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Abstract

Eigenvalue decomposition of Laplacian matrices for large nearest-neighbor (NN)
graphs is the major computational bottleneck in spectral clustering (SC). To fundamen-
tally address this computational challenge in SC, we propose a scalable spectral sparsi-
fication framework that enables to construct nearly-linear-sized ultra-sparse NN graphs
with guaranteed preservation of key eigenvalues and eigenvectors of the original Lapla-
cian. The proposed method is based on the latest theoretical results in spectral graph
theory and thus can be applied to robustly handle general undirected graphs. By lever-
aging a nearly-linear time spectral graph topology sparsification phase and a subgraph
scaling phase via stochastic gradient descent (SGD) iterations, our approach allows com-
puting tree-like NN graphs that can serve as high-quality proxies of the original NN
graphs, leading to highly-scalable and accurate SC of large data sets. Our extensive ex-
perimental results on a variety of public domain data sets show dramatically improved
performance when compared with state-of-the-art SC methods.

1 Introduction
Clustering is playing increasingly important roles in image processing and computer vision
[2, 17]. It also has potential use in more fields such as computer system design and biomed-
ical applications [22, 23, 25, 26, 27]. For example, [25, 26] successfully applied clustering
methods for cell type identification and detection.

Among the existing clustering techniques, spectral methods have gained great attention
in recent years [11]. Although spectral methods have many advantages, such as easy imple-
mentation, good clustering quality and rigorous theoretical foundations [16], the high com-
putational cost due to the involved eigenvalue decomposition procedure can immediately
hinder their applications in emerging large scale tasks [4].

Recent research efforts attempted to address the computational bottleneck of spectral
clustering (SC) through various kinds of approximation methods: [9] proposed a Nyström-
based approximation method; [5] proposed a landmark-based representation method; [19]
proposed a k-means-based approximate spectral method (KASP) to accelerate SC by group-
ing the centroids; [3] proposed to accelerate SC via Maximum Spanning Tree; [15] intro-
duced a compressive method (CSC) by using graph filtering to accelerate SC. However,
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none of these methods can reliably preserve the spectra of the original graphs, and thus lead
to degraded clustering result. For instance, for the large scale Covtype data set, the clus-
tering accuracy drops more than 15% with the Nyström and CSC methods, more than 20%
with the Nyström and KASP method and more than 25% with the landmark-based methods.
From the hardware perspective, new devices such as memristors [20, 21] are also applied to
achieve efficient unsupervised learning [18].

In this paper, we propose a highly-scalable SC framework based on spectrum-preserving
graph sparsification that can significantly accelerate SC without loss of accuracy. The key
contributions of this work have been summarized as follows:

1. Compared with existing approximation approaches that have no guarantee of the so-
lution quality in SC, our method can robustly preserve the most critical spectral prop-
erties of the original graph, such as the first few eigenvalues and eigenvectors of graph
Laplacians, within nearly-linear-sized tree-like subgraphs that allows for computing
high-quality clustering results.

2. A practically-efficient spectral graph topology sparsification method [7] has been ap-
plied for identifying spectrally critical edges to be kept in subgraphs, while a novel
scalable subgraph scaling scheme via stochastic gradient descent (SGD) iterations
has been proposed in this paper to scale up edge weights to further improve the spectral
approximation of the subgraph.

3. We show that spectral graph sparsification can be considered as a “low-pass" graph
filter for removing edges less critical for preserving the first few graph Laplacian
eigenvectors. We also introduce a simple yet effective procedure for filtering out errors
in Laplacian eigenvectors, which enables to leverage much sparser subgraphs in SC
for achieving superior solution quality.

4. We conducted extensive experiments with well-known public domain data sets to show
that the proposed method can dramatically improve SC efficiency without loss of ac-
curacy.

2 Preliminaries
Spectral clustering Algorithm: Consider a similarity graph G = (V,EG,wG), where V and
EG denote the graph vertex and edge sets, respectively, while wG denotes a weight function
that assigns positive weights to all edges. The Laplacian matrix of graph G is defined as
follows:

LG(i, j) =


−wi j if (i, j) ∈ EG

∑
(i,k)∈EG

wik if (i = j)

0 otherwise .

(1)

Given a set of data samples, SC find clusters with the following three steps: 1) construct
a Laplacian matrix according to the similarities between data points; 2) embed nodes into
k-dimensional space using the first k nontrivial graph Laplacian eigenvectors; 3) apply k-
means to partition the embedded data points into k clusters.
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Spectral Graph Sparsification: Graph sparsification aims to find a subgraph S=(V,ES,wS)
that has the same set of vertices of the original graph G= (V,EG,wG), but much fewer edges.
We say G and its subgraph S are σ -spectrally similar if the following condition holds for all
real vectors x ∈ RV

x⊤LSx
σ

≤ x⊤LGx ≤ σx⊤LSx, (2)

where LG and LS denote the Laplacian matrices of G and S, respectively. By defining the rel-
ative condition number to be κ(LG,LS) = λmax/λmin, where λmax (λmin) denotes the largest
(smallest nonzero) eigenvalues of L+

S LG, and L+
S denotes the Moore-Penrose pseudoinverse

of LS, it can be further shown that κ(LG,LS)≤ σ2, indicating that a smaller relative condi-
tion number or σ2 corresponds to a higher spectral similarity.

3 SGD-based Two-Phase Spectral Graph Sparsification
ARPACK is the standard solver for solving practical large-scale eigenvalue problems [10].
The MATLAB also uses ARPACK as its eigensolver. [4] shows that the ARPACK employs
implicitly iterative restarted Arnoldi process that contains at most (z−k) steps, where z is the
Arnoldi length empirically set to 2k and k is the number of desired eigenvalues. The overall
runtime cost of ARPACK solver is proportional to O(z3) + (O(nz) + O(nw))× O(z − k),
where n is the number of data points, w is the number of nearest neighbors [4]. Algorithms
with a sparsified Laplacian can reduce the time cost of the ARPACK solver due to the reduced
w. Our goal is to achieve good clustering quality with a very sparse graph.

In the following, we assume that G=(V,EG,wG) is a weighted undirected graph, whereas
S = (V,ES,wS) is its graph sparsifier. The descending eigenvalues of L+

S LG are denoted by
λmax = λ1 ≥ λ2 ≥ ·· · ≥ λn ≥ 0, where L+

S denotes the Moore-Penrose pseudoinverse of LS.

3.1 Phase 1: Spectral Graph Topology Sparsification
3.1.1 Off-Tree Edge Embedding with Approximate Generalized Eigenvectors

[13] showed that L+
S LG has at most k eigenvalues greater than stS(G)/k, where stS(G) is

the total stretch of the spanning-tree subgraph S with respect to the original graph G. The
total stretch can be considered as the spectral distortion due to the subgraph approximation.
Recent results show that every graph has a low-stretch spanning tree (LSST) with bounded
total stretch [1]:

O(m logm log logn)≥ stS(G) = tr(L+
S LG)≥ κ(LG,LS), (3)

where m = |EG|, n = |V |, and tr(L+
S LG) is the trace of L+

S LG. To identify the key off-tree
edges to be added to the low-stretch spanning tree (LSST) for dramatically reducing spectral
distortion, a spectral embedding scheme using approximate generalized eigenvectors has
been introduced in [7], which is based on the following spectral perturbation analysis:

LG(ui +δui) = (λi +δλi)(LS +δLS)(ui +δui), (4)

where a perturbation δLS is applied to LS, which results in perturbations in generalized
eigenvalues λi +δλi and eigenvectors ui +δui for i = 1, . . . ,n, respectively. The first-order
perturbation analysis leads to

−δλi

λi
= u⊤

i δLSui, (5)
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which indicates that the reduction of λi is proportional to the Laplacian quadratic form of
δLS with the generalized eigenvector ui. (5) can also be understood through the following
Courant-Fischer theorem for generalized eigenvalue problems:

λmax = λ1 = max
|x|̸=0

x⊤1=0

x⊤LGx
x⊤LSx

≥ max
|x|̸=0

x(p)∈{0,1}

x⊤LGx
x⊤LSx

= max
|∂G(Q)|
|∂S(Q)|

, (6)

where 1 is the all-one vector, the node set Q is defined as Q def
= {p ∈V : x(p) = 1}, and the

boundary of Q in G is defined as ∂G(Q)
def
= {(p,q) ∈ EG : p ∈ Q,q /∈ Q}, which obviously

leads to x⊤LGx = |∂G(Q)|,x⊤LSx = |∂S(Q)|. As a result, λmax = λ1 is the upper bound of
the largest mismatch in boundary (cut) size between G and S. Once Q or ∂S(Q) is found
via graph embedding using dominant generalized eigenvectors, we can selectively pick the
edges from ∂G(Q) and recover them to S to mitigate maximum mismatch or λ1.

Denote ep ∈ RV the vector with only the p-th element being 1 and others being 0. We
also denote epq = ep − eq, then the generalized eigenvalue perturbation due to the inclusion
of off-tree edges can be expressed as follows

−δλi

λi
= u⊤

i δLS,maxui = ∑
(p,q)∈EG\ES

wpq
(
eT

pqui
)2
, (7)

where δLS,max = LG−LS. The spectral criticality cpq of each off-tree edge (p,q) is defined
as:

cpq = wpq
(
eT

pqu1
)2 ≈ wpq

(
eT

pqht
)2
, ht =

(
L+

S LG
)t h0, (8)

where ht denotes the approximate dominant generalized eigenvector computed through a
small number (e.g. t = 2) of generalized power iterations using an initial random vector h0.

3.1.2 A Trace Minimization Perspective for Spectral Sparsification.

Denote the descending eigenvalues and the corresponding unit-length, mutually-orthogonal
eigenvectors of LG by ζ1 ≥ ·· ·> ζn = 0, and ω1, · · · ,ωn, respectively. Similarly denote the
eigenvalues and eigenvectors of LS by ζ̃1 ≥ ·· · > ζ̃n = 0 and ω̃1, · · · , ω̃n, respectively. It
should be noted that both ωn and ω̃n are the normalized and orthogonal to the all-one vector
1/
√

n. Then the following spectral decompositions of LG and L+
S always hold:

LG =
n−1

∑
i=1

ζiωiω
⊤
i , L+

S =
n−1

∑
j=1

1

ζ̃ j
ω̃ jω̃

⊤
j , (9)

which leads to the following trace of L+
S LG:

Tr(L+
S LG) = Tr(

n−1

∑
i=1

n−1

∑
j=1

ζi

ζ̃ j
εi jω̃ jω

⊤
i ) =

n−1

∑
j=1

1

ζ̃ j

n−1

∑
i=1

ζiε
2
i j, (10)

where εi j satisfies: 0 ≤ ε2
i j = (ω⊤

i ω̃ j)
2 ≤ 1. According to (10), the most spectrally critical

off-tree edges identified by (8) will impact the largest eigenvalues of L+
S LG as well as the

bottom (smallest nonzero) eigenvalues of LS, since the smallest ζ̃ j values directly contribute
to the largest components in the trace of L+

S LG. This fact enables to recover small portions
of most spectrally critical off-tree edges to LSST subgraph for preserving the key spectral
graph properties within the sparsified graph.



WANG, FENG: TOWARDS SCALABLE SC VIA SPECTRUM-PRESERVING SPARSIFICATION5

3.1.3 A Scheme for Eigenvalue Stability Checking.

We propose a novel method for checking the stability of bottom eigenvalues of the sparsified
Laplacian. Our approach proceeds as follows: 1) in each iteration for recovering off-tree
edges, we compute and record the several smallest eigenvalues of the latest sparsified Lapla-
cian: for example, the bottom k eigenvalues that are critical for spectral clustering tasks; 2)
we determine whether more off-tree edges should be recovered by looking at the stability by
comparing with the eigenvalues computed in the previous iteration: if the change of eigen-
values is significant, more off-tree edges should be added to the current sparsifier. More
specifically, we store the bottom k eigenvalues computed in the previous (current) iteration
into vector vp (vp+1), and calculate the eigenvalue variation ratio by:

ratiovar =
∥(vp − vp+1)∥

∥(vp)∥
. (11)

A greater eigenvalue variation ratio indicates less stable eigenvalues within the latest spar-
sified graph Laplacian, and thus justifies another iteration to allow adding more "spectrally-
critical" off-tree edges into the sparsifier.

3.2 Phase 2: Subgraph Scaling via SGD Iterations
To aggressively limit the number of edges in the subgraph S while still achieving a high
quality approximation of the original graph G, we introduce an efficient edge scaling scheme
to mitigate the accuracy loss. We propose to scale up edge weights in the subgraph S to
further reduce the largest mismatch or λ1. The dominant eigenvalue perturbation δλ1 in
terms of edge weight perturbations using first-order analysis (4) can be expressed as:

−δλ1

λ1
= u⊤

1 δLSu1 = ∑
(p,q)∈ES

δwpq

(
e⊤pqu1

)2
, (12)

which directly gives the sensitivity of λ1 with respect to each edge weight wpq as follows:

δλ1

δwpq
=−λ1

(
e⊤pqu1

)2
≈−λ1

(
e⊤pqht

)2
. (13)

With the (approximate) sensitivity expressed in (13), it is possible to find a proper weight
scaling factor for each edge in S such that λ1 will be dramatically reduced. However, since
both λ1 and λn will decrease monotonically when scaling up edge weights, it is likely that
λn will decrease at a faster rate than λ1, which will lead to even a worse spectral approx-
imation. To address this issue, we adopt nearly-linear time algorithms for estimating the
extreme generalized eigenvalues λ1 and λn introduced in [8], which allows us to scale edge
weight properly without degrading the spectral approximation quality. Then the following
constrained nonlinear optimization framework can be leveraged for scaling up the subgraph
(S) edge weights ws to minimize the largest mismatch reflected by the largest generalized
eigenvalue λ1 in (6).

minimize: λ1(ws)

subject to:
(a) LGui = λiLSui, i = 1, ...,n;
(b) λmax = λ1 ≥ λ2...≥ λn = λmin;

(c) λn ≥ λ
(0)
n ∆λn .

(14)
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Algorithm 1 Subgraph Edge Weight Scaling via Constrained SGD Iterations

Input: LG, LS, dG, dS, λ
(0)
1 , λ

(0)
n , ∆λn

, β , ηmax, ε , and Nmax
Output: L̃S with scaled edge weights

1: Initialize: k = 1, η(1) = ηmax, ∆λn
=
(
∆λn

) 1
Nmax , λ

(1)
1 = λ

(0)
1 , λ

(1)
n = λ

(0)
n , ∆λ

(1)
1 = λ1;

2: Do initial subgraph edge scaling by w(1)
pq =

w(0)
pq

√
λ
(0)
1 /λ

(0)
n

10 for each edge (p,q) ∈ ES;

3: while
(

∆λ
(k)
1

λ
(k)
1

≥ ε

)
∧ (k ≤ Nmax) do

4: Compute approximate eigenvector h(k)
t by (8);

5: for each edge (p,q) ∈ ES do

6: s(k)pq :=−λ
(k)
1

(
e⊤pqh(k)

t

)2
, ∆w(k+1)

pq := β∆w(k)
pq −η(k)s(k)pq ;

7: φ(p) := dG(p)
dS(p)+∆w(k+1)

pq
, φ(q) := dG(q)

dS(q)+∆w(k+1)
pq

;

8: if min(φ(p),φ(q))≤ λ
(k)
n ∆λn

9: ∆wp := dG(p)
∆λn

−dS(p), ∆wq := dG(q)
∆λn

−dS(q), ∆w(k+1)
pq := min

(
∆wp,∆wq

)
;

10: end if
11: wpq := wpq +∆w(k+1)

pq , dS(p) := dS(p)+∆w(k+1)
pq , dS(q) := dS(q)+∆w(k+1)

pq ;
12: end for
13: η(k+1) := λ

(k)
1
λ1

ηmax, k := k+1, and update λ
(k)
1 & λ

(k)
n ;

14: ∆λ
(k)
1 := λ

(k)
1 −λ

(k−1)
1 ;

15: end while
16: Return L̃S.

In (14), λ
(0)
n and λn denote the smallest nonzero eigenvalues before and after edge scal-

ing, respectively, whereas ∆λn denotes the upper bound of reduction factor in λ
(0)
n after edge

scaling. (14) aims to minimize λ1 by scaling up subgraph edge weights while limiting the
decrease in λn.

To efficiently solve (14), in this paper we propose a constrained SGD algorithm with
momentum [14] for iteratively scaling up edge weights, as shown in Algorithm 1. The
algorithm inputs include: the graph Laplacians LG and LS, vectors dG and dS for storing
diagonal elements in Laplacians, the largest and smallest generalized eigenvalues λ

(0)
1 and

λ
(0)
n before edge scaling, the upper bound reduction factor ∆λn for λn, the coefficient β for

combining the previous and the latest updates during each SGD iteration with momentum,
the maximum step size ηmax for update, as well as the SGD convergence control parameters
ε and Nmax.

The key steps of the algorithm include: 1) a random vector is first generated and used to
compute the approximate dominant eigenvector with (8) as well as edge weight sensitivity
with (13); 2) the weight update for each edge in the subgraph is estimated based on the
previous update (momentum) as well as the latest step size and gradient; 3) the impact on
the reduction of λn will be evaluated for each weight update to make sure the decreasing rate
is not too fast; 4) check the cost function λ1 or the largest weight sensitivity to determine
whether another SGD iteration is needed.

Since edge weights in the subgraph (wS) will be updated during each SGD iteration, we
need to solve a new subgraph Laplacian matrix LS for updating the approximate eigenvector
ht in (13), which can be efficiently achieved by leveraging recent sparsified algebraic multi-
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grid (SAMG) algorithm that has shown highly scalable performance for solving large graph
Laplacians [24]. Since the subgraph topology remains unchanged during the SGD iterations,
it will also be possible to exploit incremental update of graph Laplacian solvers to further
improve efficiency.

4 Filtering Eigenvectors of Sparsified Laplacians
There is a clear analogy between traditional signal processing or classical Fourier analysis
and graph signal processing [12]: 1) the signals at different time points in classical Fourier
analysis correspond to the signals at different nodes in an undirected graph; 2) the more
slowly oscillating functions in time domain correspond to the graph Laplacian eigenvectors
associated with lower eigenvalues or the more slowly varying (smoother) components across
the graph.

Inspired by [12], in this paper we introduce a simple yet effective procedure for filtering
out errors in Laplacian eigenvectors computed using spectrally sparsified graphs, which en-
ables to leverage ultra-sparse subgraphs in SC for achieving superior solution quality. In the
following analysis, we assume that the k smallest eigenvalues and their eigenvectors of LG
have been pretty well preserved in LS through the proposed two-phase spectral sparsification
approach, while the remaining n− k higher eigenvalues and eigenvectors are not. Then the
spectral decompositions of LG and LS of (9) can be written as:

LG =
n−1
∑

i=1
ζiωiω

⊤
i ,

LS =
n
∑

i=1
ζ̃iω̃iω̃

⊤
i ≈

n
∑

i=n−k+1
ζiωiω

⊤
i +

n−k
∑

i=1
ζ̃iω̃iω̃

⊤
i .

(15)

In the following, we show that using existing sparse eigenvalue decomposition methods
for computing the first few Laplacian eigenvectors using spectrally sparsified graphs will
introduce errors expressed as linear combination of eigenvectors corresponding to only large
eigenvalues. Since the power iteration method is well known for calculating a few extreme
eigenvalues and eigenvectors, we analyze the error introduced by sparsified Laplacians in
power iterations, while the errors by other algorithms can be similarly analyzed in probably
more complicated ways. To compute the smallest eigenvalues and their eigenvectors for LG,
a few inverse power iterations can be applied:

(LG + zI)lx = r⊥, (16)

where l is the number of inverse power iterations, r⊥ ∈ Rn is a random vector orthogonal to
the all-one vector 1, z is a small positive real number, and I ∈ Rn×n is an identity matrix. zI
is added to the Laplacian matrix to make sure that the resultant matrix is non-singular.

Let x and x̃ denote the true and approximate solutions obtained with LG and LS, respec-
tively, then we have:

x =
n

∑
i=1

ωiω
⊤
i r⊥

(ζi + z)l ; x̃ ≈
n−k

∑
i=1

ω̃iω̃
⊤
i r⊥

(ζ̃i + z)l
+

n

∑
i=n−k+1

ωiω
⊤
i r⊥

(ζi + z)l , (17)

which allows us to express the error vector e as:

e = x− x̃ ≈
n−k

∑
i=1

(
ωiω

⊤
i r⊥

(ζi + z)l −
ω̃iω̃

⊤
i r⊥

(ζ̃i + z)l

)
, (18)
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which shows that when using power iterations to compute the smallest nonzero eigenvalue
and its eigenvector using sparsified graph Laplacians, the error in the eigenvector can be ex-
pressed as a linear combination of the eigenvectors corresponding to relatively large eigen-
values. If we consider each eigenvector as a signal on the graph, then the eigenvectors
of large eigenvalues can be considered as highly oscillating or high frequency signals on
graphs. Therefore, the error due to the sparsified graph Laplacian in inverse power iterations
can be considered as a combination of high frequency signals on graphs, which thus can
be efficiently filtered out using “low-pass" graph signal filters. In fact, weighted Jacobi or
Gauss-Seidel methods can be efficiently applied for filtering out such high frequency error
signals on graphs, which have been widely adopted in modern iterative methods for solving
large sparse matrices, such as the smoothing (relaxation) function in multigrid algorithms.
This work adopts a weighted Jacobi iteration scheme for filtering eigenvectors on the graph,
while the detailed filtering algorithm has been described in Algorithm 2.

Algorithm 2 Algorithm for Iterative Eigenvector Filtering
Input: LG = DG −AG, ω̃n,..., ω̃n−k+1, γ ,N f ilter
Output: The smoothed eigenvectors.

1: For each of the approximate eigenvectors ω̃1,..., ω̃k, do
2: for i = 1 to N f ilter do
3: ω̃

(i+1)
j = (1− γ)ω̃

(i)
j + γ(DG − ζ̃ jI)−1AGω̃

(i)
j

4: end for
5: Return the smoothed eigenvectors ω̃n,..., ω̃n−k+1.

5 Algorithm Flow and Complexity Analysis
The key steps of the proposed method and their computational complexities are summarized
as follows: 1) Identify the edges to be kept in the subgraph using the spectral graph topology
sparsification methods [7] in O(m logn) time; 2) Scale up edge weights in the subgraph us-
ing the proposed iterative SGD scheme (Algorithm 1) in O(m) time; 3) Perform eigenvalue
decomposition for the sparsified graph Laplacian to find the first few eigenvectors. For ultra-
sparse Laplacian matrices with tree-like graphs, popular Krylov subspace iterative methods
can be highly-scalable in practice due to the nearly-linear time cost for sparse matrix vector
multiplications that dominate the overall computation time; 4) Apply the proposed eigenvec-
tor filtering scheme (Algorithm 2) to improve the approximation of Laplacian eigenvectors
in O(m) time; 5) Run the k-means algorithm on eigenvectors in O(knd) time, where k is the
number of clusters, and d is the dimension of the feature vectors of data points.

6 Experimental Evaluation
Experiment Setup: Experiments are performed using MATLAB running on a PC with a
2.50 GHz Intel Core i5 CPU and 8 GB RAM. The following real-world data sets are used
in our experiments: COIL-20 includes 1,440 gray scale images of 20 different objects and
each image is represented by 1,024 attributes; PenDigits includes 7,474 handwritten digits
and each digit is represented by 16 attributes; USPS includes 9,298 images of USPS hand

Citation
Citation
{Feng} 2016



WANG, FENG: TOWARDS SCALABLE SC VIA SPECTRUM-PRESERVING SPARSIFICATION9

written digits with 256 attributes; MNIST includes 70,000 images of hand written digits
with each of them represented by 784 attributes; Covtype includes 581,012 instances for
predicting forest cover type from cartographic variables and each instance with 54 attributes
is from one of seven classes. We compare our method against the following state-of-the-art
algorithms: (1) the Original SC [4], (2) the Nyström method [9], (3) the landmark-based
methods that uses k-means for landmark selection (LSCK) and uses random sampling for
landmark selection (LSCR) [5], (4) the KASP method [19], and (5) the CSC method [15].
The code can be downloaded from their authors’ websites and we follow their parameter
settings.

Parameter Selection: The off-tree edge budget b measures the amount of off-tree edges
added to the LSST for the spectral graph topology sparsification phase, which is defined as
b = |ES|−|V |+1

|V | . b is set to be less than 0.15 for all the data sets. The number of general-
ized power iterations for spectral embedding is set to be t = 2. The parameters for the edge
scaling (Algorithm 1) are: ∆λn = 0.5, β = 0.5, ηmax = 0.2, ε = 0.01, and Nmax = 100. The
parameters for the eigenvector filtering (Algorithm 2) are: γ = 0.7, and N f ilter = 10. Clus-
tering results are evaluated by comparing the cluster-memberships generated by algorithms
with the ground-truth cluster-memberships provided by the data set. The accuracy metric is
used [4, 5].

Experimental Results: Table 1 shows the runtime, ACC results, as well as the λmax that was
defined in (6). For large data sets such as MNIST and Covtype, our method achieved 1,256X
and 4,500X times speedup, respectively. For Covtype, the proposed method achieves a
significantly better accuracy level than any of the other approximate SC methods. Such a
high quality is mainly due to the guaranteed preservation of key Laplacian eigenvalues and
eigenvectors (which can be reflected in λmax). On the other hand, without robust preservation
of the original graph spectra, the SC results of existing approximate SC methods can be quite
unsatisfactory. For example, the KASP, LSCK, LSCR and CSC algorithms that use simple
sampling methods, such as k-means and random sampling, may lead to substantial loss of
structural information of the data set, and thus poor accuracy in SC tasks; the approximation
quality of the Nyström method strongly depends on the encoding power of the data points
chosen from k-means clustering [6], but for large data set it is very unlikely that the small
amount chosen data points can truthfully encode the entire data set. The efficiency of CSC
is even worse than standard SC for medium-scale data set due to the following reasons:
1) it uses the dichotomy and eigenvalue count technique to estimate eigenvalue, and 2) it
needs to calculate Jackson-Chebyshev polynomial for all clusters in each iteration. The
accuracy of CSC is also not as robust as our method as a lot of information is lost in its
random sampling and interpolation steps. We also observe that the ACC results obtained
by using spectrally sparsified graphs are even better than the results obtained by using the
original graphs for most data sets, indicating that our method does help remove spurious
edges, leading to improved graph structures for SC. The ACC results with respect to different
options of off-tree edge budget (b) have been shown in Figure 1. As observed, adding only
a very small amount of off-tree edges will suffice for achieving the peak ACC result and
even with much greater number of off-tree edges added into the LSST, the sparsified graphs
without edge scaling still can not reach the ACC level achieved by using edge scaling.
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Clustering Accuracy (ACC) Spectral Clustering Time
Data Set Orig Nyström KASP LSCK LSCR CSC Ours Orig Nyström KASP LSCK LSCR CSC Ours λmax
COIL-20 78.80 67.44 58.83 72.41 68.45 75.83 76.27 0.37 0.46 2.74 2.44 0.23 1.57 0.28 (1.32X) 138
PenDigits 81.12 68.70 75.83 80.77 77.89 47.09 83.26 0.47 0.28 1.00 0.81 0.23 6.03 0.36 (1.30X) 230

USPS 68.22 68.83 72.61 77.54 66.22 66.53 70.74 1.02 0.40 6.88 7.08 0.24 7.02 0.30 3.40X) 437
MNIST 71.95 53.27 68.03 69.88 57.24 29.86 72.27 6785 0.80 754 722 0.81 174.29 5.40 (1,256X) 569
Covtype 48.83 24.78 27.11 22.80 22.79 32.74 48.86 91,504 18.51 1,165 1,154 7.23 594.82 20.33 (4,500X) 456

Table 1: Clustering accuracy (%) and clustering time (seconds)
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Figure 1: Left: ACC VS off-tree edge budget b; Right: ACC w/ and w/o edge scaling.

7 Conclusions
To fundamentally address the computational challenge due to the eigen-decomposition step
in SC, this work introduces a novel scalable SC framework that enables to construct a very
sparse sparsifier with guaranteed preservation of the original spectrum for SC purpose. Our
results on a variety of public domain data sets show dramatically improved clustering per-
formance when compared with state-of-the-art SC methods.
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