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ABSTRACT 

Accurate characterization of fragment fly-out properties from high-speed warhead detonations 

is essential for estimation of collateral damage and lethality for a given weapon. Real warhead 

dynamic detonation tests are rare, costly, and often unrealizable with current technology, leaving 

fragmentation experiments limited to static arena tests and numerical simulations. Stereoscopic 

imaging techniques can now provide static arena tests with time-dependent tracks of individual 

fragments, each with characteristics such as fragment IDs and their respective position vector. 

Simulation methods can account for the dynamic case but can exclude relevant dynamics 

experienced in real-life warhead detonations. This research leverages machine learning 

methodologies to predict fragmentation characteristics using data from this imaging technique and 

simulation data combined. Gaussian mixture models (GMMs), fit via expectation maximization 

(EM), are used to model fragment track intersections on a defined surface of intersection. After 

modeling the fragment distributions, k-nearest neighbor (K-NN) regressors are used to predict the 

desired fragmentation characteristics. Using Monte Carlo simulations, the K-NN regression is 

shown to predict the distributions for the total number of fragments intersecting a given surface 

and the total fragment velocity and mass associated with that surface. An ability to predict fragment 

fly-out characteristics accurately and quickly would provide information which can then be used 

to evaluate the collateral damage and lethality of a given weapon. 
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NOMENCLATURE 

𝑁𝑁    Number of fragments with mass greater than a given mass, m 

𝑁𝑁𝑜𝑜  Total number of fragments created by an explosion 

𝑀𝑀  Mass of a warhead shell casing 

𝑀𝑀𝐴𝐴   Size parameter dependent on explosive casing thickness and diameter 

𝐵𝐵𝑚𝑚  Material constant 

𝑡𝑡  Casing thickness 

𝑑𝑑    Casing diameter 

𝑣𝑣𝑜𝑜  Initial fragment velocity 

𝐸𝐸  Energy per unit mass 

𝐶𝐶    Charge mass 

𝜙𝜙  Polar angle 

𝜃𝜃  Azimuth angle 

𝒩𝒩   Gaussian distribution 

Σ  Multivariate gaussian distribution symmetric covariance matrix 

𝜇𝜇  Mean of a distribution as a vector 

𝑑𝑑𝑑𝑑𝑑𝑑   Dimension of a dataset 

𝑝𝑝  Probability distribution 

𝜋𝜋𝑖𝑖  Mixing coefficient or mixing component weight 

𝜂𝜂    Expectation maximization posterior 

𝐾𝐾    Number of mixing coefficients 

𝑤𝑤  Weight 

𝑔𝑔  Random forest regressor 
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𝑢𝑢    Regressor input vector 

𝑓𝑓𝑖𝑖  Individual trees in a random forest regressor 

𝑓𝑓𝑘𝑘𝑘𝑘𝑘𝑘 K-nearest neighbors regressor 

𝑘𝑘    Number of neighbors in k-nearest neighbors neighborhood 

𝐷𝐷�𝑥𝑥𝑞𝑞 , 𝑥𝑥𝑖𝑖� Distance between a pair of objects 

𝐶𝐶  Sample covariance 

𝑁𝑁𝑡𝑡𝑜𝑜𝑡𝑡𝑡𝑡𝑡𝑡   Total number of fragments over an entire sphere of intersection 

𝑉𝑉𝑡𝑡𝑜𝑜𝑡𝑡𝑡𝑡𝑡𝑡 Sum of all fragment velocities over an entire sphere of intersection 

𝐾𝐾𝐸𝐸  Kinetic energy 
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1. Introduction 

Warheads come in large variety, specialized for desired targets and areas of interest. They 

generally deliver damage by blast effect or fragment penetration, but come in five different major 

types: blast, fragmentation, shaped charge, continuous rod, and special purpose [1,2]. When 

evaluating warheads, one must examine lethality estimates, including probability of hit and 

probability of kill. While the main function of a warhead is to damage enemy targets, there is also 

an interest in testing and evaluation to avoid collateral damage. Warhead characteristics such as 

fragment counts, spatial distribution, velocities, and masses, are often used to characterize the 

lethality estimates and collateral damage of warheads [3,4]. However, previous methods of 

fragmentation experimentation are limited and costly. 

Most prediction methods are limited to numerical simulations or static arena tests, where data 

are collected under unrealistic conditions that do not capture the full physics of a warhead applied 

in a real scenario. Static arena tests exclude the impact velocity of a warhead, while numerical 

simulations often exclude realistic dynamic effects experienced by the fragments. Additionally, 

simulations, such as hydrodynamic codes, take a long time to run and therefore are not as useful 

of a reference when acting quickly in the field. Structural and dynamic equations may provide 

useful information as well but are often constrained to assumptions.  

Previously, static arena tests have been limited to manual collection techniques. However, 

stereoscopic imaging has led to improvements in the quality and quantity of the data collected. In 

this thesis, static arena data collected using stereoscopic imaging have been provided by the United 

States Naval Air Warfare Center’s Weapon Division (NAWCWD). Data are also provided from a 

simulation method developed by NAWCWD. Their software provides data with dynamic terminal 

conditions using initial information from the static detonation testing. Combining data produced 

using this software with experimental static arena test data from which the simulations are 
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initialized will provide training data with both in-flight characteristics and real-world dynamic 

factors, normally excluded by static arena testing. 

The remainder of Section I covers the problem statement and the importance of this research. 

Section II presents preliminaries and review of relevant literature, including the machine learning 

techniques utilized. The methodology is proposed in Section III and the results and analysis are in 

Section IV. Finally, Section V consists of conclusions and suggestions for future work. 

1.1 Problem Statement 

Given a terminal state of a warhead, i.e., the attitude of detonation and pre-detonation velocity 

(impact or terminal velocity), and a chosen radius of intersection, this research will provide more 

accurate fragmentation predictions than previous methods. The overall goal is to create a transfer 

function to predict in-flight fragmentation behavior, specifically fragment distribution, velocity, 

and fragment mass, over time using machine learning techniques, static arena test data, and 

corresponding high-fidelity numerical simulations from NAWCWD.  Figure 1.1 displays a 

diagram of the inputs and outputs of the proposed machine learning model. 

 

 

Figure 1.1 The inputs and outputs of the desired learning model. 
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1.2 Research Goals 

The main goal of this research is to model and predict post-detonation fragmentation 

charactersitics for dynamic warheads using static arena test data. Eventually, this can be 

generalized to evaluate many different warheads, ultimately discovering trends that may exist 

among terminal conditions. This research also aims to provide the United States Air Force with 

lethality and collateral damage predictions and static-to-dynamic relationships. 

1.3 Importance of Research 

In terms of knowledge gaps, previous test and evaluation methods have large limitations. Static 

arena testing excludes real dynamic detonation information, while real dynamic warhead testing 

is limited. This research aims to close the gap between static and dynamic detonation evaluations 

by combining experimental static arena data with dynamic simulation data. Additionally, 

fragments excluded by one case may be included by the other. This method will also allow much 

faster and more computationally efficient predictions, creating a tool that can easily be used for 

multiple different weapons, given proficient training data. Evaluating the dynamic weapon trends 

produced by this research may also provide new information for current simulations. 
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2. Preliminaries and Review of Relevant Literature 

This chapter first offers a review of relevant literature and previous work. It also presents the 

machine learning techniques utilized in this research. 

2.1 Background 

This subsection provides a brief history of estimation formulas and static arena testing 

procedures. 

2.1.1 Mott’s Formula  

With the end of World War II came one of the first and most prominent fragmentation theories 

– Mott’s formula. Mott presented a formula designed to predict the distribution of metal shell 

casing fragments from an exploding weapon, highly dependent on the structure and material of the 

weapon [5]. One version of Mott’s two-dimensional fragmentation distribution law takes the form 

𝑁𝑁(𝑑𝑑) = 𝑁𝑁𝑜𝑜 exp �−(𝑑𝑑)
1
2/𝑀𝑀𝐴𝐴� 

(2.1) 

where 𝑁𝑁 is the number of fragments with mass greater than 𝑑𝑑 and 𝑁𝑁𝑜𝑜 is the total number of 

fragments created by the warhead defined as 

𝑁𝑁𝑜𝑜 =
𝑀𝑀

2𝑀𝑀𝐴𝐴
2 (2.2) 

where 𝑀𝑀 is the mass of the warhead’s casing and 𝑀𝑀𝐴𝐴 is the size parameter dependent on the casing 

thickness and cylindrical warhead diameter. For a thin casing, this size parameter is defined as 

𝑀𝑀𝐴𝐴 = 𝐵𝐵𝑚𝑚𝑡𝑡
5
6𝑑𝑑

1
3 �1 +

𝑡𝑡
𝑑𝑑
� (2.3) 

where 𝐵𝐵𝑚𝑚 is a material constant dependent on the casing and the explosive, 𝑡𝑡 is the thickness of 

the casing, and 𝑑𝑑 is the casing diameter [6]. 

While this formula can represent a large distribution of the casing fragmentation, Mott made 

data distribution assumptions, giving it only a generic representation of the center of spatial 
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distribution, where most of the fragments lie, often excluding smaller fragments and those existing 

outside the center of the distribution [7]. Additionally, the formula must be adjusted for different 

pre-detonation warhead properties, such as material, affecting the accuracy. The machine learning 

technique proposed in this thesis aims to remove these distribution assumptions using gaussian 

mixture models (GMMs) and create a more generic procedure that can be readily used for various 

pre-detonation conditions, including terminal velocity and orientation. 

Following Mott’s formula came many other fragmentation methods. One paper, published in 

2009, presents a comparison of seven different theoretical mass distribution models: the Mott, the 

generalized Mott, the Grady, the generalized Grady, the log-normal, the Weibull, and the Held [8]. 

Comparing all methods to experimental data sets, the investigators found the generalized Grady 

distribution fit best to the experimental cases. These methods, like Mott’s formula, depend on the 

weapon scenario and material for accuracy. 

2.1.2 Gurney’s Equation 

Gurney produced a set of equations to predict the initial velocities of the fragments produced 

by an explosion depending on the warhead casing shape, around the same time Mott’s equation 

was published. Gurney’s equation [9] can be written as follows 

𝑣𝑣𝑜𝑜 = √2𝐸𝐸𝐸𝐸 (2.4) 

where 𝐸𝐸 is the energy per unit mass and 𝐸𝐸 is a function dependent on the shape of the metal casing. 

For a cylindrical casing, 𝐸𝐸 is defined as 

𝐸𝐸 =
𝐶𝐶
𝑀𝑀

1 + 1
2 ∗

𝐶𝐶
𝑀𝑀

 
(2.5) 

where 𝐶𝐶/𝑀𝑀 is the charge to shell mass ratio. The initial velocity equation for a cylindrical warhead 

can then be written as  
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𝑣𝑣𝑜𝑜 =
√2𝐸𝐸

�𝑀𝑀𝐶𝐶 + 1
2

 
(2.6) 

This equation relies heavily on the casing dimensions and the explosive characteristics, such 

as the type and quantity. One major assumption of Gurney’s equation is that the total kinetic energy 

per unit mass of explosive is independent of the fragment characteristics such as size [9]. 

Therefore, each fragment produces the same initial velocity for all fragments.  

Additionally, Gurney’s equation is one-dimensional and requires on-axis initiation for 

cylindrical warheads. Others, such as those discussed in [10], have proposed modified formulas to 

estimate the initial velocity of the fragments when initiated off-axis. In their modified formula, the 

velocity is dependent on an azimuth angle. Additionally, [11] extended Gurney’s equation into 

another dimension by incorporating the height of a cylindrical casing into the equation. 

While these equations are simplistic and useful for providing simulations with velocity 

characteristics, they are only valid for the initial velocities of the fragments. They may also serve 

as a method of validation. 

2.1.3 Static Arena Testing 

In this thesis, the term static arena testing refers to a warhead placed at the center of a testing 

arena surrounded by fragment collection media. When performing static arena tests, the Joint 

Munitions Effectiveness Manual (JMEM) is often referred to for the standard testing procedure, 

collection of fragmentation characteristics, and weapon requirements. Previously, static arena tests 

included witness panels, Celotex bundles, or other fragment collection panels, and might include 

measurement equipment such as pressure gauges [12,13]. Then, fragment characteristics such as 

shape, size, mass, and location rely on on-the-field manual collection. These methods are high in 

labor and financial costs, often exclude dynamic pre-detonation behaviors, and small fragments 



 
 

7 
 

that may cause damage in a real-life situation are often missed. An example of a static arena test 

set-up is shown in Figure 2.1.  

 

 

Figure 2.1 An example of a fragment static arena test set-up (14). 

 

Static tests exclude the terminal velocity of a weapon before detonation, experienced in a 

realistic scenario. Instead, dynamic tests can be performed. Dynamic tests consist of monorail track 

testing, as shown in Figure 2.2, and can be used to model the physics of a warhead's behavior 

before detonation. However, they are more limited and costly than static arena tests. 

 

 

Figure 2.2 Hypersonic sled testing at Holloman Air Force Base (15). 
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2.2 Stereoscopic Imaging 

In recent years, stereoscopic imaging has become an addition to the classic static arena test. 

High-speed stereoscopic imaging utilizes still images from multiple different camera angles to 

provide two-dimensional images with depth, essentially giving the image three-dimensional 

qualities [16]. Eglin Air Force Base, as well as other testing bases, now uses a stereoscopic vision 

system developed by Torch Technologies, known as the Optical Warhead Lethality Sensor Suite 

(OWLSS). OWLSS tracks the position vectors of individual fragments from which the velocity 

vectors can be calculated [17].   

OWLSS collects more fragment characteristics and is often cheaper and faster than other static 

detonation testing methods, some of which are described in the previous section. Figure 2.3 

displays the camera field-of-view alignment of a general OWLSS test. In this scenario, there are 

four camera stations, each with two boxes set up with two cameras each, totaling 16 cameras. An 

example of this camera station can be referenced in Figure 2.4. The four cameras at these stations 

each collect a slightly different angle, providing the user with three-dimensional information. 

 

 

Figure 2.3 OWLSS camera field-of-view (18). 
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Figure 2.4 OWLSS high-speed camera set-up (18). 

 

2.3 Simulation Methods 

Using the described distribution theories and finite element analysis (FEA), models and 

simulations have since been developed to predict fragment characteristics and decrease the 

financial and labor costs of weapon testing. One method uses a high-rate finite difference computer 

program, known as CALE, to predict numerical models of fragment spray, including mass and 

velocity distributions, of a fragmentation munition [19,20]. 

Following this work came another fragmentation computer code, known as Picatinny Arsenal 

Fragmentation (PAFRAG). This method is primarily based on Mott’s theory, but the choice of 

fragmentation theory can be altered [21,22]. Using CALE and PAFRAG, Picatinny Arsenal 

integrates analytical and experimental techniques by combining high-strain/high-strain-rate 

computer modeling with semi-empirical modeling and experimentation to estimate lethality and a 

safe separation distance [23,24]. 
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Similar fragmentation work has begun outside of weapons analysis using Artificial Neural 

Networks (ANNs) to predict rock wall fragmentation [25]. One study compares rock fragmentation 

prediction methods using linear and non-linear regression to ANN, noting that predictions were 

more accurate using ANN [26]. This can be attributed to the rigidity of linear and non-linear 

regression methods, often eliminating some data with multiple inputs and outputs. For the same 

reason, regression methods other than linear and non-linear regression are chosen for the proposed 

research presented in this thesis. 

The U.S. Naval Air Warfare Center’s Weapons Division (NAWCWD) has also developed a 

simulation model. Provided initial characteristics from static arena tests, this novel software can 

model the behavior of dynamic scenarios by iteratively solving Langevin’s equations, stochastic 

differential equations to describe the Brownian particle motion over time [27,28]. 

2.4 Previous Machine Learning Methods 

In 2021, a paper was published proposing multivariate GMMs to develop training data 

followed by regression learning, specifically random forest regression, to predict the fragment 

count distribution of a warhead detonation [3]. Unlike previous methods, this study assimilated 

simulation data and static arena test data to provide the training dataset with realistic dynamic 

considerations of high-speed detonations, that simulation data alone would exclude. This thesis 

both improves upon the prediction of the number of fragments as well as proposes a methodology 

to predict the fragment velocity distributions. 

2.5 Overview of Utilized Techniques 

This subsection outlines the machine learning and other techniques utilized in this research: 

gaussian mixture models (GMM), expectation maximization (EM), random forest regression 

(RFR), k-nearest neighbors regression (k-NN), neural networks (NN), and boundaries of interest. 
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2.5.1 Gaussian Mixture Models 

Training datasets can be generated by representing the available data using probability 

distributions. In the case of fragmentation, these distributions can be used to describe fragment 

track intersections on surfaces. This surface can be created by finding the points of intersection 

along a sphere with a chosen radius of intersection and converting from cartesian coordinates to a 

polar-azimuth plane. An example of this process is displayed in Figure 2.5 for a simulation with 

an intersection radius of 75 m.  

To convert the cartesian coordinate system of [𝑥𝑥,𝑦𝑦, 𝑧𝑧] to polar and azimuth angles, 𝜙𝜙 and 𝜃𝜃 

respectively, the following equations are used: 

𝜙𝜙 = tan−1 �
𝑧𝑧

�𝑥𝑥2 + 𝑦𝑦2
� 

(2.7) 

𝜃𝜃 = tan−1 �𝑦𝑦
𝑥𝑥
�  (2.8) 

The multivariate gaussian distribution is defined as  

𝒩𝒩(�⃗�𝑥|�⃗�𝜇,Σ) =
1

�(2𝜋𝜋)𝑑𝑑𝑖𝑖𝑚𝑚|Σ|
exp �−

1
2

(�⃗�𝑥 − �⃗�𝜇)𝑇𝑇Σ−1(�⃗�𝑥 − �⃗�𝜇)� 
(2.9) 

where Σ is a symmetric covariance matrix, 𝜇𝜇 is a vector containing the means, and 𝑑𝑑𝑑𝑑𝑑𝑑 is the 

dimension of the dataset [29,30]. However, these distributions are unimodal and do not capture 

the full shape of the intersection distribution, as they only represent one subpopulation of the data. 

Instead, gaussian mixture models (GMMs) are a weighted linear combination of multivariate 

gaussian distributions, ultimately combining the subpopulations to represent the entire population. 

They have two defining parameters: the mean, 𝜇𝜇, represents the location of each mode of the 

distribution, or subpopulation center, and the covariance, Σ, represents the spread of the data 

distribution. 
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Figure 2.5 Converting from cartesian coordinates to a polar-azimuth plane for a simulation 
with R = 75 m. 

 



 
 

13 
 

In the multivariate case the GMM is the probability distribution defined as 

𝑝𝑝(�⃗�𝑥) = �𝜋𝜋𝑖𝑖𝒩𝒩(�⃗�𝑥|�⃗�𝜇𝑖𝑖 , Σ𝑖𝑖)
𝑁𝑁

𝑖𝑖=1

 
(2.10) 

where 𝑁𝑁 is the number of components, ∑ 𝜋𝜋𝑖𝑖𝑁𝑁
𝑖𝑖=1 = 1 where 𝜋𝜋𝑖𝑖 are the mixing coefficients, and 

𝒩𝒩(�⃗�𝑥|�⃗�𝜇𝑖𝑖, Σ𝑖𝑖) is the multivariate distribution described in Eq. 2.9 [29,30]. 

Using GMM hyperparameters, the model can be tuned further to optimize the fit of the data 

and prevent overfitting or underfitting. These hyperparameters include the number of components 

and the covariance type, whether it be full, tied, diagonal, spherical, etc. Previously, 4 different 

cases were tested: full covariance with 8 components, full covariance with 4 components, diagonal 

covariance with 8 components, and diagonal covariance with 4 components [3]. It was concluded 

that GMMs with 8 components and a full covariance perform better than the others. Therefore, 

this thesis focuses on the full covariance type with 8 components. 

2.5.2 Expectation Maximization 

Expectation maximization (EM) is an iterative method used to calculate the maximum 

likelihood estimates (MLE) of GMM parameters, essentially assigning weights, or cluster 

numbers, to the points of the dataset. This value can then be used to represent the velocity of each 

point. Then, each point can be treated differently than the next and both the position and velocity 

can be taken into consideration for the velocity distribution predictions. This method can also be 

used to consider the mass of a particle as a cluster number. 

EM consists of two main steps: the E-Step and the M-Step. In the E-Step, or expectation step, 

the posteriors are calculated as 

𝜂𝜂𝑖𝑖𝑘𝑘
(𝑟𝑟+1) =

𝜋𝜋𝑘𝑘
(𝑟𝑟)𝒩𝒩�𝑥𝑥; 𝜇𝜇, 1

𝑤𝑤𝛴𝛴�

∑ 𝜋𝜋𝑘𝑘𝒩𝒩 �𝑥𝑥; 𝜇𝜇𝑘𝑘, 1
𝑤𝑤𝛴𝛴𝑘𝑘�𝐾𝐾

𝑘𝑘=1

 
(2.11) 
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where 𝐾𝐾 is the number of mixture components and 𝑤𝑤 is the weight defined by 

𝑤𝑤𝑖𝑖 = � exp�−
𝑑𝑑2�𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗�

𝜎𝜎
�

𝑗𝑗∈𝑆𝑆𝑖𝑖
𝑞𝑞

 
(2.12) 

where 𝑑𝑑�𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗� is the Euclidean distance, 𝑆𝑆𝑖𝑖
𝑞𝑞 is the set containing 𝑞𝑞 nearest neighbors of 𝑥𝑥𝑖𝑖, and 𝜎𝜎 

is a positive scalar [31]. 

In the M-Step, or maximization step, the mixing coefficients, means, and covariances are 

calculated as 

𝜋𝜋𝑘𝑘
(𝑟𝑟+1) =

1
𝑛𝑛
�𝜂𝜂𝑖𝑖𝑘𝑘

(𝑟𝑟+1)
𝑘𝑘

𝑖𝑖=1

 
(2.13) 

𝜇𝜇𝑘𝑘
(𝑟𝑟+1) =

∑ 𝑤𝑤𝑖𝑖𝜂𝜂𝑖𝑖𝑖𝑖
(𝑟𝑟+1)𝑥𝑥𝑖𝑖𝑛𝑛

𝑖𝑖=1

∑ 𝑤𝑤𝑖𝑖𝜂𝜂𝑖𝑖𝑖𝑖
(𝑟𝑟+1)𝑛𝑛

𝑖𝑖=1
  

(2.14) 

𝛴𝛴𝑘𝑘
(𝑟𝑟+1) =

∑ 𝑤𝑤𝑖𝑖𝜂𝜂𝑖𝑖𝑘𝑘
(𝑟𝑟+1)(𝑥𝑥𝑖𝑖 − 𝜇𝜇𝑘𝑘

(𝑟𝑟+1))𝑘𝑘
𝑖𝑖=1 �𝑥𝑥𝑖𝑖 − 𝜇𝜇𝑘𝑘

(𝑟𝑟+1)�
⊤

∑ 𝜂𝜂𝑖𝑖𝑘𝑘
(𝑟𝑟+1)𝑘𝑘

𝑖𝑖=1

 

 

(2.15) 

The E-Step and the M-Step are repeated until convergence of the GMM parameters or when a 

or when a maximum number of iterations is reached. Convergence occurs when the difference 

between the log likelihood of two consecutive iterations is small [31]. 

2.5.3 Random Forest Regression 

Following the development of training data, regression tools can be used to learn a relationship 

between input data (independent variables) and output data (dependent variables). In previous 

methods, random forest regression (RFR) was a suitable machine learning tool, noting multiple 

decision trees as a method to avoid overfitting data [3]. 

When using multiple trees, RFR can be described as the mean of all the individual trees 
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𝑔𝑔(𝑢𝑢) =
1
𝑀𝑀
�𝑓𝑓𝑖𝑖(𝑢𝑢)
𝑀𝑀

𝑖𝑖=1

 
(2.16) 

where  𝑓𝑓𝑖𝑖 represents each individual tree, 𝑀𝑀 is the number of trees in the random forest, and 𝑢𝑢 is 

an input vector [3,32]. 

2.5.4 K-Nearest Neighbors Regression 

While RFR was suitable for the fragment count predictions, other regression methods were 

also considered. Predictions were improved for both the count predictions and the velocity 

predictions when using k-nearest neighbors (k-NN) regression learning. The goal of the K-NN 

algorithm, as well as other regression methods, is to create a function to describe an input-output 

relationship. K-NN, like RFR, uses an average of observations to produce a model. However, 

unlike RFR, K-NN takes an average of the closest points based on a local neighborhood. K-NN 

computes the mean as 

𝑓𝑓𝑘𝑘𝑘𝑘𝑘𝑘�𝑥𝑥𝑞𝑞� = �
∑ 𝑤𝑤𝑖𝑖𝑓𝑓(𝑥𝑥𝑖𝑖))𝑘𝑘
𝑖𝑖=1

 ∑ 𝑤𝑤𝑖𝑖
𝑘𝑘
𝑖𝑖=1

, 𝐷𝐷�𝑥𝑥𝑞𝑞 , 𝑥𝑥𝑖𝑖� ≠ 0

𝑓𝑓(𝑥𝑥1), 𝐷𝐷�𝑥𝑥𝑞𝑞 , 𝑥𝑥𝑖𝑖� = 0
 

(2.17) 

where 𝐷𝐷�𝑥𝑥𝑞𝑞 , 𝑥𝑥𝑖𝑖� is the distance between 𝑥𝑥𝑞𝑞, the query point, and 𝑥𝑥𝑖𝑖, a close point or a neighbor, 𝑤𝑤 

is the weight defined as 

𝑤𝑤𝑖𝑖 =
1

𝐷𝐷�𝑥𝑥𝑞𝑞 , 𝑥𝑥𝑖𝑖�
  (2.18) 

and 𝑘𝑘 is the size of the neighborhood [33,34]. In the case that the minimum distance between the 

pair of objects is zero, 𝐷𝐷�𝑥𝑥𝑞𝑞 , 𝑥𝑥𝑖𝑖� = 0, the weight is undefined. Instead of using the weighted 

average, the corresponding output training data of the single closest point is used. 

The size of the neighborhood, 𝑘𝑘, is a chosen integer, and must be adjusted to avoid overfitting 

and underfitting. For example, if one were to pick 𝑘𝑘 = 1, the output would result in the parameters 
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of the most similar point in the training set. In a binary case, for example Figure 2.6, where there 

are only two options for the output variable, this would be appropriate. Otherwise, there is a risk 

of underpredicting or overpredicting. 

 

 

Figure 2.6 K-NN with k = 4 for a binary case. 

 

Euclidean distance is a common method for calculating the distance between points in a 

dataset. Rather than calculating a physical distance, Mahalanobis distance works well for 

correlated multivariate data and solves for the difference between multiple variables or 

dimensions. It can be calculated as  

𝐷𝐷�𝑥𝑥𝑞𝑞 , 𝑥𝑥𝑖𝑖� = ��𝑥𝑥𝑞𝑞 − 𝑥𝑥𝑖𝑖�
𝑇𝑇
𝐶𝐶−1�𝑥𝑥𝑞𝑞 − 𝑥𝑥𝑖𝑖� 

(2.19) 

where 𝑥𝑥𝑞𝑞 and 𝑥𝑥𝑖𝑖 represent a pair of objects and 𝐶𝐶 is the sample covariance [35,36]. 

2.5.5 Neural Networks 

An alternative method to regression learning is the use of regression-based neural networks. 

Neural networks, sometimes known as artificial neural networks (ANN), are a type of deep 

machine learning modeled after the way the human brain processes information. They are a set of 

neurons, or processing units, arranged into a system of layers that can be used to model complex 
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relationships between inputs and outputs [37]. These layers consist of an input layer, hidden 

(internal) layers, and an output layer. Most of the processing occurs in the hidden layers of the 

network. An example of a simple neural network is displayed in Figure 2.7. If these networks have 

at least two hidden layers, they are considered a deep neural network [37].  

 

 

Figure 2.7 Illustration of a simple neural network (37). 

 

Neural networks normally include forward propagation but may also include backward 

propagation. Through forward propagation, information moves from the input layers to the output 

layers, where each of the connections between the neurons hold weight and each of the neurons 

obey an activation function before passing the information on to the next neuron. Through 

backward propagation, information moves from the output layer backwards. This optimizes the 

weights to minimize the loss function. 

2.5.6 Boundaries of Interest 

After predicting the total fragment counts, fragment velocities, and their respective 

distributions, fragment characteristics within a given boundary of interest can be calculated using 

double integrals defined as 
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𝐹𝐹𝐹𝐹𝐹𝐹𝑔𝑔𝑑𝑑𝐹𝐹𝑛𝑛𝑡𝑡 𝐶𝐶𝐶𝐶𝑢𝑢𝑛𝑛𝑡𝑡 = 𝑁𝑁𝑡𝑡𝑜𝑜𝑡𝑡𝑡𝑡𝑡𝑡 ∗ ∬ 𝑝𝑝𝑁𝑁(𝑥𝑥)𝑆𝑆 𝑑𝑑𝑆𝑆  (2.20) 

𝐹𝐹𝐹𝐹𝐹𝐹𝑔𝑔𝑑𝑑𝐹𝐹𝑛𝑛𝑡𝑡 𝑉𝑉𝐹𝐹𝑉𝑉𝐶𝐶𝑉𝑉𝑑𝑑𝑡𝑡𝑦𝑦 = 𝑉𝑉𝑡𝑡𝑜𝑜𝑡𝑡𝑡𝑡𝑡𝑡 ∗ ∬ 𝑝𝑝𝑉𝑉(𝑥𝑥)𝑆𝑆 𝑑𝑑𝑆𝑆  (2.21) 

where 𝑁𝑁𝑡𝑡𝑜𝑜𝑡𝑡𝑡𝑡𝑡𝑡 is the predicted total number of fragments passing through the entire sphere of 

intersection, 𝑉𝑉𝑡𝑡𝑜𝑜𝑡𝑡𝑡𝑡𝑡𝑡 is the predicted total velocity, or the sum of all fragment velocities intersecting 

the entire sphere of intersection at the chosen radius, and 𝑑𝑑𝑆𝑆 is described as 

𝑑𝑑𝑆𝑆 = 𝑑𝑑𝜙𝜙𝑑𝑑𝜃𝜃  (2.22) 

where 𝜙𝜙 is the polar angle and 𝜃𝜃 is the azimuth angle. An example of this boundary can be seen 

in Figure 2.8. 

 

 

Figure 2.8 An example of a chosen region of interest on an intersection radius scaled to a 
unit sphere. 
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3. Methodology 

This chapter details software and data used as well as the research approach. The procedure 

follows a general machine learning method of data collection, data extraction, training data 

compilation, regression learning methods, and validation. 

3.1 Software 

The primary software in this research includes MATLAB and python. The data extraction and 

training data preparation are performed in MATLAB and most of the regression learning is 

performed in python, where Scikit-Learn and other machine learning libraries can be utilized [39]. 

In addition to the software, the following data are used for this research. 

3.2 Sources of Data  

Most data available for this research consist of experimental static arena test data and 

simulation data developed using experimental data as initial conditions. The experimental data 

comes from static pipe bomb detonations performed by the NAWCWD at China Lake. Using 

stereoscopic tracking systems, the pipe bomb detonations were performed for 3 different cases: 2 

mm, 5 mm, and 7 mm ball bearings. An example of the stereoscopic tracking and the experimental 

setup for the 5 mm static detonation is shown in Figure 3.1.  

Figure 3.1 also displays the radially symmetric placement of the ball bearings. Therefore, this 

research assumes there is a symmetric pair across the y-axis, making a duplicated position at 

[𝑥𝑥,−𝑦𝑦, 𝑧𝑧] for every fragment at [𝑥𝑥,𝑦𝑦, 𝑧𝑧]. The fragment tracks for the 5 mm ball bearing case can 

be referenced in Figure 3.2. However, these data can only be collected at small volumes, because 

of the restrictions and the financial cost of the static arena tests. 
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Figure 3.1 The experimental static arena test set-up for 5 mm ball bearing detonation (left) 
and fragment tracks from stereoscopic imaging (right). 

 

 

Figure 3.2 The tracks collected from the 5 mm ball bearing static arena test. 

 

Using the 5 mm ball bearing static arena test data, NAWCWD provided simulation data by 

iteratively solving Langevin’s equations. NAWCWD simulated time history tracks for all 3861 

ball bearing fragments for 1100 different cases at various terminal speeds and detonation 
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orientations, displayed in Table 3.1, making up approximately 1.3 TB of data. A diagram of the 

relative orientation of the simulated cases can be referenced in Figure 3.3. The fragment tracks for 

the simulation case with 0° roll, pitch, and yaw and a terminal velocity of 0 m/s  are displayed in 

Figure 3.4. 

Table 3.1 NAWCWD 5 mm ball bearing simulation cases. 

Variables Range Number of Cases Units 

Terminal Speed Magnitude 0, 152, 305, 457, 610, 

762, 914, 1066, 1219, 

1371, 1524 

11 m/s 

Orientation of 

Weapon at Burst 

Point 

Pitch -90, -60, -30, 0 4 

degrees Yaw -60, -30, 0, 30, 60 5 

Roll 0, 45, 90, 135, 180 5 

 

 

 

Figure 3.3 Relative orientation of the ball bearing simulation cases. 
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Figure 3.4 Fragment tracks from one of the NAWCWD ball bearing simulations. 

 

By combining the limited experimental data with the larger set of simulation data, static and 

dynamic characteristics can be included in the machine learning model. However, as discussed 

previously, there are limitations with current technology. Over time, future data collected under 

improved systems will enhance the modeling process, by improving the quality of the data as well 

as the amount of data. In addition to the 5 mm ball bearing data, there are now other sets of data 

from two different articles of interest that can be utilized to validate and improve work performed 

on the ball bearing data. 

Under the same process of collection and simulation, greater amounts of data can be augmented 

to the current dataset. Since the beginning of this research, new data for various articles of interest 

have been collected.  
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A more realistic static arena test was performed. The corresponding simulation data is 

displayed in Table 3.2, making up 1000 simulation cases. The fragment tracks for the simulation 

case with 0° roll, pitch, and yaw and a terminal velocity of 0 m/s  are displayed in Figure 3.5. 

Table 3.2 Realistic article of interest simulation cases. 

Variables Range Number of Cases Units 

Terminal Speed Magnitude 0, 152, 305, 457, 610, 

914, 1219, 1524 

8 m/s 

Orientation of 

Weapon at Burst 

Point 

Pitch 0, 22.5, 45, 67.5, 90 5 

degrees Yaw -45, -22.5, 0, 22.5, 45 5 

Roll 0, 22.5, 45, 67.5, 90 5 

 

 

 

Figure 3.5 Fragment tracks from one of the NAWCWD simulations. 

 

For most of this research, the ball bearing data were used. Their equal mass, volume, and shape 

allowed for easy data collection and minimal differences when predicting the fragment velocities. 

Additionally, the high number of fragments, 3861 ball bearings, gave the training dataset more 
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variety. For the more realistic static arena case and each case of the data displayed in Table 3.2, 

information for only 94 fragments was collected. This made the resulting training dataset biased 

as only one portion of a chosen radius has intersections. 

3.3 Extracting Data 

Before training the ball bearing data, the experimental and simulation data collected must be 

extracted and converted to the described polar-azimuth coordinate system, as mentioned in Section 

2.5.1.  

3.4 Generating Training Data 

For a range of intersection radii, in this work 65 radii ranging from 7.62 m to 182.88 m, polar-

azimuth maps are generated. An example of this process is shown in Figures 3.6, 3.7, and 3.8 for 

a NAWCWD simulation case with an impact orientation of 135° roll, 60° pitch, and −60° yaw 

and an impact velocity of 0 𝑑𝑑/𝑠𝑠. For each map, training data are generated as probability 

distributions using gaussian mixture models.  

The number of fragments is collected by interpolating the data and counting the number of 

intersection coordinates produced. By taking the derivative of these positions, the velocity of each 

intersection point is also recorded. When using mass data, the mass of each fragment is included 

only if there is an intersection point found along the given radius for that fragment. Training 

datasets for fragment counts and fragment velocities are generated for both the experimental static 

arena test data and the corresponding 1100 NAWCWD simulations. 

As mentioned previously, a paper compared four cases of GMMs finding that GMMs with 8 

components and full covariance are best suited for this data [3]. They also note the importance of 

including both the experimental static arena test data and the simulation data in the training data. 

Although the simulation data makes up a large percentage of the training data population, the 
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experimental data should be included to incorporate realistic fragment dynamics, not experienced 

by the simulations. Additionally, by including both cases, some regions excluded by the 

experimental case may be included by the simulation cases and vice versa. 

 

 

Figure 3.6 Fragment tracks from one of the NAWCWD simulations. 

 

 

Figure 3.7 Fragments intersecting a radius of ~71.65 m on a unit sphere from one of the 
NAWCWD simulations. 
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Figure 3.8  Fragments intersecting a radius of ~71.65 m mapped onto a polar-azimuth 
coordinate system. 

 

3.4.1 Importance of Proper Formatting 

When producing training data for velocity using Expectation Maximization, one should note 

the importance of proper data formatting. EM is highly dependent on the initialization point. Using 

random initialization, the means, or centroids, of the dataset distributions may not be placed in the 

same location every time the same dataset is fit. To preserve the component ordering for similar 

distributions, the EM algorithm should be strictly initialized using the GMM without EM.  Figure 

3.9 displays the slight difference in distribution between GMM parameters without EM, on the 

left, and GMM parameters with EM, on the right. 
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Figure 3.9 Unweighted gaussian mixture model for fragment counts (left) compared to the 
weighted gaussian mixture model for fragment velocity (right). 

 

3.5 Regression Learning 

Once training data are produced, the model can be trained. Using K-NN regression, with 

Mahalanobis distance as the desired metric, fragmentation predictions can be made. The count 

predictions are generated using the training data from GMMs without EM and the fragment 

velocity predictions are generated using the training data from GMMs with EM.  

3.6 Predicting Within Bounded Regions of Interest 

After predicting the total fragment counts and fragment velocities and their respective 

distributions, fragment characteristics within a given boundary of interest can be calculated using 

the double integrals described previously, in Eq. 2.20 and Eq. 2.21. 

3.7 Validation Methods 

After training the model, validation methods can be used to verify and improve the process. 

This research uses Monte Carlo simulation as the primary validation method. Monte Carlo 

simulations artificially model data using random inputs [39]. This random generation enables fast 

predictions to evaluate the full model. In this research the randomly generated parameters consist 
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of the simulation number, with an associated terminal attitude and velocity, and radius of 

intersection. Using these parameters and a randomly generated polar-azimuth region of interest, 

the total fragments within the given boundary from both the direct fragment counts and predicted 

fragment counts are found and compared using the method proposed in Figure 3.10. This same 

method can be used for the velocity comparison. A diagram of this proposed model is displayed 

in Figure 3.11, with the only difference from Figure 3.10 being the addition of the fragment counts 

from each case to observe the differences in average velocity as well as the total velocity within 

the boundary of interest. These differences are produced for multiple runs at various randomized 

conditions to evaluate the model. 

 

 

Figure 3.10 Diagram of the Monte Carlo validation method for count comparison. 
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Figure 3.11 Diagram of the Monte Carlo validation method for velocity comparison. 

 

3.8 Energy Distribution 

The mass of the fragments are desirable to both estimate the size of each of the fragments and 

to estimate the total kinetic energy of a region of interest. Using the total mass, 𝑑𝑑, and the total 

velocity, 𝑣𝑣, of a region of interest, the total kinetic energy can be calculated as 

𝐾𝐾𝐸𝐸 =
1
2
𝑑𝑑𝑣𝑣2  (3.1) 

providing an estimate of the total kinetic energy impacting a given area. 

3.9 Summary 

Using the provided static arena test data and corresponding simulation data, a training pool is 

generated as probability distributions for fragment track intersections at various intersection radii 
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mapped on a polar-azimuth plane. K-NN regression uses an average of the nearest neighbors to 

predict the GMM parameters of a point of interest. Given an input as a vector, including the 

weapon’s terminal state (impact velocity and orientation as roll, pitch, and yaw) and an 

intersection radius, the GMM parameters of a probability distribution can be predicted, using two 

separate K-NN regressors. One regressor predicts the fragment count distribution shown in 

Figure 3.12 and the other predicts the fragment velocity distribution shown in Figure 3.13. In 

addition to the GMM parameters, the total number of fragments and the total fragment velocity 

are also output for the entire sphere of intersection, which can then be input into double integrals 

to find totals within a chosen area of interest. Using these values, the average velocity can be 

calculated using the process displayed in Figure 3.14. Following this same method, the mass and 

energy distributions can be generated. 

 

 

Figure 3.12 Diagram of the fragment count predictor. 
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Figure 3.13 Diagram of the fragment total velocity predictor. 

 

 

Figure 3.14 Diagram of the average velocity within a given boundary of interest. 
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4. Results and Analysis 

The following results and analysis section is split into three subsections. The first subsection 

provides and discusses the fragment count and fragment velocity results from the ball bearing data. 

The second subsection compares different methods of initial fragment velocity estimation, 

Gurney’s Equation and regression learning, to the average ball bearing initial velocity collected 

from the ball bearing static arena test data and simulation data. The final subsection provides and 

discusses the fragment count, velocity, and mass results from the naturally fragmenting article of 

interest data. 

4.1 Ball Bearing Data 

Previous work suggested RFR as a suitable method to predict the number of fragments but did 

not predict the fragment velocities [3]. The research presented here includes random forest 

regression as a means of comparison, but considered other regression techniques, finding k-nearest 

neighbors regression with 𝑘𝑘 = 2 to yield the best results for both the fragment velocity and the 

fragment count predictions. Using Monte Carlo simulations as a method of validation, as discussed 

in the previous section, both techniques were analyzed over 1000 simulations, each with 20 

different randomized polar-azimuth regions, creating 20,000 randomized runs. The mean and 

standard deviation of the fragment count differences for both regression methods are provided in 

Table 4.1. The mean of the total and average velocity differences for the velocity training data 

using the weighted data and using the unweighted training data are provided in Table 4.2.  

Table 4.1 Mean and standard deviation of fragment count differences. 

Regression Technique Mean Count Difference, Frags Standard Deviation, Frags 

RFR 2.7 37.5 

K-NN 1.8 28.0 
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Table 4.2 Mean of total and average velocity differences. 

Regression Technique Mean Total V Difference, m/s Mean Avg V Difference, m/s 

RFR 2774.0 -66.7 

RFR with Count Data 3212 -75.5 

K-NN 904.3 31.9 

K-NN with Count Data 2087.6 -4.58 

 

An example of the produced distributions from the Monte Carlo simulations are displayed in 

Figure 4.1, fragment count differences, and Figure 4.2, fragment velocity differences using EM 

training data. These figures show the GMM distributions directly fit to the data compared to the 

predicted GMM distributions produced by the machine learning model. The counted fragments 

across the entire surface of intersection for this case is 1,916 fragments and the model predicted a 

total of 1,916 fragments, yielding no fragment difference between the direct and predicted fits. 

However, the fragments counted within the area of interest, shown by the black rectangular outline, 

were not as close, with a direct count of 420 fragments and a predicted count of 277 fragments, 

yielding a difference of 143 fragments. 

The total velocity of all the intersecting fragments over the entire surface from the direct fit 

model is 259,065 m/s and from the predicted model is 259,136 m/s, yielding a difference of 71 

m/s. Like the count predictions, the total velocity within the boundary of interest was not as 

accurate. However, the average values of 161 m/s and 162 m/s, for the direct fit and predicted 

models respectively, within the boundaries of interest, yield a difference of 1 m/s. It should also 

be noted that the standard deviations are high for all methods. 
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Figure 4.1 Monte Carlo simulation results for count differences. 
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Figure 4.2 Monte Carlo simulation results for velocity differences. 
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When looking at the distributions shown on the plots in Figures 4.1 and 4.2, they seem to fit 

well to the data and the predictor seems to create a similar distribution. However, for many of the 

simulation cases, one can see that the total values over the entire surface of intersection are often 

accurate, while the values within the polar-azimuth boundary of interest are not always accurate. 

The small differences in the distributions are a likely explanation for this result. While the contours 

look relatively similar, slight differences may result in large count and velocity differences within 

the region of interest. Additionally, as can be seen by the blue intersection points on the plots, the 

contour does not include all fragments. 

Looking at results where the weighted EM data are not considered, in Table 4.2, the average 

velocities within a region of interest have a much smaller difference that when the weighted EM 

training data are considered.  Two cases for the velocity predictions with this method are displayed 

in Figures 4.3 and 4.4. Again, the total velocity within the boundary of interest has a high 

difference, but the average velocity has percent differences of 1.2 % and 3.5 % for Figures 4.3 and 

4.4 respectively. Though the unweighted data presented more accurate predictions for the average 

velocity within the boundary of interest, the weighted data created using EM was more accurate 

overall for both regression learning methods. 

To further examine the results at various terminal conditions, as one of the desired goals is to 

generalize the model, the prediction tool was also examined for a variety of terminal conditions. 

The plots in Figure 4.5 display an example of this visual comparison for varying terminal velocities 

(0 m/s, 305 m/s, 610 m/s, 915 m/s, 1,220 m/s, 1,525 m/s), a terminal attitude of 0° roll, pitch, and 

yaw, and an intersection radius of 22.96 m. The trend seen is as expected. The total and average 

velocity increases with increasing terminal speed, while the counted total fragment predictions 

remain approximately the same. 
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Figure 4.3 Monte Carlo simulation results for velocity differences without EM. 
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Figure 4.4 Monte Carlo simulation results for velocity differences without EM. 
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Additionally, the probability contours visually follow the trend produced by the fragment 

intersections, represented by the blue points on the plots. As the terminal velocity increases, the 

fragment velocity follows, keeping the fragments closer to the point of impact when reaching the 

same radius of intersection. The points converge to the center of the polar-azimuth plot and the 

distribution contours follow this course. Therefore, this proposed method is a suitable method to 

predict trends at various terminal conditions because the prediction tool produced the expected 

probability contours. 

4.2 Initial Velocity Comparison 

For a case with a 0 m/s terminal velocity and a terminal orientation of 0º roll, pitch, and yaw, 

the average initial fragment velocity was found using the proposed regression technique. The result 

from this regression technique was compared to the average initial velocity from the static arena 

test, the corresponding simulation, and Gurney’s equation, Eq. 2.6. The comparison of all four 

methods is displayed in Table 4.3.  

It should be noted, for the static arena test, the initial fragment velocities were calculated 

through back propagation and not all 3861 fragments were collected. Therefore, the simulation 

velocity was used as the primary base for comparison.  

Table 4.3 Comparison of the average initial fragment velocity. 

Technique Average Initial Fragment Velocity, m/s 

Static Arena Test 826 

Simulation 1002 

Gurney’s Equation 1036 

Regression Learning 1118 
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a) Terminal velocity of 0 m/s. 

 

b) Terminal velocity of 305 m/s. 

 

c) Terminal velocity of 610 m/s. 
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d) Terminal velocity of 915 m/s. 

 

e) Terminal velocity of 1220 m/s. 

 

f) Terminal velocity of 1525 m/s. 

Figure 4.5 Predicted distributions at a randomly generated radius of intersection for various 
denoted initial velocities. 
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Assuming all 3861 fragments are produced, Gurney’s equation and the proposed regression 

technique yield a percent difference of 3.4% and 12%, respectively, when compared to the average 

initial velocity in the corresponding simulation case. Though Gurney’s equation produces a smaller 

percent difference, this equation can only be used to estimate the initial velocity and assumes all 

fragments have the same initial velocity, which is not true in realistic scenarios. This test shows 

that, though the initial velocity information is not included in the training dataset, predictions can 

be made for inputs outside of the domain of the training set. 

4.3 Naturally Fragmenting Article 

Using only K-NN regression, trials with the naturally fragmenting article of interest were 

performed to predict the distribution of the fragments and their characteristics. The mean 

difference, resulting from the Monte Carlo simulations, for each of the desired fragment 

characteristics within a boundary of interest, are displayed in Table 4.4.  

Table 4.4 Mean of the fragment characteristic differences. 

Characteristic Mean Difference 

Fragment Counts, Frags 0.876 

Total Velocity, m/s 5400.021 

Average Velocity, m/s 711.287 

Total Mass, kg 1.082 

Average Mass, kg 0.185 

 

An example of the produced distributions from the Monte Carlo simulations is displayed in 

Figure 4.6, fragment count differences, Figure 4.7, fragment velocity differences using EM 

training data, and Figure 4.8, fragment mass differences. From Figures 4.6 and 4.8, the predicted 
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total values along the entire surface of intersection are the same for both the directly fit 

distribution and the predicted distribution. From Figure 4.8, the total mass within the boundary 

of interest has a difference of 5 kg between the direct fit and the predicted fit, yielding a percent 

difference of 20%. However, the average mass within this boundary of interest is the same for 

both distributions. While these distributions seem to fit well to the data and the mass differences 

in Table 4.4 are small, the limited amount of data for this article of interest makes the training 

data biased and therefore a larger naturally fragmenting dataset is required to continue improving 

the mass predictions. 
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Figure 4.6 Monte Carlo simulation results for count differences. 
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Figure 4.7 Monte Carlo simulation results for velocity differences. 
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Figure 4.8 Monte Carlo simulation results for mass differences. 
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5. Conclusions and Future Work 

After training datasets were generated for fragment characteristics using multivariate GMMs 

with and without EM, regression learning could be used. Regressors were trained to predict the 

distribution of fragment characteristics over an entire sphere of intersection. For the ball bearing 

data, one regressor was used to predict total fragment counts and another was used to predict total 

fragment velocities. Different regression methods were compared to RFR, the previous regression 

method selected. K-NN regression with 𝑘𝑘 = 2 was found to produce the most accurate results.  

Integrating the predicted GMMs, the total values within a chosen boundary of interest, on a 

polar-azimuth coordinate system, were then calculated. This model was evaluated using Monte 

Carlo simulations. This procedure was also performed on a naturally fragmenting article, where 

total mass was predicted in addition to total fragment counts and velocities. 

Overall, the proposed model successfully improved count predictions from previous work and 

produced reasonable predictions for fragment velocity and fragment mass, showing the potential 

for this machine learning method. The model proves to make successful predictions that follow 

expected physical trends. Although there are still improvements to be made, this work shows that 

there is potential in the use of machine learning to predict fragmentation characteristics for various 

detonation scenarios.  

In the future, this method may be used to find new trends unknown by current technology. 

Understanding these trends will reduce the uncertainty of collateral damage estimates, which in 

turn will minimize the collateral damage of the weapon in use. Future work will require other static 

arena test data from more realistic articles of interest, larger than the realistic dataset collected, 

shown in Table 3.2. Over time, the model will most likely be improved as more data become 

available and are augmented with the dataset. Eventually, this model will need to be tested on an 

actual system as the exact values for fragment counts and velocities are rarely collected. 
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Some machine learning algorithms require large amounts of data in a dataset, which can 

prevent bias and improve variance. The balance between these two characteristics can often be 

improved by including larger amounts of training data. In the case that more naturally fragmenting 

data cannot be obtained, there are other techniques presented in literature that can be used to 

generate synthetic data, to increase the amount of data in a training dataset. Variational 

autoencoders are a common generative machine learning technique used to produce more data 

from current data [40]. This generated dataset will be similar to the original dataset and can then 

be augmented with the original information. 

Also under consideration for future work are trials with different techniques to improve the 

model. Regression techniques have been the primary focus thus far, but neural networks are also 

under consideration. With neural networks, more complex trends might be learned to improve the 

model. This method could also allow the introduction of physical constraints into the training 

process to prevent any predictions that disobey fragmentation behavior. Investigations may also 

be performed on other distributions for training data generation. There may be improvements to 

be made on the GMMs, other than what has been tested previously [3]. 

Though this proposed procedure could predict the desired outputs well, the idea of creating 

new applicable equations, or improving fundamental equations such as Mott’s and Gurney’s 

equations, is also of great interest. Symbolic regression can be used to search through mathematical 

models to assemble equations that best fit the dataset. However, this method can be difficult, 

especially with large datasets. In 2020, a paper proposed the use of machine learning to extract 

symbolic equations from their datasets: simple particle motion and black matter simulations [41]. 

This idea of symbolic regression using machine learning has potential in this field of study as well. 
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By both improving the fragment distribution predictions and producing new fragment 

characteristic predictions, i.e. velocity and mass distributions, this thesis successfully demonstrates 

the potential in machine learning for fragmentation fly-out predictions from static arena test data. 



 
 

50 
 

REFERENCES 

[1] “Warheads,” FAS Available: https://man.fas.org/dod-
101/navy/docs/es310/warheads/Warheads.htm. 

 
[2] “Chapter 13 Warheads,” FAS Available: https://man.fas.org/dod-

101/navy/docs/fun/part13.htm. 
 

[3] Mulekar, O. S., Bevilacqua, R., Jerome, E. L., and Hatch-Aguilar, T. J., “Transfer function 
to predict warhead fragmentation in-flight behavior from Static Data,” AIAA Journal, vol. 
59, 2021, pp. 4777–4793. https://doi.org/10.2514/1.j060226. 

 
[4] Gold, V.M., “Fragmentation Model for Large L/D (Length over Diameter) Explosive 

Fragmentation Warheads,” Defense Technology, Vol. 13, No. 4, 2017, pp. 300-309. 
https://doi.org/10.1016/j.dt.2017.05.007. 

 
[5] Mott, N. F., “Fragmentation of Shell Cases,” Proceedings of the Royal Society of London. 

Series A. Mathematical and Physical Sciences, vol. 189, 1947, pp. 300–308. 
http://doi.org/10.1098/rspa.1947.0042. 

 
[6] Felix, D., Colwill, I., and Harris, P., “A Fast and Accurate Model for the Creation of 

Explosion Fragments with Improved Fragment Shape and Dimensions,” Defence 
Technology, vol. 18, 2022, pp. 159–169. https://doi.org/10.1016/j.dt.2020.12.004. 

 
[7] Cohen, E. A., “New Formulas for Predicting the Size Distribution of Warhead Fragments,” 

Mathematical Modelling, vol. 2, 1981, pp. 19-32. https://doi.org/10.1016/0270-
0255(81)90008-7. 

 
[8] Elek, P., and Jaramaz, S., “Fragment Mass Distribution of Naturally Fragmenting 

Warheads,” FME Transactions.  
 

[9] Gurney, R. W., “The Initial Velocities of Fragments from Bombs, Shell, Grenades,” 1943. 
 

[10] Wang, M., Lu, F., Li, X., and Cao, L., “A Formula for Calculating the Velocities 
of Fragments from Velocity Enhanced Warhead,” Propellants, Explosives, Pyrotechnics, 
vol. 38, 2012, pp. 232–237. https://doi.org/10.1002/prep.201200025. 

 
[11] Breech, B. A., “Extension of the gurney equations to two dimensions for a 

cylindrical charge,” 2011.  
 

[12] Baker, W. E., Dodge, F. T., and Westine, P. S., Joint Munitions Effectiveness 
Manual (JMEM), U.S. Air Force, 1969.  

 
[13] “Fragmentation Data Collection and Analysis for JMEMs Arena Tests,” SBIR 

Available: https://www.sbir.gov/node/561506. 
 

https://doi.org/10.2514/1.j060226
https://doi.org/10.1016/0270-0255(81)90008-7
https://doi.org/10.1016/0270-0255(81)90008-7
https://doi.org/10.1016/0270-0255(81)90008-7
https://doi.org/10.1016/0270-0255(81)90008-7


 
 

51 
 

[14] “Arena Test Produce Goliath Data,” Eglin Air Force Base Available: 
https://www.eglin.af.mil/News/Article-Display/Article/392972/arena-test-produce-
goliath-data/.   

 
[15] “Holloman High Speed Test Track Sets Record with Fastest Recovery Mission in 

30-Plus Years with Reusable Sled,” Air Force Materiel Command Available: 
https://www.afmc.af.mil/News/Article-Display/Article/3050771/holloman-high-speed-
test-track-sets-record-with-fastest-recovery-mission-in-30/. 

 
[16] Hay, R. F., Gibson, G. M., Lee, M. P., Padgett, M. J., and Phillips, D. B., “Four-

Directional Stereo-Microscopy for 3D Particle Tracking with Real-Time Error 
Evaluation,” Optics Express, vol. 22, 2014, p. 18662. 
https://doi.org/10.1364/oe.22.018662. 

 
[17] King, S., “Camera System Captures, Analyzes Munition Detonation Data,” Air 

Force Material Command Available: https://www.afmc.af.mil/News/Article-
Display/Article/2975486/camera-system-captures-analyzes-munition-detonation-data/. 

 
[18] “Camera System Captures, Analyzes Munition Detonation Data,” Eglin Air Force 

Base Available: https://www.eglin.af.mil/News/Article-Display/Article/2974486/camera-
system-captures-analyzes-munition-detonation-data/. 

 
[19] Gold, V. M., Baker, E. L., Hirlinger, J. M., and Ng, K. W., “A Method for 

Predicting Fragmentation Characteristics of Natural and Performed Explosive 
Fragmentation Munitions,” Sep. 2001. 

 
[20] Tipton, R. E., “The CALE User’s Manual”, Version 910201, 1991. 

 
[21] Gold, V. M., Baker, E. L., Poulos, W. J., and Fuchs, B. E., “PAFRAG Modeling of 

Explosive Fragmentation Munitions Performance,” International Journal of Impact 
Engineering, vol. 33, 2006, pp. 294–304.  

 
[22] Gold, V. M., Baker, E. L., and Poulos, W. J., “Modeling Fragmentation 

Performance of Natural and Controlled Fragmentation Munitions,” Apr. 2007. 
 

[23] Gold, V. M., Baker, E. L., and Pincay, J. M., “Computer Simulated Fragmentation 
Arena Test for Assessing Lethality and Safety Separation Distances of Explosive 
Fragmentation Ammunitions,” Computational Ballistics III, 2007. 
https://doi.org/10.2495/cbal070171. 

 
[24] Gold, V. M., “Fragmentation Model for Large L/D (Length Over Diameter) 

Explosive Fragmentation Warheads,” Defence Technology, vol. 13, 2017, pp. 300–309. 
https://doi.org/10.1016/j.dt.2017.05.007. 

 

https://doi.org/10.1016/0270-0255(81)90008-7
https://doi.org/10.1016/0270-0255(81)90008-7
https://doi.org/10.1016/0270-0255(81)90008-7


 
 

52 
 

[25] Tiile, R. N., “Artificial Neural Network Approach to Predict Blast-Induced Ground 
Vibration, Airblast and Rock Fragmentation,” thesis, 2016. 
http://scholarsmine.mst.edu/masters_theses/7571. 

 
[26] Enayatollahi, I., Aghajani Bazzazi, A., and Asadi, A., “Comparison between neural 

networks and multiple regression analysis to predict rock fragmentation in open-pit mines,” 
Rock Mechanics and Rock Engineering, vol. 47, 2013, pp. 799–807.  

 
[27] Gerbaud, V., and Demirel, Y., “Probabilistic Approach in Thermodynamics,” 

Nonequilibrium Thermodynamics: Transport and Rate Processes in Physical, Chemical 
and Biological Systems, ELSEVIER Science LTD, 2019, pp. 711–791. 

 
[28] Gensdarmes, F., “Methods of Detection and Characterization,” Nanoengineering: 

Global Approaches to Health and Safety Issues, P.I. Dolez, ed., Elsevier, 2015, pp. 55–84. 
 

[29] Eslambolchilar, P., Komninos, A., and Dunlop, M., “Machine Learning Basics,” 
Intelligent Computing for Interactive System Design: Statistics, Digital Signal Processing, 
and Machine Learning in Practice, New-York: Association for Computing Machinery, pp. 
143–193. https://doi.org/10.1145/3447404.3447414. 

 
[30] McGonagle, J., Pilling, G., Dobre, A., Tembo, V., Kurmukov, A., Chumbley, A., 

Ross, E., and Khim, J., “Gaussian Mixture Model,” Brilliant Math & Science Wiki 
Available: https://brilliant.org/wiki/gaussian-mixture-
model/#:~:text=A%20Gaussian%20mixture%20of%20three,subpopulations%20within%
20an%20overall%20population. 

 
[31] Gebru, I. D., Alameda-Pineda, X., Forbes, F., and Horaud, R., “EM Algorithms for 

Weighted-Data Clustering with Application to Audio-Visual Scene Analysis,” IEEE 
Transactions on Pattern Analysis and Machine Intelligence, vol. 38, 2016, pp. 2402–2415. 
https://doi.org/10.1109/TPAMI.2016.2522425.  

 
[32] Theodoridis, S., and Koutroumbas, K., Pattern Recognition, Fourth Edition, 4th 

ed., Academic Press, Inc., USA, 2008. 
 

[33] Kramer, O., Unsupervised K-Nearest Neighbor Regression, ArXiv. 2011. 
https://doi.org/10.48550/arXiv.1107.3600. 

 
[34] “Distance Weighted K-NN Algorithm” Available: http://www.data-

machine.net/nmtutorial/distanceweightedknnalgorithm.htm. 
 

[35] Kannan, K. S., and Manoj, K., “Outlier Detection in Multivariate Data,” Applied 
Mathematical Sciences, vol. 9, 2015, pp. 2317–2324. 
https://doi.org/10.12988/ams.2015.53213. 

 
[36] Glen, S., “Mahalanobis distance: Simple definition, examples,” Statistics How To 

Available: https://www.statisticshowto.com/mahalanobis-distance/.  

https://doi.org/10.1145/3447404.3447414
https://doi.org/10.48550/arXiv.1107.3600


 
 

53 
 

 
[37] Kelleher, J. D., “Neural Networks: The Building Blocks of Deep Learning,” Deep 

Learning, The MIT Press, 2019, pp. 65–100. 
 

[38] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., 
Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., 
Cournapeau, D., Brucher, M., Perrot, M., and Duchesnay, E., “Scikit-learn: Machine 
Learning in Python,” Journal of Machine Learning Research, vol. 12, 2011, pp. 2825–
2830. 

 
[39] Kroese, D. P., Brereton, T., Taimre, T., and Botev, Z. I., “Why The Monte Carlo 

Method Is So Important Today,” WIREs Computational Statistics, vol. 6, 2014, pp. 386–
392. https://doi.org/10.1002/wics.1314. 

 
[40] Foster, D., “Variational Autoencoders,” Generative Deep Learning: Teaching 

Machines to Paint, Write, Compose, and Play, O'Reilly Media, 2019. 
 

[41] Cranmer, M. D., Sanchez-Gonzalez, A., Battaglia, P. W., Xu, R., Cranmer, K., 
Spergel, D. N., and Ho, S., “Discovering Symbolic Models from Deep Learning with 
Inductive Biases,” Advances in Neural Information Processing Systems, 2020. 

 

 

https://doi.org/10.1002/wics.1314

	Machine Learning to Predict Warhead Fragmentation In-Flight Behavior from Static Data
	Scholarly Commons Citation

	Larsen_MSAE title page
	Larsen_Thesis_Final_Draft (without additional pages)
	1. Introduction
	2. Preliminaries and Review of Relevant Literature
	3. Methodology
	4. Results and Analysis
	5. Conclusions and Future Work
	REFERENCES


	Text4: November 2022
	Text3: Katharine Larsen
	Text2: IN-FLIGHT BEHAVIOR FROM STATIC DATA
	Text1: MACHINE LEARNING TO PREDICT WARHEAD FRAGMENTATION 
	Text12: Member, Dr. Hever Moncayo
	Text11: Member, Dr. Richard Prazenica
	Text10: Member, Dr. Troy Henderson
	Text9: Chair, Dr. Riccardo Bevilacqua
	Text8: This Thesis was prepared under the direction of the candidate’s Thesis Committee Chair, Dr. Riccardo Bevilacqua, Department of Aerospace Engineering, and has been approved by the members of the Thesis Committee. It was submitted to the Office of the Senior Vice President for Academic Affairs and Provost, and was accepted in the partial fulfillment of the requirements for the Degree of Master of Science in Aerospace Engineering.
	Text7: Katharine Larsen
	Text6: IN-FLIGHT BEHAVIOR FROM STATIC DATA
	Text5: MACHINE LEARNING TO PREDICT WARHEAD FRAGMENTATION 
	Date_3: 
	Date_2: 
	Date: 


