

SCHOLARLY COMMONS

National Training Aircraft Symposium (NTAS)

2022 - Bridging the Gap

Dimensionality Assessment of Fatigue in Collegiate Aviation Operations: A Structural Equation Modeling Approach

Daniel Kwasi Adjekum *University of North Dakota*, daniel.adjekum@ndus.edu

Julius Keller *Purdue University*, keller64@purdue.edu

Flavio Antonio Mendonca Embry-Riddle Aeronautical University, coimbraf@erau.edu

Follow this and additional works at: https://commons.erau.edu/ntas

Adjekum, Daniel Kwasi; Keller, Julius; and Mendonca, Flavio Antonio, "Dimensionality Assessment of Fatigue in Collegiate Aviation Operations: A Structural Equation Modeling Approach" (2023). *National Training Aircraft Symposium (NTAS)*. 29.

https://commons.erau.edu/ntas/2022/presentation/29

This Abstract - Paper/Presentation Only is brought to you for free and open access by the Conferences at Scholarly Commons. It has been accepted for inclusion in National Training Aircraft Symposium (NTAS) by an authorized administrator of Scholarly Commons. For more information, please contact commons@erau.edu.

Daniel Kwasi Adjekum, Ph.D. - Graduate Comprehensive Examination Coordinator

Julius Keller, Ph.D. - Associate Professor

Flavio A. C. Mendonca, Ph.D., MBA - Assistant Professor

Introduction

- Fatigue has been identified as a safety hazard during aviation operations
 - Causes of fatigue include low quality sleep, physical and/or mental exertion, and excessive workload
 - Fatigue mitigation strategies include good quality sleep, workload management, and a healthy lifestyle
 - Compliance with regulations is important BUT not the most effective way to combat fatigue
- Most research studies investigating fatigue in aviation have generally targeted commercial and military operations
 - Little to nothing has been done involving the GA community

Colgan Air 3407 (2009)

Loss of Control on Approach
Colgan Air, Inc.
Operating as Continental Connection Flight 3407
Bombardier DHC-8-400, N200WQ
Clarence Center, New York
February 12, 2009

Purpose of the Study

- Understand fatigue as a multi-factorial dimension
- Assess potential relationships among these factors using hypothesized measurement models

Research Questions

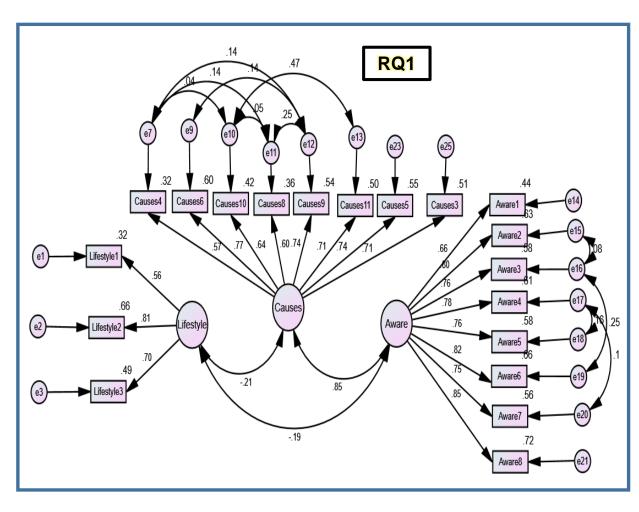
- RQ 1. What is the effectiveness of proposed measurement models of factors underlying the dimension of fatigue in collegiate aviation?
- RQ 2. What is the strength of relationships between the three underlying factors and the overarching dimension of Fatigue?
- RQ 3. What are the variations in mean scores of demographic group perceptions of factors that underlie fatigue in collegiate aviation?

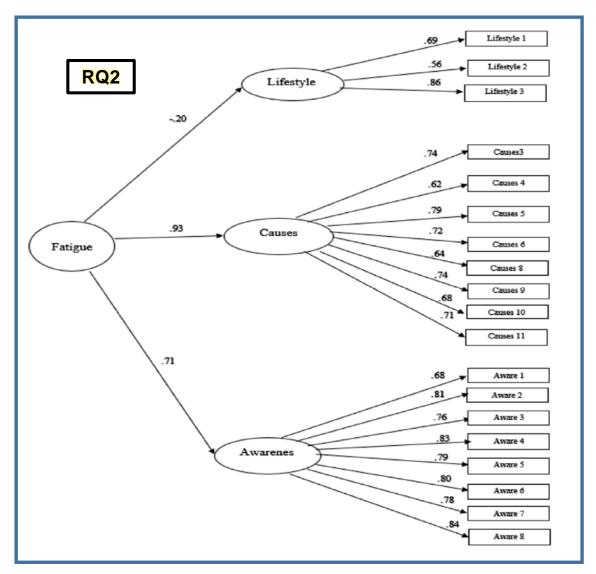
Methods Research Instrument Causes of fatigue Lifestyle Collegiate Fatigue Inventory II (CAFI-II) Demographics

- See <u>Keller et al.</u> (2021) and <u>Keller et al.</u> (2022) for further information about the development and validation processes of the CAFI-II survey questionnaire.
- Participants

 Collegiate aviation pilots from eight CFR Part 141 universities
- Data Analysis
- Data were exported into the IBM AMOS 25® and SPSS 26
 - Robust statistical procedures were utilized during this study

Results


Institution	(n)	Percent
Institution 1	99	23.5%
Institution 2	67	15.9%
Institution 3	56	13.3%
Institution 4	51	12.1%
Institution 5	41	9.7%
Institution 6	36	8.5%
Institution 7	31	7.3%
Institution 8	20	4.7%
Did not to answer	21	5.0%
Total	422	100%
Enrolment Level	(n)	Percent
Freshmen	74	17.5%
Sophomores	93	22.0%
Juniors	107	25.4%
Seniors	110	26.1%
Graduate	38	9.0%
Total	422	100%

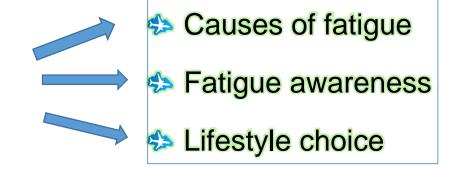

Results

Demographics

Highest Certificate Held	(n)	Percent
Student Pilot	106	25.1%
Private Pilot	163	38.6%
Commercial Pilot	57	13.5%
Certified Flight Instructor (CFI/II/ME)/ATP	96	22.5%
Total	422	100%
Approximate Total Flight Time	(n)	Percent
0–150	207	49.1%
151-300	132	31.3%
301–450	32	7.6%
451–600	9	9.1%
600+	27	6.4%
Did not answer	15	3.6%
Total	422	100%

Results

A three-factor structural model for collegiate aviation fatigue

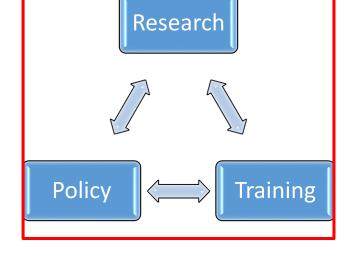

Results

RQ3

- Academic enrollment status
 there were significant differences in the perceptions of the causes of fatigue as well as in the awareness of fatigue among academic enrolment status (freshmen, sophomores, juniors, and seniors)
- ♣ Flight certificates → there were significant differences between the mean responses of participants with different flight certificates (i.e. CFI x Commercial Pilot Certificate) for all the three variables
- Gender no significant difference in the models

Discussions and Conclusions

Three explanation constructs



CAFI-II Evidence of construct validity assessed

Direct and strong predictive relationship between fatigue in collegiate flight training and the perceptions of respondents of conditions that cause fatigue and fatigue awareness

Discussions and Conclusions

- Academic enrollment status
 - Significant differences between freshman and upper level students
 - Emphasis on fatigue risk management training embedded in basic and advanced level academic courses
- Flight certificates
 - Student pilots → group of certificate holders with minimal awareness of the effects of fatigue and how to manage it as compared to CFIs

⇔ CFIs → a relatively lower mean score on items that indicated fatigue-reducing lifestyle choices when compared to commercial pilot holders

Limitations

- Narrow band of age
- Flight hours
- Only 23% were CFIs

Future Studies

- International universities
- Investigate sleep quality and other

fatigue contributing factors

Article

Understanding Factors Underlying Fatigue among Collegiate Aviation Pilots in the United States

Julius Keller 1,*, Flavio Antonio Coimbra Mendonca 20 and Daniel Kwasi Adjekum 30

- School of Aviation and Transportation Technology, Purdue University, West Lafayette, IN 47907, USA
 College of Aviation Embry Riddle Agrapautical University Daytona Basel, EL 32114, USA
- College of Aviation, Embry-Riddle Aeronautical University, Daytona Beach, FL 32114, USA; coimbraf@erau.edu
- Aviation Department, John D. Odegard School of Aerospace Sciences, University of North Dakota, Grand Forks, ND 58202, USA; daniel.adjekum@ndus.edu
- Correspondence: keller64@purdue.edu; Tel.: +1-765-494-9969

Abstract: An increase in evidence-based studies into the deleterious effects of fatigue on flight operations has been reported by key aviation groups globally. The collegiate aviation flight training environment has not been researched at the same level when compared to military and airline operations. College aged students are unique in the sense that they are tasked with classwork, studying, participation in student organizations, social activities, and often have part time jobs within and outside of the academic environment. These conditions may cause errors, incidents, accidents, poor academic performance, and undesirable health metrics. The purpose of this study was to understand fatigue as a multi-factorial dimension and to assess potential relationships among these factors using hypothesized measurement models. The research team distributed the Collegiate Aviation Fatigue Inventory II (CAFI-II) to eight small, medium, and large collegiate aviation programs in the United States. The CAFI-II primarily focuses on fatigue awareness, causes and symptoms of fatigue, and lifestyle choices. Four hundred and twenty-two (n = 422) valid responses were obtained. Results suggested a direct predictive relationship between fatigue in collegiate flight training and the perceptions of respondents of conditions that are known to cause fatigue. Findings also suggested that respondents who had a favorable perception of fatigue risk and management programs had a better understanding of the causes of fatigue.

Keywords: collegiate aviation; human factors; fatigue

Citation: Keller, J.; Mendonca, F.A.C.; Adjekum, D.K. Understanding Factors Underlying Fatigue among Collegiate Aviation Pilots in the United States. Safety 2022, 8, 46. https://doi.org/10.3390/ safety8020046

Daniel Kwasi Adjekum, Ph.D. - Graduate Comprehensive Examination Coordinator

NORTH DAKOTA

Julius Keller, Ph.D. - Associate Professor

Flavio A. C. Mendonca, Ph.D., MBA - Assistant Professor

Select References

- 1. Sieberichs, S.; Kluge, A. Effects of in-flight countermeasures to mitigate fatigue risks in aviation. Aviat. Psychol. Appl. Hum. Factors 2018, 8, 86–92. [CrossRef]
- 2. International Civil Aviation Organization (ICAO). Measuring Fatigue. 2012. Available online: https://www.icao.int/safety/ fatiguemanagement/FRMSBangkok/4. 20Measuring %20Fatigue.pdf (accessed on 31 May 2022).
- 3. National Transportation Safety Board (NTSB). Reduce Fatigue Related Accidents-Aviation. 2020. Available online: https://ntsb.gov/safety/mwl/Pages/mwlfs-19-20/mwl2-fsa.aspx (accessed on 31 May 2022).
- 4. Federal Aviation Administration. Pilot's Handbook of Aeronautical Knowledge (FAA AC 120-115). 2016. Available online: https://www.faa.gov/regulations_policies/handbooks_manuals/aviation/phak/ (accessed on 31 May 2022).
- 5. International Civil Aviation Organization (ICAO). Manual for the Oversight of Fatigue Management Approaches (Doc 9966). 2016. Available online: https://www.icao.int/safety/fatiguemanagement/FRMS%20Tools/Doc%209966.FRMS.2016%20Edition.en.pdf(accessed on 31 May 2022)
- 6. Federal Aviation Administration. Maintainer Fatigue Risk Management (FAA-H-8083-25B). 2016. Available online: https://www.faa.gov/documentlibrary/media/advisory_circular/ac_120-115.pdf (accessed on 31 May 2022).
- 7. Federal Aviation Administration (FAA). Fact Sheet-Pilot Fatigue. 2010. Available online: https://www.faa.gov/news/fact_sheets/news_story.cfm?newsId=11857 (accessed on 31 May 2022).
- 8. Federal Aviation Administration (FAA). Flight Attendant Fatigue Recommendation II: Flight Attendant Fatigue Recommendation III: Flight Attendant Fatigue Recommendation
- 9. Federal Aviation Administration. Basics of Aviation Fatigue (FAA AC 120-100). 2010. Available online: https://www.faa.gov/documentLibrary/media/Advisory_Circular/AC%20120-100.pdf (accessed on 31 May 2022).

 10. Federal Aviation Administration. Fatigue Risk Management Systems for Aviation Safety (AC No: 120-103A), 2013. Available online: https://www.faa.gov/documentLibrary/media/Advisory_Circular/AC 120-103A.pdf (accessed on 31 May 2022).
- 11. Federal Aviation Administration. Risk Management Handbook (FAA-H-8083-2). 2008. Available online: https://www.faa.gov/regulations_policies/handbooks_manuals/aviation/media/faa-h-8083-2.pdf (accessed on 31 May 2022).
- 12. Federal Aviation Administration. Commercial Pilot-Airplane Certification Standards. 2019. Available online: https://www.faa.gov/training_testing/testing/acs/media/commercial_airplane_acs_change_1.pdf (accessed on 31 May 2022)
- 13. Electronic Code of Federal Regulations. Title 14, Chapter I, Subchapter G, Part 117. 2020. Available online: https://gov.ecfr.io/cgi-bin/text-idx?SID=cc48e562bfb79d04a4fc01b0714d7675&mc=true&node=pt14.3.117&gn=div5#se14.3.117_111 (accessed on 31May 2022).
- 14. Electronic Code of Federal Regulations. Title 14, Chapter I, Subchapter D, Part 61, Subpart H, 61.195. 2020. Available online: https://gov.ecfr.io/cgi-bin/retrieveECFR?gp=1&SID=cc48e562bfb79d04a4fc01b0714d7675&ty=HTML&h=L&mc=true&r=SECTION&n=se14.2.61_1195 (accessed on 31 May 2022).

 15. Barger, L.K.; Runyon, M.S.; Renn, M.L.; Moore, C.G.; Weiss, P.M.; Condle, J.P.; Patterson, P.D. Effect of fatigue training on safety, fatigue, and sleep in emergency medical services personnel and other shift workers; A systematic review and meta-analysis, Prehospital Emerg, Care 2018, 22, 58–68. [CrossRef] [PubMed]
- 16. Lee, S.; Kim, J.K. Factors contributing to the risk of airline pilot fatigue. J. Air Transp. Manag. **2018**, 67, 197–207. [CrossRef] 17. Levin, E.; Mendonca, F.A.C.; Keller, J.; Teo, A. Fatigue in collegiate aviation. Int. J. Aviat. Aeronaut. Aerosp. **2019**, 6, 14. [CrossRef]
- 18. McDale, S.; Ma, J. Effects of fatigue on flight training: A survey of US part 141 flight schools. Int. J. Appl. Aviat. Stud. 2008, 8, 311-336. Safety 2022, 8, 46 20 of 21
- 19. Mendonca, F.A.C.; Keller, J.; Levin, E.; Teo, A. Understanding fatique within a collegiate aviation program. Int. J. Aerosp. Psychol. 2021, 31, 1–17. [CrossRef]
- 20. Romero, M.J.; Robertson, M.F.; Goetz, S.C. Fatigue in collegiate flight training, Coll. Aviat. Rev. Int. 2020, 38, 12–29, [CrossRef]
- 20. Romero, W.J., Robertson, W.F., Goetz, S.C. Fatigue in coneglate high training. Coll. Aviat. Rev. Int. 2020, 38, 12–29. [ClossRef]
- 21. Caldwell, J.A.; Mallis, M.M.; Caldwell, J.L.; Paul, M.A.; Miller, J.C.; Neri, D.F. Fatigue countermeasures in aviation. Aviat. Space Environ. Med. 2009, 80, 29–59. [CrossRef]
- 22. Gawron, V.J. Summary of fatigue research for civilian and military pilots. IIE Trans. Occup. Ergon. Hum. Factors 2016, 4, 1–18. [CrossRef]
- 23. Adjekum, D.K. Safety culture perceptions in a collegiate aviation program: A systematic assessment. J. Aviat. Technol. Eng. 2014, 3, 44–56. [CrossRef]
- 24. Adjekum, D.K. An evaluation of the relationships between collegiate aviation safety management system initiative, self-efficacy, transformational safety leadership and safety behavior mediated by safety motivation. Int. J. Aviat. Aeronaut. Aerosp. 2017, 4, 4. [CrossRef]
- 25. Keller, J.; Mendonca, F.; Cutter, J.E. Collegiate aviation pilots: Analyses of fatigue related decision-making scenarios. Int. J. Aviat. Aeronaut. Aerosp. 2019, 6, 9. [CrossRef]
- 26. Caldwell, J.A.; Caldwell, J.L.; Thompson, L.A.; Lieberman, H.R. Fatigue and its management in the workplace. Neurosci. Behav. Rev. 2019, 96, 272-289. [CrossRef] [PubMed]
- 27. Bendak, S.; Rashid, H.S.J. Fatigue in aviation: A systematic review of literature. Int. J. Ind. Ergon. 2020, 76, 1–11. [CrossRef]
- 28. European Aviation Safety Agency. Effectiveness of Flight Time Limitation (FTL) Report. Available online: https://www.easa. europa.eu/document-library/general-publications/effectiveness-flight-time-limitation-ftl-report (accessed on 29 May 2020).
- 29. Federal Aviation Administration. Fact Sheet-General Aviation Safety. 2018. Available online: https://www.faa.gov/news/fact_sheets/news_story.cfm?newsId=21274 (accessed on 31 May 2022).
- 30. Mendonca, F.A.C.; Keller, J.; Lu, C.T. Fatigue identification and management in flight training; An investigation of collegiate aviation pilots, Int. J. Aviat, Aeronaut, Aerosp. 2019, 6, 13. [CrossRef]
- 31. Hartzler, B.M. Fatigue on the flight deck: The consequences of sleep loss and the benefits of napping. Accid. Anal. Prev. 2014, 62, 309-318. [CrossRef]
- 32. International Civil Aviation Organization (ICAO), Cabin Crew Fatique Management. 2020. Available online: https://www.icao. int/safety/airnavigation/OPS/CabinSafety/Pages/Cabin-Crew-Fatique-Management.aspx (accessed on 31 May 2022).
- 33. Aircraft Owners and Pilots Association (AOPA). How is GA Doing on the Safety Front? (Joseph T. Nall Report). 2020. Available online: https://www.aopa.org/training-and-safety/air-safety-institute/accident-analysis/joseph-t-nall-report (accessed on 31 May 2022).
- 34. Marcus, J.H.; Rosekind, M.R. Fatigue in transportation: NTSB investigations and safety recommendations. Inj. Prev. 2016, 23, 232–238. [CrossRef]
- 35. Caldwell, J.A. Crew schedules, sleep deprivation, and aviation performance. Curr. Dir. Psychol. Sci. 2012, 21, 85-89. [CrossRef]
- 36. Van den Berg, M.J.; Signal, T.L.; Gander, P.H. Perceived workload is associated with cabin crew fatigue on ultra-long-range flights. Int. J. Aerosp. Psychol. **2019**, 29, 74–85. [CrossRef] 37. Federal Aviation Administration (FAA). Fatigue in Aviation. 2007. Available online: https://www.faa.gov/pilots/safety/pilots/saf
- 38. Morris, M.B.; Wiedbusch, M.D.; Gunzelmann, G. Fatigue incident antecedents, consequences, and aviation operational risk management resources. Aerosp. Med. Hum. Perform. 2018, 89, 708-716. [CrossRef]
- 39. National Sleep Foundation. Sleep Health Topics. 2021. Available online: https://www.thensf.org/sleep-health-topics/ (accessed on 31 May 2022)
- 40. Roach, G.D.; Sargent, C.; Darwent, D.; Dawson, D. Duty periods with early start times restrict the amount of sleep obtained by short-haul airline pilots. Accid. Anal. Prev. 2012, 45, 22–26. [CrossRef] [PubMed] 41. Fuentes, R.W.; Chung, C. Military, Civil, and International Regulations to Decrease Human Factor Errors in Aviation. 2020. Available online: https://www.ncbi.nlm.nih.gov/books/NBK546637/ (accessed on 31 May 2022).
- 42. Federal Aviation Administration, Fatigue Education and Awareness Training Program, 2012, Available online; http://www.faa.gov/documentLibrary/media/Advisory, Circular/AC%20117-2.pdf (accessed on 31 May 2022).
- 43. Banks, J.O.; Wenzel, B.M.; Avers, K.E.; Hauck, E.L. An Evaluation of Aviation Maintenance Fatigue Countermeasures Training (DOT/FAA/AM-13/9). 2013. Available online: https://www.faa.gov/data_research/resear
- 44. Smith, M.O.; Smith, G.M.; Bjerke, E.; Christensen, C.; Carney, T.Q.; Craig, P.A.; Niemczyk, M. Pilot source study 2015: A Comparison of performance at part 121 regional airlines between pilots hired before the U.S. Congress passed Public Law 111-216 and pilots hired after the law's effective date. J. Aviat. Technol. Eng. 2017. 6, 50–79. [CrossRef]
- 45. Caldwell, J.A.; Caldwell, J.A.; Caldwell, J.L. Fatique in military aviation: An overview of U.S. military-approved pharmacological countermeasures. Aviat. Space Environ. Med. 2005, 76, C39–C51. Available online: https://pubmed.ncbi.nlm.nih.gov/16018329/ (accessed on 31 May 2022). [PubMed]
- 46. Dawson, D.; Clegget, C.; Thompson, K.; Thomas, M.J.W. Fatigue proofing: The role of protective behaviours in mediating fatigue-related risk in a defense aviation environment. Accid. Prev. Anal. 2015, 99, 465–468. [CrossRef]
- 47. Caldwell, J.A. Fatigue in aviation. Travel Med. Infect. Dis. 2005, 3, 85–96. [CrossRef] Safety 2022, 8, 46 21 of 21
- 48. Powell, D.; Spencer, M.; Holland, D.; Broadbent, E.; Petrie, K. Pilot fatigue in short-haul operations: Effects of number of sectors, duty length, and time of day. Aviat. Space Environ. Med. 2007, 78, 698–701.
- 49. Sieberichs, S.; Kluge, A. Good sleep quality and ways to control fatigue risks in aviation—An empirical study with commercial airline pilots. In Advances in Intelligent Systems and Computing; Goonetilleke, R., Karwowski, W., Eds.; Springer: Cham, Switzerland, 2016; pp. 191–201. [CrossRef]
- 50. Keller, J.; Mendonca, F.A.C.; Laub, T.; Wolfe, S. An analysis of self-reported sleep measures from collegiate aviation pilots. Coll. Aviat. Rev. Int. 2020, 38, 148–164.
- 51. Reis, C.; Mestre, C.; Canhão, H.; Gradwell, D.; Paiva, T. Sleep complaints and fatigue of airline pilots. Sleep Sci. 2016, 9, 73–77. [CrossRef]
- 52. Akerstedt, T.; Knutsson, A.; Westerholm, P.; Theorell, T.; Alfredsson, L.; Kecklund, G. Mental fatigue, work, and sleep. J. Psychosom. Res. 2004, 57, 427–433. [CrossRef]
- 53. Brown, T.A. Confirmatory Factor Analysis for Applied Research; Guilford Press: New York, NY, USA, 2006.
- 54. Hu, L.T.; Bentler, P.M. Cutoff Criteria for Fit Indexes in Covariance Structure Analysis: Conventional Criteria versus New Alternatives. Struct. Equ. Modeling 1999, 6, 1–55. [CrossRef]
- 55. Fornell, C.G.; Larcker, D.F. Evaluating structural equation models with unobservable variables and measurement error. J. Mark. Res. 1981, 18, 382–388. [CrossRef]
- 56. Hair, J.F.; Ringle, C.M.; Sarstedt, M. PLS-SEM: Indeed, a silver bullet. J. Mark. Theory Pract. 2011, 19, 139–151. [CrossRef]
- 57. Kline, T.J. Psychological Testing: A Practical Approach to Design and Evaluation; Sage Publications: New York, NY, USA, 2005.
- 58. Nunnelly, J.; Bernstein, I. Psychometric Theory; McGraw-Hill: New York, NY, USA, 1994.
- 59. Kenny, D.A.; Kaniskan, B.; McCoach, D.B. The performance of RMSEA in models with small degrees of freedom. Sociol. Methods Res. 2015, 44, 486–507. [CrossRef]