

National Training Aircraft Symposium (NTAS)

2022 - Bridging the Gap

Advanced Air Mobility Human factors Considerations for Current eVTOL Pilot Interfaces

Bhoomin B. Chauhan Florida Institute of Technology, bchauhan2017@my.fit.edu

Maria Chaparro Osman Florida Institute of Technology, mchaparro2016@my.fit.edu

Kendall Carmody Florida Institute of Technology, kcarmody2016@my.fit.edu

Meredith Carroll *Florida Institute of Technology*, mcarroll@fit.edu

Follow this and additional works at: https://commons.erau.edu/ntas

Part of the Aviation Commons

Chauhan, Bhoomin B.; Chaparro Osman, Maria; Carmody, Kendall; and Carroll, Meredith, "Advanced Air Mobility Human factors Considerations for Current eVTOL Pilot Interfaces" (2023). *National Training Aircraft Symposium (NTAS)*. 43.

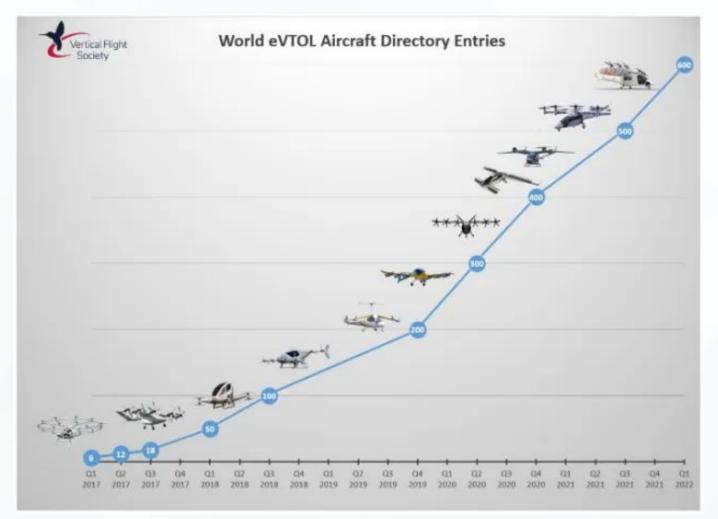
https://commons.erau.edu/ntas/2022/presentation/43

This Abstract - Paper/Presentation Only is brought to you for free and open access by the Conferences at Scholarly Commons. It has been accepted for inclusion in National Training Aircraft Symposium (NTAS) by an authorized administrator of Scholarly Commons. For more information, please contact commons@erau.edu.

Advanced Air Mobility: A Survey of Current eVTOL Vehicles and **Simulation Testbed**

Bhoomin B Chauhan, Maria Chaparro Osman, Kendall Carmody, Dr. Meredith Carroll

Presentation Overview


- Introduction
- Background
- Purpose
- Methods
- Results
- Discussion

Introduction

- What is advanced air mobility (AAM)?
- Principle drivers:
 - Distributed electric propulsion system
 - Traffic congestion/travel time
 - Noise pollution
 - Safety considerations
- Numerous emerging eVTOL aircraft configurations.

Source: Vertical Magazine

Background

Ē

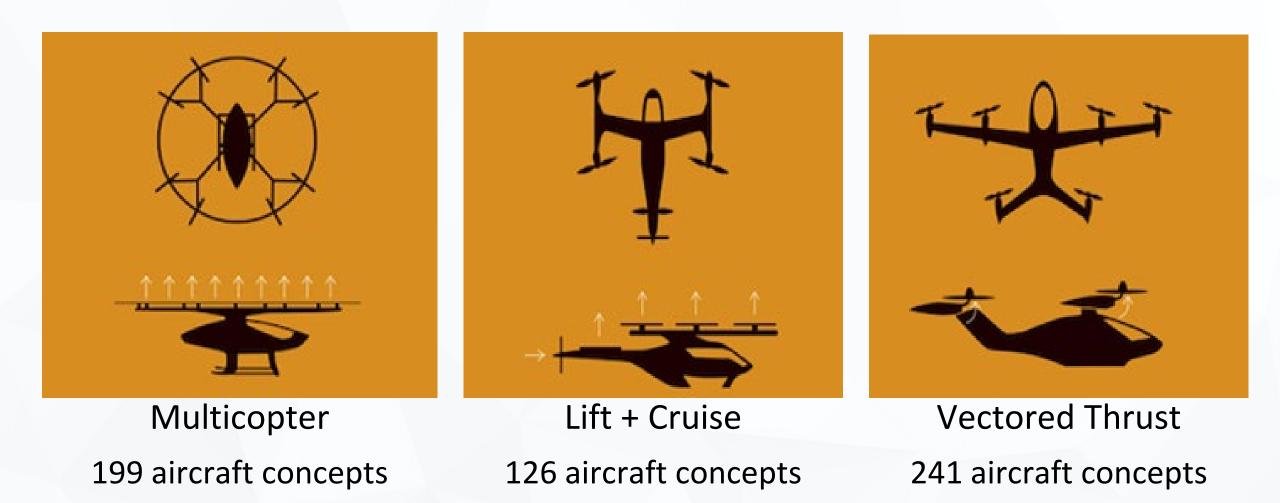
Traditional Six-pack, Analog Pilot Interface

Glass Cockpit Pilot Interface

Proposed eVTOL Pilot Interface

CATLASLab

- Identify and describe the range of eVTOL aircraft configurations.
- Provide insight into proposed eVTOL pilot interface and control concepts.
- Identify commercial-off-the-shelf eVTOL simulation testbeds available to conduct human factors research related to eVTOL pilot interfaces.


Methods

- **Step 1:** Surveyed from a catalogue of 350 eVTOL aircraft manufacturers and 600 aircraft; shortlisted 15 based on funding, operation type, enter in service year (EIS)
- **Step 2:** From shortlist, categorized aircraft based on propulsion type and payload
- **Step 3:** Ranked aircraft concepts based on current stage of development (e.g., piloted v/s. autonomous, flight test, certification); identified leading 10 vehicles
- Step 4: Extracted data associated with pilot interfaces and available simulation testbeds from industry and company websites, press releases, and social media

Results: Categories of eVTOL Aircraft

CATLAS Lab FLORIDA TECH

Results: Top 15 eVTOL Manufacturers

OEM, eVTOL Aircraft	Multirotor	Lift+cruise	Vectored Thrust	Payload	EIS
Joby Aviation, S4			x	Air taxi	2024
Volocopter, Volocity Air Taxi	x			Air taxi	2024/2026
Beta Technology, Alia		x		Cargo, Air taxi	2024
Eve Air Mobility, Eve		х		Air taxi	2026
Lilium, Lilium Jet			x	Cargo, Air taxi	2025
Wisk, Cora		х		Air taxi	N/A
Archer, Maker/Midnight			x	Air taxi	2025
EHang, EH-216	x			Air taxi	2022/-
Elroy Air, Chaparral C1		х		Cargo	2023
Kitty Hawk, Heaviside		х		Air taxi	N/A
Pipistrel, Nuuva V300				Cargo	2023
Vertical Aerospace, VX4			x	Air taxi, Cargo, EMS	2025
Airbus, CityAirbus		x		Air taxi, EMS	2025
Supernal, S-A1			x	Air taxi	2028
Overair, Butterfly			x	Air taxi	2026

EXACTLASLab **FLORIDA TECH**

Note: Rows highlighted in gray were excluded from further analysis based on the current aircraft automation capability and payload

Results: Top 10 eVTOL Aircraft

eVTOL Aircraft	Preliminary design (1)	Prototype build (2)	Flight testing (3)	Certification (4)	Commercially Operating (5)	
Joby Aviation, S4				x		
Volocopter, Volocity Air Taxi			x			
Beta Technologies, Alia			x			
Eve Holding, Eve		x				
Lilium, Lilium Jet				x		
Archer, Maker			x			
Vertical Aerospace, VX-4		x				
Airbus, CityAirbus	x					
Supernal, SA-1	x					
Overair, Butterfly		x				
				Advancing Technology-int		

Results: Pilot Interface Database

- Pilot interface trend include:
 - Number of displays: 1 3 displays with customizability
 - Conventional flight information:
 - Airspeed
 - Altitude
 - Heading
 - Horizontal situation indicator (HSI)
 - GPS
 - Information on shortlisted eVTOL pilot interface included:
 - Electric battery information (power, temperature, system checklist)
 - RPM
 - Torque
 - Landing precision
 - Rotor tilt angle
 - Estimated time to destination and en-route

Company & Vehicle Name		Joby Aviation	Vertical Aerospace	Archer	Lilium	Beta Technologies	Bell	Volocopter
		S4	VA-1X	Maker/ Midnight	Lilium Jet	ALIA	Nexus 6HX, 4EX	Volocity Air Taxi
Displays	1							x
	2	x	x					
	3						х	
	3+			х	х			
	Customizable	х				x		
	Altimeter	x	x	х	х	х	х	x
	HSI	x	x	х	х	х	х	x
	Heading	х	x	х	х	х	х	x
	Landing Precision	х	х	х		x		x
	GPS	x	x	x	х	х	х	x
	Airspeed	x	x	х	х	x	х	x
	ETE	x	x	х		х	х	x
	Battery Power	х	x	х		х	х	x
	Battery Time	х	x	х		x		x
	Battery Temperature	х	x	x		x		x
Information	Rotor Tilt/Angle	x	х	x	x			
on Displays	Torque	x		x		x		

Results: eVTOL Pilot Interface Trends

Pilot Interface trends

- Larger glass, touch with customizable displays.
- Single and dual set-ups.
- Reduced information redundancy.
- Integration of battery information.
- Inceptors to fly the aircraft.
- Single pilot operations (SPO interface).
- Use of emerging technologies, like synthetic vision, advanced sensors information display.

Bell Nexus Pilot Interface

Results: X Plane 11/12 Simulation Testbed

Range of third-party eVTOL aircraft available to fly in the testbed, including AeroG Aviation aG-4 Liberty eVTOL aircraft

Aircraft cockpit customization functionality can be utilized for future human factors research using X-Plane maker.

Results: Microsoft Flight Simulator Testbed

Volocopter Volocity Air Taxi in Microsoft Flight Simulator

Equipped with Garmin pilot interface

Source: Microsoft Flight Simulator

Current & Future Research

• Current Research:

- Conducting preliminary research with available eVTOL pilot interface information to identify human factors research questions.
- Using available simulation testbed to study cockpit modifications in line with proposed eVTOL pilot interface information made available to public.

• Future Research:

- Conduct experimental research studies to investigate the influence of various pilot interface configurations on pilot situation awareness, workload, and performance.
- Investigate pilot training requirements for eVTOL operation

References

IEEE Spectrum. (2022, February 25). *EVTOL companies are worth billions—Who are the key players?* IEEE Spectrum. <u>https://spectrum.ieee.org/evtol-air-taxi-industry</u>

NASA. (2018, May 7). Taking air travel to the streets, or just above them. <u>https://www.nasa.gov/aero/taking-air-travel-to-the-streets-or-just-above-them</u>

SMG Consulting. (n.d.). Advanced Air Mobility Reality Index. Advanced Air Mobility Reality Index. https://aamrealityindex.com/

VFS eVTOL directory hits 600 concepts. (2022, January 24). Vertical Mag. <u>https://verticalmag.com/press-releases/vfs-evtol-directory-hits-600-concepts/</u>

