

SCHOLARLY COMMONS

National Training Aircraft Symposium (NTAS)

2022 - Bridging the Gap

Development of Critical Thinking Skills In Collegiate Aviation **Programs**

Irene Miller Southern Illinois University Carbondale, milleria@siu.edu

Tom Long Central Washington University, Longtho@cwu.edu

Follow this and additional works at: https://commons.erau.edu/ntas

Part of the Business Commons, and the Higher Education Commons

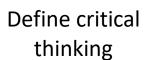
Miller, Irene and Long, Tom, "Development of Critical Thinking Skills In Collegiate Aviation Programs" (2023). National Training Aircraft Symposium (NTAS). 31.

https://commons.erau.edu/ntas/2022/presentation/31

This Presentation is brought to you for free and open access by the Conferences at Scholarly Commons. It has been accepted for inclusion in National Training Aircraft Symposium (NTAS) by an authorized administrator of Scholarly Commons. For more information, please contact commons@erau.edu.

Development of Critical Thinking Skills in Collegiate Aviation Programs

Irene Miller, Ed.D, C.M. Tom Long, A.A.E

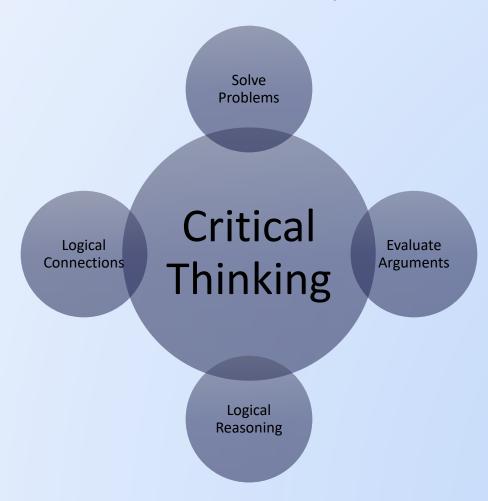


Purpose of the Study

Students must be able to:

Identify specific critical thinking skills

Apply critical thinking skills in the aviation industry


Research Questions

- RQ2
 - Did the collegiate aviation students achieve higher scores on specific portions of the postcourse critical thinking assessment to identify specific critical thinking skills students were able to develop because of the pedagogical techniques used in the classroom?

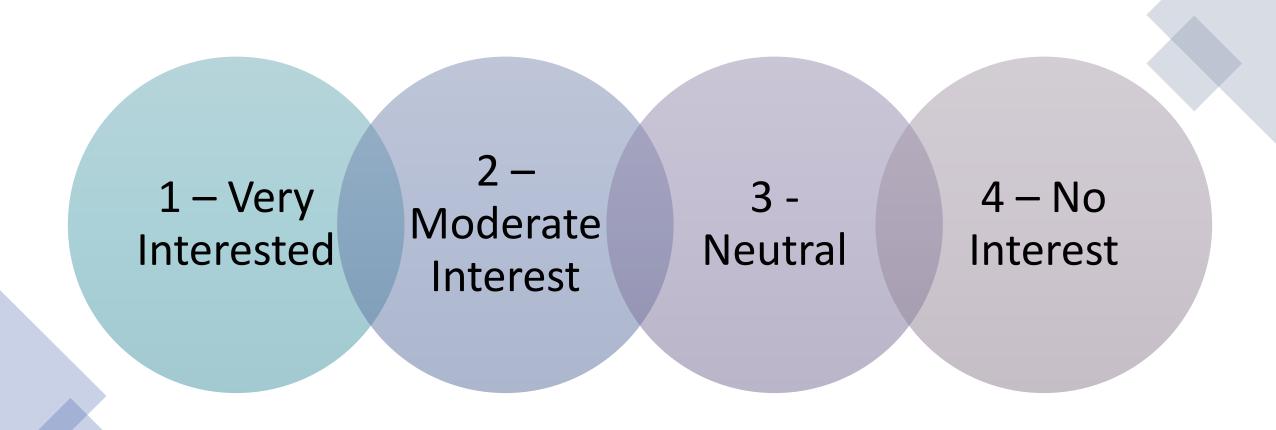
Research Questions

- RQ1
 - Can collegiate aviation students increase their critical thinking skills through pedagogical techniques used within the classroom as demonstrated by the achievement of higher scores on the post-course critical thinking assessment than on the pre-course critical thinking assessment?

Why are critical thinking skills important within the aviation industry?

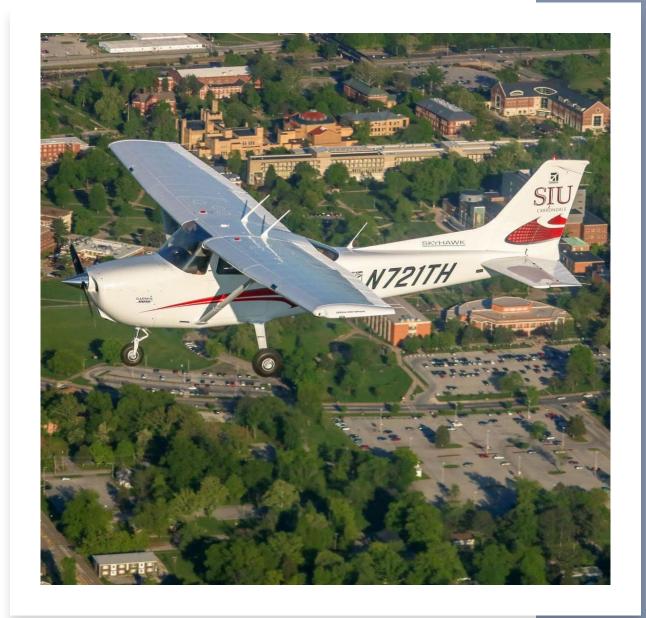
Methodology

Mixed Methodology


Participants

27 Students

Research Instruments Pre-Course Survey


Pretest & Posttest

Scale to Quantify Level of Interest

Pre-Course Survey

- Q11 Level of interest in critical thinking skills
 - 75% High to moderate level of interest
- Q13 Usefulness of critical thinking skills in their careers
- Q14 Career plan
 - Professional pilot
- Q17 Level of interest in pursuing a graduate degree
 - 50% Intend to pursue an aviationrelated graduate degree

Pretest & Posttest

- Critical Thinking Skills Assessment
 Watson-Glaser Critical Thinking Appraisal
 - Inferences 16 questions
 - Assumptions 20 questions
 - Deduction 16 questions
 - Interpretation 15 questions
 - Evaluating arguments 16 questions

Critical Thinking In-Class Activities

Cognitive activities

Abstract reasoning skills Inductive reasoning skills

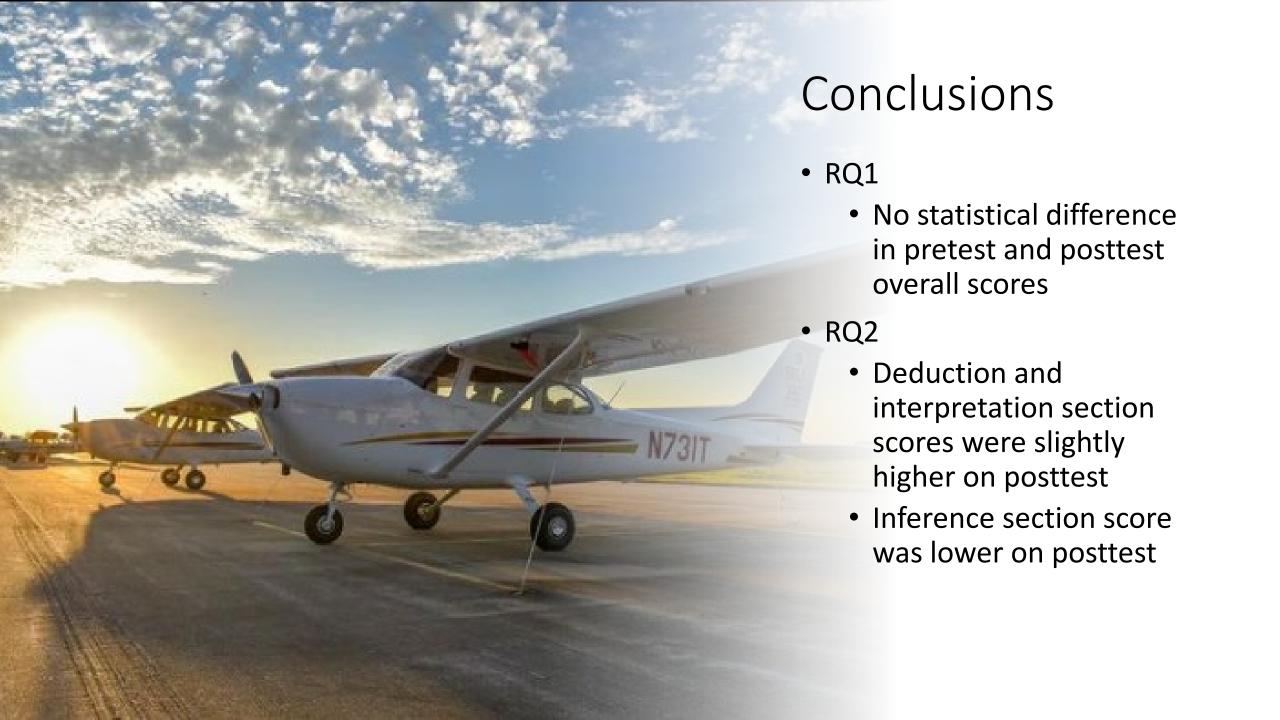
Boeing 737 Max case analysis

In-class activities

Fact or opinion
Think "outside the box"

Critical Thinking Skills Curriculum

Part 1


- Definition of critical thinking
- Reasons why critical thinking is important in the aviation industry
- Critical thinking assessments used by employers

Part 2

- Five components of critical thinking
- Definition of Higher Order Thinking Skills (HOTS)
- Bloom's taxonomy

Table 2Pair Samples Statistics

		Mean	N	Std. Deviation	Std. Error Mean
Pair 1	Inferences T1	39.0500	20	12.25808	2.74099
	Inferences T2	32.3500	20	9.18967	2.05487
Pair 2	Assumptions T1	65.5000	20	20.38446	4.55810
	Assumptions T2	61.2500	20	18.62900	4.16557
Pair 3	Deduction T1	74.5500	20	19.59451	4.38147
	Deductions T2	79.3000	20	15.94101	3.56452
Pair 4	Interpretation T1	68.1000	20	20.38291	4.55776
	Interpretation T2	71.4500	20	15.35021	3.43241
Pair 5	Evaluating Arguments T1	60.7500	20	19.68936	4.40268
	Evaluating Arguments T2	56.6000	20	19.48657	4.35733
Pair 6	Total Score T1	61.6000	20	10.65932	2.38350
	Total Score T2	59.8000	20	11.38605	2.54600

Recommendations

- Scores on the inference portion of the posttest showed significant decline.
 - Inferences are difficult to learn and are similar to interpretations
- Limitations of uncontrollable variables
 - Student motivation and commitment
 - Include critical thinking materials in the course assessments
 - Posttest was administered on the last day of class

