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Grass and forage improvement: temperate forages 
 
C.J. Pollock, M.T. Abberton and M.O. Humphreys 
Institute of Grassland and Environmental Research, Plas Gogerddan, Aberystwyth SY23 3EB, 
Wales, UK 
Email: chris.pollock@bbsrc.ac.uk 
 
Key points 
 
1. Plant breeding has contributed significantly to the development of effective grassland 

production systems. 
2. New technologies offer enhanced precision in breeding and access to wider genetic variation. 
3. The requirement for more sustainable production systems will require genetic improvements 

in complex traits where the use of new technology will be vital. 
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Introduction 
 
The grazing ruminant animal has been a key element of temperate agriculture since the 
domestication of sheep and oxen in around 5000 BC (Humphreys, 2003).  Ruminant animals 
provided meat, milk and motive power, and were able to live on plants that humans could not 
use directly.  As agricultural systems developed, their role in recycling nutrients was also 
recognised, animal production forming a key element in rotational agriculture in the middle 
ages.  Less attention was paid to the forages that ruminants ate, although the value of grasses 
and clovers in short-term leys was established by the 12th century, and it was well recognised 
that some permanent pastures were, by nature, more productive than others. 
 
Following the development of practical genetics-based plant breeding in the early 20th 
century, forage improvement became more formalised.  However, the complexities of 
working with perennial outbreeders in mixed systems that were very sensitive to management 
meant that the history of true genetic-based breeding of temperate forages is relatively short.  
The perennial ryegrass variety S 24 for example, was produced in the 1930s based on 
collected ecotypes from UK pastures and unrestricted crossing between selected plants.  This 
generated a variety that was resilient, persistent and productive (in terms of the norm for UK 
pastures at the time), but one that was very heterogeneous and where the potential for genuine 
breeding advances was not fully realised.  Since then, for both grasses and legumes, much 
more attention has been paid to precision crossing and to the incorporation of specific traits 
from individual genotypes, often collected outside the UK.  The results of this process have 
been a continued improvement in yield and quality with some gains in disease resistance and 
grass-clover compatibility. 
 
Improved pasture supports the bulk of livestock production in the UK, with grazed forages 
providing the cheapest feed for ruminant animals, as well as bringing environmental benefits.  
As we enter the 21st century, both the technology and the targets for temperate forage 
breeding are changing rapidly.  There is increased pressure in many developed countries for 
sustainable farming systems that yield both a viable economic return and a range of 
environmental and social goods.  This is changing the nature of plant breeding.  It is our view 
that success in breeding for targets such as nutrient use efficiency, palatability and 
improvements in livestock product quality cannot be done by traditional selection methods, 
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since the traits are complex, expensive to measure and subject to considerable genotype x 
environment (GxE) interactions.  For this reason we first consider what forage breeders can 
achieve with the application of such new technology, and then discuss what targets are likely 
to be important and how the outputs of such programmes will be used. 
 
 
Table 1  Breeding advances in forage crops 
  

 Average genetic gain (%) 
  

Species Annual yield Digestibility2 Intake2 Crude protein2 

 (dry matter)1    
 
Lolium perenne 3.8 1.0 14.7 6.5 
Dactylis golomerata 3.3 2.4   
Trifolium repens 4.9    
Medicago sativa 4.1 3.3  2.7 
  
1per decade-1 (after Humphreys, 1999 ); 2per generation cycle-1 (after Casler, 2001). 
 
 
The impact of modern breeding technologies 
 
Over the last twenty-five years, genetic knowledge has expanded extremely rapidly, driven by 
advances in molecular biology.  The sequencing of entire higher plant genomes has generated 
a huge reference resource, which has proved particularly valuable where close synteny exists 
between sequenced organisms and those used in agriculture.  Among crop plants, Oryza 
sativa (rice) has been sequenced and the degree of alignment between the rice genome and 
other gramineae is very high.  This allows traits to be characterised in non-sequenced 
organisms and equivalent areas of the sequenced genome in rice to be identified, helping to 
identify at the sequence level the basis of useable variation for breeding programmes 
(Armstead et al., 2004).  Sequencing work is also under way for the model legumes Medicago 
truncatula and Lotus japonicus (Young et al., 2003).  This body of information will 
increasingly influence the way in which other forage legumes will be bred in the future. 
 
Marker assisted selection 
 
Of the emerging genetic technologies, marker assisted selection (MAS) is the most likely to 
have an immediate impact on plant breeding.  It depends on the detection of DNA variation 
among individuals using a variety of techniques (Henry, 2001; Forster et al., 2004).  Successful 
breeding using MAS depends on understanding the genetic architecture of relevant traits.  
Traditionally, major gene and polygenic variation has been analysed in different ways, but the 
techniques of Quantitative Trait Locus (QTL) analysis now allow a more integrated approach in 
dissecting complex traits and assessing gene effects.  Quantitative Trait Locus analysis can be 
used to determine the location or locations of variation for a complex trait directly onto the 
genetic map of a particular species.  At the same time, the density of markers on these maps has 
increased dramatically associated with the use of the DNA markers.  Heterozygous molecular 
markers that are tightly linked to traits of interest can be used to speed up selection in breeding 
programmes.  As a result of the International Lolium Genome Initiative (ILGI; Jones et al., 
2002) involving IGER and groups in Australia, Japan and France, a reference linkage map of L. 
perenne has been produced.  It comprises 240 loci covering 811cM on seven linkage groups.  
The map contains 124 co-dominant markers, of which 109 are heterologous anchor restriction 
fragment length polymorphisms (RFLP) probes from from Triticum spp. (wheat), Hordeum spp. 
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(barley), Avena spp. (oats) and O. sativa, allowing comparative relationships to be investigated 
between L. perenne and other Poaceae.  The linkage groups of L. perenne are numbered to 
correspond to the homoeologous groups of the Triticeae cereals.  The genetic maps of L. 
perenne and the Triticeae cereals are highly conserved in terms of synteny and colinearity 
(Jones et al., 2002).  There is also general agreement over the syntenic relationships between L. 
perenne, Festuca pratensis (meadow fescue), oat and rice, and those between the Triticeae and 
these species. 
 
An 'IGER' linkage map of L. perenne based on an F2 mapping population was produced 
initially for the genetic analysis of water-soluble carbohydrate (WSC) accumulation.  This 
map identified 7 linkage groups covering a total of 515cM and was compared with the ILGI 
map produced from a BC1-type population (Armstead et al., 2002).  The maps could be 
aligned using 38 common loci, and a marker order for all mapped loci in either population 
was identified in an integrated map.  Using this map, QTL associated with WSC accumulation 
in the leaves and leaf sheaths of ryegrass have been identified (Humphreys & Turner, 2001; 
Turner et al., 2001).  Interestingly, some QTL overlie or fall close to the location of genes 
with known function.  The genomic region associated with a major flowering time QTL in 
ryegrass shows a high degree of synteny with the location of genes in rice, having homology 
with the Arabidopsis flowering time gene CONSTANS (CO) (Donnison et al., 2002; Armstead 
et al., 2004).  Allelic variation in the CO-like genes correlate with differences in heading date 
and may account for up to 70% of the total variation. 
 
In forage legumes, the majority of work has been carried out in Medicago sativa (lucerne), 
primarily in the USA, but with some effort in Europe.  In both M. sativa and other forage 
legumes, current effort is directed mainly towards mapping, with little directed MAS except 
under experimental conditions.  The first Trifolium repens map has been developed using self-
compatible inbred lines in a collaboration between IGER and The Plant Biotechnology 
Centre, Victoria (Abberton et al., 2000b).  This utilises amplified fragment length 
polymorphisms (AFLPs) and microsatellites.  Previous work had used random ampligfication 
of polymorphic DNA (RAPDs) to assess the extent of genetic diversity between inbred lines 
and compare this with the degree of heterosis in crosses between them (Joyce et al., 1999).  
Quantitative Trait Locus for agronomically important characters in single plants (including 
seed yield), have been located in a meta-analysis across sites and years.  This work is now 
being extended to studies of plot performance.  New mapping families are being used to 
investigate the genetic basis of stolon morphology and, in collaboration between IGER and 
Teagasc, Ireland, to locate and clone genes involved in resistance to stem nematode.  In 
parallel with the mapping studies, development of EST collections is being undertaken in a 
joint programme between PBC and AgResearch, New Zealand (Forster et al., 2001).  A 
Trifolium pratense L. (red clover) linkage map has also been published (Isobe et al., 2003). 
 
The use of mapping populations to generate the resources to facilitate MAS poses challenges.  
There is a need for accurate, rapid and ideally non-invasive phenotyping so that the trait 
variation can be characterised as well as the marker profiles.  High throughput chemometry is 
being developed for metabolomic studies, and there are real opportunities to use these 
advances in phenotyping.  Near infra-red reflectance spectrometry (NIRS) is an example of 
one of these unbiased high throughput systems that is already in use as a routine analytical 
tool (Wilman et al., 2000), and mass spectrometry-based approaches are also in increasing 
use.  For developmental traits, imaging methodologies are being developed, although the 
challenges are greater.  Hand in hand with this type of phenotyping goes the need for good 
informatics and statistical approaches to ensure that reliable information is derived, analysed 
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and accurately collated with DNA-based information from the same plants.  There is also a 
growing need for robust process models for land use systems that will allow breeders to 
estimate the likely significance of potential improvements.  Such models, for example of N 
flows in grassland, do exist, and some of them are scale dependent (Bhogal et al., 2001), but 
they have rarely been used to identify and validate breeding targets. 
 
Introgression 
 
Introgression has been used as a breeding tool for many years, but the development and 
employment of molecular markers improves both speed and precision.  At IGER, the main 
targets for introgression have been the introduction of biotic and abiotic stress tolerance from 
Festuca spp. into Lolium multiflorum or L. perenne (Humphreys et al., 1998, 2003).  
Introgression into L. perenne is necessary following the initial generation of the hybrids in 
order to ensure that the high nutritive quality of L. perenne spp. is retained together with the 
improved stress tolerance derived from Festuca.  A number of mapping families have been 
produced to facilitate marker-assisted introgression.  Having identified plants that express 
introgressed Festuca-derived traits, they can also be analysed using in situ hybridisation.  The 
close relationship between L. perenne and F pratensis has allowed work on introgression 
mapping and alignment of the genetic map with a physical map (Armstead et al., 2001; King 
et al., 2001).  Genomic in situ DNA hybridisation can be used to determine the location of 
alien Festuca genes, and genetic markers ascribed to the targeted sequence (Humphreys et al., 
1998).  L. perenne lines carrying different Festuca genes that convey a range of adaptations to 
abiotic stresses are currently being developed alongside ‘breeder's toolkits’ to aid their 
commercial exploitation. 
 
Introgression studies have also been carried out on a range of forage legumes, with effort 
concentrated on M. sativa and T. repens.  Some of these studies are beginning to employ 
marker-assisted introgression using both molecular and cytological markers.  Interspecific 
hybrids have been produced between T. pratense and some of its relatives, but with little 
impact to date.  Significant programmes on T repens are in place at IGER (using molecular 
markers) and Ag Research New Zealand (using cytological markers).  Both groups have 
focused on two introgressions, with T. nigrescens and with T. ambiguum.  T. nigrescens is an 
annual diploid species that  is sexually compatible with T repens, and is believed to be one of 
its ancestral genomes.  In associated research, fluorescent in situ hybridisation of nucleolar 
organiser regions has been used to explore relationships between T. repens and related species 
including T. nigrescens (Ansari et al., 1999).  Bulked segregant AFLP approaches (BSA-
AFLP) have been used to identify markers for high seed yield potential in second and third 
generation backcross hybrids, with T. repens as the recurrent parent (Abberton et al., 2000a).  
Hybrids between T. repens and the rhizomatous very persistent T. ambiguum (Caucasian 
clover) require ovule culture or embryo rescue, which adds complexity.  However, backcross 
hybrids show considerably enhanced drought tolerance in relation to the T. repens parent, 
together with somewhat reduced protein content, giving the potential to reduce nitrogenous 
pollution in livestock feeding. 
 
Genetic manipulation 
 
Genetic manipulation (GM) may be an alternative to conventional breeding or an additional 
element in the programme, and can aid breeding by accessing or creating novel sources of 
specific plant variation.  Genetic manipulation also provides tools to understand basic plant 
biology and help to identify genes controlling the physiological and biochemical processes 
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underlying traits of agronomic importance.  Transformation systems are now well established 
for all major forage grasses and legumes.  Precision genetic manipulation requires accurate 
targeting of transgene expression, either to different cell types or to specific intercellular 
compartments.  Some progress has been made using cell specific promoters in grasses and 
legumes (but many more cell specific promoters are needed), and for compartment targeting 
using 5' and 3' signal sequences in grasses associated with specific wall degrading enzymes 
(Morris & Langdon, 2001).  Plastid transformation gives higher expression of prokaryotic 
genes, and may facilitate ‘containment’ of transgenes within the transformed plants.  
However, there are marked species-dependent differences in the level of paternal inheritance 
of plastid DNA.  In addition, there are considerable regulatory challenges to be met before 
GM grasses and legumes are approved for widespread cultivation in areas where compatible 
wild relatives abound.  Currently GM is used predominantly in forage breeding for ‘proof of 
principle’ studies, where transgenic material up or down-regulated in an individual gene 
product, provides a clear approach to establishing gene function in a way that natural variation 
rarely permits. 
 
Genetic resources 
 
In all cases, variation for traits of interest is being incorporated into potential new varieties.  
Capturing, curating and maintaining genetic resources that allow access to such variation is 
central to breeding programmes worldwide.  In the case of forages, most of this will be in 
direct relatives of the agricultural species.  Approaches to defining core collections on the 
basis of allele variation rather than phenotype variation will simplify curation (van Hintum et 
al., 2001), and the use of molecular markers will speed the process of screening collections 
for favourable alleles.  However, the commitment to collection, characterisation and 
maintenance of genetic resources is considerable and funding is not easy to obtain.  There is a 
real need to ensure, preferably on an international scale, that funding for this activity is 
maintained, but also that every opportunity to streamline the process and minimise costs 
without losing vital material is considered. 
 
Current targets for precision breeding in forages 
 
It has long been known that there are big differences between species in both the suitability of 
forages for animal production and in their capacity to grow and survive in particular areas.  
Traditionally, improvement programmes have concentrated on those species that are suited to 
the locale and that deliver the best return in terms of animal products.  Within that, agronomic 
characters such as yield, flowering date, persistency and compatibility have been priority 
targets, with less emphasis on improving intake, digestibility, resource use efficiency and end-
product quality.  There are sound reasons for this approach.  Primary agronomic characters 
can be measured easily, are important in grassland management and show tight genetic 
control.  However, the application of the technological approaches outlined previously allows 
more complex traits to be manipulated and there is increasing evidence of the relevance of 
such an approach. 
 
One of the best examples of precision breeding for quality traits in grasses is the ability to 
manipulate the efficiency of rumen function through altering WSC content.  Elevated soluble 
sugars in grazed herbage provide an accessible carbon source in the early stages of 
colonisation of fresh feed by rumen microorganisms (Miller et al., 2001; Lee et al., 2003), 
thus reducing the breakdown of peptides and deamination of amino acids.  Table 2 indicates 
the benefits that accrue in terms of conversion efficiency and reduced environmental 
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deposition of N.  Quantitative Trait Locus analysis has indicated a number of regions of the L. 
perenne genome involved in WSC accumulation.  Currently MAS is being used to identify 
new genotypes with the high sugar trait (Humphreys et al., 2003). 
 
 
Table 2  Effects of water-soluble sugar content (WSC) of grass on nitrogen partitioning into 
milk and urine (after Miller et al., 2001) 
  

 WSC (%) CP (%) N intake (g/day)   N output (g/day) 
  

    Milk Urine 
 
High sugar ryegrass 20.1   9.2 268 82   71 
Normal ryegrass 12.9 10.6 278 69 100 
  

 
 
This approach is being applied to a number of quality and efficiency traits that are known to 
be important in grasses and legumes - including nitrogen and phosphorous use efficiency, 
mineral composition, and developmental and morphological traits that improve compatibility.  
In principle, if defined mapping populations exhibiting variation in an important trait can be 
established, then QTL analysis and MAS can be used, with a concomitant gain in speed and 
simplicity of selection.  Even very complex derivative traits like palatability and grazing 
preference are susceptible to this approach, although these would require a considerable 
experimental investment to derive the original mapping populations. 
 
Marker-assisted introgression is also being used to manipulate important traits.  Using a range 
of Lolium-Festuca introgressions, variation in drought, heat and cold tolerance, resistance to 
crown rust and improved protein stability during digestion has been incorporated into a L. 
perenne background and is being assessed.  Additionally the stay-green character, which has 
considerable relevance to turf grasses, has been transferred into Lolium and used to generate 
commercial varieties.  Hybrids between T. repens and T. ambiguum have been used at IGER 
to produce drought resistant material with both stolons and rhizomes (Abberton et al., 2000a) 
and in New Zealand primarily for virus resistance (Woodfield & Brummer, 2001).  Molecular 
markers have been used to select for the rhizomatous habit in plants of backcross families 
(Abberton et al., 2000b) and this material is currently being assessed for cold tolerance at 
several sites in Northern Europe. 
 
There is increasing interest in improving grass-clover compatibility for mixed swards, and 
compatibility is now starting to be considered as much from the nutritional point of view as 
agronomic.  The development of marker-based approaches will make this more feasible.  It is 
known, for example that root structures are important determinants of compatibility (Collins 
et al., 2003), and these are very difficult to select for without good markers.  In the future, 
greater knowledge of rhizosphere processes, including N transfer from clover to grass is also 
likely to be a key area, particularly since compatability issues are likely to be affected by 
climate change. 
 
Other targets 
 
There are other compositional traits that are known to affect the quality of livestock products.  
These include lipid composition; particularly the high levels in forages of polyunsaturated 
fatty acids and the omega-3 fatty acids, which have positive health benefits and also promote 
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the colour and keeping quality of beef (Wood et al., 2003; Scollan et al., 2005).  There are 
also other approaches to reducing proteolysis within the rumen.  Plant-mediated proteolysis is 
demonstrable in the rumen (Kingston-Smith et al., 2003), opening up the possibility of 
producing forages with reduced protease contents.  There is also evidence that protein 
protection mediated by polyphenol oxidase is under genetic control (Evans et al., 2002). 
 
Development in T. repens of near-isogenic lines (NILS) has allowed study of the expression 
of recessive genes.  For example, one of the lines is deficient in N fixation, permitting the 
protein content of clover to be manipulated via contrasting levels of fertilizer application.  
This has been used as ‘proof of principle’ that the lower protein content of legumes during 
ensiling can result in silage with similar retained protein content, but with significantly lower 
environmental losses.  This is now a target for current precision breeding approaches.  The 
NILS have functioned as a ‘GM analogue’ in terms of trait identification and characterisation.  
The availability within the NILS of ‘control’ lines that are very closely related to the non-
fixing lines has been of great value (Abberton et al., 1998). 
 
There is also physiological evidence for a genetic component affecting tolerance of heavy 
metals, opening up opportunities for developing grass varieties suitable for managing 
degraded land.  However, the level of investment in basic and strategic science that is required 
to underpin variety development makes exploitation of the full range of possible targets 
somewhat unlikely.  Reform of the European support system for agriculture will alter the 
ways in which farmers receive payment from the state, and this in turn is likely to affect their 
requirements for new forage varieties.  However, it is not currently clear what sorts of 
agricultural systems will prevail and thus what the new targets will be.  From an 
environmental standpoint, the benefits of rotational agriculture, spring cereal growing and 
hay-making are abundantly clear (Chamberlain et al., 2000).  If agricultural support 
mechanisms end up promoting such practices, then this will stimulate the use of T. pratense, 
cereal/legume mixtures and grass varieties optimised for short-term leys, all of which are 
relatively minor components of current farming systems.  Nevertheless, the generic 
technologies of genome analysis, marker development and gene identification will continue to 
influence forage breeding regardless of the specific breeding targets. 
 
Opportunities, challenges and constraints 
 
Within grassland agriculture in developed countries, managing the balance between the 
natural and the farmed environment is likely to assume increased importance over the next 
10-15 years.  There are contrasting pressures, with an increased demand for animal products 
on one hand and evidence of the need for reduction of the impacts of agricultural systems on 
the other.  The Environment Agency in the UK has identified pollution from agriculture as a 
major issue, with farming being responsible for 27% of major pollution incidents (Anon, 
2002).  Grassland farming contributes to pollution via losses of nitrate and phosphate into 
ground water, ammonia and methane into the atmosphere, and by the direct effect of slurry 
and silage effluent leaking into watercourses.  Intensive livestock agriculture involving silage 
production also has a negative impact on biodiversity, with the declining presence of seed-
eating birds in grasslands being significantly correlated with the move away from hay 
production in the 1960s and 70s (Vickery et al., 2001).  Against this must be set the vital role 
of the grazing animal in preserving key habitats.  Unimproved semi-natural pasture requires 
careful grazing if species diversity and habitat are to be maintained.  Such management 
requires a viable livestock agriculture to achieve this objective, together with a support system 
that provides incentives for farmers to deliver environmental goods.  To achieve this more 
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broadly based set of objectives, will require a much closer linkage between forage breeding 
and the development of novel management systems. 
 
It is already known that modelling the processes of nitrogen movement within grassland can 
identify the optimal times for nitrogen application, leading to significant reductions in both 
fertiliser application and nitrate leaching without a concomitant reduction in forage yield or 
animal production (Laws et al., 2000).  Linking approaches like this to the genetic 
improvement of nutrient use efficiency offers further potential gains at the system level.  The 
beneficial effect that T. repens has on soil quality in heavy and compacted soils is also a target 
for genetic improvement, but must be pursued in concert with management systems that are 
directed towards preserving the improvement attributable to T. repens.  Current and proposed 
environmental legislation provides a strong impetus for integrated research of this kind within 
the EU, and there are welcome signs that research funders are recognising the value of this 
approach.  Increasingly, breeding advances will have to be delineated at the system level, 
which has consequences for variety assessment.  A further approach to improving nitrogen 
use efficiency at the sward level by increasing protein protection in the rumen involves the 
presence in a mixed sward of a tannin- containing species such as Lotus corniculatus 
(birdsfoot trefoil).  Utilisation of this species can also result in a reduction of the parasite 
burden in sheep (Marley et al., 2003) although it is not clear whether this effect is mediated 
through stimulation of the immune response or via a direct effect of tannins. 
 
The Curry Report into UK agriculture argued that the removal of direct production subsidies 
will broaden the base of UK land use, and it will be important to ensure that these changes 
feed through into flexible forage improvement programmes.  For niche producers, where high 
on-farm value and product quality are paramount, pasture quality becomes of comparable 
importance in terms of maximising the contribution of a cheap, traceable and ‘natural’ 
component of the diet.  As well as the direct quality traits indicated above, more complex 
traits that promote the stability of production over time, particularly in mixed swards, will 
become important.  Again, the challenge here is to define the trait under realistic conditions 
involving animals, and then to use DNA markers to access and utilise the available genetic 
variation.  A more multifunctional land use base might also generate novel opportunities for 
forage species.  Already sports turf accounts for 30% of UK grass seed sales and the IGER 
amenity breeding programme has focussed on ‘non-agricultural’ traits such as prostrate habit 
and wear-resistance (Thorogood, 2003). 
 
There are other opportunities in the development of alternative fibre and biomass crops (J. 
Valentine, pers. comm.).  Work is also in progress to assess the available genetic variation in 
grasses for environmental targets such as C-sequestration in the soil, support for soil 
biodiversity, bioremediation and flood mitigation (J. Macduff, pers. comm.).  Candidate traits 
for C-sequestration include shoot and root turnover rates, rooting depth, lignification and 
tissue density.  Candidate traits impacting on soil microbial biodiversity at the single plant 
level include C and N root exudation and rhizosphere acidification, as well as those relevant 
to C-sequestration.  Bioremediation targets include (i) heavy metal (Zn, Pb, Fe) 
uptake/tolerance; (ii) absorption of atmospheric NOx; and (iii) buffer zone efficacy with 
respect to capture of soil nitrate.  Flood mitigation involves work on aspects of rooting and 
canopy architecture that confer increased infiltration rates into the soil profile as well as those 
conferring increased transpiration rates, such as leaf water conductance, and at a field scale 
canopy conductance.  These novel traits will need to be allied to specified and detailed 
management systems to deliver benefits. 
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The challenge involved in getting broader targets incorporated into forage improvement 
programmes is principally one of cost.  It is estimated that the annual wholesale value of 
forage seed sold to agriculture in the UK is approximately £8M (Caligari, 2002).  In contrast, 
grassland supports approximately 40% of agricultural output, which is estimated to be worth 
approximately £5billion.  Thus the genetic improvement of grassland species has broad social 
benefits because of its wider impact on agriculture.  However the market is capable of 
supporting only a relatively small research base and needs to ensure a supply of new varieties 
for existing uses before being able to invest speculatively.  For basic and enabling research, 
collaboration between researchers is recognised as essential, and has led to a number of the 
advances described above.  The technologies involved in basic crop research are likely to 
become increasingly generic, in turn offering better opportunities for co-ordination.  
Unfortunately, the need to protect intellectual property and the differing sectoral requirements 
of different regions mean that downstream improvement programmes remain quite 
fragmented.  This severely restricts the level of effort available to create new niches for forage 
varieties. 
 
As the targets for forage breeding broaden, and as the need to carry out system studies 
involving animals increases, the validity of the current variety evaluation systems used for 
registration become increasingly questionable.  Simple determination of the distinctiveness, 
uniformity and stability (DUS) of varieties remains straightforward and desirable, but the kind 
of performance measures needed to generate a recommended list add considerably to the costs 
of variety production.  It can be argued that the use of cutting regimes to simulate grazing is 
not representative of a significant amount of livestock agriculture.  The ideal would be to 
produce data that allowed users to assess the value of the variety within the production 
systems for which it is intended, and this would have the advantage of continuing to provide 
robust, experimentally obtained and consistent data.  However, it is difficult to see how this 
ideal can be realised within the current cost structure of grassland farming.  The industry may 
have to rely on data produced directly by breeders and users although it would be beneficial to 
have some independent monitoring of such information. 
 
Conclusions 
 
The precision breeding and improvement of temperate forage varieties will continue, powered 
by developments in marker-assisted selection, genome mapping and introgression.  Genetic 
manipulation remains a potentially useful approach to accessing novel genetic variability, but 
there are operational and public perception issues that need to be resolved first.  Changes in 
temperate agriculture will emphasise a systems approach to both breeding and the 
development of precision management.  There are new opportunities for forages outside the 
farming sector, but it is not clear whether enabling research in this area would attract enough 
support to create new markets.  Maintenance of current programmes will increasingly come to 
rely on co-operative approaches to the generation of basic knowledge and to the development 
of new breeding technologies. 
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which combine the qualities of three species: the high forage quality and determined 
flowering cycle of B. ruziziensis, the yield and resistance to spittlebug of B. brizantha and the 
vigour and adaptation to acid, infertile soils of B. decumbens (Miles & Valle, 1996; Miles, 
1999; Valle et al., 2000; Peters & Lascano, 2003).  At CIAT the Brachiaria breeding program 
also involves Rhizoctonia resistance, tolerance to drought, and increased seed production 
(Peters & Lascano, 2003). 
 
Ease of management through grazing and control of excessive stemmy herbage during periods 
of active growth were the objectives of the CIAT A. gayanus improvement project.  Although 
synthetic lines were developed, they were not commercialised and the programme was 
discontinued.  In Brazil, A. gayanus cv. Baeti was bred for quick establishment and stand 
uniformity (Batista & Godoy, 1995).  After the release of this cultivar the programme was 
also discontinued. 
 
Seed production is also a factor considered in breeding programs (Hacker, 1991a,b; Hacker et 
al., 1993; Diz & Schank, 1993).  Poor seed production results in high seed prices and 
consequently little adoption.  This was the case with many good legume cultivars released, 
e.g. the Brachiaria hybrid cv. Mulato (Miles, 1999).  Despite the use of vegetative 
propagation in certain systems and in some countries, seed producing cultivars are easier to 
establish, faster to be adopted and much more widespread.  In this sense, one of the objectives 
of the P. purpureum breeding programmes in Florida and Brazil is selection of seed producing 
cultivars, which are obtained by crossing P. purpureum and P. glaucum (L.) R. Br.  The 
progenies from this cross are triploid and sterile, but once doubled by colchicine become 
hexaploid and fertile.  The improvement of this species also involves the incorporation of 
apomixis and maintenance of perenniality.  The species reproduces sexually and can be 
crossed with P. squamulatum Fresen which reproduces apomictically (Pereira et al., 2001).  
The hybrid vigour is fixed in apomictics and the hybrid may be released as a cultivar for 
pastures or for cut and carry. 
 
Other traits bred and selected for are leafiness, establishment, stand uniformity in sexual 
reproducing plants, late flowering, spring productivity and winter survival, early growth and 
regrowth, adaptation, mineral composition and disease resistance (Table 2). 
 
Contrary to the scenario with cool-season forages, there has been very little or no 
consideration given to the impact on the environment as a consequence of livestock 
production, either in terms of water requirements or diffuse pollution.  For this reason, 
environmental impact is not a priority in the breeding programs of most tropical and 
subtropical forage grasses and legumes.  However, the principle of ‘Best Production 
Practices’, which comprises environmental and social concerns, are a market demand and are 
being incorporated into beef supply chains in Brazil and other major beef/milk producing and 
exporter countries in the tropics. 
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