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Key points 
 
1. Plant biopharming is set to dominate commercial recombinant protein expression for 

specific proteins. 
2. The choice of plant species depends on a multitude of factors and is determined on a case-

by-case basis. 
3. As a leaf based expression system grasses would have to compete predominantly with 

tobacco and alfalfa. 
4. The grass-endophyte symbiosis offers a number of unique possibilities for biopharming. 
 
Keywords: biopharming, endophyte, forage, transformation 
 
Introduction 
 
Whole genome sequencing is a remarkable scientific tool.  Developing tools for recombinant 
protein technologies is arguably one of the strongest growth areas in applied biological 
research.  The drive for this can be attributed to both the rising demand for highly purified 
proteins and secondary metabolites, and the costs associated with producing them.  The list of 
organisms being investigated as biofactories for production of pharmaceuticals, 
nutraceuticals, industrial enzymes and industrial polymers is expanding; although in order to 
be successful in this area new organisms must first compete with the traditional systems 
including bacteria, yeast and Chinese Hamster Ovary cells (CHO cells).  To our knowledge 
forage grasses have been overlooked as a potential biofactory candidate.  In this paper the 
potential of grasses as recombinant protein expression systems for the manufacture of 
commercially valuable products is explored. 
 
Advantages of plant biopharming 
 
Costs 
 
The main reason for investigating plants as biofactories is cost.  It has been estimated that to 
produce a recombinant protein in a mammalian cell culture can cost up to 100 times more 
than a plant system.  Bacterial and yeast fermentation systems fare better but even they are 
between 10 to 50 times more expensive than plant systems (Giddings, 2001).  Furthermore, 
current plant-based systems are amazingly flexible and are scaleable at comparatively little 
cost.  In comparison, up-scaling cell-based production systems requires the construction of 
expensive equipment, and animal-based production systems are limited by the breeding cycle 
of the animal. 
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Tissue specific gene expression 
 
Plants can generate recombinant proteins using either prokaryotic (chloroplast) or eukaryotic 
(cytoplasmic and secretory) machinery; they also offer a range of expression organs, e.g. seed, 
leaf, root, fruit and tubers.  A number of these organs can also be used as the delivery system 
of the final product.  Examples include active and passive vaccines (antibodies).  
Approximately 20% of biopharmaceuticals under development are antibodies, and around 200 
of these are already at the clinical trial stage.  It is anticipated that the use of secretory 
immunoglobulin-A (sIgA) will be widely used in the future as a means of passive vaccination 
because of the stability of sIgA in the mucosa (Schillberg et al., 2003).  Plants are capable of 
producing the most complex antibodies (sIgA) and in some cases plant produced antibodies 
need no further processing other than quantification. 
 
Quality and safety considerations 
 
Cell systems based on bacteria, yeast or animal lines have inherent risks associated with 
contamination of fermentation vats by a range of microorganisms.  Contaminants can multiply 
fast, produce undesirable by-products and gases, and result in high costs for cleaning and lost 
production.  If undetected, preparations made from infected vats impart a considerable safety 
risk.  Plant expression systems present no such threat.  Furthermore, animal cell lines may 
also harbour undetected viral or other infectious particles that can cause disease in humans.  
Again, no such concerns arise from using plant material. 
 
Despite the advantages of cost and flexibility of using plants as mentioned above, to date 
there are only a relatively small number of commercial products/services manufactured 
through plant biopharming technologies, some of these are listed in Table 1. 
 
 
Table 1  Examples of commercial biopharming in plants 
  

Product/service Company Web site 
 
Oleosin::protein fusion purification SemBioSys Genetics Inc. www.sembiosys.com 
Human secreted alkaline phosphatase and  Phytomedics Inc. www.phytomedics.com 
    botanical therapeutics 
Monoclonal antibodies and plasmatic proteins MeDicaGO www.medicago.com 
CaroRx™ RhinoRx™ DoxoRx™ Planet Biotechnology Inc. www.planetbiotechnology.com 
Lipase, HSA, Lactoferrin, Collagen Meristem ® Therapeutics Inc. meristem-therapeutics.com 
Avidin, trypsin, β-glucuronidase, ProdiGene Inc. www.prodigene.com 
    aprotinin and oral vaccines 
  

 
 
Disadvantages of plant biopharming 
 
Expression levels of heterologous proteins 
 
One of the most important criteria in selecting an organism as a biopharming host is adequate 
expression of the heterologous protein in appropriate tissues.  Until recently plants (with their 
comparatively low expression of introduced genes), were considered to be the poor cousins of 
the recombinant protein expression world.  The situation has changed dramatically through 
the use of appropriate promoters (tissue specific as well as inducible) and more astute 
construct design including choice of untranslated regions, insertion of introns, incorporation 
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of Kozac’s sequence for initiation of translation, sub-cellular targeting/retention sequences, 
and optimal use of codons and polyadenylation signal sequences.  In addition, the 
development of chloroplast transformation systems has enabled further increases in protein 
expression levels.  Combined, these have facilitated accumulation of heterologous proteins to 
36% of total soluble protein (TSP) in seeds (De Jaeger et al., 2002), 25% of TSP in 
chloroplast expression systems (Tregoning et al., 2003) and up to 21% of TSP (but more 
typically 0.5-2%) in vacuole, apoplast or endoplasmic reticulum (ER) -targeted systems 
(Conrad & Fielder, 1998). 
 
Glycosylation 
 
The majority of proteins that are of high value are destined for the mammalian circulatory 
system.  One of the biggest stumbling blocks for this market is that in their natural host, many 
of these proteins are decorated with specific carbohydrate residues, a process known as 
glycosylation.  Glycosylation in plants frequently includes the residues β(1,2) xylose and 
α(1,3) fucose that are not produced by mammals, and in some cases have been shown to be 
immunogenic in humans (for review see Lerouge et al., 2000).  A number of strategies exist 
today where the incorporation of these motifs has been minimised and the glycosylation 
pattern has been partially humanised by the over expression of β(1,4) galactosyl transferase 
(Lerouge et al., 2000).  Prior to secretion from the endoplasmic reticulum, the final key 
glycosylation reaction required for the maturing polypeptide is the incorporation of Neu5Ac 
N-terminal sialic acid.  At present this is not performed by any of the recombinant plant 
expression systems; indeed it has been predicted that it will require complex engineering to 
generate plants with this capability (Gormond & Faye, 2004).  However, even CHO cells (the 
most commonly used commercial mammalian expression system) do not replicate the human 
sialic acid glycosylation step 100% faithfully.  Instead they incorporate both Neu5Ac and 
Neu5Gc sialic acid motifs where the latter has also been shown to be immunogenic in humans 
(Varki, 2001).  It is predicted that our ability to manipulate this vital step in recombinant 
protein expression in plants will improve as our understanding of glycosylation processes 
advance. 
 
Environmental and food safety 
 
Public debate regarding plant biopharming tends to focus on potential negative issues 
associated with containment of genetically modified organsisms (GMOs) such as escapes, 
pollen spread, horizontal gene transfer, difficult site cleanup procedures and the possibility of 
contamination of the food chain (Conner et al., 2003).  There is general agreement in the 
science community that these issues need to be addressed on a case-by-case basis when 
considering any GM species for release.  With respect to transgenic grasses, risk of dispersal 
of species such as Lolium perenne L. (perennial ryegrass), L. multiflorum Lam. (Italian 
ryegrass), Festuca pratensis Huds. (meadow fescue) and F. arundinacea Schreb. (tall fescue) 
have been categorised as “substantial and widespread” (Ammann et al., 2001) as the species 
are outcrossing and the pollen dispersed by wind.  Stable integration of transgenes into wild 
populations depends on several factors including whether the introduced gene confers any 
selective advantage on the progeny or if the transgenic crop is capable of being weedy in its 
own right.  Nevertheless, there is a likelihood of gene flow from transgenic ryegrass to other 
grass species unless technological solutions such as chloroplast transformation (if chloroplasts 
are exclusively maternally inherited), terminator technology (imposes reversible sterility on 
reproductive plant parts), or transgenic endophytes (see later section) are developed.  With 
regard to the issue of food contamination, the use of forage grasses as an expression system 
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provides an attractive alterative to other food crops used directly for human consumption, as 
humans are unlikely to ingest the material.  Equally however, grazing animals must also be 
considered when risk analyses are being conducted.  
 
Crop choice 
 
For input traits (e.g., herbicide resistance) and output traits (e.g., modified lipid profile oil 
crops) the trait suits the crop, in contrast, for biopharming the crop suits the product.  The 
crop choice depends on a large variety of factors and will be determined on a case-by-case 
basis for each product.  In many cases the products can be targeted to a variety of subcellular 
compartments/tissues/organs, the requirements depend on the product itself and its designated 
use. Currently, biopharming utilises cell culture, root culture, root expression, leaf expression, 
tuber expression and seed expression with the latter three dominating current industry activity.  
In addition, hairy root cultures produced by Agrobacterium rhizogenes infection have 
potential as an expression system (Christey & Braun, 2004). 
 
The species chosen must be able to quickly produce a large amount of recoverable recombinant 
active protein or secondary metabolite and at the same time produce low levels of toxic 
compounds; in essence it will provide the best compromise between production and profit. 
Contemporary crops are likely targets for lower-value proteins due to existing agronomic 
practices and processing systems, e.g. avidin is now produced in Zea mays (maize) at 10% of 
the cost compared with the extraction of native avidin from egg white (Hood et al., 1997). 
 
Extraction and purification are usually the greatest cost components of biopharming. The 
compromise for grain products is that while it costs relatively little to store in comparison to 
frozen leaf or fruit material, the cost of extraction and purification from grain is higher than 
from leafy material.  In some cases the technology developed by SymBioSys may help negate 
these costs.  In this technology the recombinant protein is generated as a fusion with oleosin, 
the purification then takes advantage of the unique oleosin-oil body relationship that is formed 
during seed formation. A drawback is that the oleosin-fusion cannot be used directly for 
proteins requiring the post-translational modifications afforded in the secretory pathway. 
 
Zea mays and other seed crops including cereals (Oryza spp.- rice and Triticum spp. -wheat) 
and legumes (Pisum spp. - pea and Glycine spp. - soybean) and some oil seed plants are being 
investigated as potential crops.  While the overall protein yield/ha is lower in seeds compared 
with leafy systems, the proteins in seeds tend to be stable at ambient temperature and as such 
can make an ideal storage and delivery system for some products such as active and passive 
oral or topically-applied vaccines. 
 
Current leafy plants for delivery systems include Nicotiana tabacum (tobacco), Medicago 
sativa (Lucerne) and Lactuca sativa (lettuce).  The choice of N. tabacum is predominantly 
historical where the transformation systems (nuclear and chloroplast) are all well established, 
and there are the genetic and agronomic factors required to generate a high biomass return.  
Other advantages for N. tabacum include prolific seed yield and the fact that the risk of 
contamination is reduced as it is not a food crop.  As a leaf crop however it must be pre-
processed (frozen or dried) before transporting, or processed immediately after harvest due to 
the relatively unstable environment for proteins in the senescing leaf.  Alternative leaf crops 
under investigation at this time include perennials such as M. sativa, which is easy to 
propagate; hence it is possible to generate large amounts of clonal material with relatively 
uniform expression.  M. sativa also has a very consistent glycosylation pattern (Fischer et al., 
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2004) as well as reduced fertiliser requirements due to its symbiotic relationship with nitrogen 
fixing bacteria.  A further advantage of M. sativa is that it can be harvested up to nine times in 
a year resulting in around 12t DM/ha per year (D'Aoust et al., 2004). 
 
A modified wet fractionation of leaf material has been developed by MeDicaGo that allows 
the concentration (as opposed to expensive purification) of the bioactive molecule in M. 
sativa pellets to be stored for months before distribution.  Combining inducible promoters 
with wet fractionation would make leafy crops very competitive with seed crops for certain 
applications such as direct feeding to animals. 
 
Industrial enzymes, proteins and polymers: biopharming and combinatorial 
biopharming with output trait plants 
 
Billion dollar pharmaceutical markets are not always needed in order to make a biopharming 
product commercially successful.  Avidin, used in numerous laboratory-based assays and 
processes, until recently was purified from the egg white of chicken eggs.  Prodigene Inc. has 
now commercialised recombinant avidin produced in Zea mays and is investigating the 
production of a number of other technical enzymes (Twyman et al., 2003).  M. sativa is being 
investigated as a source of recombinant phytase enzyme that is normally incorporated into 
animal feed.  Austin-Phillips & Ziegelhoffer (2001) reported they achieved economically 
viable expression in the field and that it could be used directly in animal feed with minimal 
preparation, thus replacing the microbial enzyme.  Not all biopharming will be immediately 
profitable.  An example of this has been the failure to commercialise plants producing 
biodegradable plastics.  Monsanto purchased the rights to this technology in 1994 but has 
found that even with a plant generating two separate products (plastic from the leaf and canola 
oil from the seed) that the overall product was not commercially viable (Gross & Kalra, 
2002).  However, an alternative approach that may be sufficient to tip the scales in favour of 
commercialisation could be the combination of an inducible promoter with a dedicated 
perennial leafy plant thus enabling multiple high yields in a single year. 
 
Grasses as biofactories 
 
If grasses are to be considered as biofactories, it is necessary to examine what it would take to 
engineer such a plant as well as the unique advantages it might deliver in comparison to 
existing crops.  Work performed in New Zealand is detailed below. 
 
Genetic transformation of ryegrass 
 
Technologies for genetic transformation of forage grasses are now well established (Wang et 
al., 2001).  In general, the methodologies have been adapted from those developed for grain 
species such as Oryza spp., Zea spp. and Triticum spp. but by comparison, Lolium perenne is 
relatively recalcitrant to transformation.  Efficient transformation is largely genotype-
dependant due to the heterozygous nature of the plants.  Consequently the generation of large 
plant numbers can be a laborious process.  Until recently the emphasis has concentrated on 
development of protocols for stable integration of genetic constructs and regeneration of 
plants.  However, with the advancement in gene isolation techniques and the rapid 
implementation of plant functional genomics programs, reports of successful gene expression 
studies in grass species have increased.  Routine transformation systems now exist for Lolium 
perenne, L. multiflorum and F. arundinacea that focus on the manipulation of genes involved 
in the regulation of flowering and improvement of energy content (Figure 1). 
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Figure 1  Production of transgenic ryegrass A) Regeneration of plants from embryogenic 
callus cultures.  Micro-projectile bombardment was used to co-transformation calli with 
plasmids containing an expression cassette for the over-expression of the green fluorescent 
protein (GFP), and the hygromycin phosphotransferase (hph) gene as the selectable marker.  
B) Transformed Lolium perenne plantlets growing in vitro following regeneration.  C) 
Constitutive expression of GFP in the leaf blade (top) as compared to a non-transformed plant 
(bottom).  D) Transformed Lolium perenne in the greenhouse six months post transformation.  
E) Southern hybridisation analysis of transformants digested with EcoRI or EcoRI/XbaI and 
hybridised with a GFP probe. 
 
 
Genotypes responsive to tissue culture and transformation remain the key component of a 
reproducible forage grass transformation system.  The genera Lolium and Festuca are self-
incompatible requiring cross-pollination; therefore a high degree of heterozygosity exists 
within populations that extend to responsiveness of genotypes in tissue culture.  Initially this 
posed a limitation to transformation in Lolium perenne where low numbers of independently 
transformed lines resulted.  Transformation frequencies were significantly improved by 
addressing the need for genotypes that perform well in tissue culture.  Altpeter et al. (2000a) 
identified homozygous inbred lines of Lolium perenne that responded well in culture, and 
were subsequently used to develop an optimised transformation protocol.  Manipulation of 
growth media components was used by Cho et al. (2000) to produce highly regenerative 
cultures for improved transformation frequency in Fescua.  In AgResearch Ltd., the use of 
tissue culture responsive genotypes derived from elite Lolium perenne cultivars, resulted in a 
five-fold increase in transformation efficiency over material obtained from seedlings. 
 
Direct DNA transfer by micro-projectile bombardment forms the primary method for 
transformation of many grass species.  A range of transformed grasses have now been 
produced using this method, including Lolium perenne (Spangenberg et al., 1995b; Dalton et 
al., 1999; Altpeter et al., 2000b), L. multiflorum (Ye et al., 2001; Dalton et al., 1999), F. 
arundinacea (Cho et al., 2000; Spangenberg et al., 1995a), F. rubra L. (red fescue) (Cho et 
al., 2000; Spangenberg et al., 1995a), Poa pratensis L. (Kentucky bluegrass) (Ha et al., 
2001), Dactylis glomerata L. (Orchardgrass) (Cho et al., 2000) and Elymus junceus Fisch. 
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(Russian wild rye) (Wang et al., 2004).  Typically, embryogenic callus cultures derived from 
tissue culture-responsive genotypes have been used as the target for transformation. 
 
In the future, Agrobacterium-mediated transformation is likely to emerge as the favoured 
method for transformation of grasses.  It is currently the preferred method for transforming 
many cereal species since the successful transformation of Oryza sativa using this method (Hiei 
et al., 1994).  The primary advantage of Agrobacterium as a strategy for gene transfer is the 
ability to obtain plants with a simple transgene integration pattern and a higher proportion of 
plants containing a functional expression cassette.  In general, Agrobacterium-mediated 
transformation is likely to generate plants containing 1-3 transgene loci that often contain only a 
single T-DNA, whereas micro-projectile bombardment frequently generates high copy number 
loci, complex in structure and containing up to 20 transgene copies (Kohli et al., 2003).  
Agrobacterium-mediated transformation has been compared to micro-projectile bombardment 
in Lolium perenne (Altpeter et al., 2003).  Of the 49 plants resulting from Agrobacterium 
transformation, the majority displayed two transgene inserts at independent loci whereas micro-
projectile bombardment generated higher numbers of plants with multi-copy inserts. 
 
The potential for somaclonal variation arises following the transformation process and care is 
required when attributing an alteration in phenotype to the inserted transgene (Conner & 
Christey, 1994).  Analysis of transgenic ryegrass lines in the laboratory has identified 
chromosomal instability, including ploidy change and aneuploidy.  Cytometric analysis of 
ploidy in a pool of 30 independently transformed plant lines revealed 6 lines to be tetraploid 
or aneuploid while the remaining 24 were cytologically stable with a diploid chromosome 
number (2n=2x=14).  Further to this, molecular cytogenetics has shown rearrangement of 5S 
and 18S rDNA in transformed lines independent of ploidy change (Ansari & Richardson, 
pers. comm.). 
 
Transgenic approaches are now being implemented as a tool for grass improvement.  Target 
traits include resistance to abiotic stress, improved feed quality, control of plant development, 
and disease resistance.  Generally the altered traits either exhibit a low heritability for the 
character or the trait has not been identified within the existing germplasm, limiting the ability 
for improvement by traditional breeding techniques. 
 
Plants encoding genes for the accumulation of fructans have been produced.  Ye et al. (2001) 
used the sacB gene from Bacillus to increase fructan levels in L. multiflorum.  Contrary to 
expectations, total levels of fructose were reduced and severely stunted the growth of the 
resulting plants. In contrast, the Triticum genes encoding sucrose-fructan 6-
fructosyltransferase and sucrose-sucrose 1-fructosyltransferase under the expression of the 
CaMV35S promoter displayed a significant elevation in fructan content and increased 
tolerance to freezing (Hisano et al., 2004). 
 
Improvement of feed value has been approached directly via the regulation of genes 
associated with lignin biosynthesis to reduce lignin content of the whole plant, and also by the 
manipulation of flowering genes to minimise plant tissues containing a relatively higher lignin 
content.  Down-regulation of the CAD and COMT genes from F. arundinacea was used to 
decrease lignin content (Chen et al., 2003; Chen et al., 2004).  An increase in in vitro dry 
matter digestibility (9.8-10.8%) was associated with these plants.  The vegetative phase of F. 
rubra was extended by over-expression of a Lolium clone of the terminal flower gene (Jensen 
et al., 2004).  The expression of this gene resulted in the full inhibition of floral development 
over a two-year period.  However, use of this strategy to improve feed value would require 
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the association of a switch for floral induction.  In the laboratory the acceleration of flowering 
by up to three weeks has been demonstrated in F. arundinacea, by the expression of an 
Arabidopsis thaliana clone of the FT gene (Kardailsky, pers. comm.). 
 
Introduction of a partial coat-protein gene into Lolium perenne, to provide resistance against 
ryegrass mosaic virus was achieved by Xu et al. (2001).  Plant lines within the population of 
transformed lines expressing the construct displayed high, moderate, low or partial resistance. 
 
Grass-endophyte biopharming 
 
One of the most intriguing possibilities for biopharming temperate grasses is the presence, in 
many of them, of fungal endophytes, particularly those of the Neotyphodium/Epichloë genus.  
For example, N. lolii and N. coenophialum are fungal endophytes that live entirely within the 
intercellular spaces of Lolium perenne and F. arundinacea respectively.  Infection is 
symptomless and the endophyte relies entirely on the host plant for dissemination via the seed 
or through vegetative structures (Schardl et al., 2004).  The association is mutually beneficial 
since the endophyte confers a number of biotic and abiotic advantages to the host, including 
enhanced plant growth, protection from certain mammalian and insect herbivores, enhanced 
resistance to nematodes, resistance to some fungal pathogens and in some associations, 
enhanced drought tolerance (Scott, 2001; Schardl, 2001).  Some of these benefits are due to 
the production of fungal secondary metabolites such as peramine (pyrrolopyrazine) and the 
loline (aminopyrrolizidine) alkaloids.  However, endophytes also produce additional 
secondary metabolites such as ergovaline (ergopeptine) and lolitrem (indole diterpene) 
alkaloids, which cause mammalian toxicoses. 
 
Although the endophyte comprises a very small amount of the total grass biomass (~0.5%), 
certain fungal secondary metabolites have been shown to accumulate to very high levels; lolines 
for example can accumulate to concentrations of up to 5% dry weight (Craven et al., 2001; 
Spiering et al., 2002). In addition, the endophytes remain metabolically active throughout the 
growth of the host grass (Tan et al., 2001); hence compounds associated with endophyte 
infection are continually produced which would allow for year round production.  Clearly then, 
the potential exists to use grasses infected with endophytes to produce highly bioactive 
secondary metabolites. 
 
Whilst there is considerable interest in secondary metabolites produced from endophytes, 
biopharming of fungal-derived secondary metabolites from infected grasses is not new.  For 
many decades alkaloids with useful pharmacological properties were obtained from grasses 
infected with the ergot fungus Claviceps purpurea (Hoffman, 1978).  Perhaps the most well-
known ergot alkaloid is lysergic acid diethylamide (LSD), but other more complex 
ergopeptine alkaloids (similar to those produced by endophytic fungi of grasses) also 
accumulate to significant levels.  Although nowadays these compounds can be produced 
directly from fermentation cultures of C. purpurea, the above example illustrates the potential 
for using infected grasses as biofactories to produce secondary metabolites not normally 
produced by plants themselves.  Indeed, some of the enzymes associated with fungal 
biosynthetic pathways are novel to fungi.  Crucially, although fermentation technology has 
been successful for producing certain secondary metabolites from some fungi, many 
compounds with interesting bioactive properties are only produced when the fungus is in 
association with its host grass.  The insect feeding deterrents peramine and loline are cases in 
point, being barely detectable in axenic culture, but accumulating to high levels in infected 
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grasses.  This may well be true for many other as yet to be discovered compounds where 
biopharming of infected grasses will be the only way of producing useful quantities. 
 
At AgResearch Ltd., a group is interested in identifying additional endophyte-derived 
secondary metabolites, of which it is believed there is a vast undiscovered pool, particularly 
compounds which may have bioactive properties.  In comparison to plants, the filamentous 
fungal genes involved in biosynthetic secondary metabolite pathways are usually clustered, 
thus by identifying particular genes frequently associated with these clusters (for example 
non-ribosomal peptide synthetases), it is possible to quickly isolate all the genes in a 
particular biosynthetic pathway.  A metabolomics approach is being used to help identify the 
compounds produced from these ‘unknown’ biosynthetic pathways.  Ultimately, isolated gene 
clusters encoding novel secondary metabolites can be manipulated at the molecular level, 
allowing, for example, both increased expression of the secondary metabolite, in addition to 
modifying the metabolite for improved properties.  Modified fungal gene clusters could be 
transferred between different endophyte strains, considerably widening the biosynthetic 
potential of grasses infected with these strains.  With some modification, gene clusters 
encoding bioactive secondary metabolites from other fungi could be transferred to the 
endophyte, providing an alternative to more expensive fermentation systems. 
 
Using endophytes as surrogate transformation systems 
 
In addition to modifying existing endophyte secondary metabolites, it is also possible to 
express heterologous proteins in these fungi.  Transformation techniques are well established 
for filamentous fungi, including endophytes, and as such these can be used as surrogate hosts 
to introduce foreign genes into Lolium perenne or other temperate grasses (Murray et al., 
1992).  To demonstrate this potential, AgResearch Ltd. transformed endophyte to over-
express GFP and re-introduced the endophyte into Lolium perenne (Figure 2).  Further to this, 
the levels of heterologous protein produced in these associations will depend in part on the 
regulatory sequences used to drive the expression of the foreign genes.  It is not anticipated 
that achieving high levels of gene expression will be a problem, since transcripts of some 
endophyte genes can accumulate in planta to levels higher than that of equivalent plant house 
keeping genes (Johnson et al., 2003). 
 
 

 
 
Figure 2  Endophyte (E. fesctucae) expressing green fluorescent protein in Lolium perenne 
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Transgenic endophytes pose reduced environmental risks 
 
One significant factor to consider is the degree of environmental risk posed by using 
transgenic endophytes for biopharming.  Neotyphodium endophytes are strictly biotrophic and 
live exclusively within grasses and their seed (Schardl et al., 2004).  Since endophytes are 
asexual and cannot be transmitted horizontally (for example through spores) and they are not 
transmitted through pollen, their only mechanism for dissemination is through seed.  Thus, 
providing seed production is controlled, the risk of large-scale spread of transgenes through 
other means such as wind-dispersed pollen is eliminated.  The strict biotrophic relationship 
also assists in confining the transgenic endophyte to specific regions that are required to bulk 
up seed for large-scale plantings. 
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