
Michigan Technological University Michigan Technological University 

Digital Commons @ Michigan Tech Digital Commons @ Michigan Tech 

Michigan Tech Publications 

2-2023 

An attention residual u-net with differential preprocessing and An attention residual u-net with differential preprocessing and 

geometric postprocessing: Learning how to segment vasculature geometric postprocessing: Learning how to segment vasculature 

including intracranial aneurysms including intracranial aneurysms 

Nan Mu 
Michigan Technological University, nmu2@mtu.edu 

Zonghan Lyu 
Michigan Technological University, zonghanl@mtu.edu 

Mostafa Rezaeitaleshmahalleh 
Michigan Technological University, srezaeit@mtu.edu 

Jinshan Tang 
George Mason University 

Jingfeng Jiang 
Michigan Technological University, jjiang1@mtu.edu 

Follow this and additional works at: https://digitalcommons.mtu.edu/michigantech-p 

 Part of the Biomedical Engineering and Bioengineering Commons 

Recommended Citation Recommended Citation 
Mu, N., Lyu, Z., Rezaeitaleshmahalleh, M., Tang, J., & Jiang, J. (2023). An attention residual u-net with 
differential preprocessing and geometric postprocessing: Learning how to segment vasculature including 
intracranial aneurysms. Medical Image Analysis, 84. http://doi.org/10.1016/j.media.2022.102697 
Retrieved from: https://digitalcommons.mtu.edu/michigantech-p/16832 

Follow this and additional works at: https://digitalcommons.mtu.edu/michigantech-p 

 Part of the Biomedical Engineering and Bioengineering Commons 

http://www.mtu.edu/
http://www.mtu.edu/
https://digitalcommons.mtu.edu/
https://digitalcommons.mtu.edu/michigantech-p
https://digitalcommons.mtu.edu/michigantech-p?utm_source=digitalcommons.mtu.edu%2Fmichigantech-p%2F16832&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/229?utm_source=digitalcommons.mtu.edu%2Fmichigantech-p%2F16832&utm_medium=PDF&utm_campaign=PDFCoverPages
http://doi.org/10.1016/j.media.2022.102697
https://digitalcommons.mtu.edu/michigantech-p?utm_source=digitalcommons.mtu.edu%2Fmichigantech-p%2F16832&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/229?utm_source=digitalcommons.mtu.edu%2Fmichigantech-p%2F16832&utm_medium=PDF&utm_campaign=PDFCoverPages


Medical Image Analysis 84 (2023) 102697

Available online 19 November 2022
1361-8415/© 2022 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-
nc-nd/4.0/).

An attention residual u-net with differential preprocessing and geometric 
postprocessing: Learning how to segment vasculature including 
intracranial aneurysms 
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A B S T R A C T   

Objective: Intracranial aneurysms (IA) are lethal, with high morbidity and mortality rates. Reliable, rapid, and 
accurate segmentation of IAs and their adjacent vasculature from medical imaging data is important to improve 
the clinical management of patients with IAs. However, due to the blurred boundaries and complex structure of 
IAs and overlapping with brain tissue or other cerebral arteries, image segmentation of IAs remains challenging. 
This study aimed to develop an attention residual U-Net (ARU-Net) architecture with differential preprocessing 
and geometric postprocessing for automatic segmentation of IAs and their adjacent arteries in conjunction with 
3D rotational angiography (3DRA) images. 
Methods: The proposed ARU-Net followed the classic U-Net framework with the following key enhancements. 
First, we preprocessed the 3DRA images based on boundary enhancement to capture more contour information 
and enhance the presence of small vessels. Second, we introduced the long skip connections of the attention gate 
at each layer of the fully convolutional decoder-encoder structure to emphasize the field of view (FOV) for IAs. 
Third, residual-based short skip connections were also embedded in each layer to implement in-depth supervi
sion to help the network converge. Fourth, we devised a multiscale supervision strategy for independent pre
diction at different levels of the decoding path, integrating multiscale semantic information to facilitate the 
segmentation of small vessels. Fifth, the 3D conditional random field (3DCRF) and 3D connected component 
optimization (3DCCO) were exploited as postprocessing to optimize the segmentation results. 
Results: Comprehensive experimental assessments validated the effectiveness of our ARU-Net. The proposed 
ARU-Net model achieved comparable or superior performance to the state-of-the-art methods through quanti
tative and qualitative evaluations. Notably, we found that ARU-Net improved the identification of arteries 
connecting to an IA, including small arteries that were hard to recognize by other methods. Consequently, IA 
geometries segmented by the proposed ARU-Net model yielded superior performance during subsequent 
computational hemodynamic studies (also known as "patient-specific" computational fluid dynamics [CFD] 
simulations). Furthermore, in an ablation study, the five key enhancements mentioned above were confirmed. 
Conclusions: The proposed ARU-Net model can automatically segment the IAs in 3DRA images with relatively 
high accuracy and potentially has significant value for clinical computational hemodynamic analysis.   

1. Introduction 

Intracranial aneurysm (IA) is a cerebrovascular disease caused by the 
thinning and weakening of the arterial walls. There is a small (0.1% per 

year) probability that an IA may rupture; the consequence of IA rupture 
is dire, with a high likelihood of significant morbidity and mortality. 
However, most IAs do not rupture and remain asymptomatic. As a result, 
how to manage unruptured IAs is still controversial. Since the 
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prevalence of unruptured IAs in the adult population is between 3 and 
7%, clinical management of a large number of unruptured IAs is an 
unmet need, motivating continued technological developments that 
would accurately characterize IAs based on their risk of rupture. If 
successful, only IAs with a high risk of rupture would be treated 
immediately, while routine imaging follow-ups would be used to 
manage low-risk IAs conservatively. 

In the last two decades, considerable research efforts have been 
devoted to computerized analytics of unruptured IAs (Saqr et al., 2020). 
Image-based computational pipelines (Antiga et al., 2008; Cebral et al., 
2011) mainly consist of two major steps: 1) the segmentation of IAs, 
including adjacent cerebral vessels using "patient-specific" 3D images, 
and 2) the subsequent computational analysis, e.g., computational he
modynamics (also known as "patient-specific" computational fluid dy
namics [CFD] simulation) (Meng et al., 2014), morphological analysis 
(Dhar et al., 2008), virtual intervention, and treatment planning 
(Damiano et al., 2020). In particular, computational hemodynamics 
requires an anatomically accurate vasculature model with the following 
characteristics: 1) water-tight, 2) includes all essential arteries, and 3) 
exhibits correct vessel connections. Typically, the state-of-the-art 
vascular segmentation methods (Xiang et al., 2016) require substantial 
manual interactions and are not ideal in the clinical workflow due to 
their high resource cost, inaccuracy, and subjectivity. More recently, 
automatic segmentation models (Ronneberger et al., 2015) based on 
deep learning have emerged as a promising alternative to traditional 
model-based manual segmentation methods. Despite their superior 
performance (Yang et al., 2021), these deep learning models have 
largely not been tested for computational hemodynamics applications. 
Our initial experiments identified three severe drawbacks of some 
deep-learning image segmentation methods, as demonstrated in a 
showcase example in Fig. 1. First, patch-based deep-learning segmen
tation networks operate on many small divided patches with a limited 
field of view (FOV), resulting in global and contextual information loss. 
This shortcoming may lead to an incomplete aneurysm structure (see the 
yellow arrow in Fig. 1(c)) and the omission of smaller vessels (see the 
white arrows in Figs. 1(c) and 1(d)). Second, feature maps of different 
(spatial) resolutions/scales generated by the encoder-decoder network 
have large semantic gaps. Hence, prediction derived mostly from the 
deepest feature layer with weak semantic information will inevitably 
result in a loss of details. As a result, a complex IA sac may not be 

accurately extracted, and small vessels are often omitted, as shown in 
Fig. 1(c) (see the two marked square areas indicating a dented IA sac and 
a missing small artery, respectively). Third, recall that adjacent pixels 
share considerable similarities and very tight spacing between neigh
boring vessels (see the square area marked in Fig. 1(a)). When convo
lutions are applied to a receptive region belonging to different vessels 
but containing similar intensity values, spatial context 
post-convolutions may further amplify the neighborhood dependencies, 
causing unwanted adhesions/connections between neighboring vessels 
(see the blue arrows in Figs. 1(c) and 1(d)). Consequently, this problem 
is intrinsic to many convolution-based segmentation methods. Our study 
is the first to explore mitigation of this fundamental limitation in ap
plications tailored for computational hemodynamics. 

During computational hemodynamic modeling of an IA, proximal 
and distal vessels connected to the IA and the IA itself must be accurately 
extracted to reproduce physiological blood flow patterns in and around 
the IA. Referring back to Fig. 1, if a small artery around an IA is not 
included or an unwanted vessel-to-vessel connection is made, the gross 
hemodynamic pattern in and around the IA will not reflect the actual 
physiological flow. In another scenario, when a physiological flow rate 
(e.g., 300 ml/min for internal carotid artery [ICA]) is prescribed to the 
segmented ICA as a velocity boundary condition, how accurately the ICA 
cross-sectional area is determined impacts the outcome of hemodynamic 
modeling. 

In this paper, to address each of the above-said challenges, we pro
posed an attention-based residual U-Net (ARU-Net) framework with dif
ferential preprocessing and geometric postprocessing for automatic 
segmentation of IAs and their adjacent arteries. Our adoption of the 
’’attention mechanism’’ is inspired by the human visual attention 
mechanism (Kastner and Ungerleider, 2000) because human beings 
often selectively concentrate their limited processing resources only on 
what is important. Studies have demonstrated that computational 
modeling of visual attention can quickly locate the most salient objects 
in a cluttered visual scene (Itti and Koch, 2001), thereby improving the 
effectiveness of visual processing. Thus, in this study, we aimed to equip 
the network with such ’’attention’’ properties to automatically learn in 
the presence of clutter by focusing on the object structures and ignoring 
the irrelevant parts without additional supervision. 

Additionally, benefiting from the residual learning structure (He 
et al., 2016), which uses shortcut connection and element-wise addition 

Fig. 1. A visual representation of shortcomings of two convolution-based models: (a) input 3D image from a coronal view. (b) corresponding ground truth from the 
same coronal view in conjunction with a 3D surface rending. (c) and (d) are segmentation results of 3D U-Net (Çiçek et al., 2016) and nnU-Net (Isensee et al., 2021). 
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to perform residual mapping to solve the degradation problem, we uti
lize long and short skip connections to preserve richer spatial informa
tion by adopting this ’’residual’’ strategy. 

A graphic overview of the proposed model can be found in Fig. 2. We 
first performed boundary enhancement (edge detection and standardi
zation) as preprocessing (see Fig. 2(a)) on the original 3D rotational 
angiography (3DRA) images to improve (imaging) contrast around the 
vessel contours, thereby preserving small (~1 mm diameter or 2~3 
pixel-sized) vessel information to propagate downstream into the deep- 
learning network. Next, we optimized the feature maps generated in the 
encoding paths by exploiting the depth feature maps in the decoding 
paths (see Fig. 2(b)); each path contains four pyramid layers of different 
resolutions for encoding and decoding. Specifically, we used the gate 
signals of multiple attention modules to target IAs and their adjacent 
small vessels. Thus, the proposed ARU-Net’s learning focused on the 
targeted IAs and their proximity. It is also worth noting that, for efficient 
training, residual connections were leveraged to avoid exponential 
gradient decay in deep networks while enabling the model to aggregate 
semantic information at different scales. Then, we designed the multi
scale features produced at different levels in the decoding path as feature 
pyramids and made predictions independently at each pyramid level to 
integrate the multiscale semantic information to facilitate the segmen
tation of small vessels. Lastly, we exploited the 3D conditional random 
field (3DCRF) and 3D connected component optimization (3DCCO) as 
postprocessing (see Fig. 2(c)) to remove the unwanted connections be
tween neighboring arteries and optimize the segmentation components. 

Extensive experiments (including comparative experiments with 
established deep-learning (Çiçek et al., 2016; Isensee et al., 2021; 
Kamnitsas et al., 2017; Bhalerao and Thakur, 2019; Müller and Kramer, 
2021; J.M.J. Valanarasu et al., 2021) and traditional image segmenta
tion methods (Piccinelli et al., 2009; Jirik et al., 2013), ablation exper
iments, and CFD experiments) confirmed that the proposed ARU-Net 
model quantitatively and qualitatively outperforms other methods in 
terms of aneurysm accuracy and vascular integrity. In short, the con
tributions and innovations of this work are as follows: 

1) We proposed a deep encoder-decoder architecture with preprocess
ing and postprocessing for IA segmentation.  

2) We constructed the multiscale supervision-based ARU-Net by 
adopting the depth-aware attention gate module to guide the deep 

network to learn more accurate IA structures and improve the pro
cessing of features concerning small vessels.  

3) We exploited the superiority of 3DCRF to eliminate the unwanted 
adhesions/connections between adjacent arteries and an IA and its 
arteries in the segmentation results.  

4) We conducted comprehensive experiments and performed "patient- 
specific" CFD modeling to demonstrate the superior performance of 
the proposed ARU-Net model. It is worth noting that the applications 
of deep-learning-based image segmentation for "patient-specific" 
CFD simulations have rarely been reported. 

2. Related works 

The rupture of IAs can lead to high mortality. Clinical management 
of IAs has been focused on (1) treating ruptured IAs to stop bleeding 
immediately and (2) selecting some unruptured IAs with a high risk of 
rupture to avoid the worst outcomes. As discussed in Section 1 above, 
accurate segmentation of IAs is a critical step in supporting the clinical 
decision for efficiently managing patients with IAs. Given the high 
prevalence of (unruptured) IAs in the adult population, this topic is of 
great significance and impacts our society. 

Generally speaking, the methods for IA segmentation are mainly 
divided into three categories: traditional image segmentation methods 
(Sen et al., 2014), machine learning-based methods (Flanders, 2019), 
and deep learning-based methods. Traditional methods rely heavily on 
prior knowledge, and machine learning methods often require complex 
feature engineering, all of which tend to be inferior to deep learning 
methods in terms of capability and accuracy. 

Due to the excellent feature learning ability, deep learning technol
ogy has been explored for IA segmentation. Nakao et al. (Nakao et al., 
2018) exploited a computer-assisted detection (CAD) system for IA 
detection on magnetic resonance angiography (MRA) images, which was 
based on the deep convolutional neural network (CNN) and the maximum 
intensity projection (MIP) method. Their model had satisfactory accuracy 
in detecting aneurysms with larger diameters but was less sensitive for 
relatively small vascular aneurysms. Stember et al. (Stember et al., 
2019) developed a CNN to detect IAs based on the MRA automatically. 
The limitation of their work is that the training was performed on 2D 
MIP images, and the loss of spatial information resulted in an incomplete 
representation of the vasculature. Jin et al. (Jin et al., 2020) proposed an 
end-to-end spatiotemporal deep neural network for IA segmentation, 

Fig. 2. An overview of the proposed 3D image segmentation process. In the testing phase, (a) preprocessing (for boundary detection and normalization) of an input 
image is done first. Then, the preprocessed image data are fed-forward into the (b) 3D AttResUNet and are refined using (c) postprocessing strategies by executing 3D 
conditional random field (3DCRF) and 3D connected component optimization (3DCCO) in a sequence. 
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which incorporated the 2D and time digital subtraction angiography (DSA) 
information. Their model considered only the segmentation of 2D im
ages, making it difficult to distinguish the small aneurysms from the 
vascular accumulations. Patel et al. (Patel et al., 2020) implemented a 
DeepMedic (Kamnitsas et al., 2017) based architecture for IA segmen
tation from DSA sequences and compared its performance with the 3D 
U-Net (Çiçek et al., 2016) model. Their models are cumbersome and 
need to be retrained to make predictions if the resolution of input images 
changes. Shahzad et al. (Shahzad et al., 2020) employed a deep learning 
model to segment aneurysms on computed tomography angiography (CTA) 
automatically. The disadvantage of their model was that the perfor
mance on CTA images was obtained from one clinical scanner and the 
generalization of their method was not assessed. Cheng et al. (Cheng 
et al., 2021) performed IA segmentation by exploring the U-shaped deep 
neural network structure to fuse spatial information together from 3DRA 
images. The shortcoming of their method is the poor segmentation ac
curacy for small-sized IAs (e.g., < 3 mm in height or width). Shao et al. 
(Shao et al., 2022) presented an unsupervised IA detection method 
based on 3D point cloud data. Their model has advantages on limited 
labeled data but is not robust to other data types. 

It is important to note that none of the methods mentioned above 
were evaluated for computational hemodynamics applications with IAs. 
In general, most of the existing deep learning-based IA segmentation 
methods face the problems of insufficient utilization of 3D spatial in
formation and suboptimal detection of small targets. Moreover, another 

problem identified is the unwanted adhesions/connections between two 
adjacent vessels or the IA to vessel. 

To this end, the primary objective of this paper is to address these 
challenges (i.e., identification of small vessels, avoiding unwanted 
vessel/IA connections, accurate representation of irregularly shaped 
IAs) by introducing the proposed innovative deep-learning variant ARU- 
Net. Strategically, we introduced depth-aware attention gates and 
multiscale supervision to fully capture and fuse spatial feature infor
mation. Theoretically, the idea of the attention mechanism is to generate 
a context dependency, allowing more adaptive weight assignments to 
input features. In other words, it automatically highlights salient regions 
conditioned on the current task while suppressing irrelevant counter
parts. As a result, our deep-learning algorithms can make predictions 
more contextualized. Traditional hard attention (Mnih et al., 2014) 
typically uses iterative local region proposal-based techniques: its sam
pling is often non-differentiable, and the parameter update relies on 
reinforcement learning. Thus, hard attention makes the training of 
models difficult. To enable long-distance interactions, global attention 
mechanisms (e.g., augmented attention (Bello et al., 2019) and dual 
attention (Fu et al., 2019)) have been designed to capture long-range 
dependencies. But they are more computationally expensive and 
require more memory storage; e.g., adding augmented attention (Bello 
et al., 2019) to ResNet50 resulted in an extra 24.3 million parameters, 
and the inference and training time increased by 29% and 25%, 
respectively. More recently, the self-attention-based transformer 

Fig. 3. A detailed processing flowchart of the proposed ARU-Net model.  

Fig. 4. Representative examples of the results by performing preprocessing on 3D NIfTI images: (a) Original 3D NIfTI images, (b) post-standardization, (c) post- 
boundary enhancement, (d) standardized + boundary enhanced images. 
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architectures (e.g., vision transformer (Dosovitskiy et al., 2021), swin 
transformer (Liu et al., 2021), and medical transformer (J.M.J. Val
anarasu et al., 2021)) have been proposed to identify the complex de
pendencies between elements of each input feature. The known 
limitations of these self-attention-based transformers are their inability 
to capture local knowledge, difficulty in characterizing position infor
mation, vanishing top layer gradients, etc. 

In contrast, the proposed depth-aware attention gate mechanism is a 
new idea. Our depth-aware attention gates first employ the depth 
feature in the decoding path as a gating signal to optimize the feature 
generated in the encoding path. Then, the attention map can be further 
exploited to guide the decoding of features in later layers. This process 
ensures that the target is highlighted, and at the same time, the back
ground is suppressed during information propagation. The advantages 
of this process are three-fold: 1) grid-based gating allows attention co
efficients to focus on specific local areas, preserving small vessel infor
mation; 2) dense label prediction maintains a large amount of detailed 
knowledge and location information; and 3) computational overhead is 
low because of our simple network structure. As a result, the IA 
morphological differences and small vessel branches can be accurately 
depicted for subsequent clinical decision-making. At the same time, the 
unwanted adhesion/connections can be effectively eliminated by the 
proposed 3DCRF postprocessing. 

3. The proposed segmentation model 

The proposed 3D image segmentation pipeline is illustrated in Fig. 2 
as a three-step process: preprocessing, 3DAttResUnet-processing, and 
postprocessing. For each image in the 3D Neuroimaging Informatics 
Technology Initiative (NIfTI) format, boundary detection and 

standardization are utilized as preprocessing to enhance (image) 
contrast of vascular contours and reduce the background noise. Then, 
the proposed 3D ARU-Net with multiscale prediction is initially utilized 
to segment the 3D NIfTI image. Finally, the fully connected 3DCRF and 
3DCCO are exploited as the postprocessing step to refine the segmen
tation outcomes. The detailed workflow for the proposed three-step 
processing is presented in Fig. 3. 

3.1. Preprocessing 

3DRA data are in the Hounsfield scale, and the (image) dynamic 
range is not suitable for image segmentation. We first standardized the 
original grayscale values of each image in a 3D NIfTI sequence and 
compressed the image dynamic range to 11 bits (i.e., 0 to 511). The 
standardization often allows us to better visualize the vasculature of 
interest while suppressing the image noise. To preserve the information 
of small vessels during the forward and backward propagation of 
network training, we also utilized the Sobel filter, an edge detector, to 
enhance the contrast of the vessel boundaries. The final preprocessed 
image is a weighted summation of the normalized and edge-enhanced 
images. Fig. 4 shows the effectiveness of the above-said preprocessing 
in a representative example. 

3.2. 3DAttResUNet-Processing 

The proposed 3D ARU-Net architecture aims to segment the IAs and 
the associated parent vascular structures accurately. The proposed 
network architecture allows us to better depict small vessels within the 
proximity of IAs. As shown in Fig. 3, similar to the standard U-Net 
(Ronneberger et al., 2015) segmentation network, our network consists 

Table 1 
Specification of the proposed 3D ARU-Net architecture.  

Path Operation Layer Kernel Size Stride Padding Output Size  

Input image – – – 1 × 48 × 256 × 256 
Encoder Convolution Layer 

(Two Times) 
3D Convolution 
PReLU 

3 × 3 × 3 
- 

1 
- 

1 
- 

16 × 48 × 256 × 256 
16 × 48 × 256 × 256 

Downsampling Layer 3D Convolution 
PReLU 

2 × 2 × 2 
- 

2 
- 

- 
- 

32 × 24 × 128 × 128 
32 × 24 × 128 × 128 

Convolution Layer 
(Three Times) 

3D Convolution 
PReLU 

3 × 3 × 3 
- 

1 
- 

1 
- 

32 × 24 × 128 × 128 
32 × 24 × 128 × 128 

Downsampling Layer 3D Convolution 
PReLU 

2 × 2 × 2 
- 

2 
- 

- 
- 

64 × 12 × 64 × 64 
64 × 12 × 64 × 64 

Convolution Layer 
(Three Times) 

3D Convolution 
PReLU 

3 × 3 × 3 
- 

1 
- 

1 
- 

64 × 12 × 64 × 64 
64 × 12 × 64 × 64 

Downsampling Layer 3D Convolution 
PReLU 

2 × 2 × 2 
- 

2 
- 

- 
- 

128 × 6 × 32 × 32 
128 × 6 × 32 × 32 

Convolution Layer 
(Three Times) 

3D Convolution 
PReLU 

3 × 3 × 3 
- 

1 
- 

1 
- 

128 × 6 × 32 × 32 
128 × 6 × 32 × 32 

Downsampling Layer 3D Convolution 
PReLU 

3 × 3 × 3 
- 

1 
- 

1 
- 

256 × 6 × 32 × 32 
256 × 6 × 32 × 32  

Attention Layer 4 – – – 128 × 6 × 32 × 32  
Attention Layer 3 – – – 64 × 12 × 64 × 64  
Attention Layer 2 – – – 32 × 24 × 128 × 128  
Attention Layer 1 – – – 16 × 48 × 256 × 256 

Decoder Convolution Layer 
(Three Times) 

3D Convolution 
PReLU 

3 × 3 × 3 
- 

1 
- 

1 
- 

256 × 6 × 32 × 32 
256 × 6 × 32 × 32 

Upsampling Layer 3D Transposed Convolution 
PReLU 

2 × 2 × 2 
- 

2 
- 

- 
- 

128 × 12 × 64 × 64 
128 × 12 × 64 × 64 

Convolution Layer 
(Three Times) 

3D Convolution 
PReLU 

3 × 3 × 3 
- 

1 
- 

1 
- 

128 × 12 × 64 × 64 
128 × 12 × 64 × 64 

Upsampling Layer 3D Transposed Convolution 
PReLU 

2 × 2 × 2 
- 

2 
- 

- 
- 

64 × 24 × 128 × 128 
64 × 24 × 128 × 128 

Convolution Layer 
(Three Times) 

3D Convolution 
PReLU 

3 × 3 × 3 
- 

1 
- 

1 
- 

64 × 24 × 128 × 128 
64 × 24 × 128 × 128 

Upsampling Layer 3D Transposed Convolution 
PReLU 

2 × 2 × 2 
- 

2 
- 

- 
- 

32 × 48 × 256 × 256 
32 × 48 × 256 × 256 

Convolution Layer 
(Two Times) 

3D Convolution 
PReLU 

3 × 3 × 3 
- 

1 
- 

1 
- 

32 × 48 × 256 × 256 
32 × 48 × 256 × 256  

Output Layer 3D Convolution 
Sigmoid 

1 × 1 × 1 
- 

1 
- 

- 
- 

32 × 48 × 256 × 256 
1 × 48 × 256 × 256  
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of encoding and decoding paths; each path has four Pyramid layers of 
different resolutions, with independent predictions made from all layers. 
Each layer contains two or three 3D convolutions in both decoding and 
encoding paths, each followed by a parametric rectified linear unit 
(PReLU) (He et al., 2015). Mathematically, PReLU(x) = max(0,x)+ a ×
min(0, x), which can improve the model accuracy at a negligible extra 
computational cost. The proposed 3D ARU-Net was trained by using 
cropped patches of size 48 × 256 × 256 with a sliding window running 
over the input 3D NIfTI image of size 256 × 256 × 256 to reduce 
memory requirements. A detailed description of our 3D ARU-Net can be 
found in Table 1. 

To improve convergence, our network not only utilizes the long skip 
connections of U-Net to propagate the discriminative information of 
layers of equal resolution from the encoding path to the decoding path 
but also incorporates the short skip connections of ResNet (He et al., 
2016) in each layer to ensure the provision of essential high-resolution 
feature information for the following layer. This configuration can 
significantly mitigate the vanishing gradient problem during the back
propagation and effectively aggregate the semantic information of 
different feature scales. 

Depth-Aware Attention Gate Module: Generally speaking, as the 
number of layers increases in an encoding-decoding structure, the 
network gradually has a richer representation of possible features at 
different spatial scales and orientations. However, the segmentation of 
small objects requires special considerations for two reasons. On the one 
hand, due to cascaded convolutions, spatial details are lost at these high- 
level (i.e., coarse spatial resolution) feature maps, resulting in false- 
negative detection of small objects. On the other hand, reducing false- 
positive detections for small objects exhibiting large shape variability 
is difficult at the coarse resolution (Oktay et al., 2018). Attention gates 

(AGs) are adopted and incorporated into long skip connections to pre
serve features relevant to small vessels. The AGs enable the proposed 
ARU-Net model to emphasize relevant spatial information from feature 
maps at multiple scales and subsequently propagate it to the decoding 
path, as illustrated in Fig. 5. Specifically, the depth feature maps in the 
decoding path are used as the gate signals (denoted gi at each pixel i to 
determine the focus region) to optimize the feature maps (defined as fi) 
generated during the coding process. This process suppresses the feature 
responses of the irrelevant background regions (i.e., through selective 
activation, as shown in Fig. 5). The gate signal of AG at the network layer 
with the lowest resolution is obtained by performing convolution, 
normalization, and activation operations on the feature map output by 
the encoder. It is worth noting that a lattice-like structure (see gi in 
Fig. 5) will appear at the edge of the feature map during the upsampling 
process of the decoder (also known as "checkerboard artifacts"). How
ever, the activation operation in our AG module can largely eliminate 
these background artifacts (see SAct in Fig. 5). After implementing the 
AG module in all four pyramid layers, the lattice-like structure gradually 
weakened until it fully disappeared. It thus effectively highlights the 
valuable feature critical for the IA segmentation task. 

By linearly mapping the concatenated features fi and gi to an inter
mediate space, the intermediate activation maps (denoted as LAct and 
SAct, respectively) are calculated as: 

LAct = ψ
(
σ1
(
wf fi +wggi + bg

))
+ bψ , (1)  

SAct = σ2(LAct(fi, gi)), (2)  

where σ1 and σ2 represent the ReLU and Sigmoid activation functions, 
respectively. ψ, wf , and wg are the linear transformations, which are 
computed by using 1 × 1 × 1 convolutions on the channels of the input 

Fig. 5. A visualization schematic diagram showing the structure of the attention gate.  

Fig. 6. Resulting examples AMap obtained by performing AGs on the feature maps fi and the gate signals gi at four different spatial scales.  
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tensor. bg and bψ are the bias terms. In Fig. 5, LAct and SAct are two 
nonlinear layers that selectively activate attention coefficients in a 
sequence. Then, the attention coefficients SAct are resampled with 
trilinear interpolation. The final output (denoted as AMap) of AG is the 
multiplication of the feature maps fi and the upsampled maps (denoted 
as ui), as follows: 

AMap = fi × ui. (3) 

This study used four AGs to deal with shallow and deep features. The 
results of AG processing at four different (spatial) scales are shown in 
Fig. 6. Usually, the attention maps have large and small values in the 
target vessel and background regions, respectively. Thus, as shown in 

Fig. 6, AG processing can suppress background noise. Collectively, the 
AG can improve the accuracy of IA segmentation through more 
"directed" information dissemination at different (spatial) scales. 

Multiscale Supervision Strategy: We designed a multiscale super
vision strategy to improve the segmentation performance on small 
vessels and morphological details of irregularly shaped IAs. The pro
posed 3D ARU-Net first learns the feature information of different scales 
independently. Then, the semantic feature information of small vessels 
at low and high levels is fused through a top-down pathway with lateral 
connections. 

Our network configuration is different from the traditional U-Net 
architecture at the implementation level. Instead of adopting a single 
high-resolution feature map and making predictions based on that high- 
resolution map in the U-Net model, the proposed network utilizes the 
multiscale features generated at different layers in the decoding stage as 
a feature pyramid. In other words, our network makes predictions at 
each pyramid level independently. Specifically, the sigmoid function is 
used to make predictions layer by layer, and the prediction results of all 
layers are summed together to provide the final segmentation proba
bility. Since the feature maps of different spatial resolutions generated 
by the network have significant semantic gaps due to different depths, 
the prediction made by a single high-resolution feature with weak se
mantics will inevitably lead to the information loss of small vessels. In 
contrast, the proposed multiscale supervision strategy can synthesize 
low-resolution features with strong semantics and high-resolution fea
tures with weak semantics to combine the coarse-level and fine-level 
dense predictions, thereby enhancing the representation capacity for 
small vessel segmentation and creating a more accurate depiction of 
irregularly shaped IAs. 

The proposed multiscale supervision is inspired by the well-known 
feature pyramid networks (FPNs, e.g., (Lin et al., 2017; Seferbekov 
et al., 2018; Kong et al., 2018)). FPNs’ main advantages include 1) 
distributing objects of various sizes to different feature layers for accu
rate detection of multiscale objects and 2) enriching semantic and 
location information of objects by aggregating information received 
from different decoding layers. However, drawbacks of the FPN struc
ture are also known: 1) the nearest-neighbor algorithm is used for 
upsampling and leads to ineffective propagation of high-level semantic 
information; 2) mapping of high-level features in a top-down pathway 
often causes the loss of some semantic information; and 3) multiple 
downsampling and upsampling may cause inaccurate featur
e/information fusion and propagation. To address these drawbacks, we 
adopt the following strategies: 1) upsampling based on trilinear inter
polation to reduce image quality loss with a slightly high computational 
cost; 2) using short skip connections in each layer to aggregate the 

features before and after convolutions to fully retain semantic infor
mation; and 3) securing more accurate information/feature fusion by 
directly passing attention-based long skip connections from the finest 
level (bottom-up maps) to the coarsest level (top-down maps). 

Tversky Loss Function: To train the proposed 3D ARU-Net model, a 
Tversky loss function (Salehi et al., 2017) was utilized to address the 
data imbalance issue in image segmentation. In the presence of small 
vascular structures, the Tversky loss function acquires a relatively better 
trade-off between precision and recall. In other words, weighting false 
negatives (FNs) more than false positives (FPs) in training highly imbal
anced data is beneficial to highlight the critical small vessels. Formally, 
the Tversky loss function reads:  

where pi and qi denote the set of predicted and ground truth binary la
bels, respectively, within which the pixel value x is 1 for vascular regions 
and 0 for non-vascular regions. The hyperparameters α and β tune the 
penalty magnitudes of FPs and FNs, respectively. By placing more 
emphasis on FNs, a larger β gives more weight to recall instead of pre
cision. It is generally understood that a higher β in the generalized loss 
function during training results in higher generalization and improves 
performance on imbalanced data. Such a strategy effectively shifts the 
focus of prediction to lower false-negatives and promotes recall, thus, to 
a certain extent, avoiding missed detection of small vessels. 

To sum up, compared with the traditional U-Net structure, the pro
posed 3D ARU-Net has three advantages: 1) the residual connections 
deepen the network to learn 3D features, improving the model’s 
convergence; 2) the depth-aware attention gate module helps the 
network to focus on more local-perceptual features, thereby enhancing 
the network’s ability to learn the structural information of IAs; and 3) 
combined with multiscale supervision, this network improves the ag
gregation of small ROI features in the cascade convolution, thus facili
tating the segmentation of small vessels and irregularly-shaped IAs. 

3.3. Postprocessing 

After the prediction by the proposed 3D ARU-Net model, the initial 
segmentation map was generated from the test image. Although the 
generated result has a relatively complete vascular structure, some is
sues remain. First, since neighboring pixels share a large amount of 
similar spatial receptive fields, the soft segmentation maps obtained by 
the network tend to be smooth, as the boundary pixels can be identified 
as either foreground or background. Hence, modeling neighboring 
target regions can also lead to unwanted adhesion between adjacent 
vessels or between an IA and its adjacent vessels because the very tight 
spacing between vessels and their surroundings (see Fig. 1) can be easily 
predicted as vessel regions. Second, the proposed model considers the 
identification of individual pixels only and does not fully exploit the 
contextual and relevant information of adjacent regions in 2D images 
and 3D volumes, resulting in incomplete or discontinuous vascular 
structures (e.g., missing small vessels or inaccurate depiction of IA 
morphology) due to insufficient knowledge of neighborhood de
pendencies. Third, due to spatial noise in the input image and local 
minima in training, some spurious outputs appear, with small holes or 
isolated regions in the prediction results. We first adopted a fully con
nected 3D conditional random field (3DCRF) (Krähenbühl and Koltun, 
2011) to eradicate the first two issues above-listed. Subsequently, 3D 
connected component optimization (3DCCO) was another postprocessing 
step to remove noise over the initial segmentation (i.e., the third issue). 

T(α, β) =
∑N

i=1pi(x = 1)qi(x = 1)
∑N

i=1pi(x = 1)qi(x = 1) + α
∑N

i=1pi(x = 1)qi(x = 0) + β
∑N

i=1pi(x = 0)qi(x = 1)
, (4)   
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A framework based on 3DCRF was used to regularize the initially 
segmented binary mask; our goal is to make our final segmentation more 
spatially coherent. Letting I and pi denote the 3D input image and pre
dicted segmentation labels, respectively, the Gibbs energy in the 3DCRF 
model (X, I) can be calculated by: 

E(X = x|I) =
∑N

i=1
φu(pi|I) +

∑N

i=1,j=1,i∕=j

φp
(
pi, pj|I

)
, (5)  

where i and j denote the number of pixels in the random field X and test 
image I, respectively. The unary potential φu(pi|I) = − logP(pi|I) is 
derived from the probability output P(pi|I) of the proposed 3D ARU-Net. 

In Eqn. (5), the pairwise potential φp(pi, pj

⃒
⃒
⃒I) is defined as follows: 

φp
(
pi, pj

)
= μ
(
pi, pj

)
[

ω1exp

(

−
|si − sj|

2

2η2
1

)

+ω2exp

(

−
|si − sj|

2

2η2
2

−
|Ii − Ij|

2

2η2
3

)]

, (6)  

where μ denotes the label compatibility function derived from the Potts 
model μ(pi, pj) = [1; pi ∕= pj], which provides the compatibility between 
different pairs of adjacent pixels with dissimilar labels. ω1 and ω2 denote 
the linear combination weights to tune the pairwise terms. |si − sj| de
notes the spatial distance between pixels i and j, while |Ii − Ij| denotes 
their intensity difference in the input image. The hyperparameters η1, η2, 
and η3 adjust the degree of proximity and similarity. 

The optimal/final labels x∗ = argminE(X= x|I) of the segmentation 
map can be obtained by minimizing Eqn. (5) using a mean-field 
approximation algorithm (Krähenbühl and Koltun, 2011). By encour
aging spatial consistency to optimize the pixel labels in adjacent spaces, 
3DCRF can eliminate adhesion between neighboring vessels or between 
an IA and its parent artery to a certain extent. 

A typical problem after 3DCRF processing is the presence of some 

extraneous disconnected small vessel regions. Formally, we name the 
segmentation result as post-3DCRF which is for processing a binary 3D 
volume in which vessel labels are ones and the rest are zeros. Starting 
from an arbitrary vessel label (hereafter referred to as the selected first 
vessel label) on the binary 3D volume, 3DCCO recursively searched all 
neighboring vessel labels and added them to a group associated with the 
selected first vessel label. This process is also known as region-growing 
and would not stop until all vessel labels connected to the selected first 
vessel label were found. If there were still vessel labels with no group 
association, another arbitrary vessel label would be initialized, and the 
region-growing process would start again. After all vessel labels had 
been processed, this process resulted in several connected vessel groups. 
The group with the largest number of vessel labels would be selected as 
the final segmentation result. Finally, morphological operations (e.g., 
dilation and erosion) were also used to eliminate holes in the vascular 
area. 

4. Experimental evaluations and discussion 

In this section, quantitative and qualitative experimental results 
were provided to verify the effectiveness of the proposed model, 
including experimental setup, comparative experiments, ablation ex
periments, and CFD experiments. 

4.1. Experimental setup 

Experimental Dataset: A dataset of 23 3DRA images from different 
patients with one IA was used. Data were extracted from a publicly 
available database hosted at Emory University (http://ecm2.mathcs. 
emory.edu/aneuriskweb/about). Images were manually annotated and 
verified with clinician annotated geometries available in the above-said 
public database to provide the training and testing samples. Each 3DRA 
image contains 256 slices, each of which has a dimension of 256× 256. 
In our experiments, 65% 3DRA images (15 cases) of the dataset were 

Fig. 7. Visual comparisons of segmentation results generated by different models. (a) Coronal plane of the original 3D NIfTI images. (b) Ground truth (manual 
annotation). (c-j) Visualization of results from the eight segmentation models. (k) Segmentation results of the proposed ARU-Net model. The coronal and 3D views are 
provided for each result. 
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selected for training, and the remaining 35% (8 cases) were exploited for 
testing. To fully validate the comprehensive performance of the pro
posed segmentation model, both the training and testing cases covered a 
range of complex situations, e.g., aneurysms of minor secondary vessels, 
non-uniformly mixed contrast, tortuous vasculature, and narrow 
spacing between the aneurysm and adjacent parent artery. 

Implementation Details: The proposed ARU-Net segmentation 
model was implemented under the PyTorch framework and tested on a 
computer workstation with an Intel Core i9–10900k CPU (3.7 GHz; 128 
GB RAM) and an NVIDIA GeForce RTX3090 GPU (24GB GPU RAM). The 
initial learning rate was set to 1 × 10− 4 and was decreased with a su
pervised decay coefficient of 0.33. An Adam optimizer was selected to 
train the proposed model with a batch size of 3 due to the limitation of 
CUDA memory. The training took about six hours to complete 2000 
epochs from a random initialization of weights. The total number of the 
network parameters was approximately 9.59 M. After training, the 
average time for the proposed model to generate a 3D segmentation map 
from each 256 × 256 × 256 tested NIfTI image was about 3.277 s. 

Comparative Models: The proposed ARU-Net framework was 
compared with two state-of-the-art traditional segmentation models and 
six deep learning-based models, including Vascular Modelling ToolKit 
(VMTK) Level-Sets (Piccinelli et al., 2009), Graph-Cuts (Jirik et al., 
2013), 3DUNet (Çiçek et al., 2016), DeepMedic (Kamnitsas et al., 2017), 
3DResUNet (Bhalerao and Thakur, 2019), MIScnn (Müller and Kramer, 
2021), KiU-Net (J.M.J. Valanarasu et al., 2021), and nnU-Net (Isensee 
et al., 2021). To be fair, all these models were trained and tested on the 
same data with the same environment configuration (i.e., identical 
computer workstation and operating system). 

Evaluation Metrics: To evaluate the performance of the proposed 
ARU-Net model against the other eight models, six segmentation metrics 
were exploited, including dice similarity coefficient (DSC), relative volume 
error (RVE), sensitivity (SE), specificity (SP), the 95th percentile Hausdorff 
distance (HD95), and average symmetric surface distance (ASSD). In 
particular, DSC measures the similarity between the predicted seg
mentation map and reference ground truth; RVE is used to quantify the 
"water balance" error and to indicate whether a model is poorly repre
sentative; SE mainly measures the missed detection rate; SP measures 
the false detection rate; HD95 is a generalized assessment of distance 
between two point sets, quantifying the maximum segmentation error; 
ASSD determines the average difference between the surface of the 
predicted map and ground truth. Letting TP, TN, FP, and FN denote the 
rate of true-positive, true-negative, false-positive, and false-negative, 

respectively, the above evaluation metrics are defined by: 

DSC = 2TP/(2TP + FP + FN), (7)  

RVE = |FN − FP|/(TP + FN), (8)  

SE = TP/(TP + FN), (9)  

SP = TN/(TN + FP), (10)  

HD95 = p95%(min
y∈G

‖ x − y||2 ∪ min
x∈P

‖ x − y||2), (11)  

ASSD=(
∑

x∈P
min
y∈G

‖ x − y||2)/2|P| + (
∑

y∈G
min
x∈P

‖ y − x||2)/2|G|, (12)  

where P and G denote the predicted map and the ground truth, 
respectively. TP and TN are calculated as the sets of correctly classified 
IA voxels and non-IA voxels, respectively; FP and FN are the sets of 
falsely detected IA voxels and non-IA voxels, respectively. Both HD95 
and ASSD are given in mm, and a lower value means better 
segmentation. 

4.2. Comparative experiments 

Qualitative Results: To show the subjective performance compari
sons between the segmentation results and the ground truths, the visu
alization of all cases was performed. One representative example is 
presented in Fig. 7. Thanks to the depth-aware attention gate and mul
tiscale supervision configuration, the proposed ARU-Net model not only 
obtained a highly accurate IA region but also successfully detected more 
small vessels. As shown in Fig. 7, in contrast to our model, almost all the 
comparative models have missed the small vessels, as indicated by the 
white arrows. In addition, the results of 3DUNet and KiU-Net models 
showed severe adhesions of adjacent vessels, as indicated by the blue 
arrows. The results of the 3DResUNet model showed a sudden decrease 
in vessel diameter (see Fig. 7(g)), as indicated by the green arrows. 
Furthermore, the results of Graph-Cuts and DeepMedic models had some 
cluttered false positive areas, as indicated by the purple arrows in Figs. 7 
(d) and 7(f). Compared with GT, our model has two main advantages; 
one is the accurate delineation of small vessels that we omitted in the 
annotation stage (see the ground truth in (b)), and the other is the highly 
consistent IA shape. One small "wrinkle" on the IA dome is clearly visible 
(indicated by the yellow arrows in Figs. 7(b) and 7(k)). 

Quantitative Results: The segmentation performance of various 
models in terms of the six metrics on the intracranial aneurysm testing 
dataset are listed in Table 2. As can be seen in Table 2, the DeepMedic 
model yields the best performance in the DSC, HD95, and ASSD metrics, 
while our model achieves only the third-best on these metrics. In addi
tion, our model also performs the fourth-best on the sensitivity metric, 
with a small difference (0.059) from the best result of the nnU-Net 
model. In terms of specificity, the 3DResUNet model achieves the 
highest score 0.999, while the other models are only slightly lower (less 
than 0.003) than it. Traditional methods, Level-Sets and Graph-Cuts, can 
outperform partial deep models in some metrics, but these models rely 
too much on manual intervention. The Level-Sets model requires the 
selection of two specified thresholds as the initial level sets and requires 
placing two seeds on the image. The Graph-Cuts model needs a human 
user to determine the foreground and background seeds. Note that the 
proposed ARU-Net model obtains the best result on the RVE score. The 
difference between our predicted segmentation map and the ground 
truth is relatively minimal compared with other models. 

It is interesting to state that the proposed ARU-Net model is capable 
of segmenting cases with small vessels. However, please note that the 
performance of the proposed ARU-Net model is not the best on the 
traditional metrics listed in Table 2 partially because our predictions 
contain a large number of small vessels; one example is shown in Fig. 7 

Table 2 
Quantitative performance comparisons (mean ± 95% confidence) of different 
segmentation models using the six metrics. The up arrow ↑ indicates that the 
larger the value, the better the performance. The down arrow ↓ means the 
opposite. The best results are highlighted in bold.   

DSC↑ RVE↓ SE↑ SP↑ HD95 
(mm)↓ 

ASSD 
(mm)↓ 

Level-Sets 0.836 
±0.034 

0.175 
±0.069 

0.787 
±0.070 

0.998 
±0.001 

24.950 
±11.216 

2.599 
±0.779 

Graph-Cuts 0.830 
±0.028 

0.150 
±0.093 

0.846 
±0.072 

0.996 
±0.002 

43.173 
±11.232 

4.497 
±0.796 

3DUNet 0.756 
±0.065 

0.259 
±0.126 

0.678 
±0.106 

0.998 
±0.001 

46.650 
±17.126 

6.409 
±3.150 

DeepMedic 0.888 
±0.028 

0.128 
±0.077 

0.895 
±0.059 

0.998 
±0.001 

15.841 
±7.502 

1.692 
±0.509 

3DResUNet 0.800 
±0.085 

0.235 
±0.132 

0.716 
±0.111 

0.999 
±0.001 

47.751 
±18.308 

5.093 
±2.332 

MIScnn 0.877 
±0.041 

0.164 
±0.103 

0.903 
±0.077 

0.997 
±0.002 

29.314 
±16.810 

3.367 
±2.591 

KiU-Net 0.796 
±0.064 

0.187 
±0.118 

0.772 
±0.112 

0.997 
±0.002 

43.766 
±13.857 

4.943 
±2.029 

nnU-Net 0.866 
±0.038 

0.186 
±0.121 

0.912 
±0.073 

0.996 
±0.002 

29.408 
±15.720 

3.316 
±1.832 

ARU-Net 0.868 
±0.038 

0.118 
±0.076 

0.853 
±0.066 

0.998 
±0.001 

27.599 
±16.998 

2.696 
±1.502  
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(k). The rationale is explained as follows: due to the requirement of CFD 
modeling, we omitted some small vessels in the manual labeling process. 
As a result, the small vessels we predicted should be true positives but 
become false negatives. Since the ground truths we used for training and 
testing did not contain these small vessels, our prediction results include 
a large number of small vessels, which increases the gap with ground 
truth. That explains why our DSC and other criteria scores are slightly 
lower than those of other models. Furthermore, we attest that the 
traditional metrics shown in Table 2 may not be appropriate for 
assessing how well CFD models can be created. It is important to note 
that CFD simulations of the predicted vascular structures yield impor
tant biomarkers that can be used to predict the prognosis of IAs (Sun
derland et al., 2022). Thus, the following sub-section describes how 
different image segmentation methods influence CFD outcomes. 

To verify the effectiveness of the Tversky loss we adopted, we also 
compared the prediction results trained with six other loss functions, 
including binary cross-entropy (BCE) loss, hybrid loss consisting of dice 
loss and BCE loss, exponential logarithmic dice (ELDice) loss (Wong et al., 
2018), dice loss (Milletari et al., 2016), Jaccard loss (Yuan et al., 2017), 
and sensitivity-specificity (SS) loss (Brosch et al., 2015). The effects of 
different loss functions on the performance of our ARU-Net are reported 
in Table 3. We found that the Tversky loss was more competitive than all 
other loss functions, achieving the best scores on all evaluation metrics 
except SP. The Jaccard and SS loss functions achieved comparable 
performance because they could handle unbalanced classes to a certain 
extent. The BCE and Hybrid losses could not converge during the 
training process and thus failed to get the prediction results. Overall, the 
Tversky loss function contributed to the improved segmentation results 
for imbalanced samples, guiding our ARU-Net model to learn more 
informative IA features in the framework of the proposed multiscale 

supervision. 

4.3. Ablation experiments 

To evaluate the effectiveness of different configurations of the pro
posed ARU-Net model, ablation experiments were performed on eight 
different variants of our model, including: 1) the basic encoder-decoder 
architecture with residual structure and single supervised prediction 
(Backbone without MS); 2) adding multiscale supervision strategy 
(Backbone); 3) adding preprocessing (Backbone+Pre); 4) adding 
attention gates (Backbone+Att); 5) adding both preprocessing and 
attention gates (Backbone+Pre+Att); 6) adding 3D connected compo
nent optimization (Backbone+Pre+Att+CCO); 7) adding 3D conditional 
random field (Backbone+Pre+Att+CRF); 8) the complete structure with 
preprocessing, attention gates, and postprocessing (Back
bone+Pre+Att+Post). The quantitative performance comparisons of 
these various variants are listed in Table 4. 

As observed in Table 4, our ARU-Net outperformed other baselines 
and achieved optimal results on most evaluation metrics and was infe
rior only to the first-ranked baseline (4) and baseline (7) in SE and SP, 
respectively. The backbone without multiscale supervision (see Table 4 
(1)) had the worst performance and achieved the worst scores in almost 
all the evaluation metrics, suggesting that supervised learning without 
the proposed multiscale supervision was indeed inadequate. The addi
tion of the proposed multi-supervision strategy improved these evalua
tion metrics; e.g., the DSC score was improved from 0.5913 to 0.6233 
(see (2) vs. (1) in Table 4). We also compared the performance of our 
multiscale supervision strategy with three traditional FPNs, i.e., FPN 
(Lin et al., 2017), ResFPN (Seferbekov et al., 2018), and hybrid pyramid 
U-Net (HPU-Net) (Kong et al., 2018). The quantitative performance 
comparison is presented in Table 5, and our results show that the FPN 
obtained the best SE score; however, our model achieved the best results 
on all other evaluation metrics, where DSC was 0.8681, considerably 
higher than the second-ranked HPU-Net, and RVE was 0.1184, consid
erably lower than the second-ranked HPU-Net. Our results in Table 5 
indicate that our multiscale supervision was significantly better than the 
FPN structures, and the segmentation results were closer to GT. 

By comparison, preprocessing the test images can improve the per
formance of the model to some extent, as shown in (3) vs. (2) and (5) vs. 
(4) in Table 4. The DSC scores increased by 0.0440 and 0.0143, the 
volume errors (see RVE) decreased by 0.2153 and 0.0829, and the sur
face distances (see ASSD) decreased by 6.1035 mm and 5.3939 mm, 

Table 3 
Objective performance comparisons (mean ± 95% confidence) using different loss functions of the proposed ARU-Net. The dash (-) means that the segmentation map 
cannot be obtained to calculate the metric.   

DSC↑ RVE↓ SE↑ SP↑ HD95(mm)↓ ASSD(mm)↓ 

BCE/Hybrid Loss – – – – – – 
ELDice Loss 0.277±0.160 8.047±14.214 0.303±0.222 0.875±0.245 104.191±21.392 35.766±10.081 
Dice Loss 0.716±0.123 0.375±0.153 0.598±0.138 0.999±0.000 49.320±19.807 8.906±6.757 
Jaccard Loss 0.801±0.065 0.217±0.117 0.741±0.108 0.998±0.001 49.367±17.039 5.882±2.522 
SS Loss 0.832±0.045 0.141±0.091 0.815±0.080 0.997±0.002 38.462±17.371 4.114±1.927 
Tversky Loss 0.850±0.039 0.105±0.091 0.853±0.059 0.997±0.002 33.779±16.033 3.541±1.499  

Table 4 
Objective performance comparisons using different variants of the proposed ARU-Net model. The best results are highlighted in bold.   

DSC↑ RVE↓ SE↑ SP↑ HD95(mm)↓ ASSD(mm)↓ 

(1) Backbone without MS 0.5913 0.3139 0.5756 0.9988 153.2808 26.8980 
(2) Backbone 0.6233 0.8843 0.8465 0.9961 163.7476 38.3391 
(3) Backbone+Pre 0.6673 0.6690 0.8483 0.9970 158.2298 32.2356 
(4) Backbone+Att 0.7371 0.4791 0.8718 0.9978 135.3749 24.5004 
(5) Backbone+Pre+Att 0.7514 0.3962 0.8715 0.9981 133.9563 19.1065 
(6) Backbone+Pre+Att+CCO 0.7892 0.2714 0.8623 0.9987 61.0244 7.4198 
(7) Backbone+Pre+Att+CRF 0.8265 0.1485 0.8592 0.9991 57.0811 6.856 
(8) Backbone+Pre+Att+Post (ARU-Net) 0.8681 0.1184 0.8533 0.9978 27.5992 2.6960  

Table 5 
Quantitative performance comparison of our multiscale supervision with 
traditional FPNs.   

DSC↑ RVE↓ SE↑ SP↑ HD95 
(mm)↓ 

ASSD 
(mm)↓ 

FPN 0.7650 0.4723 0.9249 0.9902 43.3859 4.8937 
ResFPN 0.7638 0.4255 0.9046 0.9908 40.2781 4.7031 
HPU- 

Net 
0.7785 0.3455 0.8793 0.9924 28.3825 4.2050 

ARU- 
Net 

0.8681 0.1184 0.8533 0.9978 27.5992 2.6960  
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respectively. The advantages of preprocessing can also be found after the 
visualization of intermediate results. In an example shown in Fig. 8, the 
model with preprocessing can segment more small vessels (as indicated 
by serial no. 1–4) and effectively avoid the shrinkage of parent arteries 
(as indicated by serial no. 5–7). In particular, the average time of our 
model for preprocessing was only 0.860 s per 3D image (256 × 256 ×
256). 

Additionally, to verify how our preprocessing plays a role in elimi
nating the unwanted adhesion of adjacent vessels, we compared the 
segmentation results of adding the same preprocessing to 3DUnet and 
KiU-Net, and the qualitative comparison is shown in Fig. 9. After adding 
preprocessing, the original large-area adhesions were reduced substan
tially (indicated by the yellow arrows in Fig. 9) because our boundary 
enhancement operation increased the intensity values of edge pixels and 
decreased the similarity of adjacent vessel pixels. However, the 

adhesions still existed, suggesting that preprocessing alone could not 
solve the vessel adhesion issue. 

We added preprocessing to 3DUnet and KiU-Net and quantitatively 
compared the performance before and after adding preprocessing. Re
sults are shown in Table 6. Interestingly, the performance of 3DUnet and 
KiU-Net on six evaluation metrics degraded after adding preprocessing, 
and both were inferior to those of our ARU-Net. We infer that this result 
may stem from the inability of these two models to transmit edge signals 
in network learning. Although preprocessing is beneficial to obtain more 
edge information, an attention structure is also required to ensure that 
such valuable information is retained. 

Furthermore, our ablation experiments show that evaluation metrics 
were significantly improved by incorporating the attention gate in the 
backbone. In Table 4, there are also two pairs of comparable ablations 
(see (4) vs. (2) and (5) vs. (3)) that can prove the effectiveness of our 

Fig. 8. Subjective performance comparisons of the predicted segmentation results by adding the preprocessing. (For interpretation of the references to colour in this 
figure legend, the reader is referred to the web version of this article.) 

Fig. 9. Visual comparisons of 3DUnet and KiU-Net predictions by adding preprocessing. (For interpretation of the references to colour in this figure legend, the 
reader is referred to the web version of this article.) 

Table 6 
Objective performance comparisons of 3DUnet and KiU-Net predictions by adding preprocessing.   

DSC↑ RVE↓ SE↑ SP↑ HD95(mm)↓ ASSD(mm)↓ 

3DUNet 0.7559 0.2593 0.6777 0.9982 46.6503 6.4091 
3DUNet + preprocessing 0.7307 0.3036 0.6273 0.9988 54.5144 7.5026 
KiU-Net 0.7963 0.1872 0.7720 0.9971 43.7665 4.9428 
KiU-Net + preprocessing 0.7549 0.2582 0.7134 0.9978 51.1659 8.3863  
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Fig. 10. Subjective performance comparisons of the predicted segmentation results by adding attention gate. (For interpretation of the references to colour in this 
figure legend, the reader is referred to the web version of this article.) 

Fig. 11. Subjective performance comparisons between our ARU-Net and the SOTA attention models.  

Fig. 12. Subjective performance comparisons of the predicted segmentation results by adding 3DCRF. (For interpretation of the references to colour in this figure 
legend, the reader is referred to the web version of this article.) 

N. Mu et al.                                                                                                                                                                                                                                      



Medical Image Analysis 84 (2023) 102697

13

attention gate module, i.e., ablations (4) and (5) with attention-based 
long skip connections versus ablations (2) and (3) using traditional 
long skip connections of U-Net, respectively. Comparing (4) to (2) in 
Table 4, after adding the attention gates, the DSC score increased by 
0.1138, RVE decreased by 0.4052, and HD95 and ASSD decreased by 
28.3727 mm and 13.8387 mm, respectively. Similarly, comparing (5) to 
(3), we found that the DSC score increased by 0.0841, RVE decreased by 
0.2728, and HD95 and ASSD decreased by 24.2735 mm and 13.1291 
mm, respectively. 

Although traditional long skip connections had a positive effect on 
propagating spatial information from the encoding stage, the trans
mitted information is redundant; i.e., the target and background 
knowledge were simultaneously compensated to the decoding stage, 
which cannot provide an effective reference for subsequent layers. 
However, our attention-based long connections were capable of 

highlighting targets and suppressing backgrounds during information 
propagation. Overall, the attention gates in the proposed model can help 
the local segmentation network learn global saliency information to 
improve the structural accuracy of IAs. This is extremely important for 
the current patch-based segmentation network, which can process only 
one small local patch split from the global image at a time, losing the 
global structural information of an IA and its attached arteries. As can be 
seen from Fig. 10, the model containing the attention gate can generate 
aneurysms with a more accurate structure, avoiding the loss of some key 
arteries, e.g., the ophthalmic artery growing on the aneurysm indicated 
by the red arrow, which has an important impact on the CFD simulation. 

To further verify the superiority of our depth-aware attention gate 
module, we compared our ARU-Net with the state-of-the-art (SOTA) 
attention structures, including self-attention (Vaswani et al., 2017), 
axial attention (Wang et al., 2020), and medical transformer (MedT) (J. 

Fig. 13. Qualitative performance comparisons of our ARU-Net and the boundary-aware segmentation models.  

Table 7 
The PCC values between various automatic segmentation and manual segmentation results with respect to nine hemodynamic parameters and 11 geometric variables. 
The best results are shown in red color. The asterisk * means that a particular model’s results were obtained after removing the failed CFD simulation cases.   

Level-Sets* Graph-Cuts DeepMedic ResUNet* MIScnn KiU-Net* nnU-Net ARU-Net 

Systole STAWSS 0.9913 0.9370 0.9717 0.9191 0.9303 0.9075 0.9892 0.9772 
Systole WSSMin 0.9773 0.9974 0.9688 0.6994 0.8471 0.9744 0.9753 0.9828 
Systole WSSMax 0.7373 0.4522 0.7842 0.5932 0.7587 0.6616 0.7826 0.8888 
Mean OSI 0.2281 0.7064 0.8260 0.4896 0.2680 0.2583 0.7522 0.9111 
Std OSI − 0.0538 0.4596 0.7618 0.1724 0.2428 0.5493 0.6332 0.6065 
TA LSA 2 0.9709 0.9324 0.8771 0.9722 0.8897 0.3931 0.9737 0.9033 
TA LSA Std 2 − 0.2551 0.1326 0.8768 0.9743 0.8620 0.8831 0.9793 0.9691 
Systole TADVO 0.5256 0.5297 0.1820 0.9939 0.5575 0.5661 0.9905 0.9914 
Systole DVOStd 0.8513 0.8837 0.0532 0.9527 0.8823 − 0.4629 0.9692 0.9784 
Mean PCC 
±95% confidence 

0.5525 
± 0.3097 

0.6701 
± 0.1925 

0.7002 
± 0.2218 

0.7519 
± 0.1873 

0.6932 
± 0.1773 

0.5256 
± 0.2887 

0.8939 
+0.0879 

0.9121 
±0.0791 

Aneurysm Volume 0.9996 0.9973 0.9996 0.9992 0.9995 0.9998 0.9974 0.9995 
Aneurysm Height 0.9851 0.9972 0.9965 0.9904 0.9916 0.9912 0.9730 0.9538 
Sac Max Width 0.9913 0.9874 0.9971 0.9726 0.9965 0.9939 0.9801 0.9855 
Size Ratio Height 0.9193 0.9801 0.9775 0.9760 0.9861 0.9712 0.9660 0.8950 
Size Ratio Width 0.9840 0.9714 0.9880 0.9898 0.9676 0.9875 0.9682 0.9760 
Aspect Ratio Star 0.9605 0.9889 0.9760 0.9332 0.9497 0.9742 0.9538 0.8801 
Vessel Diameter − 0.0783 0.9469 0.9318 0.8306 0.9104 0.8693 0.8907 0.8594 
Ostium Minimum 0.9528 0.9446 0.8902 0.9339 0.8564 0.9487 0.9169 0.8120 
Ostium Maximum 0.9810 0.9547 0.9752 0.8914 0.9741 0.9430 0.9895 0.9730 
Aneurysm Area 0.9997 0.9983 0.9991 0.9997 0.9988 0.9997 0.9972 0.9993 
Ostium Area 0.9863 0.9752 0.9890 0.9404 0.9606 0.9706 0.9829 0.9710 
Mean PCC 
±95% confidence 

0.8801 
± 0.1884 

0.9765 
± 0.0119 

0.9745 
± 0.0201 

0.9507 
± 0.0311 

0.9628 
± 0.0261 

0.9681 
± 0.0224 

0.9651 
±0.0198 

0.9368 
±0.0379  
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M.J. Valanarasu et al., 2021). The subjective performance comparisons 
are presented in Fig. 11. It shows that the IA regions detected by these 
SOTA methods were incomplete (indicated by the yellow arrows). At the 
same time, the IAs predicted by our ARU-Net were much closer to GT, 
and our model could preserve small vessels (indicated by the red 
arrows). 

In addition, Table 4 indicates that adding CCO (see (6) vs. (5)) and 
CRF (see (7) vs. (5)), respectively, can also improve the performance of 
all six evaluation metrics, which can optimize the structure of the 
segmented region. By analyzing Table 4, after adding CCO and CRF 
operations, DSC scores increased by 0.0378 and 0.0751, RVE scores 

decreased by 0.1248 and 0.2477, and HD95 scores decreased by 
72.9319 mm and 76.8752 mm, respectively. In addition, by adding both 
CCO and CRF (see (8) vs. (5)), the performance of most evaluation 
metrics has been greatly improved, with DSC, RVE, HD95, and ASSD 
achieving the best results among all eight variants. As shown in Fig. 12, 
adding 3DCRF can effectively eliminate the unwanted connections be
tween the internal carotid arteries. The average time of our post
processing for 10 iterations of CRF was 21.518 s per 3D image. 

We also compared the performance of our ARU-Net with the 
boundary-aware segmentation models, e.g., boundary-aware network 
(Hatamizadeh et al., 2019), Basnet (Qin et al., 2019), Inf-Net (Fan et al., 

Table 8 
Comparison of P-values for hemodynamic and geometric parameters obtained from different segmentation models. The best results are shown in red color. The asterisk 
* means that a particular model’s results were obtained after removing the failed CFD simulation cases.   

Level-Sets* Graph-Cuts DeepMedic ResUNet* MIScnn KiU-Net* nnU-Net ARU-Net 

Systole STAWSS 0.0318 0.0343 0.4338 0.1046 0.4757 0.0744 0.3249 0.0960 
Systole WSSMin 0.2411 0.0841 0.3706 0.4920 0.3564 0.1936 0.3209 0.1184 
Systole WSSMax 0.1556 0.1441 0.1655 0.4294 0.3464 0.0163 0.0604 0.0253 
Mean OSI 0.3314 0.2779 0.2264 0.3177 0.2521 0.2274 0.0244 0.0400 
Std OSI 0.3692 0.4195 0.2066 0.3757 0.2964 0.1832 0.0352 0.0898 
TA LSA 2 0.0309 0.0100 0.1029 0.0379 0.1856 0.2690 0.0556 0.1538 
TA LSA Std 2 0.3173 0.0248 0.2704 0.1375 0.1426 0.0844 0.1828 0.0251 
Systole TADVO 0.2254 0.1806 0.2133 0.1074 0.2304 0.1597 0.1223 0.3582 
Systole DVOStd 0.0543 0.0962 0.3350 0.2675 0.0058 0.2492 0.0365 0.1709 
Mean P-value 
±95% confidence 

0.1952 
±0.0870 

0.1413 
± 0.0880 

0.2583 
± 0.0685 

0.2522 
± 0.1060 

0.2546 
± 0.0892 

0.1619 
± 0.0564 

0.1292 
± 0.0789 

0.1197 
± 0.0679 

Aneurysm Volume 0.0144 0.0361 0.0375 0.0537 0.1168 0.0516 0.3938 0.1373 
Aneurysm Height 0.2491 0.3734 0.0774 0.1026 0.4734 0.0989 0.2487 0.4463 
Sac Max Width 0.2639 0.3051 0.4380 0.2656 0.3748 0.0526 0.3558 0.3217 
Size Ratio Height 0.2483 0.1206 0.1020 0.3152 0.4627 0.1062 0.1176 0.3600 
Size Ratio Width 0.0771 0.1331 0.0771 0.0336 0.1789 0.0055 0.2944 0.0878 
Aspect Ratio Star 0.0803 0.0054 0.1950 0.4155 0.3281 0.0457 0.0646 0.2363 
Vessel Diameter 0.1791 0.0013 0.0967 0.0475 0.1385 0.3917 0.4441 0.1467 
Ostium Minimum 0.0153 0.0048 0.1364 0.1378 0.2887 0.1347 0.1956 0.2163 
Ostium Maximum 0.0008 0.0031 0.0107 0.0134 0.0126 0.3604 0.4673 0.0526 
Aneurysm Area 0.0029 0.0301 0.0507 0.0299 0.2599 0.0453 0.4564 0.0344 
Ostium Area 0.0039 0.0012 0.0098 0.0227 0.0557 0.1204 0.1567 0.0804 
Mean P-value 
±95% confidence 

0.1032 
± 0.0650 

0.0922 
± 0.0778 

0.1119 
± 0.0715 

0.1307 
± 0.0819 

0.2446 
± 0.0930 

0.1285 
± 0.0759 

0.2905 
± 0.0850 

0.1927 
± 0.0804  

Fig. A.1. An overview of the workflow for generating the hemodynamic and geometric parameters.  
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2020), and PCPLP (Mu et al., 2021). These models typically utilized 
boundary loss to supervise the outputs of the mainstream and edge 
streams to jointly learn semantics and boundaries, whereas our pre
processing was implemented through a boundary augmentation opera
tion that did not require any training operations. Coupled with the 

attention gate mechanism, our preprocessing allows the ARU-Net to 
preserve and emphasize the edge details of small vessels and IAs to 
provide rich discriminative information for subsequent predictions. The 
subjective performance comparisons are presented in Fig. 13, which 
shows that our ARU-Net outperformed the boundary-aware segmenta
tion models in segmenting small vessels (indicated by the red arrows). 
Moreover, the average test time of Basnet, Inf-Net, and PCPLP for a 
256 × 256 image was 0.079, 0.047, and 5.533 s, respectively, while ours 
was 0.013 s, which was more efficient. 

4.4. CFD experiments 

Besides the subjective and objective performance comparisons of 
various segmentation models, we also explored the clinical utility of the 
proposed ARU-Net model. In particular, we performed CFD simulations. 
"Patient-specific" CFD simulations are well documented in the literature 
(Sunderland et al., 2021; Sunderland et al., 2016), and thus only 
essential details are provided in the Appendix for the sake of 
completeness. 

Upon completion of CFD simulations, in-house Python scripts 
derived from the Visualization ToolKit (Kitware Inc., NY, USA) were 
used to compute the hemodynamic and geometric parameters of the IAs 
for CFD models created by nine image segmentation methods summa
rized in Sub-Section 4.1. 

The Pearson correlation coefficient (PCC) was calculated to compare 
the consistency between model segmentation and human expert seg
mentation results in terms of nine hemodynamic parameters and 11 
geometric variables. Those parameters can be found in the Appendix as 
well. The PCC values of different models compared with the manual 
segmentation results on 20 parameters are presented in Table 7. In the 
execution, each of the Level-Sets, ResUNet, and KiU-Net models con
tained one case that could not be correctly segmented and led to failed 
CFD simulations. For traditional methods (Level-Sets and Graph-Cuts), 
the segmentation results required extensive postprocessing to be suc
cessfully simulated by CFD. In addition, since the frameworks of 3DUNet 
and 3DResUNet are similar and the performance of 3DUNet is inferior to 
that of 3DResUNet, we did not conduct CFD modeling for 3DUNet. 

As shown in Table 7, the larger the PCC value is, the closer the 
simulation value of the automatic segmentation result is, compared with 
the manual segmentation result. For the proposed ARU-Net model, the 
PCC values of all the hemodynamic and geometric parameters except Std 
OSI are higher than 80%, and 14 of them are higher than 90%. 
Furthermore, our model had the highest average PCC value (0.9121) on 
hemodynamic parameters, which was higher than the second-ranked 
nnU-Net model (0.8939). That is, the CFD simulations of our predicted 
segmentation results were strongly positively correlated with the 
human-annotated measurements. Meanwhile, the lowest confidence 
score (0.0791) also confirmed no statistical difference between our 
segmentation and manual segmentation. For geometric variables, the 
mean PCC value of our model is not the best, but there is only a small 
difference (0.0397) from the best Graph-Cuts model. 

Furthermore, the P-values of the nine hemodynamic parameters and 
11 geometric variables of the automatic and manual segmentation re
sults were also calculated and are summarized in Table 8. Our results’ 
mean P-values (0.1197) were the best for hemodynamic parameters. The 
lower 95% confidence (0.0679) also confirmed the stability and accu
racy of our results. For geometric variables, the mean P-values of our 
ARU-Net were significantly better than those of nnUNet. The traditional 
models, Level-sets and Graph-Cuts, had excellent P-values on some pa
rameters. However, manual postprocessing after image segmentation by 
these two traditional methods was required for CFD simulations. In 
addition, as we mentioned earlier, the hemodynamic and geometric 
results of Level-Sets, ResUNet, and KiU-Net were obtained after 
removing the CFD simulation failure cases (one failed case for each 
model). Overall, the segmentation results obtained by the proposed 
ARU-Net were helpful for the clinical interpretation of IAs. Our model 

Fig. A.2. The inlet waveform of volumetric flow rate used in this research.  

Table A.1 
An overview of the hemodynamic and geometric parameters.  

Types Parameters Descriptions 

Hemodynamic 
parameters 

Systole 
STAWSS 

Spatially and temporally averaged wall 
shear stress during systole 

Systole 
WSSMin 

Wall shear stress minimum during systole 

Systole 
WSSMax 

Wall shear stress maximum during systole 

Mean OSI Spatially averaged oscillatory shear index 
Std OSI One standard deviation of oscillatory shear 

index 
TA LSA 2 Time-averaged low shear area less than 2 

Pa 
TA LSA Std 2 One standard deviation of time-averaged 

low shear area less than 2 Pa 
Systole 
TADVO 

Time-average degree of overlap between 
flow vortex cores during systole 

Systole 
DVOStd 

One standard deviation of time-average 
degree of overlap between flow vortex 
cores during systole 

Geometric 
parameters 

Aneurysm 
Volume 

Volume of the aneurysm 

Aneurysm 
Height 

Height of the aneurysm 

Sac Max 
Width 

Maximum width of aneurysm sac 

Size Ratio 
Height 

Size ratio between aneurysm height and 
parent vessel diameter 

Size Ratio 
Width 

Size ratio between aneurysm width and 
parent vessel diameter 

Aspect Ratio 
Star 

Aspect ratio of the intracranial aneurysm 

Vessel 
Diameter 

Diameter of the parental vessel connected 
to the aneurysm 

Ostium 
Minimum 

The minimal ostium diameter 

Ostium 
Maximum 

The maximal ostium diameter 

Aneurysm 
Area 

Area of the aneurysm 

Ostium Area Area of the ostium  
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can help clinicians improve their diagnostic accuracy and save diag
nostic time. 

5. Conclusion 

In this paper, we proposed an attention-based multiscale supervision 
fully convolutional encoder-decoder network with differential pre
processing and geometric postprocessing for the segmentation of IAs 
from "patient-specific" 3DRA images. Our work demonstrated that 
depth-aware attention gates could effectively emphasize important 
targets on 3DRA images, thereby improving the accurate segmentation 
of smaller but critical vessels by enhancing the FOV of the structure. The 
multiscale supervision strategy also helped the network integrate multi- 
level spatial and semantic information to increase the sensitivity of 
smaller aneurysms and vessels. The 3DCRF and 3DCCO were introduced 
to achieve better segmentation results, as they have the ability to 
eliminate unwanted connections and optimize connected components. 
Extensive experiments demonstrated that the proposed ARU-Net is 
effective and can achieve performance better than or comparable to 
state-of-the-art segmentation methods. Meanwhile, the CFD model 
derived from the predicted mask showed good clinical application 
prospects. 

Recall that the objectives of our proposed image segmentation 
method were to 1) include small arteries, 2) maintain accurate repre
sentations of IAs, and 3) eliminate unwanted vessel/aneurysm connec
tions. We innovatively used and augmented available arsenals in the 
literature to reach our objectives. This work is an excellent example of 
how deep-learning methods can be devised to solve a domain-specific 
problem. 

Although our ARU-Net achieved remarkable performance for auto
matic segmentation of IAs, especially for detecting small critical vessels 
and avoiding unwanted adhesions, future research will focus on using a 
cascaded network structure for better training. Additionally, since our 
experimental results showed that traditional evaluation metrics (e.g., 
DISK score) could not adequately verify the performance of segmenta
tion models, we will develop more domain-specific metrics for quanti
tative analysis. This is also an important task, as researchers in the 
healthcare space are increasingly interested in the integration of deep- 
learning-based methods for advanced modeling. We feel our interdisci
plinary group is in an excellent position to work with others to accom
plish this goal. 
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Appendix A. A Description of Computational Hemodynamic Analysis 

A.1. Process for Acquiring Hemodynamic and Geometric Parameters 

The overall workflow of obtaining hemodynamic and geometric parameters for CFD simulations of the manual/automatic segmentation is shown 
in Fig. A.1. 

A.2. Navier-Stokes Solver and Boundary conditions 

To computationally simulate blood flow in and around an IA as shown in Fig. A.1, 3D Navier-Stokes equations (i.e., Equation A.1) were solved 
using a finite-volume-based CFD solver (Fluent, ANSYS Inc., PA, USA): 

ρ ∂v⇀

∂t
+ ρ(v⇀⋅∇

⇀
)v⇀ = − ∇

⇀
p + μ∇2 v⇀,

∇
⇀

⋅v⇀ = 0,

(A.1)  

where ρ denotes the blood density, p denotes the pressure, v⇀ denotes the three-dimensional velocity vector, and μ denotes the viscosity. 
The vessel walls were assumed rigid with a no-slip boundary condition, and blood was modeled as incompressible and Newtonian. The dynamic 

viscosity and the mass density of blood were set to 0.004 kg/m-s and 1050 kg/m3, respectively. As shown in Fig. A.2, a pulsatile flow waveform 
measured using magnetic resonance flow imaging (Gwilliam et al., 2009) was applied as the inlet boundary condition. 

The zero-pressure condition was used for all outlets. Four cardiac cycles were simulated at 2000 steps per period (0.0005 s/timestep). By selecting 
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2000 time steps, Courant numbers were below 1 for the above-said waveform. Time-resolved hemodynamic data (20 time points) were saved for the 
last cardiac cycle for further processing. The systolic or peak Reynolds numbers were approximately between 350 and 550 for the ICAs, similar to those 
reported by others. We verified that our mesh density (1.5 million computing cells for a typical CFD model) was appropriate. 

A.3. An Overview of the Hemodynamic and Geometric Parameters 

The nine hemodynamic parameters and 11 geometric variables utilized in the manuscript are presented in Table A.1. 
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