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 Uncertainty is commonly experienced by many people during learning and decision 

making. Given that many career paths require the ability to monitor uncertainty, it’s important to 

understand how metacognitive processes influence cognitive performance. In attempts to explore 

how uncertainty monitoring impacts learning, three experiments were conducted. The first and 

second experiment utilized a categorization task in which participants explicitly learned to 

categorize Chemistry concepts. The third experiment assessed the impact of uncertainty 

monitoring on implicit learning and utilized a different task to tap into the implicit learning 

system. The present dissertation is one of few to investigate the role of uncertainty monitoring 

during explicit and implicit category learning within the context of education. Findings from 

Experiment 1 revealed an overall benefit of uncertainty monitoring. Performance was superior 

for participants who had the option to report uncertainty compared to participants who did not. 

Experiment 2 was designed to replicate the results from Experiment 1 and investigated other 

training factors and metacognitive processes that impact performance. Specifically, Experiment 2 

assessed the role of feedback on performance by matching task feedback across training 

conditions. Additional measures of metacognition were implemented in Experiment 2 to examine 

participants’ confidence and judgements of performance. Findings from Experiment 2 generally 



 

supported those from Experiment 1 as it replicated the advantage of uncertainty monitoring 

training on task accuracy and revealed that participants’ confidence and judgments of 

performance were influenced by a combination of training factors that help monitor and address 

decision uncertainty. Experiment 3 expanded upon the results from Experiments 1 and 2 and 

assessed whether uncertainty monitoring could also support implicit learning. Results revealed a 

marginal enhancement in task accuracy during the initial stages of learning; however, 

enhancements did not remain after learning was complete. Taken together, the present 

experiments suggest a general benefit of uncertainty monitoring on explicit learning and transfer. 

However, these benefits may be limited in supporting different types of learning, as 

enhancements were not as pronounced during implicit learning. This research has important 

implications for cognitive science and education as it highlights the benefits and limits of 

uncertainty monitoring on category learning.  
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CHAPTER 1 

INTRODUCTION 

Many real-world skills depend on the ability to monitor uncertainty. For example, airport 

security officers need to differentiate between safe and dangerous items. Failing to correctly 

categorize the item can lead to inaccurate judgments and potentially fatal outcomes. As such, a 

variety of domains including on-the-job training and classroom learning aim to teach 

fundamental categories and uncertainty monitoring. Such metacognitive abilities can help guide 

decision-making and support transfer of information (Paris & Winograd, 1990), especially 

categorical information.  

A notable challenge in education is developing instructional designs that monitor student 

learning and promote transfer of knowledge and skills outside of the classroom. The present 

dissertation takes a cognitive perspective and applies theories and methods from cognitive 

science to fill this gap. A major theme throughout this document will be the role and extent to 

which uncertainty monitoring supports category learning in education, which has been 

underexplored. In fact, the existing literature on uncertainty monitoring is limited in the types of 

learning assessed. Studies have focused primarily on explicit learning, which depends on 

declarative memory, the knowledge that we can consciously recall. It is unclear whether 

uncertainty monitoring differentially impacts, or is even possible, during implicit learning, which 

depends on nondeclarative memory, the knowledge that we do not have conscious access to. 

Investigating how people learn and make decisions under uncertainty is crucial for 

improving training approaches that aim to support learning. This dissertation fills gaps in both 

cognitive science and education literature by investigating the role of uncertainty monitoring and 

metacognition in learning and transfer. It aimed to answer the following questions: Does 
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monitoring uncertainty improve category learning and transfer? To what extent can monitoring 

uncertainty support performance? Do metacognitive and uncertainty monitoring processes differ 

between explicit and implicit learning? 

 

Category Learning in Education  

 Understanding the factors that impact learning is important for developing approaches 

that promote learning and transfer of knowledge and skills. One core skill being the ability to 

categorize. Categorization is the act of classifying objects and events into separate classes. It 

plays a critical role in our decision-making and behavior and helps us reason and make 

inferences about the world. Given this important skill, many disciplines require learning the key 

categories of each domain. For instance, geologists are skilled in classifying rock types, marine 

scientists with classifying phytoplankton, and virologists with classifying novel strains of a virus.  

Knowledge of categories is thought to have a profound impact on how well students can 

learn and transfer information to new instances (Bransford & Schwartz, 1999; Gick & Holyoak, 

1980; Koedinger & Roll, 2012; Rittle-Johnson, Star, & Durkin, 2009; Zimmerman, 2000). A 

concerning issue, however, is the accuracy of that knowledge as students may be unaware of 

errors and may transfer incorrect information (Koriat & Bjork, 2005; Metcalfe, 2002; 2008). 

Consequently, students may lack important skills and understanding necessary for performing 

future tasks outside of the classroom.  

One way to address this is to train students to monitor their learning and uncertainty. 

Such metacognitive skills allow people to identify gaps in knowledge and adjust their strategies 

to meet the demands of novel tasks and problems (Paris & Winograd, 1990). Despite the well-

established literature, uncertainty monitoring within this subfield of learning is scarce. Thus, this 
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dissertation focused on uncertainty monitoring during category learning. It discussed the 

importance of metacognition and uncertainty monitoring, theories that aim to promote learning 

and transfer, and employed various methods to study the impact of uncertainty monitoring on 

performance. 

 

Metacognition and Uncertainty Monitoring 

In this dissertation, the term “uncertainty monitoring” is used to refer to components of 

metacognition. Metacognition refers to the knowledge and monitoring of one's own cognitive 

processes (Nelson & Narens, 1990; Veenman, Van Hout-Wolters, & Afflerbach, 2006). It is 

regarded as one of mankind’s most sophisticated cognitive capacities and is most integral to 

learning and academic achievement (Flavell, 1979; Brown, 1977; O’Dwyer & Childs, 2014; 

Regan, Childs, & Hayes, 2011; Stieff, 2011; Gersten, Jordan, & Flojo, 2005).  

This higher order process involves the awareness and regulation of cognitive activities 

which can be distinguished by two components: regulation and knowledge of cognition. 

Regulation of cognition refers to the processes that help control our learning, whereas knowledge 

of cognition refers to what we know about our own learning (Brown & DeLoache, 1978; Jacobs 

& Paris, 1987; Schraw & Moshman, 1995; Veenman, 2005). This may comprise of information, 

categories, and strategies that help us monitor our uncertainty, and evaluate the validity of our 

knowledge (Flavell, 1979; Isaacson & Fujita, 2006; Metcalfe & Kober, 2005; Nelson et al., 

1999).  

The cognitive state of uncertainty is typically characterized by a lack of understanding or 

gap in knowledge. Humans, and other animals, are known to adjust their strategies and behaviors 

depending on the level of uncertainty experienced (Behrens et al., 2007; Nassar et al., 2012; Lee 
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et al., 2014). Specifically, humans actively take steps to reduce uncertainty by seeking and 

gathering information to inform judgment and decision-making (Bruner, 1973; Chowdhury, 

Gibb, & Landoni, 2011; Kuhlthau, 1993). This is thought to be an indicator of greater 

metacognition. A pressing question in this dissertation is whether metacognitive processes 

support category learning and transfer, and what are some ways to promote it. 

 

Measuring Metacognition 

Metacognition and uncertainty monitoring have typically been assessed using confidence 

ratings and perception of performance. Students are instructed to judge their performance and 

report their perceived performance, which is compared to their actual performance. This is 

referred to as “calibration”. This calibration process suggests that when differences between 

perception of performance and actual performance are minimal and closely matched, then good 

calibration exists which is indicative of greater metacognition and performance monitoring 

(Callender, Franco-Watkins, & Roberts, 2015; Lundeberg et al., 1994; Nietfeld et al., 2006).  

In contrast, poor calibration, or calibration bias, may indicate poor metacognitive 

monitoring and ability. This can include overconfidence, where perceived performance is greater 

than actual performance, or under-confidence, where students lack confidence in their correct 

responses and report lower performance than actual performance. The former can lead to a false 

sense of mastery of materials and skills, while the latter can lead to overtraining and unnecessary 

practice. As such, accurate calibration is necessary for successful learning and effective resource 

allocation.  

Importantly, calibration bias can extend beyond comparisons of task performance. It can 

also include the ability to assess and monitor other forms of knowledge and skills (Dentakos, 
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Saoud, Ackerman, & Toplak, 2019). Questions in everyday life such as, “Do I need to study this 

chapter again?” requires accurate calibration and depends on metacognitive processes.  

Such metacognitive knowledge can be correct or incorrect, with incorrect knowledge 

being more pervasive and resistant to change (Callender et al., 2015; Renner & Renner, 2001; 

Smith & Washburn, 2005; Washburn et al., 2005). For example, Figure 1 depicts the results from 

a study that investigated metacognitive training in the classroom. Students were given an exam 

and asked to rate their performance on the exam (from 0 to 100) prior to turning it in. Calibration 

accuracy was used as a measure of metacognition and confidence, where students’ judgments of 

performance were compared with their actual performance.  

The experiment by Callender and colleagues (2015) reflects the key findings that much of 

the literature on metacognition has found, that a judgment-performance gap exists (see Figure 1, 

top). Specifically, lower performing students exhibit greater overconfidence and poorer judgment 

and monitoring of performance. This is important because knowledge and awareness about one’s 

own learning can impact future study choices, learning, and transfer (Callender, Franco-Watkins, 

& Roberts, 2015; Metcalfe & Finn, 2008).  
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Figure 1. Results from Study 1 of Callender, Franco-Watkins, & Roberts (2015) comparing 

judgment and performance scores on pre-metacognitive training in exam 1 (Top), and post-

metacognitive training in exam 2 (Bottom). 
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Limitations of Current Approaches 

Despite the robust findings on the benefits of metacognition and uncertainty monitoring, 

traditional teaching approaches do not monitor learning in real-time and may not effectively 

address errors during knowledge acquisition. Instead, students are tasked with the responsibility 

of monitoring their own learning. Of concern is whether students are aware of when they know 

and understand the materials, and whether calibration is accurate.  

Current teaching approaches such as student self-explanation and self-regulated learning 

further complicate this. For instance, self-explanation encourages students to explain information 

as it is learned, which is thought to benefit recall and comprehension (Ainsworth & Burcham, 

2007; Chi et al., 1989; O’Reilly, Symons, & MacLatchy-Gaudet, 1998; Wong, Lawson, & 

Keeves, 2002). However, it can be detrimental to performance if the explanation is wrong.  

The efficacy of self-regulated learning and self-explanation greatly depends upon the 

accuracy and awareness of knowledge and understanding (Bielaczyc, Pirolli, & Brown, 1995; 

Chi, Leeuw, Chiu, & Lavancher, 1994; King, 1994). These approaches at their core are 

dependent on students’ existing metacognitive skills and abilities. Thus, not only is it important 

to understand how uncertainty monitoring impacts learning, but it is equally important to provide 

a means by which students can monitor and correct uncertainty during knowledge acquisition. 

Training students to monitor their learning and uncertainty may address these issues. 

Categorization tasks, for example, are particularly well suited for studying uncertainty as 

they assess the ability to learn, apply, and transfer acquired knowledge to novel contexts. Unlike 

standard teaching in the classroom, categorization tasks can be used to examine students’ trial-

by-trial progress, monitor learning and uncertainty, and provide real-time feedback. 
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In addition, previous research has been limited in scope as it primarily focused on explicit 

learning. There is much evidence to suggest that learning and memory involves multiple 

neurologically distinct systems (Helie et al., 2010; Maddox, Ashby, &; Bohil, 2003; Milton &; 

Pothos, 2011; Nomura et al., 2007; Reber et al., 2003; Schacter, 1987; Sherry & Schacter, 1987; 

Squire & Schacter, 2002; Squire & Wixted, 2011). In order to improve learning and 

performance, it is important to consider how different types of knowledge can lead to 

dissociations in the systems recruited. A question in this dissertation, and in cognition literature, 

is whether metacognitive processes, such as uncertainty monitoring, impacts learning differently 

based on the system recruited. 

 

Explicit and Implicit Learning 

Different types of learning and tasks depend on qualitatively distinct processing systems 

(Ashby et al., 1998; Seger & Miller, 2010; Squire, 2004). For instance, explicit learning is 

thought to depend on a declarative system, which is characterized as learning with awareness. In 

contrast, implicit learning depends on a nondeclarative, procedural system, which is 

characterized by the absence of conscious awareness (Reber, 1967; Squire & Wixted, 2011; 

Tulving, 1970, 1991).  

The initial stages of learning and skill development may require students to explicitly 

learn how to perform a task and attend to declarative knowledge. However, with practice, 

procedural knowledge can develop and allow the skill to be performed without declarative 

knowledge. That is, over time, these skills can be performed implicitly, with seemingly no 

conscious awareness.  
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Lack of awareness may result in the inability to verbally report what is learned, such as 

rules and strategies. Studies show that awareness and confidence are generally greater during 

explicit learning tasks, which may be indicative of better calibration and performance monitoring 

(Dienes & Berry, 1997; Schoenherr & Lacroix, 2020). Conversely, metacognition is presumed to 

be impaired during implicit learning, as processes are difficult to verbalize and may be hidden 

from conscious monitoring and evaluation. Thus, if monitoring uncertainty depends on conscious 

awareness, then is it even possible to monitor uncertainty during implicit tasks? 

 

Explicit—Implicit Metacognition 

Central to the metacognition literature is the dissociation between explicit and implicit 

processes. In general, metacognition is considered an explicit process that recruits an explicit 

system that is associated with executive function, self-regulated learning, and consciousness 

(Flavell, 1979; Rosenthal, 2000). These processes are theorized to lead to experiences and 

judgments that impact performance, such as tip-of-the-tongue (TOT) states and feeling-of-

knowing (FOK) judgments. TOT states are characterized by the feeling that a currently 

inaccessible item from memory will be recalled at a later point (Brown & McNeill, 1966; 

Schwartz, 2008), whereas FOK judgments are characterized by the feeling that one is able to 

recognize an item prior to retrieval (Hart, 1965; Metcalfe, 2000; Nelson & Narens, 1990). These 

experiences have been used to study metacognitive monitoring and have provided insight on the 

cognitive and neural processes involved with metacognition and performance.  

Research suggest that metacognitive monitoring and judgments may depend upon 

different processes (Schwartz, 2008). For instance, TOT states have been found to be more 

dependent on working memory resources compared to FOK. This dissociation has been observed 
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in neuroimaging studies as well, which show differential patterns of neural activity (Maril et al., 

2003; Wagner, Maril, & Schacter, 2001). Specifically, TOT judgments are associated with 

increase neural activity in regions involved with working memory, including the anterior 

cingulate, right dorsolateral, and right inferior prefrontal region (Wagner, Maril, & Schacter, 

2001). In contrast, FOK judgments are associated with greater activity in the left dorsolateral, 

left anterior prefrontal and parietal regions (Maril et al., 2003; Kikyo & Miyashita, 2004; Kikyo 

et al., 2002). It is thought that these differences are due to FOK judgments operating more 

implicitly and unconsciously compared to TOT judgments (Koriat, 2000; Reder & Schunn, 

1996). This challenges the notion that metacognitive processes are entirely explicit (Kelley & 

Jacoby, 1996; Reder & Schunn, 1996). 

In fact, metacognitive monitoring and judgments can tap into different processes based 

on the demands of a task. For example, uncertainty monitoring and perceptual responding 

differentially depend on explicit working memory. Uncertainty responding has been shown to 

recruit working memory resources in both humans and non-human animals compared to 

perceptual responding (Coutinho et al., 2015; Smith et al., 2013). Performing a concurrent 

working memory task during a perceptual discrimination task can increase cognitive load and 

disrupt, as well as significantly reduce, uncertainty responses but not perceptual responses 

(Coutinho et al., 2015; Smith et al., 2013). This suggest that uncertainty responding depends 

upon an explicit process that places significant demands on working memory and executive 

attention. This is not to say, however, that uncertainty monitoring is entirely explicit. The impact 

of a concurrent task has been shown to reduce over time. That is, with training and practice, 

humans may respond to uncertainty with minimal working memory resources as judgments 
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become easier, faster, and somewhat automatic-like. Thus, metacognitive processes may change 

based on the demands of the task and with repeated experience.  

This is in line with other theories on metacognition, which postulate that metacognition is 

supported by two distinct processes: 1) an explicit, information-based process that occurs early in 

learning, and 2) an implicit, experience-based one that occurs later in learning (Koriat, 1997; 

Koriat, Nussinson, Bless, & Shaked, 2008). Information-based metacognitive judgments depend 

on analytic and cognitive processes that are more conscious, controlled, and explicit. In contrast, 

experience-based metacognitive judgments are unconscious, automatic, and implicit (Koriat, 

2000; Koriat et al., 2008; Reder & Schunn, 1996). Both processes are thought to play a role in 

learning and performance as implicit, experience-based processes inform metacognitive 

judgment, while explicit, information-based processes inform conscious behavior. This suggest 

that not all metacognitive processes are explicit and may not require awareness.  

Researchers have argued that metacognition and uncertainty monitoring may also operate 

on an implicit level. Feelings of uncertainty may result from implicit cues, which we only 

become aware of when asked about our level of certainty (Reder, 1996; Reder & Schunn, 1996). 

For instance, people may respond appropriately to situations without knowing or being aware 

that they possess specific knowledge. This unawareness, or lack of metacognition, is what makes 

the knowledge implicit (Dienes & Perner, 2002). Conversely, people may also be aware that they 

possess information and can decide more quickly that they know or do not know something, 

before they can even retrieve the information (Reder, 1987). This may be due to familiarity and 

extensive experience with performing a skill or solving a problem, which can lead to implicit, 

experience-based learning. For example, imagine solving a multiplication problem such as 21 x 

15. Someone who is familiar with multiplication may know that they know the answer before 
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they can produce it. This implicit, experienced-based knowledge informs metacognitive 

judgment, whereas explicit, information-based knowledge informs conscious behaviors (e.g., 

mathematical problem-solving). As such, metacognition and uncertainty monitoring may 

encompass both explicit and implicit abilities.  

In fact, humans engage in automatic and unconscious forms of metacognition every day. 

Activities such as riding a bike or driving a car requires constant monitoring of one’s behavior 

and surroundings. Such implicit metacognition may guide behavior without ever reaching 

conscious awareness (Brinck & Liljenfors, 2012; Dienes & Perner, 2002). However, despite 

research suggesting that both explicit and implicit processes are involved with learning, studies 

on metacognition have exclusively looked at tasks that are dependent on explicit, declarative 

memory. It is currently unclear whether metacognitive processes also benefit learning in tasks 

that are dependent on implicit, nondeclarative memory.  

 

Multiple Learning Systems 

Understanding whether uncertainty monitoring differs across different types of tasks is 

crucial for identifying methods to best support certain types of learning. In fact, differences in 

instructional approaches have been shown to lead to dissociations in performance during tests of 

explicit and implicit knowledge. An example of this is found in the multiple-systems model of 

category learning (Ashby et al, 1998). According to this multiple-systems framework, different 

learning strategies compete between systems. An explicit verbal system is initially activated 

during the early stages of learning, presumably because it’s controlled by consciousness. Over 

time, however, the strategy and system that best supports performance will eventually dominate 

(Ashby et al., 1998). This aligns with the dual-process framework of metacognition, which posits 
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that metacognitive processes operate on the output of different learning systems. Metacognitive 

abilities such as uncertainty monitoring and self-evaluation is critical for acquiring and utilizing 

optimal strategies during explicit and implicit learning tasks. Research parallel to this, from the 

field of categorization, have developed tasks to investigate these systems and serve as a valuable 

tool to study these dissociations.  

As such, the present dissertation uses category learning as tool to investigate uncertainty 

monitoring and learning within the explicit and implicit systems. Of relevance is a seminal study 

by Shepard, Hovland, and Jenkins (SHJ) (1961), which explored people's capacities to learn 

category structures that varied in complexity, rules, and strategies (e.g., explicit and implicit) 

(see Figure 2). Previous research, including neuroimaging studies, have provided strong support 

for the use of SHJ category structures to study explicit-implicit dissociations in learning (Smith, 

Minda, Washburn, 2004; Smith et al., 2012; Waldron & Ashby, 2001), as well as the existence of 

separate learning systems that are functionally and neurologically dissociable (Milton & Pothos, 

2011; Nomura et al., 2007; Reber, Gitelman, Parrish, & Mesulam, 2003). 

 

 

Figure 2. Structures from Shepard, Hovland, & Jenkins (1961). 



14 
 

 
A study by Minda, Desroches, & Church (2008) investigated the impact of concurrent 

working memory tasks on learning SHJ category structures that could or could not be easily 

verbalized (see experiment 2 of Minda, Desroches, & Church (2008)). Participants had to learn 

one of four SHJ category structures (Types I, II, III, IV, Figure 2), and classify stimuli while 

performing one of three concurrent tasks. These tasks included:  

1) A verbal concurrent task that required participants to perform a coarticulation task, 

which is thought to be dependent on verbal working memory. 

2) A nonverbal concurrent task, which required participants to tap their finger whenever 

they saw a specific stimulus. 

3) No concurrent task, where participants were only instructed to learn to classify stimuli.  

 

It was assumed that if any of the SHJ category structures depended on an explicit 

learning system, then performing a verbal concurrent task would interfere with learning rules and 

structures that also depended on the same working memory and explicit systems. The authors 

found that a verbal concurrent task was able to impair learning of all the category structures 

except Type IV. This suggests that learning Type IV categories may not require explicit, verbal 

working memory, but rather depend more on implicit processes, which is consistent with a 

multiple systems framework. 

Additionally, while it is assumed that implicit learning is difficult to verbalize, it does not 

mean that uncertainty monitoring does not occur. For example, a study by Paul, Boomer, Smith, 

and Ashby (2011) investigated participants' access to uncertainty monitoring processes during 

tasks that depended on the explicit and implicit learning systems. They used an uncertainty 

monitoring paradigm that incorporated both explicit and implicit category structures that have 
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been shown to tap into those systems (see Figure 3). Participants were instructed to make one of 

two primary responses based on the category membership of a stimulus or select the "uncertain" 

response option. In Experiment 1 and 2, they found that when participants were given the option 

to make “uncertain” responses on an implicit task, participants did so adaptively on difficult 

trials when category membership was unclear. As such, task accuracy and uncertainty 

responding were positively correlated as participants strategically used the “uncertain” response 

option to skip difficult trials while still maintaining an acceptable level of task accuracy.  

 

 

Figure 3. Example stimuli from Paul, Boomer, Smith, and Ashby (2011). (Left) Implicit, 

information-integration task; both dimensions (e.g., orientation and spatial frequency) were 

relevant for correct categorization. (Right) Explicit, rule-based categorization task, single 

relevant dimension (e.g., spatial frequency) for categorization.  

 
Paul and colleagues (2011) used decision-bound models to verify participants' decision 

strategies and found that participants who frequently used the "uncertain" response option during 

the implicit task also used a suboptimal strategy (e.g., explicit strategy). In contrast, those who 

rarely used the “uncertain” response option used the most optimal strategy (e.g., implicit 
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strategy). Such metacognitive processes appeared to have changed the qualitative nature of the 

implicit task into an explicit task. This may be because participants who were initially trained 

with easy-to-categorize stimuli may have discovered and applied simple rules that succeeded. 

When more complex and difficult stimuli were introduced, participants continued to perseverate 

on the simpler rule and responded with “uncertain” to avoid difficult trials while still maintaining 

accuracy. In this case, uncertainty monitoring during an implicit task was possible; however, 

allowing participants to respond with “uncertain” may reduce the likelihood of participants 

learning the optimal strategy, and may shift the focus of the task from an implicit learning 

system to an explicit one instead.  

Although findings by Paul and colleagues suggest that uncertainty monitoring can occur 

during implicit tasks, it is unclear whether uncertainty monitoring is effective in supporting 

implicit learning. Contrary to the authors’ predictions, participants were able to monitor their 

uncertainty during an implicit learning task but effectively changed the nature of it in the 

process—from implicit to explicit. The question remains as to whether uncertainty monitoring 

benefits different types of learning, and if so, to what extent can it support learning? 

 

Transfer of Knowledge 

Typically, the goal of training and teaching approaches is to promote transfer of 

knowledge. Transfer occurs when learning within a certain context has an impact beyond the 

original training context. For example, when previously learned information improves 

performance in another context, it is considered positive transfer; however, if performance is 

impaired then it is considered negative transfer. 
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 The extent to which learning can support future performance is classified as either near 

or far transfer. When learning is transferred between closely related or similar contexts, it is 

referred to as near transfer. For example, knowing how to snowboard can help with learning how 

to skateboard. However, if learning is transferred between contexts that appear remote and 

different, then it is referred to as far transfer. For example, understanding the concept of force in 

Physics, and transferring that knowledge to learning how to do tricks on a skateboard.  

In the classroom, students are expected to learn and build skills that are transferable to 

other domains (Saetrevik, Reber, & Sannum, 2006; Taber, 2014). However, it is difficult and 

rare that students can transfer knowledge outside of the original training context. This may be 

due to several reasons including time between training and transfer, or relation and similarity 

between contexts. In fact, there is little agreement in the field of cognition and education about 

the nature and extent to which transfer occurs, other than that it rarely does (Barnett & Ceci, 

2002; Detterman, 1993; Schooler, 1989). One might reasonably ask, then what is the purpose of 

training if transfer is not guaranteed? The answer depends on one’s definition and interpretation 

of successful transfer. For instance, one might interpret how often a learned skill or behavior is 

applied as an indicator of successful transfer, while others may view the quality and 

effectiveness of applied knowledge as successful transfer.  

The transferability of learning itself is regarded as an indicator of effective training. 

Different approaches and methods, such as monitoring and correcting uncertainty, are critical for 

promoting transfer. Consequently, significant investments of time, money, and research is put 

into training students on general skills that transfer beyond the classroom. 
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Methods to Promote Transfer 

Researchers have attempted to conceptualize the process leading to successful transfer. 

They posit that students need to first recognize that acquired knowledge is relevant to a new 

context. Second, students need to be able to recall that knowledge and third, they need to be able 

to apply it to the new context (Barnett & Ceci, 2002). The first two steps are thought to be driven 

by retention of knowledge (e.g., recognizing and recalling relevant information), whereas 

understanding enables the third step. This proposed three-step process is thought to depend on 

the student’s ability to recall, analyze, and process the information.  

Of concern, however, is whether students know when to apply prior knowledge and 

whether that knowledge is correct. Knowing when to transfer information and assessing the 

validity of that information is equally important as the act of transferring itself. An understanding 

of what skills and knowledge are necessary and relevant to a specific context is critical for 

successful transfer.  

Given that it is rare that we ever encounter identical situations, understanding how people 

approach, and monitor uncertainty is important for developing training approaches that support 

learning and transfer. This dissertation fills gaps in both categorization and education literature 

by investigating the role of uncertainty monitoring and metacognition in category learning and 

transfer. It utilized methods from cognitive science to answer the following questions: Does 

monitoring uncertainty improve category learning and transfer? To what extent can monitoring 

uncertainty support performance? Do metacognitive and uncertainty monitoring processes differ 

between explicit and implicit learning? 
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CHAPTER 2 

EXPERIMENT 1 

Background 
 

A common goal in both education and cognitive science is to understand how uncertainty 

decreases and how certainty develops throughout the course of learning. Categorical knowledge 

acquired in the classroom is crucial for supporting future performance. For example, a student 

working in a Chemistry lab may need to draw upon classroom knowledge about hazardous 

chemical categories, and correctly apply that knowledge to a new setting. Lacking adequate prior 

knowledge or unknowingly possessing incorrect categorical knowledge can be detrimental.  

Metacognition and uncertainty monitoring have been shown to be effective in facilitating 

transfer of learning (Paris et al., 1988; Paris & Winogran, 1990; Ricky & Stacy, 2000; Vaidya, 

1999). Experiment 1 aimed to explore the role of uncertainty monitoring on category learning 

within the context of education. It aimed to address some of the challenges that come with 

developing instructional designs to monitor learning and promote transfer.  

The experiment incorporated methodologies from cognitive science to train students to 

monitor their learning and investigated whether uncertainty monitoring could improve 

performance. It utilized a category learning paradigm to teach students Chemistry concepts and 

provided real-time, immediate feedback during training. Participants performed a classification 

task and learned to classify stimuli into two contrasting categories (e.g., Acidic vs. Basic). 

Participants were randomly assigned to learn with or without an option to report uncertainty. The 

additional “uncertain” response option allowed participants to monitor and address their 

uncertainties during training and received feedback to guide learning (Barnett & Ceci, 2002; 

Butler et al., 2013; Pashler et al., 2005). 
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In order to examine the extent to which training promoted transfer, participants were 

tested on a different categorization task using different stimuli. The test stimuli retained the same 

categorical rules and diagnostic features as those used in training but were visually different. 

Successful transfer to a similar, but novel and non-identical situation, was indexed by 

participants’ knowledge of which stimuli features corresponded with which categories during 

test phase. 

If transfer depended upon the ability to monitor learning and uncertainty, then 

participants who were given the option to report uncertainty would evidence greater test phase 

performance. Typically, metacognition is measured by comparing participants’ confidence and 

judgments of performance with their actual performance. Accurate calibration is thought to be 

indicative of greater uncertainty monitoring (Callender, Franco-Watkins, & Roberts, 2015; 

Lundeberg et al., 1994; Nietfeld, Cao, & Osborne, 2006). Thus, participants who were given the 

option to monitor their uncertainty were predicted to be more confident in their responses and 

more accurate in their judgments of performance. The results from Experiment 1 help elucidate 

the role of uncertainty monitoring in the context of category learning in education. 

 

Method 

Participants 

Sixty-three undergraduate college students (N = 63)1 from the University of Maine were 

recruited from the department of psychology’s research pool to participate online via Qualtrics 

Survey. All participants received partial course credit for participation. Participants were 

 
1 An initial n of 30 per condition was chosen as a conservative estimate based on previous literature on monitoring 
knowledge and uncertainty (Koriat & Bjork, 2005; Paul, Boomer, Smith, & Ashby, 2011; respectively).  
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randomly assigned to one of two training conditions: Uncertainty Monitoring condition (n = 33) 

and Forced Response Condition (n = 30). A total of 6 participants were excluded from analysis 

because they were statistical outliers (i.e., more than 3 SD from the mean on both average 

training accuracy, and accuracy during the final block of training). The remaining sample size by 

condition was Uncertainty Monitoring (n = 29) and Forced Response (n = 28). 

Stimuli 

The stimuli consisted of different objects varying in pH levels2 and category membership 

(e.g., Acidic or Basic). Forty stimuli (20 per category) were used for each of the two blocks in 

the training phase. All training stimuli were outlined by different colors that corresponded with 

the object’s pH level. Category membership was determined by the color of the outline of the 

training stimulus (e.g., Acidic = reds, yellows, and lighter shades of green; Basic = darker shades 

of green, blues, and purples). A novel set of forty stimuli (20 per category) were used during test 

phase to assess learning and transfer of categorical knowledge. All test stimuli had the same 

categorical rules and features as those used in training, but the objects changed and were visually 

different. 

 

Procedure 

In the instructions, participants were told to imagine that they were training to be 

Chemists. They were instructed to maximize accuracy and were informed that information 

learned during the training phase would be necessary for the test phase. 

 
2 pH is a quantitative measure of how acidic or basic an object is. 
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Uncertainty Monitoring Condition 

During the training phase, participants in the Uncertainty Monitoring condition were 

shown a single stimulus on the center of the screen and were instructed to either sort it into one 

of two contrasting categories (e.g., Acidic or Basic) or respond with “uncertain” (right, Figure 

4A). If participants selected the Acidic or Basic category options, they received verification 

feedback (e.g., “CORRECT: Acidic” or “WRONG: Acidic”) (see Figure 4B). However, if 

participants selected the “uncertain” option, they received feedback which consisted of the 

correct answer and a brief caption elaborating on the answer (e.g., This belongs in the Acidic 

category because it has a pH of 6.5 and has a light green outline) (see Figure 4C). Participants 

were told that selecting the correct answer or “uncertain” option would allow them to proceed to 

the next trial, but an incorrect answer would result in a 10 second “timeout” which delayed the 

start of the next trial.  

Forced Response Condition 

Participants in the Forced Response condition were also shown a single stimulus on the 

screen and were instructed to sort it into one of the two contrasting categories (e.g., Acidic or 

Basic). Unlike the Uncertainty Monitoring condition, however, participants in the Forced 

Response condition were not provided the “uncertain” response option. Participants in this 

condition received verification feedback for their responses (e.g., “CORRECT: Acidic” 

or  “WRONG: Acidic”) (see Figure 4B), and were told that correct answers would allow them to 

proceed to the next trial, but incorrect answers would result in a 10 second “timeout” which 

delayed the start of the next trial. 
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(A)   

(B) (C)  

Figure 4. Example displays for two training conditions in Experiment 1: (Top row, A) Forced 

Response and Uncertainty Monitoring, respectively. (Bottom left, B) Verification feedback for 

category response. (Bottom right, C) Explanatory and elaborative feedback for uncertain 

response option in the Uncertainty Monitoring training condition. 

After participants completed the training phase, they were tested on a novel task with a 

novel set of stimuli. Participants were told that they would be doing a virtual litmus test and there 

would be an image of a rectangular shaped paper in a virtual beaker. They were informed that the 

paper would change colors according to the type of liquid in the beaker. Participants were 

instructed to determine the type of liquid that was in the beaker (e.g., Acidic or Basic) and 
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estimate the pH level of the liquid (see Figure 5). After each test trial, participants were 

prompted to report their confidence in their response on a Likert-type scale ranging from 1 (Not 

at all Confident) to 7 (Extremely Confident). Participants were not given an “uncertain” response 

option and were not provided any feedback during test phase. The goal of the test phase was to 

assess participants’ ability to transfer learned information to a novel context, where the task 

question and stimuli appeared different, but the demands of the tasks were the same.  

After the test phase, participants completed a brief post-task questionnaire regarding the 

information learned, and their confidence and decision-making throughout the experiment. The 

post-task questionnaire also included an attention check question to ensure data quality and 

engagement of participants (see Appendix A). 

 

Figure 5. Example display during test phase for both training conditions. 

 
Data Analysis Procedure  

Average performance across training blocks were calculated to examine learning curves. 

To accurately assess learning, average scores per training block were adjusted for participants 
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within the Uncertainty Monitoring condition. This approach was used to account for participants’ 

“uncertain” responses during training, as selecting this option did not indicate a correct nor 

incorrect categorical response. Therefore, “uncertain” response trials were excluded from 

performance accuracy calculation. Adjusted scores for participants in the Uncertainty Monitoring 

condition only included trials that participants made categorical responses to (e.g., responding 

with category A or B). Subsequent analyses were conducted on adjusted scores and results 

throughout this dissertation report on adjusted scores for the Uncertainty Monitoring condition.  

In order to assess whether uncertainty monitoring could support learning, a two-way 

ANOVA was conducted to examine the effect of training method (Uncertainty Monitoring vs. 

Forced Response) and time (Block 1 vs. Block 2) on performance during training phase. 

Independent samples t-tests were conducted to examine the effect of training method on 

confidence and transfer performance during test phase.  

 
Results 

Training Phase: Task Performance 

Performance generally improved across training blocks for both conditions with higher 

training accuracy observed in the uncertainty monitoring condition (Figure 6). This observation 

was supported by a 2 training method (uncertainty monitoring vs. forced response) x 2 time 

(block 1 vs. block 2) ANOVA that revealed a significant main effect of training method [F(1, 55) 

= 10.637,  p = .001, ηp2 = .08] and time [F(1, 55) = 39.11,  p < .001, ηp2 = .243] on performance 

during training. Indicating that performance improved over time and that uncertainly monitoring 

resulted in higher performance.  
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Figure 6. Performance for both training conditions during training phase on category accuracy. 

Figure depicts adjusted scores during training phase for the Uncertainty Monitoring condition. 

 
Test Phase: Task Performance 

Inspection of the test data suggests that participants in both training conditions were 

generally able to transfer knowledge from training phase to test phase (Figure 7). Specifically, 

independent samples t-test show that the Uncertainty Monitoring condition performed 

significantly better on category accuracy during test phase compared to the Forced Response 

condition [t(48.36) = -2.12, p = .039, g = .556]3; however, participants' ability to estimate the pH 

levels of test stimuli did not differ between conditions [t(52) = .176, p = .861, g = .05] (Figure 8). 

 
3 Levene’s test indicated unequal variances, degrees of freedom were adjusted.  
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Figure 7. Performance for two training conditions during test phase on category accuracy.  

Figures depict adjusted scores during training phase for the Uncertainty Monitoring condition. 

  

Figure 8. Performance on estimating pH levels of test stimuli. Average error per trial was 

computed by taking the absolute deviation from the true pH value. Lower scores indicate better 

accuracy. 
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Test Phase: Confidence 

Confidence was found to be a moderate significant predictor of test accuracy for both 

training conditions, as confidence accounted for a significant proportion of test performance in 

the Uncertainty Monitoring [R2 = .404, F(1, 27) = 18.303, p < .001] and Forced Response [R2 = 

.296, F(1, 27) = 11.33, p = .002] training conditions (see Table 1 and Figure 9); however, no 

group differences were observed for response confidence [t(56) = -.789, p = .433] (Figure 10).  

 

Table 1. Regression Analysis summary for confidence predicting test accuracy in Experiment 1. 

 

    

Figure 9. Average test phase accuracy by average confidence between: (Left) Uncertainty 

Monitoring condition, and (Right) Forced Response condition. Dashed lines represent 95% 

confidence interval bands. 
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Figure 10. Average confidence rating during test phase. 

 
Uncertainty Monitoring Training 

A primary question in Experiment 1 was the role of uncertainty monitoring on 

performance. Specifically, how participants utilized an uncertain response option and its impact 

on learning and transfer. A paired samples t-test examined participants’ uncertainty responses 

between blocks 1 and 2 of training. It indicated a significant decrease in percentage of 

“uncertain” responses throughout the course of training for participants in the Uncertainty 

Monitoring condition [t(28) = 4.56, p < .001, g = .934, Figure 11].  

In sum, these data suggest that participants were generally able to learn and transfer 

knowledge to both novel stimuli and tasks, with performance being greater for participants 

trained in the Uncertainty Monitoring condition. 
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Figure 11. Average percentage of “Uncertain” responses during training for participants in the 

Uncertainty Monitoring condition. 

 

Experiment 1 Discussion 

The goal of Experiment 1 was to investigate the role of uncertainty monitoring in 

category learning and transfer. As predicted, learning and transfer was greater for those trained in 

the Uncertainty Monitoring condition. Participants were confident and generally able to 

accurately calibrate their perceived performance with their actual performance; however, this did 

not differ between the two training conditions as originally predicted. Although accurate 

calibration is typically thought of as an indicative of greater uncertainty monitoring, we cannot 

conclude that differences in task performance were due to differences in metacognition and 

uncertainty monitoring. One potential explanation for these results is differences in the type of 

feedback provided to the two training conditions. Participants in both conditions received 

verification feedback for categorical responses; however, participants in the uncertainty 

monitoring condition also received explanatory and elaborative feedback if they selected the 
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“uncertain” response option. The explanatory and elaborative feedback consisted of the correct 

answer, and a brief caption elaborating on the answer. It is possible that some participants may 

have learned categorical rules and diagnostic features because of explanatory and elaborative 

feedback, instead of metacognitive processes. Experiment 2 addressed this concern and assessed 

the role of feedback on performance during uncertainty monitoring. 
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CHAPTER 3 

EXPERIMENT 2A 

Background 

A potential limitation of Experiment 1 involves varying feedback types between the two 

training conditions. Feedback provides learners with information and opportunities to correct 

errors and deficiencies in knowledge which can differentially impact learning. Specifically, 

explanatory and elaborative (EE) feedback is thought to help students develop a deeper 

understanding of information relative to simple verification feedback (Butler et al., 2013; Fazio, 

Huelser, Johnson, & Marsh, 2010; Pashler, Cepeda, Wixted, & Rohrer, 2005). Although the 

results of Experiment 1 suggest that uncertainty monitoring training may be superior in 

supporting performance, it is possible that the observed advantages were due to access to EE 

feedback instead of uncertainty monitoring processes. Participants may have used the 

“uncertain” response option to gain feedback and adaptively complete the task, rather than use it 

to monitor their learning (Paul et al., 2011). Experiment 2 addressed the potential issue of 

feedback and investigated the methodological factors that impact performance.  

The design of Experiment 2a was similar to Experiment 1 and utilized the same category 

learning tasks to train and test participants on Chemistry concepts. Experiment 2a assessed the 

impact of both verification and EE feedback on category learning and transfer across training 

conditions. It utilized a 2 training methodology (Uncertainty Monitoring vs. Forced Response) x 

2 feedback type (Verification vs. Explanatory/Elaborative) between-subjects design. Experiment 

2a aimed to replicate the advantage of uncertainty monitoring training and extend the findings 

from Experiment 1 to conditions in which feedback was matched across training methods. 
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If performance differences in Experiment 1 were solely due to differences in feedback 

type, then providing EE feedback across experimental conditions should eliminate those 

differences and performance should be enhanced for any participant who received EE feedback. 

However, if learning was supported by uncertainty monitoring training, then participants who are 

given the option to report uncertainty should perform better than participants who are not given 

the option, regardless of feedback type (see Figure 12). This was based upon prior research that 

suggested that EE feedback does not benefit learning any more than simple verification or 

correct answer feedback (Bangert-Drowns et al., 1991; Kulhavy et al., 1989; Smits et al., 2008) 

 

 

Figure 12. Hypotheses and predictions for Experiment 2a.  

 
Method 

Participants and Design 

One-hundred and sixty-six undergraduate college students4 (N = 166) from the University 

of Maine were recruited from the department of psychology’s research pool to participate online 

via Qualtrics Survey. Participants received partial course credit for their participation and were 

randomly assigned to one of four experimental conditions in the 2 training methodology 

 
4 An n = 30 per condition was chosen based on the design and results from Experiment 1. Data collection continued 
beyond this target in order to provide participants with sufficient research opportunities. 
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(Uncertainty Monitoring vs. Forced Response) x 2 feedback type (Verification vs. EE) design. A 

total of 14 participants were excluded from analysis because they did not complete the 

experiment or were statistical outliers (i.e., more than 3 SD from the mean on average training 

accuracy, accuracy during the final block of training, or test phase); see Table 2. 

Table 2. Number of participants in each of the conditions recruited from the University of Maine 
for Experiment 2a. 

 

Stimuli 

The stimuli used in this experiment were the same stimuli used in Experiment 1. They 

consisted of different objects varying in pH levels and category membership (e.g., Acidic or 

Basic). All training stimuli were outlined by different colors that corresponded with the object’s 

acidity and pH level. Category membership could be determined by the color of the outline of 

the training stimulus (e.g., Acidic = reds, yellows, and lighter shades of green; Basic = darker 

shades of green, blues, and purples). A novel set of stimuli were used during test phase to assess 

learning and transfer of categorical knowledge. All test stimuli retained the same rules and 

diagnostic features as those used in training but were visually different. 

 

Procedure 

 All tasks and procedures were identical to Experiment 1. Participants were randomly 

assigned to one of the four experimental conditions (below) and instructed to complete 2 blocks 

of training and one block of test phase. 
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Uncertainty Monitoring training with Verification Feedback 

During training phase, participants in this condition were shown a single stimulus on the 

center of the screen and were instructed to either sort it into one of two contrasting categories 

(e.g., Acidic or Basic) or respond with “uncertain”. For consistency, the feedback approach in 

this condition mirrors that of Experiment 1. For example, if participants selected the Acidic or 

Basic category options, they received verification feedback (e.g., “CORRECT: Acidic” 

or “WRONG: Acidic”). If participants selected the “uncertain” option, they received explanatory 

and elaborative feedback, which consisted of the correct answer, and a caption elaborating on the 

answer (e.g., “This belongs in the Basic category because it has an approximate pH level of 13 

and has a purple outline”). Participants were told that an incorrect answer would result in a 10 

second “timeout” and delay the start of the next trial, whereas selecting the correct answer or 

“uncertain” option would allow them to proceed to the next trial; see Figure 13. 

 

Figure 13. Example display for Uncertainty Monitoring with Verification Feedback condition. 
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Uncertainty Monitoring training with Explanatory and Elaborative Feedback 

Participants in this condition were also shown a single stimulus on the screen and had the 

option to select one of two contrasting categories or respond with “uncertain”. Participants 

received explanatory and elaborative feedback for all their responses during training (e.g., 

“CORRECT: This belongs in the Basic category because it has an approximate pH level of 13 

and has a purple outline” or “WRONG: This belongs in the Basic category because it has an 

approximate pH level of 13 and has a purple outline”). Participants were told that correct 

answers would allow them to proceed to the next trial, but incorrect answers will result in a 10 

second “timeout” and delay the start of the next trial; see Figure 14. 

 

Figure 14. Example display for Uncertainty Monitoring condition with Explanatory and 

Elaborative Feedback. 
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Forced Response training with Verification Feedback 

Unlike Uncertainty Monitoring training, participants in the Forced Response training 

conditions were not provided with an “uncertain” response option during training phase. 

Participants in the Forced Response training conditions were shown stimuli on the screen and 

instructed to sort them into one of two contrasting categories (e.g., Acidic or Basic). Participants 

in this condition received verification feedback (e.g., “CORRECT: Basic” or “WRONG: Basic”) 

for their responses. Participants were told that correct answers allowed them to proceed to the 

next trial, but incorrect answers would result in a 10 second “timeout” and delay the start of the 

next trial; see Figure 15. 

 

Figure 15. Example display for Forced Response condition with Verification Feedback. 
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Forced Response training with Explanatory and Elaborative Feedback  

Participants in this condition were shown a single stimulus on the screen and sorted it 

into one of two contrasting categories (e.g., Acidic or Basic). Participants received explanatory 

and elaborative feedback for all their responses and were told that correct answers would allow 

them to proceed to the next trial, but incorrect answers would result in a 10 second “timeout” and 

delay the start of the next trial; see Figure 16. 

 

Figure 16. Example display for Forced Response condition with Explanatory and Elaborative 

Feedback. 
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Upon completion of the training phase, all participants were tested on a different task 

with a different set of stimuli. Test phase was used to assess participants’ ability to transfer 

learned information to a novel context, where the task question and stimuli appeared different, 

but the demands of the tasks were the same (see Figure 5). After every test trial, participants 

reported their confidence in their test responses and were not provided any feedback nor option 

to report uncertainty. After the test phase, all participants completed a brief post-task 

questionnaire which included questions that probed participants’ attentiveness, decision-making 

strategies, confidence, and general knowledge of the information learned (see Appendix B).  

Data Analysis Procedure 

To assess whether performance was influenced by training method and dependent on 

feedback type, a three-way ANOVA was conducted to examine the effect of training method 

(Uncertainty Monitoring vs. Forced Response), feedback type (Verification vs. EE) and time 

(Block 1 vs. Block 2) on learning during training phase. Separate two-way ANOVAs were 

conducted to further investigate the impact of training method (Uncertainty Monitoring vs. 

Forced Response) and feedback type (Verification vs. EE) on participants’ confidence and 

transfer performance during test phase. 

It was predicted that if performance was solely dependent on feedback type, then there 

would only be observable differences in accuracy and confidence between the two feedback 

conditions, but not between training methods. However, if performance depends on uncertainty 

monitoring training, then enhancements should still be observed, even when feedback is matched 

across training conditions. Planned contrasts were used to assess task performance across 

feedback conditions, and compared the Uncertainty Monitoring EE feedback condition with the 

other three experimental conditions.   
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Results 

Training Phase: Task Performance 

Inspection of data suggests that performance generally improved throughout training for 

all participants (see Figure 17). A three-way, mixed model ANOVA, with training (uncertainty 

monitoring vs. forced response), feedback (verification vs. EE) and time (block 1 vs. block 2), 

showed a significant main effect of training method [F(1, 148) = 21.84,  p < .001, ηp2 = .129], 

feedback type [F(1, 148) = 44.51,  p < .001, ηp2 = .231], and time [F(1, 148) = 259.35,  p < .001, 

ηp2 = .637] on training accuracy. There was no significant interaction [F(1, 148) = 3.195,  p = 

.076, ηp2 = .021]. These data suggest that performance improved over time for all conditions, 

with an overall benefit of EE feedback. 

 

 

Figure 17. Performance for four training conditions during training phase. 
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Test Phase: Task Performance 

Inspection of the test phase data suggest that participants were generally able to transfer 

knowledge to a novel task with performance varying by training method and feedback type (see 

Figure 18, top). This observation was supported by a 2 training (uncertainty monitoring vs. 

forced response) x 2 feedback (verification vs. EE) ANOVA5, which revealed a significant main 

effect of training method [F(1, 148) = 15.94,  p < .001, ηp2 = .10] and feedback type [F(1, 148) = 

17.489 p < .001, ηp2 = .106] on test performance. Specifically, an a priori planned contrast 

comparing the uncertainty monitoring EE feedback condition with the other three conditions 

suggest an advantage of combining such a training method with such feedback to support test 

accuracy [F(1, 148) = 14.48, p < .001, ηp2 = .09]; see Figure 18.  

Further inspection of test phase data suggests that the ability to estimate pH levels of test 

stimuli varied by training method, as participants trained with uncertainty monitoring appeared 

to be more accurate in estimating pH (see Figure 18, bottom). A two-way ANOVA with training 

(uncertainty monitoring vs. forced response) and feedback (EE vs. verification), revealed a 

significant main effect of training method [F(1, 145) = 8.726,  p = .004, ηp2 = .057] on pH 

accuracy, but there was no main effect of feedback [F(1, 145) = 1.445,  p = .231, ηp2 = .010] and 

the interaction was not significant [F(1, 145) = .037,  p = .848, ηp2 = .00]. This suggests that 

 
5 Levene’s test indicated unequal variances (p < .001). Subsequent analyses were conducted using ANOVAs, which 
are robust against violations of homogeneity of variance, therefore, no corrections were made. In addition, a non-
parametric Kruskal-Wallis test was also conducted to examine group differences and found that test accuracy 
significantly differed between the four conditions (x2 (3) = 12.331, p < .001). Pairwise comparison using a Mann-
Whitney Test with Bonferroni corrections suggests that when participants are given explanatory and elaborative 
feedback, those who are trained to monitor their uncertainty (Mrank = 42.07) outperform participants who are required 
to simply make a categorial response (Mrank = 30.42); p = .012. 
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while participants were generally able to transfer knowledge from training to test phase, the 

extent to which participants can transfer knowledge may depend on training method. 

 

 

 

Figure 18. Performance for four training conditions during test phase on: (Top) Category 

Accuracy, (Bottom) Estimating pH levels of test stimuli (Average error per trial was computed 

by taking the absolute deviation from the true pH value; lower scores indicate better accuracy). 
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Test Phase: Confidence 

Additional analysis using simple linear regression suggest that confidence during test 

phase was a predictive of performance for some participants6, as it accounted for a significant 

proportion of test accuracy in the Uncertainty Monitoring with Verification feedback condition 

[R2 = .161, F(1, 36) = 6.902, p = .013], and Forced Response with Verification feedback 

condition [R2 = .195, F(1, 37) = 8.987, p = .005]; see Table 3 and Figure 19. Contrary to 

hypotheses, a priori planned comparisons suggested that confidence for participants in the 

uncertainty monitoring EE feedback condition was only significantly different from those in the 

forced response verification feedback condition (p < .001), and not other groups (p’s > .49). 

Lowest confidence was observed for participants in the forced response verification feedback 

condition (p’s < .012); see Figure 20.  

A two-way ANOVA7 was conducted to further examine the effect of training method 

(uncertainty monitoring vs. forced response) and feedback type (verification vs. EE) on 

confidence during test phase. Results show a significant main effect of training [F(1, 148) = 

10.61,  p = .001, ηp2 = .07] and feedback [F(1, 148) = 20.83 p < .001, ηp2 = .123] on test 

confidence. The interaction was not significant [F(3, 148) = 1.23, p = .269, ηp2 = .01].  

 
6 Four participants in the Forced Response Verification feedback condition had standardized residual scores of +/- 3. 
These participants were excluded from analyses. 
7 Levene’s test indicated unequal variances (p < .001). Subsequent analyses were conducted using ANOVAs, which 
are robust against violations of homogeneity of variance, therefore, no corrections were made. In addition, a non-
parametric Kruskal-Wallis test was conducted to examine group differences and found that response confidence 
during test phase significantly differed between the four conditions (x2 (3) = 23.675, p < .001). Pairwise 
comparisons using Mann-Whitney Tests and Bonferroni corrections suggested that confidence was higher for 
participants in the uncertainty monitoring training condition who received EE feedback (Mrank = 42.85) compared to 
verification feedback (Mrank = 30.82); p = .015. Likewise, participants in the forced response training condition who 
received EE feedback also reported greater response confidence (Mrank = 49.81) compared to those who received 
verification feedback (Mrank = 32.49); p = .001. However, no significant differences in confidence were observed 
across training methods (p’s > .072). 
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Table 3. Regression Analysis summary for confidence predicting test accuracy in Experiment 2a. 

 
 

      

Figure 19. Average test accuracy by confidence for (Left) Uncertainty Monitoring with 

Verification Feedback, and (Right) Forced Response with Verification feedback condition. 

 

 
 

Figure 20. Average confidence during test phase by training and feedback. 
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Uncertainty Monitoring Training 

A primary question in Experiment 2a was the role of uncertainty monitoring on 

performance, and the utility of the uncertain response option following changes to feedback type. 

As seen in Figure 20, participants in the uncertainty monitoring condition who received 

verification feedback utilized the “uncertain” response option more than those who were 

provided with EE feedback. This suggests that feedback type may impact uncertainty 

responding, as more detailed EE feedback may reduce uncertainty early in training and increase 

the rate of learning. Paired samples t-tests show that significant decreases in “uncertain” 

responding from block 1 to block 2 was evident for both EE [t(33) = 2.68, p = .011, g = .547] 

and verification feedback conditions [t(37) = 3.93, p < .001, g = .715]; see Figure 21.  

Taken altogether, these results suggest that both training method and feedback type can 

impact performance, with performance being greater for those trained with a combination of 

Uncertainty Monitoring and EE feedback. 

 

Figure 21. Average percentage of “Uncertain” responses between feedback conditions within the 

Uncertainty Monitoring training condition. 
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Experiment 2a Discussion 

The goal of Experiment 2a was to address the issue of feedback type in Experiment 1 and 

examine whether uncertainty monitoring training could support learning across different 

feedback conditions. The results suggest that participants who were trained with uncertainty 

monitoring outperformed participants who were simply required to make a categorial response, 

even when feedback was matched. Based on the data, EE feedback was superior in supporting 

learning across training conditions compared to verification feedback. This may lend some 

support to the notion that feedback may have contributed to the performance differences 

observed in Experiment 1. The present data, however, demonstrates a general benefit of 

uncertainty monitoring training on category learning and transfer.  

One concern is that in Experiments 1 and 2a, participants’ confidence ratings were 

similar across training conditions, despite an advantage of uncertainty monitoring training. The 

only difference in confidence appeared to be due to feedback type, as confidence was higher for 

participants who received EE feedback. A potential explanation for this is that confidence was 

assessed post-training, during test phase. Given that test performance required the same 

categorical knowledge used during training, participants likely felt confident in their test 

responses after successfully learning the categories in the training phase. Another explanation is 

that metacognitive skills and processes, such as uncertainty monitoring, have been shown to 

increase confidence and judgment of performance. It is possible that participants in the forced 

response training conditions were also monitoring their performance and were comparably 

confident in their test responses. A limitation of Experiments 1 and 2a, however, is that they did 

not gauge whether participants in the forced response training conditions were monitoring their 

learning and uncertainty.  
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In sum, these data suggest that regardless of training method, EE feedback is superior in 

supporting learning and transfer compared to verification feedback. Best performance, however, 

was observed in participants who were trained to monitor their uncertainty and simultaneously 

received EE feedback. 
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CHAPTER 3 

EXPERIMENT 2B 

Background 

The results from Experiment 2a mirrored those from Experiment 1, which suggest an 

advantage of uncertainty monitoring training on performance. However, there was evidence that 

learning depended upon feedback type as well. Experiment 2b of this dissertation further 

investigated the role of feedback by removing feedback entirely during training. It was predicted 

that if performance differences were solely dependent upon feedback, then removing feedback 

should eliminate those differences and performance should be similar across training conditions. 

However, if there is a benefit of uncertainty monitoring training, then participants who have 

access to an uncertain response option should outperform those who did not. 

A limitation in Experiments 1 and 2a was that confidence was assessed post-training 

during test phase, after learning was complete and confidence was reasonably higher. Examining 

confidence during test phase does not provide an accurate measure of metacognition nor 

demonstrate the differences between training methods. In addition, Experiments 1 and 2a did not 

gauge whether participants in the forced response conditions were also monitoring their learning, 

despite not having an option to report uncertainty. Experiment 2b addressed these limitations and 

included additional measures of metacognition to assess participants’ ability to judge their own 

performance, and compared it to their actual performance (e.g., calibration accuracy). 

Experiment 2b also implemented trial-by-trial confidence ratings during training phase, which 

has been shown to induce performance monitoring and was used as another measure of 

metacognition (Balakrishnan & Ratcliff, 1996). 
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Experiment 2b further addressed the issue of feedback by including two experimental 

conditions in which participants were not shown feedback. Experiment 2b reran the four 

experimental conditions from Experiment 2a but utilized a 2 training methodology (Uncertainty 

Monitoring vs. Forced Response) x 3 feedback type (Verification, EE, no feedback) design under 

revised procedures. Experiment 2b aimed to replicate the overall benefit of uncertainty 

monitoring training on performance and assessed metacognition across conditions. 

Based on the results from Experiments 1 and 2a, it was predicted that there would be a 

benefit of uncertainty monitoring training on learning and transfer, regardless of whether 

participants received EE or verification feedback. However, if learning was dependent upon 

feedback, then performance would not differ between training methods when feedback is 

matched across conditions (see Figure 22). 

 

  

Figure 22. Hypotheses and predictions for Experiment 2b. 
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Method 

Participants 

One-hundred and ninety-eight undergraduate college students8 (N = 198) from the 

University of Maine were recruited from the department of psychology’s research pool to 

participate online via Qualtrics Survey. Participants received partial course credit for their 

participation. Participants were randomly assigned to one of six experimental conditions in the 2 

training methodology (Uncertainty Monitoring vs. Forced Response) x 3 feedback type 

(Verification, EE, No feedback) design. A total of 16 participants were excluded from analysis 

because they did not complete the experiment or were statistical outliers (i.e., more than 3 SD 

from the mean on average training accuracy, accuracy during the final block of training, or test 

phase); see Table 4. 

 

Table 4. Number of participants in each of the conditions recruited from the University of Maine 
for Experiment 2b. 

 

Stimuli 

The stimuli were the same as those used in Experiments 1 and 2a. 

 

 
8 An n = 30 per condition was chosen based on the design and results from Experiments 1 and 2a. 
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Procedure 

The procedure for Experiment 2b was similar to Experiment 2a; however, participants 

were randomly assigned to one of the six experimental conditions (below), two of which did not 

provide any feedback. Participants were also instructed to complete trial-by-trial confidence 

ratings during training phase (see Figure 23).  

1. Uncertainty Monitoring training with Verification Feedback 

2. Uncertainty Monitoring training with Explanatory and Elaborative Feedback 

3. Forced Response training with Verification Feedback 

4. Forced Response training with Explanatory and Elaborative Feedback  

5. Uncertainty Monitoring training with No Feedback 

6. Forced Response training with No Feedback 

During training, all participants were shown a single stimulus in the center of the screen 

and were instructed to sort it into one of two contrasting categories (e.g., Acidic or Basic). 

Participants in Uncertainty Monitoring training had the additional option to respond with 

“uncertain”, whereas participants in Forced Response training did not. After each trial, 

participants were prompted to report their confidence in their categorical responses on a Likert-

type scale ranging from 1 (Not at all Confident) to 7 (Extremely Confident). Depending on their 

assigned feedback condition, participants received either verification feedback (e.g., 

“CORRECT: Basic” or “WRONG: Basic”), explanatory and elaborative feedback (e.g., “This 

belongs in the Basic category because it has an approximate pH level of 13 and has a purple 

outline”), or no feedback following their confidence ratings. Participants who received feedback 
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were told that an incorrect answer would result in a 10 second “timeout”, whereas correct or 

“uncertain” responses allowed them to proceed to the next trial (see Figure 23).  

After the training phase, all participants were tested on the same task and stimuli used in 

Experiments 1 and 2a.  At the end of test phase, all participants completed a brief post-task 

questionnaire that probed participants’ decision-making strategies, attention, and general 

knowledge about the information learned. The post-task questionnaire also gauged participants’ 

confidence and perceived task performance on a 100-point scale (see Appendix B). 

(A) (B)  
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(C) (D)  

(E)  (F)  

Figure 23. Example displays for six training conditions in Experiment 2b: (A) Uncertainty 

Monitoring training with Verification Feedback, (B) Uncertainty Monitoring training with 

Explanatory/Elaborative Feedback, (C) Forced Response training with Verification Feedback, 

(D) Forced Response training with Explanatory/Elaborative Feedback, (E) Uncertainty 

Monitoring training with No Feedback, (F) Forced Response training with No Feedback. 
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Data Analysis Procedure 

The data was analyzed in the same way as Experiments 1 and 2a. Average performance 

across training blocks were calculated to examine accuracy and learning curves. Separate three-

way, mixed model ANOVAs were conducted to examine the effect of training method 

(Uncertainty Monitoring vs. Forced Response), feedback type (Verification, EE, no feedback), 

and time (Block 1 vs. Block 2) on learning and confidence throughout training phase.  

Additionally, two-way ANOVAs were conducted to further investigate the impact of 

training and feedback on test performance and calibration accuracy. Calibration between 

participants’ perceived performance and actual performance was used as an additional measure 

of metacognition. Calibration accuracy was computed by taking the difference between 

participants’ self-reported, perceived performance and their actual performance. Lower scores, 

closer to zero, indicated better judgment of performance and greater metacognition. 

Miscalibration was expected during initial stages of learning, but confidence and calibration 

were predicted to improve with learning for all conditions. Specifically, participants who 

monitored their uncertainty were expected to have higher confidence and greater calibration 

accuracy as uncertainty monitoring training has been shown to improve judgments of 

performance. 

Based on the results from Experiment 2a, it was predicted that there would be a general 

benefit of EE feedback. However, overall performance was greater for uncertainty monitoring 

training. Thus, it was predicted that task accuracy, confidence, and calibration would depend on 

a combination of training and feedback. Specifically, planned contrasts were used to compare the 

Uncertainty Monitoring EE feedback condition with the other five experimental conditions 

 



55 
 

Results 

Training Phase: Task Performance 

 Learning was evident for all conditions except those who did not receive feedback during 

training phase (see Figure 24). A three-way, mixed model ANOVA, with training (uncertainty 

monitoring vs. forced response), feedback (verification, EE, no feedback) and time (block 1 vs. 

block 2), showed a significant main effect of feedback type [F(2, 176) = 49.11,  p < .001, ηp2 = 

.358] and time [F(1, 176) = 352.54,  p < .001, ηp2 = .667] on performance during training phase, 

but no main effect of training method [F(1, 176) = .652,  p = .421, ηp2 = .004]. The main effects 

were qualified by a significant interaction between training, feedback, and time [F(2, 176) = 

8.075,  p < .001, ηp2 = .084].  

Further analyses revealed a simple main effect of feedback type on training accuracy for 

the uncertainty monitoring [Block 1: F(2, 86) = 7.567,  p = .001, ηp2 = .15;  Block 2: F(2, 86) = 

38.123,  p < .001, ηp2 = .47] and forced response conditions [Block 1: F(2, 90) = 23.21,  p < 

.001, ηp2 = .34;  Block 2: F(2, 90) = 40.378,  p < .001, ηp2 = .473]. Pairwise comparisons using 

Sidak corrections indicated that performance for both training methods were significantly higher 

in block 1, when participants received EE feedback compared to other types of feedback (p’s < 

.05). However, in block 2, performance for those who received EE feedback only differed from 

participants who did not receive feedback (p’s < .001) but did not differ from those who received 

verification feedback (p’s > .278) Furthermore, participants who did not receive feedback at all 

during training performed the worse in block 1 and block 2 (p’s < .001). 

These results were not surprising as feedback plays a role in learning, and learning was 

only evident in training conditions that provided feedback. In sum, these data suggest that 

performance for those who received either EE or verification feedback generally improved 
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throughout training, with superior performance in EE feedback conditions, and inferior 

performance in no feedback conditions.  

 

 

 

Figure 24. Performance for six training conditions during training phase on category accuracy. 

 
Training Phase: Confidence 

Recall that unlike Experiments 1 and 2a, Experiment 2b implemented trial-by-trial 

confidence ratings during training phase and served as an additional measure of metacognition. 

Confidence ratings were averaged for each block of training. Based on the results from 

Experiments 1 and 2a, it was expected that average confidence would increase with training but 

would not differ between groups that received either verification or EE feedback. These 

predictions were partly supported as a three-way, mixed model ANOVA, with training 
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(uncertainty monitoring vs. forced response), feedback (verification, EE, no feedback) and time 

(block 1 vs. block 2), revealed a significant main effect of time [F(1, 164) = 21.24,  p < .001, ηp2 

= .115] and feedback type [F(2, 164) = 13.69,  p < .001, ηp2 = .143] on confidence during 

training phase. However, there was no main effect of training method [F(1, 164) = .009,  p = 

.924, ηp2 = .000] and the interaction between training method, feedback type, and time was not 

significant [F(2, 164) = 1.546,  p = .216, ηp2 = .019]. These data suggests that confidence may 

vary by feedback type and amount of training (see Figure 25). 

Additional analyses show that confidence was a predictor of performance, as it accounted 

for a significant proportion of training accuracy (see Table 5) for the following conditions9: 

Uncertainty Monitoring with EE feedback [R2 = .326, F(1, 24) = 11.616, p = .002], Forced 

Response with EE feedback [R2 = .131, F(1, 29) = 4.361, p = .046], and Uncertainty Monitoring 

with No Feedback [R2 = .187, F(1, 26) = 5.981, p = .022]; see Figure 26. 

 

 

 

 
9 Three participants in the Forced Response No Feedback condition, one participant in the Forced Response 
Explanatory Feedback condition, and one participant in the Forced Response Verification Feedback condition had 
standardized residual scores of +/- 3. These participants were excluded from analyses.  
 

Table 5. Regression Analysis summary for confidence predicting performance during 
training and test phase in Experiment 2b. 
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Figure 25. Average confidence ratings during training phase. 
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(A)    (B)  

 

(C)  

 

Figure 26. Average training accuracy by average confidence between (A) Uncertainty 

Monitoring with Explanatory/Elaborative Feedback, (B) Forced Response with 

Explanatory/Elaborative Feedback, and (C) Uncertainty Monitoring with No Feedback 

conditions. Dashed lines represent 95% confidence interval bands. 
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Training Phase: Calibration Accuracy 

 Prior research shows that monitoring uncertainty can improve confidence and judgment 

of performance. It was predicted that calibration between perceived performance and actual 

performance would be greater for participants who were trained with uncertainty monitoring. A 

two-way ANOVA, with training methodology (uncertainty monitoring vs. forced response) and 

feedback type (verification, EE, no feedback), revealed a main effect of feedback on calibration 

accuracy [F(2, 176) = 7.044, p = .001, ηp2 = .074], but no effect of training method [F(1, 176) = 

2.289, p = .132, ηp2 = .013]. The interaction was not significant [F(2, 176) = .056, p = .946, ηp2 

= .001]. A priori planned comparisons, however, indicated that participants trained on 

uncertainty monitoring with EE feedback were better able to judge their performance compared 

to other groups [F(1, 176) = 6.415, p = .012, ηp2 = .04]; see Figure 27. Taken altogether, these 

data suggest that the ability to assess learning and performance depends on feedback. However, 

at later stages of learning, calibration accuracy may depend on both training method and 

feedback type (see test phase results below). 
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Figure 27. Average calibration accuracy between training methods by feedback type. Calibration 

accuracy was computed by taking the difference between participants’ judgments of performance 

and their actual performance (lower scores closer to zero indicate greater calibration accuracy). 

 
Test Phase: Task Performance 

Inspection of the test phase data suggest that participants are generally able to transfer 

knowledge to novel tasks, with an advantage for those trained on uncertainty monitoring (see 

Figure 28). This observation was supported by an a priori planned contrast, which compared the 

uncertainty monitoring EE feedback condition with the five other conditions, and confirmed the 

superiority of combining such a training method with such feedback to support transfer [F(1, 

176) = 77.01, p < .001, ηp2 = .304]. A 2 training (uncertainty monitoring vs. forced response) x 3 

feedback type (verification, EE, no feedback) ANOVA further revealed a significant main effect 

of feedback [F(2, 176) = 117.78, p < .001, ηp2 = .572] and training on test performance [F(1, 

176) = 20.718, p < .001, ηp2 = .105], but the interaction was not significant [F(2, 176) = 2.21, p 

= .113, ηp2 = .025].  

Test phase differences were also observed when participants were assessed on their 

ability to estimate pH level of test stimuli. Inspection of data suggests that the ability to estimate 

pH levels of test stimuli varied by training method and feedback type. Specifically, uncertainty 

monitoring training appeared to be more accurate than forced response training, with greatest 

accuracy observed in the EE feedback conditions (see Figure 29). This observation was 

supported by an a priori planned contrast which showed that the uncertainty monitoring with EE 

feedback condition was more accurate at estimating pH than the five other conditions [F(2, 166) 

= 108.99 p < .001, ηp2 = .568]. A two-way ANOVA with training (uncertainty monitoring vs. 

forced response) and feedback (verification, EE, no feedback) revealed a significant main effect 
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of feedback type [F(2, 166) = 21.823,  p < .001, ηp2 = .208] on pH accuracy, and a marginally 

significant effect of training method [F(1, 166) = 3.177,  p = .077, ηp2 = .019]. The interaction 

was not significant [F(1, 166) = .357,  p = .700, ηp2 = .004]. This suggests that while participants 

were generally able to transfer knowledge from training to test phase, the extent to which 

participants can transfer knowledge depends more on the type of feedback provided during 

training than the training method itself. 

 

 

Figure 28. Performance for six training conditions during test phase on category accuracy. 
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Figure 29. Accuracy for estimating pH levels of test stimuli for six training conditions. Lower 

scores indicate better accuracy. 

 
Test Phase: Confidence 

 All participants displayed moderate levels of confidence during the test phase (see Figure 

30). It was originally predicted that participants who were trained to monitor their uncertainty 

would evidence greater confidence at test. When examining the relationship between confidence 

and test performance, simple linear regressions suggests that participants’ confidence was a 

significant predictor of performance as it accounted for a significant proportion of test accuracy 

(see Table 5) for the following conditions: Uncertainty Monitoring with Verification Feedback 

[R2 = .161, F(1, 29) = 5.56, p = .025] (see Figure 31, left), and Uncertainty Monitoring with EE 

Feedback [R2 = .193, F(1, 28) = 6.695, p = .015] (see Figure 31, right). However, a 2 training 

(uncertainty monitoring vs. forced response) x 2 feedback (verification, EE, no feedback) 

ANOVA did not find a significant main effect of training method [F(1, 176) = .019, p = .892, 
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ηp2 = .000] or feedback type [F(2, 176) = 1.127, p = .326, ηp2 = .013] on confidence during test 

phase. There was no significant interaction [F(2, 176) = .109, p = .897, ηp2 = .001].  

Considering that confidence is impacted by feedback, it was not surprising that 

confidence was low during test phase as participants performed a novel task and did not receive 

any feedback. Lack of feedback may have made it difficult to monitor and judge performance 

which may have resulted in low test confidence. As an alternative measure of metacognition, we 

look at calibration accuracy during the test phase (below).  

 

 

Figure 30. Average confidence rating during test phase. 
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Figure 31. Average test phase accuracy by average confidence between: (Left) Uncertainty 

Monitoring with Verification Feedback, and (Right) Uncertainty Monitoring with 

Explanatory/Elaborative Feedback. Dashed lines represent 95% confidence interval bands. 

 
Test Phase: Calibration Accuracy 

Initial inspection of the data suggests that participants who were trained to monitor their 

uncertainty were generally better at assessing their performance during test phase (see Figure 

32). Results from a 2 training methodology (uncertainty monitoring vs. forced response) x 3 

feedback type (verification, EE, no feedback) ANOVA were consistent with the initial 

observation and prediction that calibration would be superior for participants in the uncertainty 

monitoring EE feedback condition, as an a priori planned contrast indicated an advantage for 

combining such a training method with such feedback [F(2, 176) = 46.807, p < .001, ηp2 = .35]. 

Further analysis revealed a significant main effect of feedback type [F(2, 176) = 3.898, p = .022, 

ηp2 = .042] and training method [F(1, 176) = 6.088, p = .015, ηp2 = .033] on calibration 

accuracy. The interaction was not significant [F(2, 176) = .115, p = .892, ηp2 = .001]. In sum, 
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participants trained with either uncertainty monitoring or EE feedback generally evidenced 

greater calibration accuracy, which is indicative of greater metacognition. 

 

 

Figure 32. Average calibration accuracy between training methods by feedback type. Lower 

scores closer to zero indicate greater calibration accuracy. 

 
Uncertainty Monitoring Training 

 Uncertainty was expected to decrease throughout the course of learning for participants in 

the uncertainty monitoring training condition. Paired sample t-tests supported the initial 

hypothesis that participants’ uncertainty responses would significantly reduce throughout 

training (block 1 to block 2), specifically for participants who received verification feedback 

[t(30)= 2.701, p = .011] and EE feedback [t(29)= 2.339, p = .026], but not for those who did not 

receive feedback [t(27)= 1.873, p = .072]; see Figure 33.  
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Figure 33. Average percentage of “Uncertain” responses between feedback conditions within the 

Uncertainty Monitoring training condition. 

 
No Feedback Training Conditions 

A primary question was whether performance differences observed in Experiments 1 and 

2a were solely dependent upon feedback. If so, then removing feedback should eliminate those 

differences. However, if there is a benefit of uncertainty monitoring, then participants who have 

access to an uncertain response option should still outperform those who did not, even in the 

absence of feedback. Inspection of data suggest a general advantage of uncertainty monitoring 

training with no feedback, compared to forced response training with no feedback (see Figure 

35). Independent samples t-test show that performance during test phase was superior for 

participants who were trained to monitor their uncertainty compared to forced response training 

[t(57) = 3.075, p = .003, g = .801]. However, these groups did not differ during training phase 

[t(57) = .706, p = .483, g = .183]; see Figure 34. 
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Figure 34. Average performance during training phase for participants who did not receive 

feedback. 

 

 

Figure 35. Average performance during test phase for participants who did not receive feedback. 
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Experiment 2b Discussion 

The goal of Experiment 2b was to expand upon the results from Experiments 1 and 2a 

and further investigate the methodological factors that impact learning, as well as address 

limitations in Experiments 1 and 2a. Findings from the present experiment generally mirrored 

those from Experiment 2a and implicated a role for both training method and feedback type on 

performance, with performance being greater for those trained with Uncertainty Monitoring and 

EE feedback, particularly transfer performance. The results from this experiment are important 

for several reasons: 1) it demonstrated that aspects of metacognition, such as confidence and 

calibration accuracy, depend upon both training and feedback, 2) it showed that participants in 

the forced response condition were able to monitor and evaluate their performance to some 

degree, despite not having an option to report uncertainty, and 3) training participants to monitor 

their uncertainty can support transfer of knowledge to novel contexts even in the absence of 

feedback. It should be noted that the type of learning assessed in Experiments 1 and 2 can be 

considered explicit and dependent on a declarative memory system. It is unclear whether the 

expected benefits of uncertainty monitoring extend to different types of knowledge and memory 

systems. 
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CHAPTER 4 

EXPERIMENT 3 

Background 

 The goal of Experiment 3 was to investigate whether uncertainty monitoring can support 

implicit, nondeclarative learning as it did for explicit, declarative learning in Experiments 1 and 

2. Despite much research suggesting that both explicit and implicit processes are involved with 

learning and metacognition (Koriat, 1997; Koriat, Nussinson, Bless, & Shaked, 2008; Reder 

1987; Reder & Schunn, 1996), few studies have investigated uncertainty monitoring during 

nondeclarative tasks. Experiment 3 expanded upon the findings from Experiments 1 and 2 and 

investigated the role of metacognition and uncertainty monitoring during implicit learning. 

The design of Experiment 3 was based upon the results from Experiments 1 and 2, which 

showed a general benefit of uncertainty monitoring on explicit learning. Experiment 3, however, 

utilized a different learning task and category structure (i.e., Shepard, Hovland, and Jenkins 

(SHJ), 1961) to assess implicit learning and tap into the implicit procedural-learning system 

(Smith, Minda, Washburn, 2004; Smith et al., 2012; Waldron & Ashby, 2001).  

Metacognition and uncertainty monitoring are presumed to be impaired during implicit 

learning. Therefore, it was predicted that participants would report greater uncertainty and lower 

confidence during the initial stages of learning. However, because monitoring uncertainty and 

reporting confidence depends on awareness of one’s own performance, the requirement of 

confidence reports was predicted to induce performance monitoring and increase task accuracy 

as performance monitoring has been shown to improve accuracy and confidence over time 

(Nelson & Narens, 1990; Nietfeld, Cao, & Osborne, 2006; Schoenherr & Logan, 2014). The 

primary goal of Experiment 3 was to investigate whether uncertainty monitoring could support 
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implicit learning as it does explicit learning. Not only does Experiment 3 expand upon the 

findings of Experiments 1 and 2, but it is also one of few studies that investigate uncertainty 

monitoring during implicit, nondeclarative learning. 

 
Method 

Participants 

 Participants10 (N = 61) were recruited from Amazon’s Mechanical Turk. Amazon’s 

Mechanical Turk is an online crowdsourcing platform, where researchers can post surveys and 

experiments for individuals to complete in exchange for monetary compensation. Participants 

that completed Experiment 3 were compensated with a flat rate of $2.00, and were at least 18 

years of age, US High School Graduates, and had normal or corrected to normal vision (i.e., 

wear glasses/contacts if necessary). Participants were randomly assigned to one of two 

conditions: Uncertainty Monitoring condition (n = 30) and Control condition (n = 31). A total of 

5 participants were excluded from analysis because they did not complete the experiment or were 

statistical outliers (i.e., more than 3 SD from the mean on average task accuracy in block 2). The 

remaining sample size by condition was Uncertainty Monitoring (n = 27) and Control (n = 29). 

 

Stimuli  

The stimuli consisted of eight unique objects that varied in size, shape, and color, as well 

as category membership (e.g., Category A or Category B) (see Figure 36). These stimuli were 

adapted from the SHJ Type IV structure (see Figure 2) and were used as a measure of implicit 

 
10 An n = 30 per condition was initially chosen as a conservative estimate based on previous literature on uncertainty 
monitoring and category learning within the implicit system (Koriat & Bjork, 2005; Minda, Desroches, & Church, 
2008; Paul, Boomer, Smith, & Ashby, 2011). One additional participant was recruited because one participant did 
not complete the experiment and reported nonsensical and low-quality responses in the post-task questionnaire. 
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learning as the optimal strategy was difficult to verbalize, and accurate category membership 

required participants to attend to three features11 (e.g., size, shape, and color).  

 

 

Figure 36. Example stimuli set for Experiment 3. 

 

Procedure 

All participants provided informed consent and were randomly assigned to one of two 

training conditions (e.g., Uncertainty Monitoring vs. Control). Participants completed two blocks 

of a learning task (64 trials each) which required participants to classify objects into two 

contrasting categories (e.g., Category A or B). 

 
Uncertainty Monitoring Condition 

Participants in the Uncertainty Monitoring condition were shown a single stimulus on the 

screen and were instructed to respond to the question, “Which category does this image belong 

to?” Participants then selected from the following options: Category A, Category B, or 

 
11 Another plausible strategy is to look at the overall similarity of stimuli, and explicitly memorize the exceptions to 
category rules (verbal rule: “White shapes (except the big square) and small black triangle belong in Category A; 
Black shapes (except small triangle) and big white square belong in Category B) (Nosofsky et al., 1994). There is 
research to suggest, however, that the Type IV structure is learned via an implicit process (Minda, Desroches, & 
Church, 2008; Waldron & Ashby, 2001) and is a suitable measure of implicit learning. 
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Uncertain, and were prompted to report their confidence in their responses on a Likert-type scale 

ranging from 1 (Not at all Confident) to 7 (Extremely Confident). After reporting their 

confidence, participants were provided verification feedback for their responses (e.g., 

“CORRECT: Category A” or “WRONG: Category A”) (see Figure 37, top). Participants were 

told that incorrect answers would result in a 10 second “timeout” which delayed the start of the 

next trial, whereas selecting the correct answer, or “uncertain” option, allowed them to proceed 

to the next trial. At the end of the task, participants completed a post-task questionnaire that 

probed their decision-making strategies and perceived task performance on a 100-point scale. As 

with Experiments 1 and 2, the post-task questionnaire also included an attention check question 

to ensure participant engagement and data quality12 (see Appendix C). 

 

Control Condition 

 To assess the role of uncertainty monitoring on implicit learning, a control condition was 

implemented. The control condition included the same stimuli and task procedure as those used 

in the uncertainty monitoring condition. The control group, however, did not have the option to 

respond with “uncertain” during the task (see Figure 37, bottom). 

 
12 Attention check questions were also used to filter out potential “bots” on Amazon’s Mechanical Turk platform.  
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Figure 37. Example display for training conditions: (Top) Uncertainty Monitoring, and (Bottom) 

Control. 
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Data Analysis Procedure 

Of particular interest is the role of uncertainty monitoring in implicit learning. The data 

was analyzed in the same manner as Experiments 1 and 2, where average task performance was 

calculated to compare task accuracy13 between the uncertainty monitoring and control conditions 

across time. Confidence ratings were averaged for each task block and compared between 

groups. As an additional measure of metacognition, calibration between participants’ perceived 

performance and actual performance were assessed.  

 
Results 

Task Performance 

 The results were similar to Experiments 1 and 2. Learning was evident in both training 

conditions, with task accuracy being generally higher for the Uncertainty Monitoring condition 

(see Figure 38). Consistent with this observation, a priori planned comparisons show that task 

accuracy in block 1 was higher for participants who were trained in the uncertainty monitoring 

condition compared to control condition [F(1, 54) = 5.021,  p = .029, ηp2 = .085]. However, no 

differences were observed in block 2 [F(1, 54) = .962,  p = .331, ηp2 = .018]. More generally, a 2 

training method (uncertainty vs. control) x 2 time (block 1 vs. block 2) ANOVA revealed a 

significant main effect of training method [F(1, 54) = 4.61,  p = .034, ηp2 = .041] and time [F(1, 

54) = 17.79,  p < .001, ηp2 = .141] on task performance. However, the interaction was not 

significant [F(1, 54) = .354,  p = .553, ηp2 = .003]. These data suggest that there was a slight 

benefit of uncertainty monitoring training during the initial stages of learning. Accuracy was 

 
13 As with Experiments 1 and 2, task accuracy was adjusted for participants in the Uncertainty Monitoring 
condition in Experiment 3. Only categorical responses were included, while “uncertain” response trials were 
excluded from calculation. 
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generally higher and increased more quickly in the uncertainty monitoring condition, but group 

differences did not remain when learning was complete. 

 

 

Figure 38. Performance between training conditions on category accuracy. Figure depicts 

adjusted scores for the Uncertainty Monitoring condition. 

 
Confidence 

Previous research shows that monitoring uncertainty can improve confidence and 

judgment of performance. It was initially predicted that the uncertainty monitoring condition 

would report greater confidence relative to the control condition. These predictions were 

supported by an a priori planned contrast which indicated that confidence was significantly 

higher for participants in the uncertainty monitoring condition compared to controls in both 

block 1 [F(1, 54) = 7.194,  p = .010, ηp2 = .118] and block 2 of the task [F(1, 54) = 6.556,  p = 

.014, ηp2 = .108] (see Figure 39). A two-way ANOVA indicated a significant main effect of 
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training [F(1, 54) = 13.749,  p < .001, ηp2 = .113] and time [F(1, 54) = 7.658,  p = .007, ηp2 = 

.066] on confidence. There was no significant interaction [F(1, 54) = .031,  p = .861, ηp2 = .000]. 

When examining the relationship between confidence and performance, a linear 

regression showed that confidence was a significant predictor of performance as it accounted for 

a significant proportion of task accuracy for the Uncertainty Monitoring condition [R2 = .200, 

F(1, 25) = 6.245, p = .019] but not the control condition [R2 = .020, F(1, 27) = .549, p = .465] 

(see Table 6, and Figure 40). These results mirror those from Experiment 2b, which show that 

confidence not only increases with learning, but uncertainty monitoring training increases 

confidence, which in turn may improve performance. 

 
Table 6. Regression Analysis summary for confidence predicting performance in Experiment 3. 

 

 

 

Figure 39. Average confidence by training method. 
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Figure 40. Average task accuracy by average confidence between: (Left) Uncertainty Monitoring 

condition and (Right) Control condition. Dashed lines represent 95% confidence intervals. 

 
Calibration Accuracy 

It was predicted that the uncertainty monitoring condition would have greater calibration 

accuracy compared to controls. Inspection of data suggests that the uncertainty monitoring 

condition was generally more accurate in judging their performance (see Figure 41). Results, 

however, did not support these hypotheses as a priori planned contrasts did not detect 

differences in calibration accuracy between the two training conditions in either block 1 [F(1, 

54) = .042,  p = .839, ηp2 = .001] or block 2 of the task [F(1, 54) = 2.649,  p = .109, ηp2 = .047]. 

Further analysis using a 2 training method (uncertainty vs. control) x 2 time (block 1 vs. block 2) 

ANOVA, showed no significant main effects of training method [F(1, 54) = 1.213,  p = .273, ηp2 

= .011] or time [F(1, 54) = .002,  p = .962, ηp2 = .000] on calibration accuracy. The interaction 

was not significant [F(1, 54) = .587,  p = .445, ηp2 = .005]. 

Interestingly, although results were not statistically significant, perceived performance 

increased for the uncertainty monitoring condition in block 2, whereas perceived performance 
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decreased for the control condition. This may suggest that over time participants in the 

uncertainty monitoring condition became more confident and overestimated their performance, 

whereas the control condition became less confident and underestimated their performance. This 

is compatible with a similar pattern observed in participants’ confidence.  

 

 

Figure 41. Average calibration accuracy between training methods by block. Calibration was 

computed by taking the difference between participants’ judgments of performance and their 

actual performance (lower scores closer to zero indicate greater calibration accuracy). 

 

Uncertainty Monitoring Training 

 A primary question in Experiment 3 was whether it was possible for participants to 

monitor uncertainty during implicit, nondeclarative tasks. It was expected that uncertainty would 

be highest during the initial stages of learning and would decrease over time. Paired sample t-test 

supported this hypothesis as uncertainty responding significantly decreased throughout the task 

(block 1 to block 2) for the Uncertainty Monitoring condition; t(26) = 3.456, p = .002, Figure 42.  
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Figure 42. Average percentage of “uncertain” responses for Uncertainty Monitoring condition. 

 
Experiment 3 Discussion 

The primary goal of Experiment 3 was to investigate whether uncertainty monitoring 

could support implicit learning as it did with explicit learning in Experiments 1 and 2. 

Metacognition and uncertainty monitoring are often presumed to be impaired during implicit 

learning, as such processes are thought to be hidden from conscious monitoring and evaluation. 

The inability to consciously monitor one’s own performance, as illustrated by previous work, 

would have been apparent if task accuracy and confidence were similar between the two training 

conditions. Contrary to the literature, task accuracy and confidence were generally higher in the 

uncertainty monitoring condition compared to the control condition. Recall, the only difference 

between the two training conditions was the option to report uncertainty. It is possible that the 

addition of an uncertain response option may support learning and monitoring of performance, as 

participants in the uncertainty monitoring condition learned more quickly and expressed higher 

confidence in their abilities compared to the control condition. It should be noted, however, that 

differences in performance were mainly observed during the initial stages of learning. Thus, 
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while uncertainty monitoring seems to be possible during implicit learning, such metacognitive 

processes may benefit explicit learning more. 

 

  



82 
 

CHAPTER 5 

GENERAL DISCUSSION 

The present dissertation was designed to explore a relatively understudied sector in the 

cognition and education literature, as it investigated the role of uncertainty monitoring in 

category learning. Experiment 1 of this dissertation used a categorization task to investigate how 

uncertainty monitoring impacted learning and transfer of Chemistry concepts. Experiment 2 

further examined the training factors that impact learning and assessed the role of feedback and 

uncertainty monitoring on performance. Experiment 3 investigated whether uncertainty 

monitoring differentially impacts implicit learning as compared to explicit learning. The results 

from Experiment 1 showed a benefit of uncertainty monitoring during category learning and 

transfer. Results from Experiment 2 supported those findings and revealed that while 

performance may depend upon feedback type, there was an overall benefit of uncertainty 

monitoring on confidence and performance. The results from Experiment 3 show that 

metacognitive processes such as uncertainty monitoring is possible during implicit learning but 

may be better suited for supporting explicit learning, as benefits were only observed during the 

initial stages of implicit learning. Taken altogether, the results from the three experiments 

provide support for a general benefit of uncertainty monitoring on learning and transfer. 

 
Summary 

Experiment 1 

 Metacognitive processes such as monitoring uncertainty have been shown to enhance 

learning outcomes (Paris et al., 1988; Paris & Winogran, 1990; Ricky & Stacy, 2000; Vaidya, 

1999). Thus, a prediction for an advantage of uncertainty monitoring training was based on 

previous research implicating the benefits of metacognition. Although both training methods 
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supported test performance on a novel task, there was a clear advantage of uncertainty 

monitoring training on transfer compared to forced response training. The uncertainty monitoring 

condition consistently scored higher on category accuracy and confidence during the test phase. 

Contrary to hypotheses, however, accuracy on pH estimation did not differ between training 

conditions. This may be because participants only learned the colors that corresponded with 

category membership, but not pH level.  

In addition, participants who were given the option to report uncertainty were able to 

access explanatory and elaborative feedback if they selected the “uncertain” response option. A 

concern was whether performance differences were due to feedback type between the two 

conditions, rather than differences in metacognitive processes. Moreover, while participants in 

the forced response condition were not given the option to report uncertainty, it is possible that 

participants were still monitoring their performance in this condition.  

In sum, the results show an overall benefit of uncertainty monitoring as it supported 

learning and transfer. To my knowledge, Experiment 1 is one of few studies to have assessed the 

impact of uncertainty monitoring in the context of category learning in education.  

 
Experiment 2 

 Experiment 2 was designed to address two questions. First, was the advantage observed 

in Experiment 1 due to uncertainty monitoring training or feedback type? To ensure that it was 

the former, feedback was matched across training conditions in Experiment 2, which included 

two additional training conditions where feedback was withheld. Second, do participants in the 

forced response condition monitor their learning and uncertainty despite not having the option to 

report uncertainty? Trial-by-trial confidence ratings were implemented throughout Experiment 2 

and were used to assess participants’ ability to monitor and judge their own performance. 
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Confidence reports provided a direct comparison between subjective confidence and actual task 

accuracy, which has been shown to induce performance monitoring (Nelson & Narens, 1990; 

Nietfeld, Cao, & Osborne, 2006; Schoenherr & Logan, 2014). Given that uncertainty monitoring 

has seldom been studied in categorization literature, a replication of the benefits of uncertainty 

monitoring on category learning would substantiate findings from Experiment 1 and elucidate 

the methodological factors that impact learning and transfer.  

The results from Experiment 2 again revealed an advantage for uncertainty monitoring 

training, even when feedback was matched between conditions. As predicted, feedback played a 

significant role in performance as explanatory and elaborative feedback improved learning and 

confidence across training methods compared to verification or no feedback. Results suggest that 

participants in the forced response condition were able to judge and evaluate their performance 

despite not having an option to report uncertainty.  

These findings demonstrate that various aspects of metacognition, including confidence 

and calibration accuracy, may depend upon both training and feedback. However, the extent to 

which participants could transfer learning was impacted by training as uncertainty monitoring 

training consistently supported test phase performance, as transfer was superior in this condition 

even in the absence of feedback. Thus, the replication with adjustments to feedback type ensured 

that results from Experiment 1 were not solely driven by differences in feedback, but rather a 

combination of training factors that support the monitoring of uncertainty as well as addressing 

uncertainty. 

 
Experiment 3 

Experiment 3 was designed to extend the findings from Experiments 1 and 2 by 

investigating the impact of uncertainty monitoring on a different task that is thought to tap into a 
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different learning system. Unlike Experiments 1 and 2, which focused on explicit learning, 

Experiment 3 examined implicit learning using a different category learning task that is thought 

to depend on the implicit procedural-learning system. The primary question for Experiment 3 

was whether uncertainty monitoring also benefits implicit learning as it did for explicit learning. 

To investigate this, Experiment 3 included an experimental condition where participants could 

report uncertainty throughout the task and compared it to a control condition in which 

participants did not have the option to report uncertainty.  

The results suggest that access to uncertainty monitoring training generally supported 

learning and confidence. As predicted, confidence was greater in the uncertainty monitoring 

condition compared to the control condition. However, when comparing subjective performance 

with actual performance, there were no differences in calibration accuracy between the two 

conditions. An interesting finding, however, was that higher performing participants in the 

uncertainty monitoring condition reported lower scores compared to lower performing 

participants who reported higher scores. This is explained by metacognition and categorization 

literature which posit that elements of implicit learning may be hidden from conscious 

evaluation, such that individuals may express a disbelief in their ability to perform a task.  

While uncertainty monitoring training appeared to benefit task accuracy during the initial 

stages of learning, there were no differences in accuracy between conditions at later stages of 

learning. These results suggest that although uncertainty monitoring may be possible during 

implicit learning, it may be better suited for explicit learning. 

 
Metacognition and Uncertainty Monitoring on Category Learning 

Previous studies have revealed that metacognition and uncertainty monitoring have a 

profound impact on student performance (Ashdown & Simic, 2000; Gersten, Jordan, & Flojo, 
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2005; Koriat, 1997; O’Dwyer & Childs, 2014; Regan, Childs, & Hayes, 2011; Stieff, 2011). 

They have been shown to help with judgment of learning (Callender, Franco-Watkins, & 

Roberts, 2015; Nietfeld, Cao, & Osborne, 2005; 2006), regulation of learning (Isaacson & Fujita, 

2006; Sperling et al., 2004), and transfer of knowledge (Paris et al., 1988; Paris & Winogran, 

1990; Ricky & Stacy, 2000; Vaidya, 1999).  

Despite the research suggesting that uncertainty monitoring improves learning, such 

metacognitive processes have been underexplored within the field of categorization. 

Additionally, while many disciplines require learning fundamental categories, the impact of 

metacognitive processes on category learning has been relatively understudied within the context 

of education. Thus, a major theme of the present dissertation was how uncertainty monitoring 

could be promoted and used to improve learning. Given that uncertainty arises at various points 

throughout the learning process, all three experiments in this dissertation were designed to 

address participant uncertainty in real-time and further investigate the role of uncertainty 

monitoring on performance.  

A primary question was how participants would utilize an uncertain response option and 

whether its use impacted performance. Given the research suggesting that uncertainty monitoring 

improves learning, it was predicted that participants who were trained to monitor their 

uncertainty would have greater task accuracy in Experiments 1 and 2. In Experiment 1, 

participants in the uncertainty monitoring condition outperformed those in the forced response 

condition, as training and test phase accuracy was superior for participants who had access to and 

utilized an uncertain response option. Experiment 2 replicated the findings from Experiment 1, 

and further investigated the effect of uncertainty monitoring training by matching the type of 

feedback provided across training conditions. Results from Experiment 2 suggest that uncertainty 
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monitoring generally supports learning, however, other factors may also impact performance 

including task feedback and participant confidence.  

The effect of uncertainty monitoring training was not as apparent in Experiment 3, 

however. Considering that the present dissertation is one of few studies to assess uncertainty 

monitoring in category learning, it is possible that the benefits of uncertainty monitoring is 

limited to certain types of learning and may only benefit some aspects of performance. 

 
The Role of Feedback 

 Performance was also impacted by different types of feedback. For example, explanatory 

and elaborative (EE) feedback is thought to help students develop a deeper understanding of 

information relative to simple verification feedback (Butler et al., 2013; Fazio, Huelser, Johnson, 

& Marsh, 2010; Pashler, Cepeda, Wixted, & Rohrer, 2005). A concern in Experiment 1 was the 

difference in feedback type between training conditions as participants in the uncertainty 

monitoring condition were provided EE feedback for the “uncertain” responses. Experiment 2 

addressed this issue and investigated the role of feedback on performance by matching feedback 

between training conditions. 

Changing the type of feedback participants received could have impacted the results in 

many ways. For instance, in Experiment 1, participants who received EE feedback for 

uncertainty responses were more likely to learn the rules and stimulus features necessary for 

category membership at a faster rate, and to a greater degree, than those trained with verification 

feedback. It is possible that changing the type of feedback to verification feedback may slow 

down learning progress, and lower performance for those in the uncertainty monitoring 

condition. Participants may not have thoroughly understood why a stimulus belonged in a 

specific category and may have committed errors throughout training, which could have 
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transferred into the test phase. The opposite effect is possible when switching from verification 

feedback to EE feedback, which may have improved performance and accelerated the learning of 

task rules and features for participants in the forced response conditions. 

Furthermore, the type of feedback provided in Experiment 1 may have been a motivator 

for participants to select the “uncertain” response option to acquire additional information, rather 

than to monitor their uncertainty. Providing simple and discrete verification feedback over more 

elaborative feedback may cause participants to feel less inclined to report uncertainty and lead 

them to guess the answers instead. Likewise, providing EE feedback for all task responses may 

reduce the likelihood of participants selecting the “uncertain” response option, as it provided no 

additional information over categorical responses. If this was the case, then utilization of the 

“uncertain” response option should have decreased in Experiment 2a or would have been 

reserved for more difficult trials as participants are often reluctant to give uncertainty responses 

but may do so adaptively to decline answering difficult trials (Paul et al., 2011). Thus, it is 

possible that by changing the type of feedback provided, the use of the uncertain response option 

and its utility may have changed as well. However, considering that Experiment 2a provided 

participants with feedback for all task responses—including uncertainty responses—this 

approach may have continued to incentivize uncertainty responding. In addition, it addressed 

uncertainty without giving an advantage to either training condition, as all task responses elicited 

the same feedback type within their respective training conditions. 

Training and feedback may also impact confidence and judgment of learning (Callender, 

Franco-Watkins, & Roberts, 2015; Nietfeld, Cao, & Osborne, 2005, 2006; Renner & Renner, 

2001). Detailed feedback, such as EE feedback, may increase confidence in task knowledge and 

task performance relative to simple verification feedback. Considering that training 
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metacognitive skills such as uncertainty monitoring have been shown to improve confidence and 

judgment of performance, it was not surprising that confidence was highest for participants who 

were trained on both uncertainty monitoring and EE feedback in Experiment 2a and 2b. The 

section below further discusses this relationship. 

 
Metacognition on Subjective and Objective Performance 

Confidence 

Previous studies show that subjective performance, such as feelings of confidence and 

doubt, may lead people to respond appropriately to those feelings. Monitoring and controlling 

these cognitive processes form the basis for metacognition and uncertainty monitoring literature. 

As such, confidence has been used as an indicator of metacognition in education and cognition 

research (Renner & Renner, 2001; Schoenherr & Lacroix, 2020, respectively). In both lines of 

work, confidence has been shown to be correlated with learning and performance monitoring.  

Each experiment in this dissertation included trial-by-trial confidence ratings during a 

categorization task. The results from Experiments 1 and 2a, however, did not support initial 

predictions of higher confidence following uncertainty monitoring training. This could have been 

due to the fact that confidence was assessed post-training during the test phase. Considering that 

the test phase required participants to transfer knowledge from the training phase, it was 

reasonable to assume that upon completion of training, participants were generally more 

confident in their task knowledge. As such, Experiments 2b and 3 assessed confidence 

throughout the entire experiment, from training to test phase.  

Results from Experiment 2b generally aligned with the literature, as participants who 

were trained to monitor their uncertainty consistently reported higher levels of confidence and 

greater task accuracy. However, upon further inspection of the data, this result may have been 
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due to the type of feedback provided to participants in Experiment 2b. Recall, there were three 

feedback types: verification, explanatory/elaborative, and no feedback. Participants who received 

EE feedback had higher confidence and accuracy than verification and no feedback conditions. 

Although confidence and learning were generally greater for those trained with uncertainty 

monitoring and EE feedback, the results here are not enough to strongly suggest that uncertainty 

monitoring was the reason for greater confidence and task accuracy. Additionally, results from 

Experiment 3 suggest that confidence was higher for those trained in the uncertainty monitoring 

condition compared to control condition; however, there were no pronounced differences in 

learning between training conditions. These findings suggest that while various aspects of 

metacognition may impact performance, self-assessment and the ability to monitor ongoing 

states of uncertainty may be impacted by other training factors. 

It is important to reiterate that not all participants in the experiments had the option to 

report uncertainty. Despite this, participants may have still engaged in metacognitive processes. 

Confidence was used as an additional measure of metacognition, as it provided a means to gauge 

metacognitive monitoring in participants who did not have the option to report uncertainty. 

Confidence ratings were used to assess participants’ ability to monitor their own learning, as it 

provided participants with a direct comparison between subjective response confidence and 

actual response accuracy (e.g., task feedback). This is thought to impact learning as confidence 

reports may induce performance monitoring (Balakrishnan & Ratcliff, 1996), improve 

performance (Nelson & Narens, 1990; Schoenherr & Logan, 2014) and increase confidence 

(Nietfeld, Cao, & Osborne, 2006). Results from Experiments 1 and 2 supported this as higher 

confidence predicted greater task accuracy for all training conditions. In Experiment 3, this was 

only observed in the uncertainty monitoring condition but not the control condition.  
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It also remains possible that confidence is not a perfect indicator of metacognition and 

performance. For example, previous research shows that learners may feel overconfident in their 

poor performance as a result of inaccurate self-assessment in their abilities (Callender et al., 

2015; Metcalfe & Finn, 2008). Likewise, learners may monitor their uncertainty and still report 

feeling under-confident in their abilities, despite high accuracy. Thus, the relationship between 

confidence and performance may not be so straightforward.  

 
Calibration 

Metacognition and uncertainty monitoring have also been measured by comparing 

people’s judgments of their own performance with their actual performance. Accurate calibration 

between the two has been used as another indicator for greater metacognition in education and 

metacognition research (Callender, Franco-Watkins, & Roberts, 2015; Lundeberg et al., 1994; 

Nietfield, Cao, & Osborne, 2006). Studies show that good metacognition enables learners to 

accurately perceive their performance and identify their failures, whereas poor metacognition 

may result in overestimation of one’s abilities. Given this, calibration accuracy was implemented 

and used as an additional measure for metacognition in Experiments 2b and 3.  

Based on the literature, it was predicted that participants who had the option to report 

uncertainty would evidence greater calibration accuracy. The results from Experiments 2b 

generally aligned with the literature as participants who were trained to monitor their uncertainty 

had overall better calibration compared to other training methods (see Appendix D, Figure 43, 

top row). Results from Experiment 2b also indicated that feedback played a role in calibration, as 

participants who were provided with explanatory and elaborative feedback were more accurate in 

their judgments of performance, compared to other feedback types. In contrast, results from 

Experiment 3 did not show any differences in calibration between the uncertainty monitoring and 
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control conditions (see Appendix D, Figure 43, bottom row). This could be because calibration 

accuracy requires participants to be aware and able to judge their own performance. As 

previously mentioned, the task used in Experiment 3 may not allow for that as implicit tasks are 

typically performed without awareness (Ashby et al., 1998; Reber, 1967; Squire & Wixted, 

2011; Seger, 2010). Thus, the implications for these results are twofold. One, it supports the 

literature that calibration as a measure of metacognition can indeed improve with metacognitive 

and uncertainty monitoring training. Two, the extent to which uncertainty monitoring training 

benefits calibration, and performance in general, are limited to certain types of learning that 

allow for metacognitive awareness. 

 
Learning and Memory Systems 

The differences observed in Experiments 1 and 2 compared to Experiment 3 may be due 

to the nature of the tasks themselves. The results from Experiment 3 did not show the same effect 

of uncertainty monitoring on task accuracy, confidence, and calibration accuracy as it did in 

Experiments 1 and 2. This is likely due to the different types of learning systems recruited for the 

tasks used in Experiments 1 and 2, and Experiment 3. For instance, the task used in Experiments 

1 and 2 is thought to depend upon an explicit, declarative system. Participants in Experiments 1 

and 2 learned to classify objects by discovering categorical rules, which could be verbalized 

easily. The act of verbalizing a rule is characteristic of explicit category learning. In contrast, the 

task used in Experiment 3 is thought to depend upon an implicit, nondeclarative system. 

Participants in Experiment 3 also learned to classify objects, but unlike Experiments 1 and 2, 

there was no easily verbalizable rule, rather it required more procedural learning.  

 It is well established that humans are able to accurately monitor their cognitive processes 

during tasks that require an explicit, declarative system. In contrast, literature suggests that 
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implicit processes are hidden from conscious monitoring and evaluation. Learners often express 

a lack of task knowledge, low-confidence, and poor performance despite progressive 

improvements in accuracy. This dissociation has been observed in early research on implicit 

learning within the field of cognitive neuroscience (Brooks, 1978; Knowlton, Mangels, & Squire, 

1996; Reber, 1967), as well as metacognition and education (Dienes & Seth, 2009; Handel & 

Fritzsche, 2015; Persaud, McLeod, & Cowey, 2007). The studies all demonstrated a failure of 

metacognition and uncertainty monitoring during tasks that require implicit cognitive processes. 

Thus, the results from Experiment 3 may be explained by how various cognitive processes 

operate at the conscious and unconscious level.  

 The present dissertation previously presented theories on explicit and implicit 

metacognition on performance. A primary goal of Experiment 3 was to investigate whether 

learners could engage in metacognitive processes during implicit tasks. Much of the literature on 

metacognition posit that uncertainty monitoring is a relatively explicit process. The few studies 

that have examined uncertainty monitoring during category learning suggest that metacognition 

may be possible during implicit tasks; however, the knowledge acquired, and strategies used may 

be explicit in nature (Paul et al., 2011). That is, while learners may appear to monitor their 

uncertainty and utilize an uncertain response option, it is unclear whether participants did so 

because they were monitoring their performance or simply declining to complete difficult trials. 

This has been observed in prior research (Paul et al., 2011) and poses as a limitation in 

Experiment 3 of the present work (discussed below). 

One goal of this thesis was to investigate the extent to which uncertainty monitoring can 

support different types of learning. Findings from this dissertation suggest there are implicit 

components of metacognition, but uncertainty monitoring may operate more efficiently on an 
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explicit level. In fact, implicit metacognition may not provide as much benefit to knowledge 

acquisition as it is thought to occur at later stages of learning, typically after learning is complete 

(Koriat, 1997; Koriat, Nussinson, Bless, & Shaked, 2008). Furthermore, metacognition is 

inherently a conscious and explicit process that requires awareness of performance. A task that is 

designed to tap into an implicit, nondeclarative system would likely disrupt metacognitive 

processes, or void them entirely, as these types of tasks are presumed to be learned 

unconsciously and procedurally. While uncertainty monitoring may benefit explicit learning as 

observed in Experiments 1 and 2, results from Experiment 3 suggest that these benefits likely do 

not extend to implicit learning or at least not to the same degree. 

 

 
Limitations 

Experiments 1 and 2 

 A potential limitation in Experiments 1 and 2 is the population studied. Participants were 

undergraduate students enrolled in a psychology course. It is possible that the nature of the 

chemistry categories may have impacted performance, as participants may lack the background 

and training necessary for the task. It is possible that this could have led to uncertainty 

responding during the experiment. In addition, results may have been different if participants 

were majoring in chemistry. It would be expected that background knowledge of the subject 

matter would lead to less uncertainty responding and greater performance. However, the task 

used in Experiments 1 and 2 did not require background knowledge as the goal was to learn 

throughout the experiment.  

It should be noted, however, that some participants did possess some background 

knowledge of the chemistry concepts (e.g., Acids and Bases). This was anticipated during the 
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initial design of the study. Thus, to assess this all participants were probed about their knowledge 

of chemistry concepts (see Appendices A and B). Participants were instructed to rate their 

understanding of Acidity and Basicity on a scale from 1 to 5 (e.g., 1 = Very Low, 2 = Low, 3 = 

Average, 4 = High, 5 = Very High). On average, participants in both Experiments 1 and 2 

reported “low” levels of familiarity and prior knowledge for the concepts of Acidity and Basicity 

at the start of the task. After completing the task, participants in the uncertainty monitoring 

condition rated their understanding for the concepts of Acidity and Basicity as “average”, 

whereas the forced response condition reported an “average” level of understanding for Acidity 

but “low” understanding of Basicity. Thus, the baseline of knowledge for these chemistry 

concepts were initially low (but not zero), and generally improved following training. It is 

possible that the results would have been different with the exclusion of participants who 

possessed any prior knowledge of chemistry concepts. 

Additionally, the categorization task used in Experiments 1 and 2 required that 

participants paid attention to the color outlines of the task stimuli. Although participants were 

required to have normal or corrected normal vision to participate in the experiments, the study 

did not control for participants with color blindness. Color blindness is the inability to detect 

differences in color. While it rarely results in complete lack of color vision (National Eye 

institute, 2019), a limitation in Experiments 1 and 2 is that it did not control for participants with 

color vision deficiencies, which could have impaired task performance.  

Another potential limitation is the possibility of time-related confounds in the data. For 

example, Experiments 1, 2a, and 2b were conducted at different time points during a global 

pandemic (i.e., COVID-19). Inspection of the data across time show that participants’ 

performance differed slightly from Experiment 1 to Experiments 2a and 2b. Although the data 
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are from different participants, it appears that those who were trained in the original uncertainty 

monitoring condition in Experiment 1 (Fall 2020) had slightly higher task accuracy during 

training phase compared to participants who were trained in the same condition in Experiments 

2a and 2b (Fall 2021 and Spring 2022, respectively). These differences may potentially be 

explained by the drastic changes and shifts in society during the time of data collection. 

 
Experiment 3 

Experiment 3 had its own limitations as well. One being population, as it recruited 

participants from a different population than that of Experiments 1 and 2. Experiments 1 and 2 

recruited undergraduate students from the University of Maine, whereas Experiment 3 recruited 

participants from Amazon’s Mechanical Turk. Despite differences in recruitment methods, the 

samples were closely matched and only participants who met all the following requirements 

were permitted to participate in Experiment 3. That is, participants had to be between 18 - 24 

years of age, a US High School Graduate, and have normal to corrected vision. Another concern 

about recruiting from this platform is the potential for “bots” and fake responses. To control for 

this, attention checks were included in the post-task questionnaire, which probed participants’ 

attentiveness and was used to filter out nonsensical and low-quality responses. 

Another limitation in Experiment 3 is the type of strategy participants used. Participants 

underwent an implicit learning task, where optimal performance depended upon learning to 

integrate three different features together. This is typically thought of as an implicit strategy. 

However, when participants were probed about their decision-making strategies and the types of 

strategies used, 10.7% of participants reported attempting to memorize the stimuli. This type of 

recall may be considered more of an explicit strategy, as opposed to an implicit strategy. 

Additionally, 11.1% of all participants in the uncertainty monitoring condition reported using 
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some form of a memorization technique during the task. Thus, it is possible that participants may 

have used the uncertain response option when their explicit strategies did not work. This was 

also observed in other studies investigating uncertainty monitoring during implicit category 

learning tasks (Paul et al., 2011). Participants may use explicit strategies to categorize stimuli 

during implicit tasks and use uncertain response options to omit stimuli trials that do not align 

with their explicit rules. With this approach, participants were still able to maintain a level of 

accuracy despite using the non-optimal strategy. Considering that prior research has shown that 

participants may discover creative ways to utilize uncertain response options, it is possible that 

participants in the present dissertation did so as well.  

Lastly, a potential limitation in all three experiments is the use of 10 second “timeouts” 

when participants made incorrect categorical responses. These timeouts delayed the start of the 

next task trial and were meant to motivate participants to learn during the task and make correct 

responses. Participants did not receive timeouts if they selected the “uncertain” response option, 

however. Thus, it is possible that some participants in the uncertainty monitoring conditions may 

have used the uncertain response option to skip trials, and to reduce the amount of delay and 

complete the task faster. Although the data on participants’ uncertainty response rates were 

examined for excessive use and potential outliers, it remains possible that the uncertain response 

option was used outside of its intended purpose. 

 
General Experiment Conclusions 

 Taken altogether, the findings in the present dissertation contribute to the fields of 

cognition and education. The most compelling and consistent finding was the general benefit of 

uncertainty monitoring on performance. This was observed in Experiment 1, replicated in 
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Experiment 2, and marginally replicated in Experiment 3 using a new task to study a different 

type of learning. 

Findings from these experiments have important implications for education and cognition 

research as they demonstrated that metacognitive processes and learning may be enhanced by 

providing an option to monitor and report uncertainty. Previously, metacognitive skills have 

primarily been taught using lengthy practices such as reading passages, comprehension 

monitoring assignments, and self-evaluation questionnaires, all of which may span across an 

academic semester (i.e., approximately 4 months) (Dang, Chiang, Brown, & McDonald, 2018). 

While incremental progress may be made using these methods, providing students with the 

option to report uncertainty allows them to receive immediate clarification, and addresses errors 

and uncertainty in real-time. This may prevent the perpetuation of misconceptions, and 

potentially minimize educational consequences such as poor test performance.  

 Understanding the factors that promote learning and transfer of knowledge is crucial as 

many real-world skills depend upon one’s ability to monitor the quality and reliability of 

responses. This dissertation investigated an understudied area of cognition and education 

research, and combined category learning approaches to study uncertainty monitoring within the 

context of education. More research is necessary, however, to understand the extent to which 

uncertainty monitoring can support performance.   

Future research should expand on the present work by further investigating the effect of 

uncertainty monitoring during learning of other concepts and categories. This could include 

classroom concepts from various disciplines. In fact, cognitive theories and training methods 

have been used to enhance teaching of natural science concepts (Nosofsky & McDaniel, 2019; 
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Speirs et al., under review). To my knowledge, however, the impact of uncertainty monitoring on 

different types of learning in education remains relatively underexplored.  

Findings from this dissertation could be used to inform instructional designs and training 

approaches that aim to address uncertainty and learning difficulties. This could entail presenting 

learners with questions that require them to reflect on their knowledge and understanding of the 

subject matter, as well as providing them with opportunities to test their knowledge, and report 

when they are uncertain or don’t know the answer in order to receive immediate feedback. The 

present dissertation research adds to the growing body of literature on cognitive learning theory 

in education, and calls for more collaborative research between cognitive science and education 

researchers to improve teaching and learning. 
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APPENDICES 

Appendix A. 

Post-Task Questionnaire for Experiment 1 

Assessing knowledge of Acidity and Basicity 

How would you rate your knowledge of the concept of ACIDITY before participating in 

this study? (e.g., 1 = Very Low to 5 = Very High) _______ 

How would you rate your knowledge of the concept of ACIDITY now? (e.g., 1 = Very 

Low to 5 = Very High) _______ 

How would you rate your knowledge of the concept of BASICITY before participating 

in this study? (e.g., 1 = Very Low to 5 = Very High) _______ 

How would you rate your knowledge of the concept of BASICITY now? (e.g., 1 = Very 

Low to 5 = Very High) _______ 

Please list all the color(s) that correspond with the ACIDIC category: ______________ 

Please list all the color(s) that correspond with the BASIC category:  _______________ 

Attention Check 

If you are paying attention, please select "Other" (e.g., Yes, No, Other) _______ 

Probing Decision-Making Strategies 

Did you use any strategies or rules to make your decisions? (Yes or No) 



113 
 

If yes, please describe them: ______________________________________ 

Probing Confidence 

How confident were you in your answers during the TRAINING phase? (e.g., 1 = Not at 

all Confident to 7 = Extremely Confident) _______ 

How confident were you in your answers during the TEST phase? (e.g., 1 = Not at all 

Confident to 7 = Extremely Confident) _______ 
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Appendix B. 

Post-Task Questionnaire for Experiment 2 

Assessing knowledge of Acidity and Basicity 

How would you rate your knowledge of the concept of ACIDITY before participating in 

this study? (e.g., 1 = Very low to 5 = Very High) _______ 

How would you rate your knowledge of the concept of ACIDITY now? (e.g., 1 = Very 

Low to 5 = Very High) _______ 

How would you rate your knowledge of the concept of BASICITY before participating 

in this study? (e.g., 1 = Very Low to 5 = Very High) _______ 

How would you rate your knowledge of the concept of BASICITY now? (e.g., 1 = Very 

Low to 5 = Very High) _______ 

Please list all the color(s) that correspond with the ACIDIC category: ______________ 

Please list all the color(s) that correspond with the BASIC category:  _______________ 

Attention Check 

If you are paying attention, please select "Other" (e.g., Yes, No, Other) _______ 

Probing Decision-Making Strategies 

Did you use any strategies or rules to make your decisions? (Yes or No) 

If yes, please describe them: __________________________________ 



115 
 

Assessing Calibration Accuracy 

On a scale from 0 to 100 (e.g., 0 = poor, 100 = excellent), how do you think you scored 

during TRAINING phase? _______ 

How confident are you in this performance rating? (e.g., 1 = Not at all Confident 

to 7 = Extremely Confident) _______ 

On a scale from 0 to 100 (e.g., 0 = poor, 100 = excellent), how do you think you scored 

during TEST phase? ________ 

How confident are you in this performance rating? (e.g., 1 = Not at all Confident 

to 7 = Extremely Confident) _______ 
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Appendix C. 

Post-Task Questionnaire for Experiment 3 

Probing Decision-Making Strategies 

Did you use any strategies or rules to make your decisions? (Yes or No) 

If yes, please describe them: ___________________________________ 

Did you at any point during the task guess your answers? _______ 

Attention Check 

If you are paying attention, please select "Other" (e.g., Yes, No, Other) _______ 

Assessing Calibration Accuracy 

On a scale from 0 to 100 (e.g., 0 = poor, 100 = excellent), how do you think you scored 

during BLOCK 1? _______ 

How confident are you in this performance rating? (e.g., 1 = Not at all Confident 

to 7 = Extremely Confident) _______ 

On a scale from 0 to 100 (e.g., 0 = poor, 100 = excellent), how do you think you scored 

during BLOCK 2? _______ 

How confident are you in this performance rating? (e.g., 1 = Not at all Confident 

to 7 = Extremely Confident) _______ 
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Appendix D. 

Judgment of Performance vs. Actual Performance 
 

Experiment 2B 

    

      
Experiment 3 

   

Figure 43. Participants’ judgments of performance compared to their actual performance (i.e., 

calibration). Charts represent calibration by feedback type for (Top row) Uncertainty Monitoring 

training condition in Experiment 2b, (Middle row) Forced Response training condition in 

Experiment 2b, and (Bottom row) Calibration between training methods in Experiment 3. 



118 
 

BIOGRAPHY OF THE AUTHOR 

 Rose Deng was born and raised in Queens, New York. She attended York College of the 

City University of New York and graduated in 2015 with a Bachelor’s degree in Psychology. 

After receiving her Doctorate, Rose will be continuing on to a career in data science and 

analytics. Rose is a candidate for the Doctor of Philosophy degree in Psychology from the 

University of Maine in December 2022. 


	Uncertainty Monitoring in Category Learning and Transfer
	Recommended Citation

	Microsoft Word - Dissertation_Rose_Deng.docx

