee neighborhood 

sewers and JI influent. Horizontal lines indicate mean gene concentration. Taxonomic affiliation of the ASVs includes (left) a 

human-specific Bacteroides; (middle) a fall-associated, sewer-specific Cloacibacterium; and (right) a spring-associated, sewer-

specific Flavobacterium. 

 

  

Figure 7. Time series analysis of sewer indicators and a human marker. 
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(A)  map of select wastewater treatment plants sampled previously (Newton et al., 2015). (B)  principal coordinate analysis of 

influent bacterial communities. Yellow points indicate samples from the 5-year Milwaukee WWTP time series, blue points the 11 

coldest US cities in the dataset, and red points the 11 warmest US cities in the dataset. Point shapes indicate the sampling period 

during which wastewater was collected. Points with labels are samples from either southern US cities in January or northern US 

cities in August. 

 

 

  

Figure 8. Wastewater community composition across the USA. 
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Tables 

 

Table 1. Sample collection dates for Milwaukee time series. 

Site Month Years 

JI Jan 2013, 2014, 2015, 2016, 2017, 2018 

JI Feb 2013, 2014, 2015, 2016, 2017, 2018 

JI Mar 2013, 2014, 2016, 2017 

JI Apr 2013, 2014, 2015, 2016, 2017 

JI May 2013, 2014, 2015, 2016, 2017 

JI Jun 2013, 2014, 2015, 2016, 2017 

JI Jul 2013, 2014, 2015, 2016, 2017 

JI Aug 2013, 2014, 2015, 2016, 2017 

JI Sep 2013, 2014, 2015, 2016, 2017 

JI Oct 2013, 2014, 2015, 2016, 2017 

JI Nov 2013, 2015, 2016, 2017 

JI Dec 2013, 2014, 2015, 2016, 2017 

SS Jan 2015, 2016, 2017 

SS Feb 2015, 2016, 2017 

SS Mar 2016, 2017 

SS Apr 2015, 2016, 2017 

SS May 2016, 2017 

SS Jun 2015, 2016 

SS Jul 2015, 2016, 2017 

SS Aug 2015, 2016, 2017 

SS Sep 2015, 2016, 2017 

SS Oct 2014, 2015, 2016, 2017 

SS Nov 2016, 2017 

SS Dec 2014, 2015, 2016, 2017 

JI = Jones Island Water Reclamation Facility 

SS = South Shore Water Reclamation Facility 
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Table 2. Milwaukee manhole locations and dates sampled. 

Neighborhood Manhole Dates 

Elm Grove 1 15-Dec-2015, 16-Dec-2015 

Elm Grove 2 15-Dec-2015, 16-Dec-2015 

Elm Grove 3 15-Dec-2015, 16-Dec-2015 

New Berlin 1 15-Dec-2015, 16-Dec-2015 

New Berlin 2 15-Dec-2015, 16-Dec-2015 

New Berlin 3 15-Dec-2015, 16-Dec-2015 

N. Milwaukee 1 15-Dec-2015, 16-Dec-2015 

N. Milwaukee 2 15-Dec-2015, 16-Dec-2015 

N. Milwaukee 3 15-Dec-2015, 16-Dec-2015 

S. Milwaukee 1 15-Dec-2015, 17-Dec-2015 

S. Milwaukee 2 15-Dec-2015, 17-Dec-2015 

S. Milwaukee 3 15-Dec-2015, 17-Dec-2015 
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Table 3. Sample locations across USA. 

Treatment plant city and state Months and years 

Juneau, AK Jan 2013, May 2013, Sep 2012 

Auburn, AL Aug 2012 

Yuma, AZ Aug 2012, Jan 2013, May 2013 

Santa Barbara, CA Aug 2012, Jan 2013, May 2013 

Palo Alto, CA Aug 2012, Jan 2013, May 2013 

Stockton, CA Aug 2012, Jan 2013, May 2013 

Discovery Bay, CA Apr 2013, Aug 2012, Jan 2013 

Whittier, CA Aug 2012, Jan 2013, May 2013 

Richmond, CA Jan 2013, May 2013, Sep 2012 

Denver, CO Apr 2013, Aug 2012, Jan 2013 

Steamboat Springs, CO Jan 2013 

New London, CT Aug 2012, Jan 2013 

West Palm Beach, FL Aug 2012, Jan 2013, May 2013 

Key Largo, FL Aug 2012 

Key West, FL Aug 2012, Jan 2013, May 2013 

Marathon, FL Aug 2012, Feb 2013, May 2013 

Palmetto, FL Aug 2012, Jan 2013 

Augusta, GA Aug 2012, Jan 2013, May 2013 

Johns Creek, GA Aug 2012, Feb 2013, Jan 2013, May 2013 

Roswell, GA Aug 2012 

Honolulu, HI Jun 2013, Sep 2012 

Iowa City, IA Aug 2012, Jan 2013, May 2013 

Spencer, IA Aug 2012, Jan 2013 

Boonville, IN Apr 2013, Aug 2012, Jan 2013 

Junction City East, KS Aug 2012 

Junction City, KS Aug 2012, Jan 2013 

Salina, KS Jan 2013, May 2013, Sep 2012 

Hardinsburg, KY Aug 2012, Jan 2013, May 2013 

Gloucester, MA Aug 2012, Jan 2013, May 2013 

Brockton, MA Apr 2013, Aug 2012, Jan 2013 



 

 

 

 

48 

Treatment plant city and state Months and years 

Fall River, MA Apr 2013, Aug 2012, May 2013 

Delano, MN Aug 2012, Jan 2013 

Monticello, MN Aug 2012, Jan 2013 

Farmington, MN Aug 2012, Jan 2013, May 2013 

Albertville, MN Aug 2012, Jan 2013, May 2013 

Shakopee, MN Aug 2012, Jan 2013, May 2013 

St. Paul, MN Aug 2012, Jan 2013, May 2013 

St. Joseph, MO Aug 2012, Jan 2013 

Great Falls, MT Apr 2013, Aug 2012, Jan 2013 

Bozeman, MT Aug 2012, Jan 2013, May 2013 

Missoula, MT Aug 2012, May 2013 

Lincoln, NE Aug 2012, Jan 2013, May 2013 

Poughkeepsie, NY Apr 2013, Aug 2012, Jan 2013 

Syracuse, NY Aug 2012, Jan 2013, May 2013 

Bedford, NY Aug 2012, Jan 2013 

Hillburn, NY Aug 2012, Jan 2013, May 2013 

Springboro, OH Apr 2013, Aug 2012, Jan 2013 

Franklin, OH Aug 2012, Feb 2013 

Woodmere, OH Aug 2012, Jan 2013, May 2013 

Yukon, OK Aug 2012, Jan 2013, May 2013 

Heavener, OK Aug 2012 

Moore, OK Aug 2012, Feb 2013 

Portland, OR Aug 2012, Jan 2013, May 2013 

Pendleton, OR Aug 2012, Jan 2013, May 2013 

Duncansville, PA Aug 2012, Jan 2013 

Memphis, TN Apr 2013, Aug 2012, Jan 2013 

Freeport, TX Apr 2013, Aug 2012, Jan 2013 

Burkburnett, TX Aug 2012, Jan 2013, May 2013 

Austin, TX Aug 2012, Jan 2013 

Gladewater, TX Aug 2012 

Kenedy, TX Aug 2012, Jan 2013 
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Treatment plant city and state Months and years 

Clintwood, VA Aug 2012, Jan 2013, May 2013 

Coeburn, VA Aug 2012, Jan 2013 

Burlington, VT Aug 2012, Jan 2013, May 2013 

Vancouver, WA Apr 2013, Aug 2012, Jan 2013 

Kelso, WA Jan 2013, May 2013 

Oak Creek, WI Aug 2012, Jan 2013 

Milwaukee, WI Aug 2012, Jan 2013 

Madison, WI Apr 2013, Aug 2012, Jan 2013 

Matewan, WV Aug 2012, Feb 2013, May 2013 

Williamson, WV Aug 2012, Feb 2013, May 2013 

Laramie, WY Aug 2012, Jan 2013, May 2013 
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Table 4. Flavobacteria primer information. 

Target Primer name Direction Sequence Anneal (°C) 

Flavobacterium  

ASV11 

flavo11_sew_629F forward GAACGGCCATTGATACTGCT 

58-60 
flavo11_sew_859R reverse TAGCCACTGAAGTTGCCCCC 

Flavobacterium  

ASV42 

flavo42_sew_630F forward ACGGCCATTGATACTGTCTGA 

58-60 
flavo42_sew_859R reverse TAGCCACTGAGATTGCTCCC 

Cloacibacterium  

ASV08 

cloaci08_sew_682F forward AGTGTAGCGGTGAAATGCAT 

58-60 
cloaci08_sew_860R reverse TTGGTCTCTGAACCCTAAAGC 

Cloacibacterium  

ASV32 

cloaci08_sew_682F forward AGTGTAGCGGTGAAATGCAT 

58-60 
cloaci32_sew_859R reverse TGGTCTCTGAAGCTTGCGCT 

 

  



 

 

 

 

51 

Table 5. Flavobacteria gene block positive controls. 

Gene block name 16S rRNA gene V4-V5 sequence 

flavo11_sew_16S 

ACGGAGGATCCAAGCGTTATCCGGAATCATTGGGTTTAAAGGGTCCGTAGGCGGTTTAGTAAGTCAGTGGTGAAAGC

CCATCGCTCAACGGTGGAACGGCCATTGATACTGCTAGACTTGAATTATTAGGAAGTAACTAGAATATGTAGTGTAG

CGGTGAAATGCTTAGAGATTACATGGAATACCAATTGCGAAGGCAGGTTACTACTAATGGATTGACGCTGATGGACG

AAAGCGTGGGTAGCGAACAGGATTAGATACCCTGGTAGTCCACGCCGTAAACGATGGATACTAGCTGTTGGGGGCAA

CTTCAGTGGCTAAGCGAAAGTGATAAGTATCCCACCTGGGGAGTACGTTCGCAAGAATGAA 

flavo42_sew_16S 

ACGGAGGATCCAAGCGTTATCCGGAATCATTGGGTTTAAAGGGTCCGTAGGCGGTCAGATAAGTCAGTGGTGAAAGC

CCATCGCTCAACGGTGGAACGGCCATTGATACTGTCTGACTTGAATTATTAGGAAGTAACTAGAATATGTAGTGTAG

CGGTGAAATGCTTAGAGATTACATGGAATACCAATTGCGAAGGCAGGTTACTACTAATGGATTGACGCTGATGGACG

AAAGCGTGGGTAGCGAACAGGATTAGATACCCTGGTAGTCCACGCCGTAAACGATGGATACTAGCTGTTGGGAGCAA

TCTCAGTGGCTAAGCGAAAGTGATAAGTATCCCACCTGGGGAGTACGTTCGCAAGAATGAA 

cloaci08_sew_16S 

ACGGAGGGTGCAAGCGTTATCCGGATTTATTGGGTTTAAAGGGTCCGTAGGCGGACTTATAAGTCAGTGGTGAAAGC

CTGTCGCTTAACGATAGAACTGCCATTGATACTGTAAGTCTTGAGTATATTTGAGGTAGCTGGAATAAGTAGTGTAG

CGGTGAAATGCATAGATATTACTTAGAACACCAATTGCGAAGGCAGGTTACCAAGATATAACTGACGCTGAGGGACG

AAAGCGTGGGGAGCGAACAGGATTAGATACCCTGGTAGTCCACGCCGTAAACGATGCTAACTCGTTTTTGGGCTTTA

GGGTTCAGAGACCAAGCGAAAGTGATAAGTTAGCCACCTGGGGAGTACGCTCGCAAGAGTGAA 

cloaci32_sew_16S 

ACGGAGGGTGCAAGCGTTATCCGGATTTATTGGGTTTAAAGGGTCCGTAGGCGGACTTATAAGTCAGTGGTGAAAGC

CTGTCGCTTAACGATAGAACTGCCATTGATACTGTAAGTCTTGAGTATATTTGAGGTAGCTGGAATAAGTAGTGTAG

CGGTGAAATGCATAGATATTACTTAGAACACCAATTGCGAAGGCAGGTTACCAAGATATAACTGACGCTGAGGGACG

AAAGCGTGGGGAGCGAACAGGATTAGATACCCTGGTAGTCCACGCCGTAAACGATGCTAACTCGTTTTTGGAGCGCA

AGCTTCAGAGACCAAGCGAAAGTGATAAGTTAGCCACCTGGGGAGTACGCTCGCAAGAGTGAA 
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Table 6. Human microbiome body site descriptions. 

Binned body site name HMP body site description 

Skin 

L_Retroauricular crease 

R_Retroauricular crease 

L_Antecubital fossa 

R_Antecubital fossa 

Anterior nare 

Oral 

Saliva 

Tongue dorsum 

Hard palate 

Buccal mucosa 

Attached/Keratinized gingiva 

Palatine Tonsils 

Throat 

Supragingival plaque 

Subgingival plaque 

Vaginal 

Vaginal introitus 

Mid vagina 

Posterior fornix 

Stool Stool 

HMP = Human Microbiome Project 
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Table 7. R packages and functions. 

R package Analysis Function Call Purpose 

dada2 

(1.12.1) 
Quality control and merge forward and reverse 16S rRNA gene amplicon sequences in FASTQ files 

phyloseq 

(1.28.0) 
Organize ASV abundance matrices, taxonomy classifications, and sample information 

ggplot2 

(3.2.1) 
Create figures 

decontam 

(1.4.0) 

Contaminant 

identification 
isContaminant 

isContaminant(phyloseq.object, 

method = "prevalence", neg = "NTC") 

isContaminant(phyloseq.object, 

method = "prevalence", neg = "mock") 

Identify and remove 

reads from the no 

template control and 

mock community 

vegan 

(2.5.6) 

Shannon alpha 

diversity 
diversity 

diversity(abundance.matrix, method = 

“shannon”) 

Calculate alpha 

diversity within 

microbial community 

samples 

Bray-Curtis 

dissimilarity 
vegdist 

vegdist(abundance.matrix, method = 

“bray”) 

Calculate beta 

diversity between 

microbial community 

samples 

Euclidian 

dissimilarity 
vegdist 

diversity(abundance.matrix, method = 

“euclidian”) 

Calculate 

dissimilarity between 

normalized (z scores) 

ASV abundances 

Constrained 

correspondence 

analysis (CCA) 

cca 
cca(abundance.matrix ~ ., 

sample.info, na.action = na.exclude) 

Ordinate microbial 

communities against 

environmental 

variables 

Environmental fit envfit 
envfit(cca.result ~ ., sample.info, 

perm = 999, na.rm = TRUE) 

Fit environmental 

variables to CCA 

stats (3.6.0) 

Shapiro-Wilk shapiro.test shapiro.test(vector) 
Test for normal 

distributions 

Mann-Whitney U wilcox.test 
wilcox.test(x = x.vector, y = 

y.vector, paired = FALSE, 

alternative = “greater”) 

Compare alpha 

diversity 

measurements and 

cluster heights 

between datasets 

Average 

hierarchical 

cluster 

hclust 
hclust(vegdist.object, method = 

“average”) 

Cluster dissimilarity 

matrices to create 

dendrogram of ASVs 

based on abundance 

patterns 

Centroid 

hierarchical 

cluster 

hclust 
hclust(vegdist.object, method = 

“centroid”) 

Cluster dissimilarity 

matrices based on 

distance from center 

of clusters 
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R package Analysis Function Call Purpose 

Autocorrelation acf 

acf(vector, lag.max = 60, plot = 

FALSE) 

# extract for ggplot 

with(acf.result, data.frame(lag, 

acf)) 

Observe seasonal 

abundance patterns 

of ASVs 

Analysis of 

variance 

(ANOVA) 

aov aov(vector ~ variables) 

Test if environmental 

metadata and ASV 

abundances are 

explained by season 

Spearman rank 

correlation 
cor.test 

cor.test(vector.x, vector.y, method 

= “spearman”) 

Correlate ASV 

abundances 

measured by 16S 

rRNA sequencing 

and ddPCR 

Model prediction predict 
predict(aov.result, interval = 

“confidence”) 

Make predictions 

from ANOVA 

OTUtable 

(1.1.2) 
Normalization zscore zscore(abundance.matrix) 

Normalize ASV 

abundances to z 

scores ((x-μ)/σ) 

indicspecies 

(1.7.6) 

Multi-level 

pattern analysis 

(indicator species) 

multipatt 
multipatt(abundance.matrix, 

variables, min.order = 3, max.order 

= 3, control = how(nperm = 999) 

Find associations 

between ASV 

abundances and 

groups of months 

(seasons) 

ape (5.3) 

Principal 

coordinate 

analysis (PCoA) 

pcoa pcoa(vegdist.object) 

Visualize 

dissimilarities (as 

Bray-Curtis 

distances) between 

samples 
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CHAPTER III 

WASTEWATER ANTIBIOTIC RESISTANCE GENES ARE COUPLED WITH 

TEMPERATURE-DRIVEN BACTERIAL COMMUNITIES 
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Abstract 

Environments impacted by sewage are a focal point of antibiotic resistance research. Conditions 

in sewage promote the development and spread of antibiotic resistance genes (ARGs) and exert a 

selective pressure that fixes ARGs in a microbial community. Little is known about microbial 

communities that reside in sewers, despite them being a vast majority over allochthonous, waste-

associated groups. We recently showed that microbial community assembly was strongly linked 

to wastewater temperature, a trend that was consistent over years within a single city and echoed 

across the United States. However, it is not clear whether predictable community dynamics would 

translate to trends in ARG abundance and diversity. Here, we used metagenomic sequencing to 

catalog all possible ARGs in wastewater treatment plant (WWTP) influent collected periodically 

over five years from six US cities. We supplemented compositional changes of ARGs in 

metagenomes with absolute quantifications of common sewage ARGs (sulI, qnrS, tet(A), tetO) and 

intI1 using droplet digital PCR (ddPCR). Metagenomics revealed a strong correlation of 

wastewater ARG composition to the source city and sample month. Cities had distinct catalogs of 

ARGs, with northern- and southern-most cities having the highest number of indicators. ARGs 

were present in wastewater year-round but fluctuated in relative abundance with seasonal changes. 

In other words, wastewater from a city may have its own pool of ARGs, and those ARGs increase 

or decrease with the bacterial host response to wastewater temperature. Our results highlight the 

connectedness of ARGs to the sewer ecosystem, such that potentially both microbial community 

dynamics and the ecology of each system impacts the composition of ARGs in sewage. 
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Introduction 

The current arsenal of antibiotics that effectively treat persistent infections has been rapidly 

diminishing for decades. Rampant antibiotic resistance is a consequence of negligent antibiotic 

consumption since its discovery a century ago. Antibiotic exposure puts a selective pressure on 

antibiotic resistance genes (ARGs) that favors the survival of resistant bacteria. Selective pressure 

is exerted on gut microbiota and any other environment where antibiotics are found. Up to 80% of 

ingested drugs are excreted in urine153 so environments polluted with sewage or animal waste have 

potential to exert selective pressure on ARGs. Urban sewers collect waste from a variety of 

sources, such as residences, industries, and hospitals, creating complex mixtures of microbes, 

pharmaceuticals, and chemicals that arguably have never occurred on earth before and may never 

be repeated again. Microbial communities with permanent residence in sewers have adapted means 

to survive this stressful environment, including carrying ARGs154–158.  

 

Knowledge gaps in environmentally derived resistance lie in part with the limited understanding 

of the sewer microbiome. Previous work has shown that sewage communities maintain relatively 

consistent structure4,100 and assembly was strongly dictated by wastewater temperature159. 

However, it has yet to be seen how community-level dynamics influence wastewater ARG 

composition and distribution. Here, we examined the composition of ARGs between cities and 

over time to capture ARG relationships to community changes. We sequenced metagenomes from 

30 untreated wastewater samples, covering six USA cities over six years. With droplet digital PCR 

(ddPCR), we quantified five ARGs (sulI, tet(A), tetO, and qnrS) and the class 1 integron-integrase 
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gene (intI1) in a five-year wastewater time series. The same genes were quantified in wastewater 

from 12 US cities collected three times in one year, and intI1 quantified in an additional 39 cities.  

 

Material and Methods 

Sample information 

Wastewater treatment plant (WWTP) influent was collected from two WWTPs (Jones Island and 

South Shore) in Milwaukee, WI, USA once a month from January 2013 to December 2017, and 

twice a month in April, May, September and October 2018, using methods described previously159. 

WWTP influent was collected from Palo Alto, CA; Key West, FL; Laramie, WY; and Gloucester, 

MA, USA in Aug 2012, Jan 2013, and May 2013, described previously4. In October and November 

2018, twice each month, WWTP influent was collected from the Sand Island, HI, USA WWTP. 

Sample location and dates can be found in Tables 8 and 9. 

 

Metagenomic sequencing and data processing 

Metagenomic shotgun sequencing was performed by the Ramaciotti Centre for Genomics 

(Sydney, Australia), using Illumina HiSeq 2500 sequencing technology and Nextera XT kit 

(Illumina) for library preparation (2x150 bp). Low-quality reads were removed from FASTQs 

using parameters established by Minoche, et al.160, with iu-filter-quality-minoche v.2.12 from the 

package suite illumina-utils161. Filtered paired-end reads were assembled with MEGAHIT 1.2.9162 

and contigs less than 300 bp were removed using SeqKit v.2.2.0163.  
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Antibiotic resistance gene mining 

Contigs were aligned to the Comprehensive Antibiotic Resistance Gene Database (CARD v.3.2.5) 

using the tool Resistance Gene Identifier (RGI main v.5.1.1)164. Only “perfect” (exact match to 

reference sequence) and “strict” (previously unknown variant detected by model) alignments were 

analyzed. A custom R141 script converted RGI alignment files to an ARG abundance table by 

counting the number of instances an Antibiotic Resistance Ontology (ARO; 

https://www.ebi.ac.uk/ols/ontologies/aro) ID aligned to contigs in each sample. ARG counts were 

normalized to reads per kilobase million (RPKM): 

 

𝑅𝑃𝐾𝑀 =
𝑛

𝑁 ∗ 106 ∗ 𝑙
 

Where: 

𝑛 =  number of times an ARG aligned to the sequence file (a cell in a sample-by-ARO 

ID abundance matrix) 

𝑁 =  sum of total number of times an ARG aligned to the sequence file (the sum of a 

sample in the abundance matrix) 

𝑙 =   length of the reference gene (multiply the number of characters in the “CARD 

protein sequence” column of the RGI alignment file by three) in kilobase pairs 

(divide by 1000) 

 

Gene quantification 

Antibiotic resistance genes tet(A)165, tetO166, sulI158, qnrS158, and the class 1 integron-integrase 

gene intI1167 were quantified in WWTP influent samples using Bio-Rad QX200 Droplet Digital 

PCR (ddPCR) system. Duplicate reactions were set up in 96-well plates as follows: 11-μl 

EvaGreen Supermix (Bio-Rad, #1864034), 1.3-μl 5-μM forward and reverse primers, 6.4-μl sterile 

water, and 2-μl 100x-diluted DNA template. PCR was run on a vapo-protect Mastercycler pro S 
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under the following conditions: 95°C for 5 min; 40 cycles of 95°C for 30s, target-specific 

annealing temperature (Table 10) for 1 min; 4°C for 5 min; 90°C for 5 min; 4°C hold. 

 

Results were downloaded to CSV files from the plate reader program QuantaSoft (Bio-Rad, 

#12012172) and organized in R141. Duplicated assays with variation coefficients (CV) greater than 

0.5 were re-run and/or discarded. The mean copies-per-20-µl-well measurement was converted to 

ARG copies-per-ml of the original wastewater sample:   

𝐴𝑅𝐺𝑐𝑜𝑝𝑖𝑒𝑠/𝑚𝑙 =
µ ∗ 𝑑 ∗ 𝑒

𝑣 ∗ 𝑓
  

Where: 

µ = mean copies per 20-µl well of duplicate assays 

𝑑 =  dilution factor of DNA template 

𝑒 =  elution volume of extracted DNA (µl) 

𝑣 =  volume of DNA template in PCR (µl) 

𝑓 =  volume of original sample fixed to filter (ml) 

 

 

Statistics and graphics 

DNA sequence analysis 

All graphics were created using the R package ggplot2144. Bray-Curtis distances between 

samples of ARG RPKM values were calculated using vegdist from the R package vegan 

v.2.6.2168. A principal coordinate analysis (PCoA) was performed on distance matrices using the 

pcoa function from ape 5.6.2143. Dendrograms (ggendro v.0.1.23169) were created from 

hierarchical clustering (“average” agglomeration method; R stats141 package) Bray-Curtis 

distances between samples and ARGs.  
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Shapiro-Wilk tests for normality (R stats141 function shapiro.test) were run prior to any 

comparison statistics. Bray-Curtis distances were fed to a goodness of fit test (function envfit) to 

assess the significance of month sampled and WWTP location on ARG composition (RPKM 

values). Month and location were similarly tested on ARG content (presence/absence), 

substituting Jaccard distances between binary samples. To test if month or location yielded the 

most dissimilarity in the dataset, samples collected from (A) different locations during the same 

month and (B) the same location over multiple months were compared. Bray-Curtis distances 

between samples within groups A and B were compared using a one-sided Wilcoxon rank-sum 

test (R stats141 function wilcox.test). 

 

Gene quantification 

The relative change from the mean of ARGs (i.e., over time in Milwaukee dataset, between 

locations in USA dataset) was calculated by dividing the difference of an observation (n) and the 

mean (µ) by the mean: 

𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑐ℎ𝑎𝑛𝑔𝑒 =  
𝑛 − µ

µ
 

Where: 

𝑛 = ARG copies per ml original sample 

µ =  mean copies per ml in that sample group 

fold change of 1 = an observation increased 1-fold (2-times) from the mean 

 

A permutational multivariate analysis of variance (PERMANOVA, vegan168 function adonis) 

measured the impact of month sampled on concentrations for each ARG. One-sided Wilcoxon 
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rank-sum tests (R stats141, wilcox.test) were run to assess which sample groups (i.e., month, 

north, south) had higher ARG concentrations. Thiel-Sen median-based linear regressions 

(function and package mblm) measured the correlation of intI1 concentrations to the other ARGs. 

 

Results 

Wastewater ARG composition wastewater is influenced by geography and season 

ARG composition in wastewater samples (resistomes) were compared using the Bray-Curtis 

dissimilarity metric, calculated from ARG abundances normalized to reads per kilobase million 

(RPKM). Bray-Curtis scores were then ordinated in a principal coordinate analysis (PCoA, Fig. 

9). WWTP location and sampling month strongly explained resistome dissimilarity (goodness of 

fit, R2 = 0.85, p = 0.001; R2 = 0.44, p = 0.003; respectively). For WWTPs sampled in January, 

May, and August (CA, MA, WI, WY, FL), August samples were most distant from the other 

months, excluding FL, which had little variability among samples. Resistomes from FL, the 

second-most southern sampling site, were closest to those from HI, the southern-most site. 

Resistomes from more northern sites were most similar to FL and HI during warmer sampling 

periods (i.e., WY and SS in August). 

 

WWTP location explained the most variability in the dataset (Wilcoxon rank sum test; p = 6.8 • 

10-9; Fig. 10). To compare its influence on time sampled, we measured resistome variability (A) 

at the same WWTP between months, and (B) during the same month between WWTPs. There was 

significantly more variability when comparing different WWTPs than different months (Bray-

Curtis dissimilarity, µ(B) = 0.41 ± 0.12, µ(A) = 0.31 ± 0.087, respectively). The greatest 
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dissimilarity (0.66) was between CA (Palo Alto, CA) and SS (Milwaukee, WI) in August. Within 

a single WWTP, the greatest dissimilarity (0.47) was at SS between May and January. The most 

similar samples were from HI (Sand Island, HI), where in October it was most similar to itself in 

November (0.14), and again to itself in two October samples (0.15).  

 

Seasonal fluctuations of ARGs created within-WWTP variability (Fig. 11). Between WWTPs, 

there were significant changes in the presence/absence of ARGs (binary goodness of fit, p = 0.002) 

but not months (p = 0.91). In other words, the pool of ARGs found at a given WWTP remains 

consistent over time, but abundances of ARGs fluctuate, and ARG pools vary between locations. 

This was most evident when comparing FL and WY samples. ARGs with the highest RPKM in 

WY (e.g., IND-14, AAC(6')-Ii, aadA27) were negligible in FL (Fig. 11). 

 

The 20 most common drug classes to which ARGs were predicted to confer resistance are shown 

in Fig. 12. On average, the three most abundant drug classes were aminoglycosides (12.9 ± 1.5%), 

macrolides (11.2 ± 3.0%), and tetracyclines (9.84 ± 1.8%). Out of 124 unique classes, ARGs 

conferring resistance to a single drug were the most common (22.1%), followed closely by two 

drugs (20.6%) and three drugs (16.0%). The ARG conferring resistance to the greatest number of 

drugs was oprM, an efflux pump for 16 different antibiotics, and was present in all 30 samples. 

Efflux was a common mechanism of ARGs (8.2%) but was second to antibiotic inactivation 

(78.4%). 
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An indicator species analysis identifies species that significantly correlate to groups of samples. In 

this case, the analysis was used to identify what and how many ARGs were unique to WWTPs. 

Samples from August, January, and May of 2012-2013 were put into the analysis, as six WWTPs 

were evenly surveyed during these periods (Table 8). Out of 3162 possible ARGs, 469 were 

classified as significant (p < 0.05) indicators of WWTPs. FL, WY, and JI had the highest number 

of indicators (157, 100, and 78, respectively) and SS, MA, and CA had the lowest (54, 50, and 30, 

respectively). The most common drug classes of indicator ARGs conferred multidrug-resistance 

to carbapenems, cephalosporins, and penams (85, 18%); aminoglycosides (8.1%); and 

cephalosporins and tetracyclines (both 4.3%). All ARGs in the carbapenem-cephalosporin-penam 

group encoded beta-lactamases from groups OXA (64), GES (10), SHV (8), GOB (2) and PNGM 

(1). 

 

Wastewater ARG abundances fluctuate with warm-dominating bacterial communities 

ARGs and intI1 were quantified using ddPCR in wastewater samples collected in January, April, 

July, and October from 2013 to 2017 in Milwaukee, WI (Fig. 13). Results showed that ARGs 

concentrations were consistently highest in October (one-sided Wilcoxon rank sum test, p = 0.005) 

and lowest in April (p = 0.002). ARG concentrations were also closely coupled to each other and 

could all be predicted by intI1 concentration (MBLM, sulI p = 9.6 • 10-5, qnrS p = 2.1 • 10-4, tet(A) 

p =2.1 • 10-4, tetO p = 1.3 • 10-3). Sample month was also predictive of ARG concentrations 

(PERMANOVA, p < 0.001).  
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ARGs were quantified in 12 cities across the USA sampled in August 2012, January 2013, and 

May 2013 (Fig. 14).  Latitude was not a good predictor of ARG concentrations overall 

(PERMANOVA, p = 0.143) but there were some gene-specific consistencies. Tet(A) was highest 

in wastewater from low-latitude (< 40°) cities (MBLM, p = 0.02) while tetO was greatest at high 

latitudes (> 40°) (MBLM, p = 0.003). Also, Bedford, NY had the least variable differences in fold-

change (CV = 0.14) and Freeport, TX most variable (CV = 1.1). Juneau, AK overall had the highest 

fold-changes for three out of five ARGs (intI1, sulI, tetO) while Bedford, NY had the lowest for 

four out of five ARGs (tet(A), tetO, sulI, qnrS).  

 

The class 1 integron-integrase gene, intI1, was quantified in 41 cities across the USA (Fig. 15 and 

Table 9). For ease, WWTP locations were split into groups “north” and “south” depending on if 

their latitude was above or below 40°N, respectively. Sample period (August, January, or May) 

and latitude group (north or south) correlated to intI1 concentrations (PERMANOVA, p = 0.001 

and 0.004, respectively). In the south (latitude < 40°N), intI1 concentrations were higher than the 

north (one-sided Wilcoxon rank sum test, p = 0.001). May samples had the highest intI1 

concentrations (p = 4.1 • 10-4) and January samples had the lowest (p = 7.7 • 10-6).  

 

Discussion 

Despite global intervention, infections resistant to the current arsenal of antibiotics are escalating. 

Monitoring the issue has shown not only the positive impacts of intervention strategies170 but also 

temporal dynamics in antibiotic resistance. Temporal studies of resistance commonly analyze 

antibiotic prescriptions171, infections172, and how they are connected170,173–175, but do not include 
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environmental monitoring of antibiotic resistance genes (ARGs) or bacteria. There has been some 

interest in time series analysis of wastewater treatment plants (WWTPs) that cultured resistant 

bacteria176,177, quantified ARGs156,177, and related them to physiochemical measurements176,177. 

Some environmental studies also included prescription rates156 or measured antibiotic residues in 

the wastewater176. More rarely do they consider microbial community composition176 or natural 

waterways178. WWTP time series are often limited to one location or short time scales176,177, which 

masks if and how any observed trends in resistance are consistent. A meta-analysis showed 

seasonal patterns in ARGs and resistant isolates at WWTPs179, but authors explained this with the 

fact that human illnesses increase in winter.  

 

The focus on clinically relevant bacteria commonly seen in environmental studies ignores the 

potential influence of the native community. Further, culture-based methods are estimated to 

capture less than 1% of microbial diversity180 and neglect the likelihood that microbes depend on 

their environment and/or community functions to grow181. Previous work showed microbial 

community assembly in wastewater is strongly dictated by temperature159, and the study described 

here showed ARGs may fluctuate seasonally with communities. It is not clear if this is because (a) 

the majority of ARGs are carried by environmental bacteria that fluctuate seasonally; (b) microbes 

that carry ARGs are influenced by the community through grazing, competition, etc.; (c) seasonal 

changes in waste sources, such as antibiotic consumption and illness in humans and animals; 

and/or (d) some combination of these or other unknown influences.  

 



 

 

 

 

67 

This study revealed the potential that wastewater ARGs are modulated by temperature, and 

perhaps proliferate with the bloom of warm-dominating microbial communities. It showed that 

abundances of ARGs in wastewater fluctuated with the seasonal assembly of microbial 

communities (Fig. 9). Wastewater collected from the southern- and northern-most locations had 

the highest number of ARGs that were not found in any other samples. Many ARGs that were 

unique to certain locations were clinically relevant. The most common encoded beta-lactamases 

that conferred multidrug resistance to last-resort antibiotics, and were considered high risk in a 

recent assessment182. Therefore, spatial metagenomic analyses of wastewater ARGs could reveal 

novel ARGs that have not spread outside its source region. 

 

It is possible that extremes in climate, being very hot, cold, or variable, may select for certain 

ARGs or the mobile genetic elements (MGEs) or bacteria that carry them. Given this analysis did 

not include the temperature of the wastewater sample, this observation is limited. Temperature was 

known in samples from a Milwaukee time series that had gene targets (intI1, tet(A), tetO, sulI, 

qnrS) quantified with droplet digital PCR (ddPCR, Fig. 13). This method showed a positive 

correlation between ARG concentrations and temperature that was consistent over five years. 

Horizontal gene transfer rates have been shown to increase with temperature183, so it is possible 

this is causing ARGs to proliferate in warm wastewater. 

 

The influence of temperature was less obvious when quantifying ARGs from wastewater across 

the US. ARGs had no temperature correlation (Fig. 14), but the class 1 integron-integrase gene, 

intI1, showed both geographic and seasonal trends (Fig. 15). Concentrations of intI1 were highest 
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in samples from southern latitudes (< 40°N) and in samples collected in May, versus January or 

August. The intI1 assay was done on more samples than ARGs, so it is possible that geographic 

and/or seasonal patterns of ARGs could be revealed with more samples. Another reason for 

discrepancies between the Milwaukee samples and those from other cities could be due to user 

handling; Milwaukee samples were collected and processed by the same people, whereas different 

WWTPs had their own people collecting and shipping samples to Milwaukee. 

 

Conclusions 

This study revealed the potential that wastewater ARGs are modulated by temperature, and 

perhaps proliferate with the bloom of warm-dominating microbial communities. It highlights 

insight that can be gained when incorporating microbial community analysis to longitudinal 

monitoring of antibiotic resistance for both culture- and molecular-based studies. This knowledge 

can aid research that studies the evolution of antibiotic resistance by showing potential links 

between taxa, environmental conditions, and ARGs. It can also enhance our understanding of 

mitigation outcomes by considering ecosystem dynamics that promote or curb the spread of 

resistance. 
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Figures 

Principal coordinate analysis (PCoA) of antibiotic resistance gene profiles mined from raw wastewater metagenomes. Colors of 

points indicate the location of the wastewater treatment plant sampled: red: Sand Island, HI; orange: Key West, FL; yellow: Palo 

Alto, CA; green: Gloucester, MA; light blue: Milwaukee, WI; dark blue: Laramie, WY. Point labels denote the wastewater 

treatment plant short name (state abbreviations for all except Milwaukee, which had two locations, Jones Island (JI) and South 

Shore (SS) and month of sampling. 
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Figure 9. Wastewater resistomes across locations and seasons. 
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(top) Bray-Curtis distances comparing ARGs in wastewater collected in the same month. Each point is a distance value between 

two samples, and colors of points show the difference in latitude between the two treatment plants (minimum = 0°, same treatment 

plant; maximum = 22°, between Milwaukee, WI and Sand Island, HI). (bottom) Bray-Curtis distances comparing ARGs in 

wastewater collected at the same treatment plant at different times of year. Each point is a distance value between two samples, 

and colors of points show the cyclical difference between the months sampled (minimum = 0, same month; maximum = 6, between 

April and October). Samples from different years were compared, such that samples from April 2013 and November 2018 were 

different by 5 months, for instance. (right) Boxplots summarizing left two plots, comparing distances between wastewater ARG 

samples from (Month) different treatment plants, within the same month; (WWTP) different months, within the same treatment 

plant; and (Month + WWTP) the same month and treatment plant. 
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Figure 10. Wastewater resistome dissimilarity within treatment plants and months. 
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(left) Dendrogram of raw wastewater samples, created from hierarchical clustering of Bray-Curtis distance of RPKM values for all 

ARGs. (top) Dendrogram of the 60 most abundant ARGs, determined by obtaining the 25 most abundant ARG from each WWTP. 

(center) Heatmap of most abundant ARGs, normalized to relative abundance such that the sum of an ARG’s RPKM equals 1. 

Heatmap ordered on the x-axis by the ARG dendrogram and y-axis by wastewater sample dendrogram. 

 

  

Figure 11. Resistomes clustered by geographic abundance patterns. 
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Stacked bars showing proportions of drug classes to which ARGs confer resistance. Colors of bars show ARG drug class(es), and 

height of bars show the proportion of drug classes in each state. Drug classes that were not in the 20 most abundant were categorized 

as “other” and colored grey. 
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Concentrations (copies per mL wastewater) of ARGs (sulI, orange; tetO, yellow; qnrS, green; and tet(A), blue) and the class 1 

integron integrase, intI1 (red) measured by droplet digital PCR (ddPCR) in quarterly (Jan, Apr, Jul, Oct) wastewater samples 

collected from 2013 to 2017. (top) Log10 ARG concentrations over time. (bottom) ARG concentrations fold change from mean 

(dotted grey line) in each quarter. Boxes depict the median and first and third quartiles, whisker lines extend to interquartile ranges 

• 1.5, and points are outlier values. Fold change of 1 means that observation was 1-fold, or 2x, different from the mean of that ARG, 

0 means that observation was equal to the mean. 
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Figure 13. Resistance gene concentrations in wastewater over five years. 
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ARG concentrations (copies per mL wastewater), measured by ddPCR, fold change from mean at different treatment plants across 

the US. Color and size of points show fold decrease (min = -1, blue) and increase (max = 3, red) from mean (0, yellow). Y-axis 

WWTPs ranked from top to bottom in decreasing latitude.  
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Figure 14. Resistance gene concentrations in wastewater across the USA. 
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Concentrations (log10 copies per mL wastewater) of intI1 in treatment plants in northern US (latitude > 40°N) and in southern US 

(< 40°N). Each WWTP was sampled in August 2012 (orange), January 2013 (blue), and May 2013 (green). Points indicate 

individual samples. Boxes depict the median and first and third quartiles, whisker lines extend to interquartile ranges • 1.5. 
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Figure 15. Seasonal concentrations of intI1 in northern and southern USA wastewater. 
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Tables 

 

Table 8. Metagenome sample information. 

Treatment plant city, state Date(s) sampled 

JI, Milwaukee, WI 

1-Aug-2012, 5-Jan-2013, 1-May-2013,  

9-Apr-2018, 23-Apr-2018, 7-May-2018, 22-May-2018,  

10-Sep-2018, 24-Sep-2018, 8-Oct-2018, 22-Oct-2018 

SS, Milwaukee, WI 1-Aug-2012, 5-Jan-2013, 1-May-2013 

Palo Alto, CA 1-Aug-2012, 5-Jan-2013, 1-May-2013 

Key West, FL 1-Aug-2012, 5-Jan-2013, 1-May-2013 

Sand Island, HI 10-Oct-2018, 16-Oct-2018, 14-Nov-2018, 28-Nov-2018 

Gloucester, MA 1-Aug-2012, 5-Jan-2013, 1-May-2013 

Laramie, WY 1-Aug-2012, 5-Jan-2013, 1-May-2013 

JI = Jones Island Water Reclamation Facility 

SS = South Shore Water Reclamation Facility 
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Table 9. ddPCR sample information. 

City State Month(s) and year(s) Gene(s) assayed 

Milwaukee Wisconsin 
Jan, Apr, Jul, Oct;  

2013, 2014, 2015, 2016, 2017 
intI1, sul1, qnrS, tetA, tetO 

Juneau Alaska Aug 2012, Jan 2013 intI1, sul1, qnrS, tetA, tetO 

Yuma Arizona Aug 2012, Jan 2013, May 2013 intI1, sul1, qnrS, tetA, tetO 

North Denver Colorado Aug 2012, Jan 2013, May 2013 intI1, sul1, qnrS, tetA, tetO 

Fall River Massachusetts Aug 2012, Jan 2013, May 2013 intI1, sul1, qnrS, tetA, tetO 

Delano Minnesota Aug 2012, Jan 2013, May 2013 intI1, sul1, qnrS, tetA, tetO 

Great Falls Montana Aug 2012, Jan 2013, May 2013 intI1, sul1, qnrS, tetA, tetO 

Lincoln Nebraska Aug 2012, Jan 2013, May 2013 intI1, sul1, qnrS, tetA, tetO 

Bedford New York Aug 2012, Jan 2013, May 2013 intI1, sul1, qnrS, tetA, tetO 

Woodmere Ohio Aug 2012, Jan 2013, May 2013 intI1, sul1, qnrS, tetA, tetO 

Memphis Tennessee Aug 2012, Jan 2013, May 2013 intI1, sul1, qnrS, tetA, tetO 

Freeport Texas Aug 2012, Jan 2013, May 2013 intI1, sul1, qnrS, tetA, tetO 

Vancouver Washington Aug 2012, Jan 2013, May 2013 intI1, sul1, qnrS, tetA, tetO 

Discovery Bay California Aug 2012 intI1 

Richmond California Aug 2012 intI1 

Santa Barbara 1 California Aug 2012 intI1 

Santa Barbara 2 California Aug 2012 intI1 

Stockton California Aug 2012 intI1 

South Denver Colorado Aug 2012 intI1 

Palm Beach Florida Aug 2012 intI1 

Palmetto Florida Aug 2012 intI1 

Johns Creek Georgia Aug 2012 intI1 

Boonville Indiana Aug 2012 intI1 

Iowa City Iowa Aug 2012 intI1 

Salina Kansas Aug 2012 intI1 

Hardinsburg Kentucky Aug 2012 intI1 

Brockton Massachusetts Aug 2012 intI1 

Gloucester Massachusetts Aug 2012 intI1 

Albertville Minnesota Aug 2012 intI1 
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City State Month(s) and year(s) Gene(s) assayed 

Farmington Minnesota Aug 2012 intI1 

Monticello Minnesota Aug 2012 intI1 

Shakopee Minnesota Aug 2012 intI1 

St. Paul Minnesota Aug 2012 intI1 

Bozeman Montana Aug 2012 intI1 

Hillburn New York Aug 2012 intI1 

Poughkeepsie New York Aug 2012 intI1 

Syracuse New York Aug 2012 intI1 

Springboro Ohio Aug 2012 intI1 

Burkburnett Texas Aug 2012 intI1 

Kenedy Texas Aug 2012 intI1 

Madison Wisconsin Aug 2012 intI1 

Laramie Wyoming Aug 2012 intI1 
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Table 10. ddPCR gene targets. 

Gene Role Sequence 
Amplicon 

length 

Anneal 

temp 
Source 

intI1 gene mobility 
forward CGAACGAGTGGCGGAGGGTG 

311 bp 60°C 

Gillings, M. R., et al. (2015). 

The ISME journal, 9(6), 1269-

1279. reverse TACCCGAGAGCTTGGCACCCA 

qnrS 
quinolone 

resistance 

forward GACGTGCTAACTTGCGTGAT 
240 bp 62°C 

Rodriguez-Mozaz, S., et al. 

Water research, 69, 234-242. reverse TGGCATTGTTGGAAACTTG 

sulI 
sulfonamide 

resistance 

forward CGCACCGGAAACATCGCTGCAC 
67 bp 60°C 

Rodriguez-Mozaz, Sara, et al. 

Water research 69 (2015): 234-

242. reverse TGAAGTTCCGCCGCAAGGCTCG 

tet(A) 
tetracycline 

resistance 

forward GCTACATCCTGCTTGCCTTC 
210 bp 60°C 

LaPara, T. M., et al. (2011). 

Environmental science & 

technology, 45(22), 9543-9549. reverse CATAGATCGCCGTGAAGAGG 

tetO 
tetracycline 

resistance 

forward ACGGARAGTTTATTGTATACC 
171 bp 60°C 

Munir, M., et al. (2011). Water 

research, 45(2), 681-693. reverse TGGCGTATCTATAATGTTGAC 
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CHAPTER IV 

CONCLUSIONS 

 

Microorganisms were the first forms of life on earth. Humans did not start significantly altering 

landscapes until just a couple hundred years ago, yet the effects have changed all terrestrial, 

atmospheric, and aquatic biomes. A new field of science, urban ecology, was developed to focus 

on life that has adapted to built environments. Among them, sewer systems are expansive networks 

of pipes that collect wastewater from municipalities, and despite getting little to no sunlight, 

abundant surface area, water, and nutrients have enabled organisms, particularly microorganisms, 

to colonize them. 

 

It is not yet known from where resident sewer microorganisms are derived. Sources are likely some 

combination of soil, natural waters, stormwater, and human, industrial, and agricultural waste. A 

great deal of research is done in these source microbiomes, as well as within wastewater treatment 

plants, but little focus has been put into what is between them, the pipes. This is surprising, given 

that 900 billion gallons of raw sewage is leaked into the environment each year24, carrying risks to 

environmental and public health. Microbes in sewers also contribute to pipe corrosion, a $1 billion 

a year challenge in the US148. Only very recently was input to wastewater treatment plants not 

considered a random phenomenon, showing that there are diurnal cycles to flow that changes 

microbial community assembly129 and that assembly affects wastewater treatment processes93.  

 



 

 

 

 

81 

Another compounding feature of sewage is its potential to facilitate the evolution and spread of 

microbial antibiotic resistance. Antibiotics and other stressors put selective pressures on antibiotic 

resistance genes (ARGs), so they are maintained in bacterial populations during conveyance. 

ARGs often persist or even become enriched in wastewater treatment184–186 and are considered 

contaminants of emerging concern187–189. 

 

This dissertation used an ecological approach to characterize the urban sewer ecosystem. First, 

sewage microbial communities exhibited a predictable response to seasons in their assembly, a 

phenomenon typically attributed to surface water habitats. Second, a similar, climate-driven 

response was seen in ARGs that suggests proliferation with the bloom of warm-water-associated 

microbial communities. Broader implications to this dissertation are four-fold. 

 

I. Microbial adaptation to built environments 

Aim 1, Chapter II profiled major bacterial groups in sewage. It also individually analyzed 

resident-sewer and human-associated communities. This supports what was suggested 

previously4,87,100 that sewage is not comprised entirely of its source microbes, and that it harbors 

its own groups unique to the system. To explore this further, a pangenome analysis compares 

genomes from individuals in a phylogenetic group, to assess core/shared genes and 

accessory/unique genes. This approach could reveal the closest relatives to sewer-specific taxa and 

the traits they maintained or evolved to adapt to this environment. A pangenome analysis of sewer 

Flavobacteria is proposed in Appendix B. 
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II. Wastewater treatment and infrastructure 

Wastewater treatment is an energy intensive process that uses up to 35% of the US energy 

budget190. Aeration is typically the largest energy consumer191. Aeration is required to maintain 

activated sludge, which cultivates flocs of microorganisms that clump solids and phosphorus for 

easier removal. Many dominant bacterial groups in sewage can floc, including Trichococcus, 

Acinetobacter, and Flavobacteria192. Aim 1, Chapter II showed a seasonal predictability in the 

bacterial community assembly, therefore it is worth looking into how this affects the efficacy of 

activated sludge. Of note, Trichococcus appeared to have a negative relationship with temperature, 

and was completely absent from wastewater samples from southern latitudes (Appendix A, Fig. 

16). 

 

Wastewater collection systems are also impacted by microbial processes. Microbial-induced 

corrosion has accelerated in recent years due to increasing temperatures and use of sulfate-

containing detergents193. Together, sulfur-reducing and sulfur-oxidizing bacteria convert sulfates 

to sulfuric acid, which disintegrates pipe material194. Important questions are if sewage bacteria 

can be used to control pipe corrosion, and how seasonality of community assembly influences 

decay rates. 

 

III. Pollution tracking and risk assessment 

Fluctuating microbial groups in sewage could impact how fecal pollution tracking is planned and 

risk assessments are made. With certain organisms more abundant at certain times of year, it is 

possible that targets for tracking sewage overflows could be refined specifically to seasons. Also, 
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if levels of high-risk groups vary throughout the year, risk assessments could be improved with 

this information. 

 

IV. Dissemination of antibiotic resistance 

There are many knowledge gaps in environmental antibiotic resistance, particularly in mechanisms 

that evolved since clinical use began. However, consensus exists in the opinion that wastewater is 

a critical reservoir for antibiotic resistance, whether it directly promotes evolution, serves as a sink 

for ARGs, or provides means of conveyance for resistant pathogens. This dissertation showed a 

close coupling of ARGs to environmental, temperature-dependent microbial communities. More 

research is needed in how these ARGs are carried (i.e., chromosomally or on mobile genetic 

elements) and who is carrying them (i.e., phylogeny of bacterial hosts) to scrutinize this 

observation any further. At the very least, it reveals an ecological dynamic to antibiotic resistance 

that, to the best of our knowledge, has not been seen previously. Continued longitudinal monitoring 

of wastewater ARGs would be helpful in catching emerging ARGs before they disseminate to 

waterways, animals, humans, and eventually, around the world. 

 

Temperature dependence is clearly driving large-scale changes to bacterial communities in urban 

sewers. A five-year time series of Milwaukee sewage revealed that both bacteria and ARGs 

assembled into two distinct steady states in fall and spring. Sewage from across the US exhibited 

similar temperature-driven trends explained by differences in climate. Applying microbial 

ecological theory to sewer systems can enhance knowledge in many important topics, including 

wastewater surveillance and epidemiology, infrastructure maintenance, water treatment, and 
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antibiotic resistance. Learning from sewer microorganisms about colonization, resilience, and 

adaptation is imperative in a progressively stressed and urbanized world. 
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Abstract 

Wastewater microbiome research often relies on sequencing of hypervariable regions of 16S rRNA 

genes, which are difficult to classify at refined taxonomic levels. Here, we introduce a data set of 

near-full-length 16S rRNA genes from samples designed to capture known geographic and 

seasonal variations in municipal wastewater microbial communities. 

 

Announcement 

Wastewater-based monitoring for disease-causing entities is growing as a public health tool195,196. 

However, there remain significant gaps in understanding the inherent biology of sewage 

conveyance and its potential influence on monitoring efforts. To aid the characterization of 

wastewater microorganisms, 46 raw wastewater treatment plant (WWTP) influent samples 

underwent near full-length 16S rRNA gene sequencing. We selected samples that, according to 

previous work, encompass microbial community variability across geographic and seasonal 

gradients4,159. Raw influent (25-mL) was filtered onto 0.2-µm mixed cellulose ester filters (Sigma 

Millipore, #WHA10401770) from which DNA was extracted (FastDNA Spin Kit for Soil (MP 

Biomedicals, #116560200-CF) as described previously4,159. Genes were amplified using KAPA 

HiFi HotStart ReadyMix (Roche, #KK2602) under the following thermocycler conditions: 95°C 

for 5 min; 20 cycles of 98°C for 20 sec, 55°C for 45 sec, and 72°C for 3 min; 72°C for 5 min and 

with the primers 27F (5’- AGRGTTYGATYMTGGCTCAG-3’) and 1492R (5’-

RGYTACCTTGTTACGACTT). Each primer contained a pad sequence (GGTAG) followed by a 

unique 16-bp barcode (www.pacb.com) appended to the 5’-end. Prior to PCR, the barcoded 

http://www.pacb.com/
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primers were phosphorylated with a T4 polynucleotide kinase (NEB, #M0201S) and ATP (NEB, 

#P0756S).  

 

Following PCR, amplicons were equimolarly pooled and purified with AmPure PB beads 

(PacBio, #100-265-900). Libraries were created using Pacific Biosciences SMRTbell Express 

Template 2.0 (PacBio, #101-685-400) following the manufacturer’s protocol. Amplicons were 

enzymatically repaired and ligated to a PacBio adapter to form the SMRTbell template. 

Templates were sequenced on a Sequel II System using Sequencing Primer v.4 (PacBio, #101-

359-000) and the Sequel II 2.1 binding kit (PacBio, # 101-820-500). UW-Milwaukee Great 

Lakes Genomics Center (RRID:SCR_017838) provided PacBio sequencing services. 

 

Default parameters were used for all software unless otherwise specified. BAM files from the 

PacBio Sequel II were converted to FASTQs with BEDtools v.2.30.0197. SeqKit v.2.2.0163 was 

used to demultiplex FASTQs into individual files according to their unique barcodes. Primers 

were removed from demultiplexed files with Cutadapt132. Following a PacBio-specific protocol, 

DADA2 v.1.16 133 on Galaxy v.22.01198 was used to quality filter (max N = 0, max EE = 2), 

correct errors, and assign taxonomy with Silva v.138 199 as a reference database. In most reads, 

the first 10 primer bases on the 3’ end of the read were not trimmed by Cutadapt. These bases 

were removed in an exact-match approach (grep/cut). Resulting amplicon sequence variants 

(ASVs) were clustered to operational taxonomic units (OTUs) at 99.5% similarity with mothur 

v.1.43.0200 and its protocol (https://mothur.org/wiki/cluster/). 

 

https://benjjneb.github.io/LRASManuscript/LRASms_Zymo.html
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Before demultiplexing, the raw FASTQ file had 7,750,870 reads, which condensed to 1,041 

ASVs and 698 OTUs. A summary of raw, ASV, and OTU data is listed in Table 11. ASVs 

ranged from 1,383 to 1,553 base pairs, with a mean length of 1,455 base pairs. All ASVs were 

classified as bacteria and included 22 phyla, 35 classes, 71 orders, 116 families, 190 genera, and 

158 species. The improved taxonomic resolution from full-length gene sequences resulted in 643 

(61.8%) ASVs classified to species, compared to 3.48% in a V4-V5 hypervariable region study 

of a similar sample set159. 

 

Results summary 

The most common OTUs are distinct between datasets. Communities expected to have a “warm” 

assemblage (according to a previous study159), such as those from the South US, are very 

different from “cold” communities (Fig. 16). Entire genera such as Trichococcus were 

completely absent from the most warm-like samples. In contrast, Pseudomonas mendocina were 

exclusively found in South US wastewater. Within- (richness) and between- (similarity) sample 

diversity tracks what has been shown in previous studies (Fig 17). Short-read V4-V5 analyses 

showed more within-sample diversity, however, long-read full 16S rRNA genes captured 96% of 

the short-read ASVs. Therefore, both short- and long-read analyses are sufficient for community 

analysis, but short-read (Illumina) data might better capture rare organisms, while long-read 

(PacBio) offers greater taxonomic resolution. As seen previously159, wastewater temperature is a 

strong driver of microbial community structures (Fig. 18). Warm-like wastewater samples cluster 

apart from cold ones. Further, relative abundances of OTUs fluctuate according to those 

temperatures. 
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Data availability 

Demultiplexed FASTQ files can be found on the NCBI Sequence Read Archive under 

BioProject PRJNA809416. Annotated files, additional analyses, and code are available on 

NewtonLabUWM GitHub. More information can be found at its website 

(https://loulanomics.github.io). 

  

https://www.ncbi.nlm.nih.gov/Traces/study/?acc=PRJNA809416&o=acc_s%3Aa
https://github.com/NewtonLabUWM/Full16S_sewageDatabase
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The top 5 most abundant OTUs in each wastewater sample set (north and south United States and winter, spring, summer, and fall 

in Milwaukee, Wisconsin) were identified, comprising 64.0% of all sequences. Bar height indicates the proportion of that OTU 

among the common OTUs analyzed. Bar colors denote genus and species assignments of OTUs. 

 

  

Figure 16. Wastewater genera using full-length 16S rRNA gene sequencing. 
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(left) Alpha diversity (richness) was calculated with the Shannon diversity index and (right) beta diversity (dis/similarity) was 

calculated with Bray-Curtis distance metrics. Diversity was measured in wastewater treatment plant influent from Milwaukee 

collected in Spring (blue point; Feb, Mar, Apr, May), Fall (orange points; Aug, Sep, Oct, Nov), and in between (transition period; 

yellow points; Dec, Jan, Jun, Jul) over two years (2016-2017; Table 1). Diversity of influent from northern US cities (green points) 

and southern US cities (purple points) were also measured (Table 2). Diversity was compared between datasets analyzing different 

amplicons, (bottom) the hypervariable V4-V5 region of 16S rRNA and (top) near full-length 16S rRNA genes. Boxes depict the 

median and first and third quartiles. Whisker lines extend to interquartile ranges x1.5 and points are outlier values. 

 

  

Figure 17. Community analysis using full-length 16S rRNA gene sequencing. 
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Dendrograms and heatmaps of top 5 most abundant OTUs per dataset (spring, fall, north, south) displayed at the phylum level in 

wastewater treatment plant influent from Milwaukee collected in over two years (2016-2017), northern US cities, and southern US 

cities. 

 

 

  

Figure 18. Community clustering based on full-length 16S rRNA gene sequencing. 
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Table 11. Summary of demultiplexed sequencing data (BioProject PRJNA809416). 

BioSample [1] Run [2] State Date Raw reads [3] ASVs [4] OTUs [5] 

SAMN26027580  SRR18111974  Montana 2013-01-16 8,124 29 25 

SAMN26027581  SRR18111973  Oregon 2013-01-16 50,475 66 38 

SAMN26027582  SRR18111962  Washington 2013-01-15 39,857 86 63 

SAMN26027583  SRR18111951  Iowa 2013-01-15 48,102 73 57 

SAMN26027584  SRR18111940  Nebraska 2013-01-23 49,510 63 39 

SAMN26027585  SRR18111933  Wisconsin 2013-01-27 61,322 90 58 

SAMN26027586  SRR18111932  Alaska 2013-01-23 44,505 89 65 

SAMN26027587  SRR18111931  Wyoming 2013-01-24 40,151 37 21 

SAMN26027588  SRR18111930  Colorado 2013-01-23 63,240 74 44 

SAMN26027589  SRR18111929  Texas 2012-08-30 50,787 116 98 

SAMN26027590  SRR18111972  Alabama 2012-08-14 38,960 70 55 

SAMN26027591  SRR18111971  Georgia 2012-08-16 48,628 78 60 

SAMN26027592  SRR18111970  California 2012-08-14 43,504 78 59 

SAMN26027593  SRR18111969  Florida 2012-08-08 42,993 87 78 

SAMN26027594  SRR18111968  Tennessee 2012-08-15 40,164 66 50 

SAMN26027595  SRR18111967  Texas 2012-08-15 40,220 62 49 

SAMN26027596  SRR18111966  Arizona 2012-08-15 39,140 62 51 

SAMN26027597  SRR18111965  California 2012-08-21 48,423 59 36 

SAMN26027598  SRR18111964  Florida 2012-08-21 43,786 151 109 

SAMN26027599  SRR18111963  Hawaii 2012-09-07 43,509 57 42 

SAMN26027600  SRR18111961  Minnesota 2013-01-16 52,709 58 34 

SAMN26027601  SRR18111960  Ohio 2013-01-17 36,980 55 40 

SAMN26027602  SRR18111959  Wisconsin 2016-04-07 37,955 83 61 

SAMN26027603  SRR18111958  Wisconsin 2017-04-03 44,272 116 84 

SAMN26027604  SRR18111957  Wisconsin 2016-08-03 37,141 52 41 

SAMN26027605  SRR18111956  Wisconsin 2017-08-22 66,278 84 52 

SAMN26027606  SRR18111955  Wisconsin 2016-12-07 53,471 66 43 

SAMN26027607  SRR18111954  Wisconsin 2017-12-01 40,778 71 49 

SAMN26027608  SRR18111953  Wisconsin 2016-02-08 99,767 95 61 

SAMN26027609  SRR18111952  Wisconsin 2017-02-06 42,116 65 45 

SAMN26027610  SRR18111950  Wisconsin 2016-01-06 72,965 110 74 

SAMN26027611  SRR18111949  Wisconsin 2017-01-05 32,035 71 53 

SAMN26027612  SRR18111948  Wisconsin 2016-07-18 46,548 55 40 

https://www.ncbi.nlm.nih.gov/biosample/SAMN26027580
https://trace.ncbi.nlm.nih.gov/Traces/sra?run=SRR18111974
https://www.ncbi.nlm.nih.gov/biosample/SAMN26027581
https://trace.ncbi.nlm.nih.gov/Traces/sra?run=SRR18111973
https://www.ncbi.nlm.nih.gov/biosample/SAMN26027582
https://trace.ncbi.nlm.nih.gov/Traces/sra?run=SRR18111962
https://www.ncbi.nlm.nih.gov/biosample/SAMN26027583
https://trace.ncbi.nlm.nih.gov/Traces/sra?run=SRR18111951
https://www.ncbi.nlm.nih.gov/biosample/SAMN26027584
https://trace.ncbi.nlm.nih.gov/Traces/sra?run=SRR18111940
https://www.ncbi.nlm.nih.gov/biosample/SAMN26027585
https://trace.ncbi.nlm.nih.gov/Traces/sra?run=SRR18111933
https://www.ncbi.nlm.nih.gov/biosample/SAMN26027586
https://trace.ncbi.nlm.nih.gov/Traces/sra?run=SRR18111932
https://www.ncbi.nlm.nih.gov/biosample/SAMN26027587
https://trace.ncbi.nlm.nih.gov/Traces/sra?run=SRR18111931
https://www.ncbi.nlm.nih.gov/biosample/SAMN26027588
https://trace.ncbi.nlm.nih.gov/Traces/sra?run=SRR18111930
https://www.ncbi.nlm.nih.gov/biosample/SAMN26027589
https://trace.ncbi.nlm.nih.gov/Traces/sra?run=SRR18111929
https://www.ncbi.nlm.nih.gov/biosample/SAMN26027590
https://trace.ncbi.nlm.nih.gov/Traces/sra?run=SRR18111972
https://www.ncbi.nlm.nih.gov/biosample/SAMN26027591
https://trace.ncbi.nlm.nih.gov/Traces/sra?run=SRR18111971
https://www.ncbi.nlm.nih.gov/biosample/SAMN26027592
https://trace.ncbi.nlm.nih.gov/Traces/sra?run=SRR18111970
https://www.ncbi.nlm.nih.gov/biosample/SAMN26027593
https://trace.ncbi.nlm.nih.gov/Traces/sra?run=SRR18111969
https://www.ncbi.nlm.nih.gov/biosample/SAMN26027594
https://trace.ncbi.nlm.nih.gov/Traces/sra?run=SRR18111968
https://www.ncbi.nlm.nih.gov/biosample/SAMN26027595
https://trace.ncbi.nlm.nih.gov/Traces/sra?run=SRR18111967
https://www.ncbi.nlm.nih.gov/biosample/SAMN26027596
https://trace.ncbi.nlm.nih.gov/Traces/sra?run=SRR18111966
https://www.ncbi.nlm.nih.gov/biosample/SAMN26027597
https://trace.ncbi.nlm.nih.gov/Traces/sra?run=SRR18111965
https://www.ncbi.nlm.nih.gov/biosample/SAMN26027598
https://trace.ncbi.nlm.nih.gov/Traces/sra?run=SRR18111964
https://www.ncbi.nlm.nih.gov/biosample/SAMN26027599
https://trace.ncbi.nlm.nih.gov/Traces/sra?run=SRR18111963
https://www.ncbi.nlm.nih.gov/biosample/SAMN26027600
https://trace.ncbi.nlm.nih.gov/Traces/sra?run=SRR18111961
https://www.ncbi.nlm.nih.gov/biosample/SAMN26027601
https://trace.ncbi.nlm.nih.gov/Traces/sra?run=SRR18111960
https://www.ncbi.nlm.nih.gov/biosample/SAMN26027602
https://trace.ncbi.nlm.nih.gov/Traces/sra?run=SRR18111959
https://www.ncbi.nlm.nih.gov/biosample/SAMN26027603
https://trace.ncbi.nlm.nih.gov/Traces/sra?run=SRR18111958
https://www.ncbi.nlm.nih.gov/biosample/SAMN26027604
https://trace.ncbi.nlm.nih.gov/Traces/sra?run=SRR18111957
https://www.ncbi.nlm.nih.gov/biosample/SAMN26027605
https://trace.ncbi.nlm.nih.gov/Traces/sra?run=SRR18111956
https://www.ncbi.nlm.nih.gov/biosample/SAMN26027606
https://trace.ncbi.nlm.nih.gov/Traces/sra?run=SRR18111955
https://www.ncbi.nlm.nih.gov/biosample/SAMN26027607
https://trace.ncbi.nlm.nih.gov/Traces/sra?run=SRR18111954
https://www.ncbi.nlm.nih.gov/biosample/SAMN26027608
https://trace.ncbi.nlm.nih.gov/Traces/sra?run=SRR18111953
https://www.ncbi.nlm.nih.gov/biosample/SAMN26027609
https://trace.ncbi.nlm.nih.gov/Traces/sra?run=SRR18111952
https://www.ncbi.nlm.nih.gov/biosample/SAMN26027610
https://trace.ncbi.nlm.nih.gov/Traces/sra?run=SRR18111950
https://www.ncbi.nlm.nih.gov/biosample/SAMN26027611
https://trace.ncbi.nlm.nih.gov/Traces/sra?run=SRR18111949
https://www.ncbi.nlm.nih.gov/biosample/SAMN26027612
https://trace.ncbi.nlm.nih.gov/Traces/sra?run=SRR18111948
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BioSample [1] Run [2] State Date Raw reads [3] ASVs [4] OTUs [5] 

SAMN26027613  SRR18111947  Wisconsin 2017-07-12 52,143 81 56 

SAMN26027614  SRR18111946  Wisconsin 2016-06-08 48,861 55 41 

SAMN26027615  SRR18111945  Wisconsin 2017-06-07 45,176 72 46 

SAMN26027616  SRR18111944  Wisconsin 2016-03-02 29,799 47 28 

SAMN26027617  SRR18111943  Wisconsin 2017-03-01 60,041 69 40 

SAMN26027618  SRR18111942  Wisconsin 2016-05-02 40,253 83 64 

SAMN26027619  SRR18111941  Wisconsin 2017-05-01 9,838 46 38 

SAMN26027620  SRR18111939  Wisconsin 2016-11-03 38,702 58 39 

SAMN26027621  SRR18111938  Wisconsin 2017-11-02 49,693 71 45 

SAMN26027622  SRR18111937  Wisconsin 2016-10-05 50,908 71 55 

SAMN26027623  SRR18111936  Wisconsin 2017-10-04 47,985 59 37 

SAMN26027624  SRR18111935  Wisconsin 2016-09-21 36,116 59 49 

SAMN26027625  SRR18111934  Wisconsin 2017-09-26 41,013 80 59 

[1] BioSample ID on NCBI. 
[2] Run ID on NCBI. 
[3] Number of reads generated by PacBio Sequel II after demultiplexing. 
[4] Number of amplicon sequence variants (ASVs) after processing with DADA2. 
[5] Number of operational taxonomic units (OTUs) after clustering to 99.5% similarity with mothur. 

 

  

https://www.ncbi.nlm.nih.gov/biosample/SAMN26027613
https://trace.ncbi.nlm.nih.gov/Traces/sra?run=SRR18111947
https://www.ncbi.nlm.nih.gov/biosample/SAMN26027614
https://trace.ncbi.nlm.nih.gov/Traces/sra?run=SRR18111946
https://www.ncbi.nlm.nih.gov/biosample/SAMN26027615
https://trace.ncbi.nlm.nih.gov/Traces/sra?run=SRR18111945
https://www.ncbi.nlm.nih.gov/biosample/SAMN26027616
https://trace.ncbi.nlm.nih.gov/Traces/sra?run=SRR18111944
https://www.ncbi.nlm.nih.gov/biosample/SAMN26027617
https://trace.ncbi.nlm.nih.gov/Traces/sra?run=SRR18111943
https://www.ncbi.nlm.nih.gov/biosample/SAMN26027618
https://trace.ncbi.nlm.nih.gov/Traces/sra?run=SRR18111942
https://www.ncbi.nlm.nih.gov/biosample/SAMN26027619
https://trace.ncbi.nlm.nih.gov/Traces/sra?run=SRR18111941
https://www.ncbi.nlm.nih.gov/biosample/SAMN26027620
https://trace.ncbi.nlm.nih.gov/Traces/sra?run=SRR18111939
https://www.ncbi.nlm.nih.gov/biosample/SAMN26027621
https://trace.ncbi.nlm.nih.gov/Traces/sra?run=SRR18111938
https://www.ncbi.nlm.nih.gov/biosample/SAMN26027622
https://trace.ncbi.nlm.nih.gov/Traces/sra?run=SRR18111937
https://www.ncbi.nlm.nih.gov/biosample/SAMN26027623
https://trace.ncbi.nlm.nih.gov/Traces/sra?run=SRR18111936
https://www.ncbi.nlm.nih.gov/biosample/SAMN26027624
https://trace.ncbi.nlm.nih.gov/Traces/sra?run=SRR18111935
https://www.ncbi.nlm.nih.gov/biosample/SAMN26027625
https://trace.ncbi.nlm.nih.gov/Traces/sra?run=SRR18111934
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Appendix B: Works in progress 

PANGENOMIC EVALUATION OF SEWAGE FLAVOBACTERIA 

 

 

Background 

The genus Flavobacterium is extremely diverse and its members are adaptable to many different 

aquatic environments. Flavobacterium belong to the phylum Bacteroidetes, which have a unique 

protein secretion system, type IX, that is involved in virulence, polymer degradation, motility, and 

biofilm formation201. They are important fish pathogens due to their ability to secrete virulence 

factors and degrade fish tissues202. They are helpful for controlling algae blooms, as they flourish 

when algae die off, breakdown the cellulose, providing simpler sugars for the food web203–206. 

Flavobacterium use a gliding motility that allows them to crawl across surfaces, by secreting 

adhesins to the surface that rotate length-wise like a corkscrew, and can reverse direction, flip, 

pivot, and rotate201. Their biofilms aid WWTPs flocculation, during which suspended solids are 

clumped together and removed more easily207. Flocs also remove metals and phosphates from the 

water, protecting the ecosystems where effluent is discharged, and greatly improving wastewater 

treatment plant (WWTP) efficiency208. Incredibly, some supplement their chemotrophic lifestyle 

with phototrophy, using a distinct yellow-orange pigments that allow them to use light for 

energy209,210. Phototrophy gives Flavobacterium an incredible advantage by surviving periods 

when nutrients are limited. 
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Plan 

Genetic differences of Flavobacterium across the urban water cycle will be investigated in a 

pangenome analysis. Full genomes of Flavobacterium were isolated from wastewater in 

September 2019 and February 2020. From a public genome database 

(https://gtdb.ecogenomic.org), genomes of Flavobacterium isolated from environments linked to 

the urban water cycle, such as fresh waterways, wild fish, pipes, and WWTPs, will be compiled. 

Interest is in how different they are in comparison, whether very genetically similar or distinct, as 

well as what makes them different, such as metabolism, virulence, pigments, and genome size. 

Because sewers are relatively new ecosystems, microbial populations within them must have come 

from natural systems, and a genetic analysis could improve understanding of microbial adaptability 

in urban landscapes. 

 

Preliminary results 

Out of 48 isolates from wastewater collected in September 2019 and February 2020 (Table 12), 19 

were positively PCR-screened (Fig. 20) with Flavobacterium primers (Table 4). 

 

Materials and methods  

Creating a wastewater isolate catalogue 

1. 1-L influent from Jones Island WWTP in Milwaukee, WI, was collected on 9/11/19 and 

2/4/20. 

2. 10-ml was reserved, the rest was autoclaved with 15-g agar, and poured into 60-mm petri 

plates. Once cooled, 100-µl of reserved wastewater was spread onto plates. 
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3. Plates were wrapped in parafilm and incubated at room temperature (22°C) in a BSL-2 lab 

for two weeks. During incubation, the room would experience brief periods of light, but 

for the most park was in complete darkness 

4. Colony morphology was recorded for up to three isolates on each plate. 

5. Colonies were then picked from plates with a sterile loop and inoculated into culture tubes 

with 2-ml 10x-diluted R2A (Table 13). Tubes were shaken in an incubator at 25°C for three 

days. 

6. 100-µl of grown-up colonies were transferred to Cryovials with 1.4-ml freezing medium 

(Table 14) and stored at -80°C. 

Reviving candidate Flavobacterium isolates 

1. Colonies that were pigmented during initial isolation were selected as Flavobacterium 

candidates (Table 12 and Fig. 19). 

2. Cryovials of candidates were pulled from -80°C storage in September 2022, after 36 and 

31 months for the September 2019 and February 2020 isolates, respectively. 

3. A flame-sterile loop was dipped into still-frozen cultures, spread onto 25-mm petri plates 

with 1x R2A, and streaked for CFUs. 

4. Plates were stored in a 25°C incubator for two days. Photos of plates can be seen here. 

5. Following, a single isolated colony was picked from each plate, inoculated into 2-ml 1x 

R2A, and shaken in an incubator at 25°C for three days. 

6. 1-ml of grown-up cultures were boiled in 2-ml screw-cap tubes for 10 mins and centrifuged 

at top speed for 15 mins. 500-µl of supernatant with DNA was transferred to DNA elution 

tubes and stored indefinitely at -20°C. Cultures were stored at 4°C until ready for revival. 

https://panthers-my.sharepoint.com/:x:/r/personal/lamarti3_uwm_edu/Documents/Dissertation/flavo_genomes.xlsx?d=w0f8d3096a7704e28bad5c4ed493d43ae&csf=1&web=1&e=xF4cyF
https://panthers-my.sharepoint.com/:x:/r/personal/lamarti3_uwm_edu/Documents/Dissertation/flavo_genomes.xlsx?d=w0f8d3096a7704e28bad5c4ed493d43ae&csf=1&web=1&e=BGG72b
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Pre-screening candidate isolates 

1. DNA from boiled isolates were added to PCR assays with custom Flavobacterium 

primers159 (Table 4).  

2. Reactions were set up to 12-µl as follows: 6-µl GoTaq Green, 0.35-µl of 100-µM 

flavo11_sew_629F, 0.35-µl of 100-µM flavo11_sew_859R, 0.35-µl of 100-µM 

flavo42_sew_630F, 0.35-µl of 100-µM flavo42_sew_859R, 3.6-µl water, and 1-µl isolate 

DNA. 

3. The following thermocycler conditions were used: 1 cycle at 95°C for n minutes; 40 cycles 

at 65°C for 1 minutes 1 cycle at 72°C for 2 minutes. 

4. PCR products were added to a 3% agarose gel stained with 5% ethidium bromide and 

electrophoresed at 100V for 25 minutes alongside a 50-bp molecular ladder (Fig. 20). 
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(top) Initial growth of wastewater on wastewater-derived medium. (bottom) Colonies restreaked on R2A. 

 

 

8

8
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14

10

10

Figure 19. Petri plates growing Flavobacterium. 
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Figure 20. Gel results screening sewage isolates for Flavobacterium. 

First and last wells on top and bottom rows were 50-bp ladder. Numbers indicate isolate number described in Table 12. Colors of 

number denote if culture was isolated September 2019 (orange) or February 2020 (blue). 

 



 

 

 

 

Table 12. Flavobacterium isolate screening results. 

Isolate information Isolate morphology Dates handled 
PCR 

results [2] 

No. ID [1] Size Shape Color Clarity Growth Collected Isolated Frozen Revived Cultured Screen 

1 P03C1_021720 small round white translucent single 2/17/20 3/2/20 3/5/20 9/8/22 9/10/22  

2 P26C1_021720 med round dark yellow clear shiny single 2/17/20 3/2/20 3/5/20 9/8/22 9/10/22  

3 P04C1_021720 N/A N/A clear clear wet lawn 2/17/20 3/2/20 3/5/20 9/8/22 9/10/22  

4 P16C2_021720 med blob dark yellow clear cluster 2/17/20 3/2/20 3/5/20 9/8/22 9/10/22  

5 P16C1_021720 med blob dark yellow clear cluster 2/17/20 3/2/20 3/5/20 9/8/22 9/10/22  

6 P12C2_091119 large round purple opaque cluster 9/11/19 9/24/19 9/28/29 9/8/22 9/10/22 + 

7 P11C2_091119 large round orange opaque cluster 9/11/19 9/24/19 9/28/29 9/8/22 9/10/22  

8 P11C1_091119 large round purple opaque cluster 9/11/19 9/24/19 9/28/29 9/8/22 9/10/22 + 

9 P10C2_091119 nickel round purple opaque cluster 9/11/19 9/24/19 9/28/29 9/8/22 9/10/22 + 

10 P10C1_091119 quarter round orange opaque cluster 9/11/19 9/24/19 9/28/29 9/8/22 9/10/22 + 

11 P27C2_021720 med round dark yellow clear shiny single 2/17/20 3/2/20 3/5/20 9/8/22 9/10/22  

12 P09C2_021720 med round white translucent single 2/17/20 3/2/20 3/5/20 9/8/22 9/10/22  

13 P09C1_021720 med round white translucent single 2/17/20 3/2/20 3/5/20 9/8/22 9/10/22  

14 P10C1_021720 med round dark yellow clear shiny single 2/17/20 3/2/20 3/5/20 9/8/22 9/10/22  

15 P13C1_021720 large round white translucent single 2/17/20 3/2/20 3/5/20 9/8/22 9/10/22  

16 P12C1_021720 nickel blob dark yellow clear smear 2/17/20 3/2/20 3/5/20 9/8/22 9/10/22  

17 P12C1_021720 nickel blob dark yellow clear smear 2/17/20 3/2/20 3/5/20 9/8/22 9/10/22  

18 P18C1_091119 large round green-yellow opaque web 9/11/19 9/24/19 9/28/29 9/8/22 9/10/22 + 

19 P18C1_091119 large round green-yellow opaque web 9/11/19 9/24/19 9/28/29 9/8/22 9/10/22 + 

20 P22C1_091119 large N/A purple opaque cluster 9/11/19 9/24/19 9/28/29 9/8/22 9/10/22 + 

21 P21C1_091119 large N/A purple opaque cluster 9/11/19 9/24/19 9/28/29 9/8/22 9/10/22 + 

22 P21C1_091119 large N/A purple opaque cluster 9/11/19 9/24/19 9/28/29 9/8/22 9/10/22 + 

23 P19C1_091119 large round purple opaque cluster 9/11/19 9/24/19 9/28/29 9/8/22 9/10/22 + 

24 P18C2_091119 large round green-yellow opaque web 9/11/19 9/24/19 9/28/29 9/8/22 9/10/22 + 

25 P28C1_021720 med round dark yellow clear shiny single 2/17/20 3/2/20 3/5/20 9/8/22 9/10/22  

1
2
4
 



 

 

 

 

Isolate information Isolate morphology Dates handled 
PCR 

results [2] 

No. ID [1] Size Shape Color Clarity Growth Collected Isolated Frozen Revived Cultured Screen 

26 P17C3_091119 small round yellow matte single 9/11/19 9/24/19 9/28/29 9/8/22 9/10/22  

27 P27C1_091119 small round yellow opaque single 9/11/19 9/24/19 9/28/29 9/8/22 9/10/22 + 

28 P25C2_091119 N/A round yellow translucent shiny single 9/11/19 9/24/19 9/28/29 9/8/22 9/10/22 + 

29 P23C2_091119 small round yellow matte single 9/11/19 9/24/19 9/28/29 9/8/22 9/10/22  

30 P07C1_091119 med round yellowish clear single 9/11/19 9/24/19 9/28/29 9/8/22 9/10/22  

31 P24C2_091119 small round yellow opaque single 9/11/19 9/24/19 9/28/29 9/8/22 9/10/22 + 

32 P06C2_091119 1 cm long yellowish opaque cluster 9/11/19 9/24/19 9/28/29 9/8/22 9/10/22 + 

33 P16C1_091119 large round purple opaque cluster 9/11/19 9/24/19 9/28/29 9/8/22 9/10/22 + 

34 P01C2_021720 med blob dark yellow clear cluster 2/17/20 3/2/20 3/5/20 9/8/22 9/10/22  

35 P17C1_091119 large N/A purple opaque cluster 9/11/19 9/24/19 9/28/29 9/8/22 9/10/22 + 

36 P30C1_021720 med round dark yellow clear shiny single 2/17/20 3/2/20 3/5/20 9/8/22 9/10/22  

37 P23C1_021720 med round dark yellow clear shiny single 2/17/20 3/2/20 3/5/20 9/8/22 9/10/22  

38 P03C2_021720 small round white translucent single 2/17/20 3/2/20 3/5/20 9/8/22 9/10/22  

39 P24C2_021720 med round dark yellow clear shiny single 2/17/20 3/2/20 3/5/20 9/8/22 9/10/22  

40 P08C1_021720 pinprick round dark yellow clear cluster 2/17/20 3/2/20 3/5/20 9/8/22 9/10/22  

41 P01C1_021720 med blob dark yellow clear cluster 2/17/20 3/2/20 3/5/20 9/8/22 9/10/22 + 

42 P29C1_021720 large round white translucent single 2/17/20 3/2/20 3/5/20 9/8/22 9/10/22  

43 P07C1_021720 med round dark yellow clear shiny single 2/17/20 3/2/20 3/5/20 9/8/22 9/10/22  

44 P20C1_021720 small round white translucent single 2/17/20 3/2/20 3/5/20 9/8/22 9/10/22  

45 P05C1_091119 nickel round bright yellow opaque shiny cluster 9/11/19 9/24/19 9/28/29 9/8/22 9/10/22  

46 P01C2_091119 small round yellow matte single 9/11/19 9/24/19 9/28/29 9/8/22 9/10/22  

47 P12C3_091119 large spreading light yellow opaque spreading 9/11/19 9/24/19 9/28/29 9/8/22 9/10/22  

48 P01C1_091119 med round light yellow shiny opaque single 9/11/19 9/24/19 9/28/29 9/8/22 9/10/22 + 

[1] P indicates plate number and C indicates colony number on that plate. 

[2] Mixture of primers targeting Flavobacteria ASVs 11 and 42 in PCR and agarose gel electrophoresed. See Table 4 and Fig. 

20.  
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Table 13. Growth medium recipe for Flavobacterium cultures. 

Ingredient Amount 

Yeast Extract 0.5 g 

Peptone 0.5 g 

Casamino Acids 0.5 g 

Glucose (Dextrose) 0.5 g 

Soluble starch 0.5 g 

Sodium pyruvate 0.3 g 

K2HPO4 0.3 g 

MgSO4 x 7H2O 0.05 g 

 

Instructions 

1. Add all ingredients, minus agar, to a large autoclave-safe container. Bring volume to 1-L 

with deionized water and mix thoroughly. 

2. Adjust to pH 7.2 ± 0.2 (HCl if too high, NaOH if too low) at room temperature. 

3. If making petri plates, add 15-g agar or gellan gum (Gelzan).  

4. Autoclave for >15 min at 15 psi and 121°C.   

5. If making petri plates: pour as soon as possible while still liquid. 

6. If dispensing to culture tubes: let cool. 
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Table 14. Recipe for long-term isolate storage. 

Ingredient Volume (ml) 

Liquid growth medium 127 

100% glycerol 11 

Dimethyl sulfoxide (DMSO) 11 

 

Instructions 

1. Autoclave growth medium and glycerol in separate containers. 

2. Filter-sterilize DMSO with syringe and 0.22-µm filter. 

3. To make freezing medium, mix growth medium, DMSO, and glycerol. 

4. Aliquot 1.4-ml freezing medium to Cryovials. 

5. Add 100-µl microbial culture and store at -80°C. 
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Appendix C: Collaborations 

Publications 

Status Citation 

Published  Burch, T. R., Newton, R. J., Kimbell, L. K., LaMartina, E. L., O'Malley, K., 

Thomson, S. M., ... & McNamara, P. J. (2022). Targeting current and future 

threats: recent methodological trends in environmental antimicrobial resistance 

research and their relationships to risk assessment. Environmental Science: Water 

Research & Technology (IF: 4.3). 

Published Kimbell, L. K., LaMartina, E. L., Kappell, A. D., Huo, J., Wang, Y., Newton, 

R. J., & McNamara, P. J. (2021). Cast iron drinking water pipe biofilms support 

diverse microbial communities containing antibiotic resistance genes, metal 

resistance genes, and class 1 integrons. Environmental Science: Water Research 

& Technology (IF 4.3), 7(3), 584-598. 

In review Scarim, G., LaMartina, E. L., Venkiteshwaran, K., Zitomer, D., Newton, R. J., 

& McNamara, P. J. A novel method to quantify activated sludge foaming and its 

use to elucidate the role of microbial community structure. 

In review MacLellan-Hurd, R.A., LaMartina, E.L., Liao, Q., Troy, C., & Bootsma, H. 

Quagga mussel (Dreissena rostriformis bugensis) biodeposit effects on benthic 

nutrient cycling in Lake Michigan. Target: Journal of Great Lakes Research (IF: 

2.48). 

In review Jones, D. C., Lewis J., LaMartina, E. L., Dahl, A. J., Holavanahalli, N. N., 

Newton, R. J., & Skwor, T.A. One Health and Global Health View of 

Antimicrobial Susceptibility through the “Eye” of Aeromonas: Systematic 

Review and Meta-Analysis. International Journal of Antimicrobial Agents (IF 

15.4). 

In review Kimbell, L. K., Kohls, S., Thomson, S. M., LaMartina, E. L., Wang, Y., Newton, 

R. J., & McNamara, P. J. Corrosion Inhibitors Influence Antibiotic Resistance, 

Metal Resistance, and Microbial Communities in a Source for Drinking Water. 

Dissertation Brennaman, A., LaMartina, E. L., Newton, R. J., & Richards, P. Tales from the 

Tooth Worm: Health and the Historic Oral Microbiome at the Milwaukee County 

Poor Farm Cemetery. 

In prep. Kennedy, E., LaMartina, E. L., Kappell, A. D., Harrison, K., Mayer, B., 

Zitomer, D., Newton, R. J., & McNamara, P. J. On microbial community and 

dewaterability in anaerobically digested primary and Bio-P biosolids. 
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Research projects 

Group Description 

Ryan Newton 

UW-Milwaukee 

DNA and cDNA sequencing of full-length 16S rRNA genes from 

groundwater 

Kazuaki Matsui 

Kindai University 

Microbial community analysis in a weekly, one-year time series of raw 

wastewater from two treatment plants using quantitative standards 

Dong-Fang Deng 

UW-Milwaukee 

Microbial community analyses of yellow perch and sturgeon guts 

undergoing diet augmentations 

Todd Miller 

UW-Milwaukee 

Quantifying Cyanobacteria and associated toxin-producing genes in an 

impacted lagoon using droplet digital PCR (ddPCR) 

Jhonatan Sepulveda 

UW-Milwaukee 

Microbial community analysis in rhizoplane and rhizosphere of 

aquaponic plants 

 

Mentorships 

Student Description and awards 

Erica Kallas 

Nicolet High School 

Effect of added concentrations of Melaleuca alternifolia oil on the 

growth of Pseudomonas fluorescens in Lake Michigan Water 

Stockholm Junior Water Prize 

National Oceanic and Atmospheric Administration Award 

Garrett Scapellato 

UW-Milwaukee 

Cloacibacterium: developing a model system to study wastewater 

conveyance. 

Summer Undergraduate Research Award 

Lauren Bonofiglio 

UW-Milwaukee 

Who are Milwaukee Microbes? 

Summer Undergraduate Research Award 
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