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Abstract

We have developed a lattice Monte Carlo (MC) simulation based on the diffusion-

limited aggregation model that accounts for the effect of the physical properties of

ionic liquids (ILs) on lithium dendrite growth. Our simulations show that the size

asymmetry between the cation and anion, the dielectric constant, and the volume

fraction of ILs are critical factors to significantly suppress the dendrite growth, pri-

marily due to substantial changes in electric-field screening. Specifically, the volume

fraction of ILs has the optimal value for dendrite suppression. The present simula-

tion method indicates potential challenges for the model extension to macroscopic

systems. Therefore, we also develop ensemble neural networks (ENNs) in machine

learning methods with training datasets derived from the MC simulations by con-

sidering the input descriptors with the dielectric constant, the model parameter for

the fractal dimension of the dendrite, the volume fraction of ILs, and the applied

voltage. Our ENNs can predict the highly nonmonotonic trend of the simulation re-

sults from only one-tenth of simulation runs, thus significantly reducing the required

computation time.

To further examine the efficacy of our new ENN methods in practical applications,

we apply ENNs to the study of the dielectric constants of salt-free and salt-doped

solvents. Seven common solvents and NaCl solutions with various salt concentrations

xxix



are considered examples. Despite the significant 50-time reduction in the number of

training data, the predictions of the ENNs with batch normalization or bootstrap

aggregating are largely consistent with the ground truths, tracing the optimal values

out of statistically noisy data. Furthermore, we investigate the phase behaviors of

cellulose and ILs mixtures by combining ENNs with unsupervised learning. As a

result, K-means clustering and hierarchical clustering can automatically classify solu-

bility phases and determine the boundaries of phases. Our work proves that machine

learning could be a promising tool for studying soft matter systems.
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Chapter 1

Introduction

1.1 Lithium-ion batteries

1.1.1 Lithium-ion batteries development

In recent decades, higher-capacity lithium-ion and lithium-metal secondary batteries

have been developed. In the 1970s, British chemist M. Stanley Whittingham, an

Exxon Mobil researcher at that time, proposed the first lithium battery (a forerun-

ner to contemporary lithium-ion batteries). In 1991, the first commercial lithium-ion

battery was released by Sony and Asahi Kasei. With the development of lithium-ion

batteries, in 2019, three pioneers of lithium-ion batteries shared the Nobel Prize in
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Chemistry. Despite four decades of study on lithium-ion batteries, the cell appli-

cations still face challenges. Thus, real-world lithium-ion battery applications serve

as the inspiration for this thesis. Safety is unquestionably a high priority in the

development of electric vehicles, laptops, and smartphones.

1.1.2 Lithium dendrite in lithium-ion batteries

Figure 1.1: Lithium metal electrodeposition during the charging process
in a lithium-ion battery. Reproduced from Ref. [1] with permission from the
Royal Society of Chemistry.

Lithium metal deposition is a phenomenon that occurs during the charging and dis-

charging of lithium-ion batteries. As the battery is charged, lithium ions are released

from the positive cathode, travel through electrolytes, and are intercalated into the

graphene layers of the graphite (negative anode). During this charge phase, deposits

solidified on the surface of the anode can form branching tree-like structures, the
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so-called lithium dendrite (Fig.1.1). The growth trend of the deposits is spatially un-

even. Typically, needle-shaped or dendritic lithium grows on the surface of the anode

over many discharge-recharge cycles [3, 4]. If dendrites grow too long, some dendrites

may fall off and no longer participate in the reaction, which brings irreversible ca-

pacity loss to the battery [5, 6, 7]. Additionally, the grown dendrite may pierce the

separator between the cathode and anode, forming a short circuit and potentially

causing a catastrophic fire [7, 8, 9]. To maintain the safety of lithium-ion batteries,

it is essential to identify the critical factors that substantially affect the process of

metal solidification in electrolytes.

1.1.3 Tip effect and electric shielding

Figure 1.2: Charge tends to accumulate at great curvature regions. The
electric field strength is larger in magnitude at locations of greater curvature.

The electric fields are strongest at regions along the surface where the object is most
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curved, this is called “tip effect”. A flat location has no curvature and has relatively

weak electric fields, while a blunt point has great curvature and thus has relatively

strong electric fields. Considering the diagram in Fig. 1.2, the surface that is sharply

curved has strong electric fields. Likewise, the dendrite tip with a sharp edge on the

metal electrode exhibits a stronger electrical field [10]. Electrostatic shielding is a

phenomenon that is seen when a layer of cations is used to block the effects of an

strong electric field on the curved surface. Tip effect and electrostatic shielding will

be utilized to explain mechanism of lithium dendrite suppression in section 3.3.1 in

detail.

1.2 Soft-matter materials and related machine

learning research

1.2.1 Introduction to soft materials

Computer simulations of soft materials, including electrolytes like solvents and so-

lutions, polymers and ionic liquids (ILs) mixtures has been an essential way for the

exploration of these systems. In this thesis, more machine learning modeling of these

soft-matter systems will be discussed.

4



Salt-free solvents and NaCl solutions. Usually, solvents are liquid substances

that can dissolve a solute and become a solution. Polar or nonpolar is frequently used

to categorize solvents. Polar solvents, which separate positive and negative charges

at different locations in their structures, can dissolve polar compounds. Water is

known to have a high dielectric constant (εr = 78.36), and water is an excellent polar

solvent that is often regarded as the “universal solvent”. Apart from water, other

polar solvents include methanol, ethanol, acetone, 1-propanol, dimethyl sulfoxide

(DMSO), and dimethylfuran (DMF). Nonpolar solvents are typically those with a

dielectric constant under 15. Solvents are widely utilized as a medium for chemical

reactions and phase separations. Additionally, they are necessary for the production

of a wide range of goods, including cosmetics, medications, personal care products,

textiles, dyes, pesticides, and so on. Sodium chloride, or NaCl, is an ionic compound

in the solid state. NaCl is highly soluble in water, and water that contains NaCl is

commonly called salt water in daily life.

In this work, the dielectric constants of solvents and NaCl solutions are studies as

Stockmayer Fluids in Molecular Dynamics simulations and their dielectric constants

are further predicted using ensemble neural networks. The dielectric constant quanti-

fies how well a solvent can weaken the electric field that surrounds a charged particle.

Since dielectric constants are connected to many significant physical and biological

applications, the dielectric constant is a crucial physicochemical characteristic. Ta-

ble 1.1 shows experimental dielectric constants εr of solvents [11], and they will be
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Water MeOH EtOH Acetone 1-Propanol DMSO DMF
εr 78.36 30 24.55 21 20.1 47.2 38

Table 1.1
Experimental values of the dielectric constants εr for common solvents.

discussed in Chapter 5 and 6.

Cellulose. Cellulose is the most prevalent natural polymer in our surroundings, and

it is a both environmentally and biologically compatible material. Cellulose is the

principal structural component of plant cell walls, and it makes up to 47% of the

weight of wood. Its highly organized structure gives it the desired mechanical capa-

bilities it does, but it also makes it difficult to discover solvents that will dissolve it.

Some hydrophilic ILs, like [BMIM][Cl], can dissolve cellulose. Environmental-friendly

solvents of cellulose is also important for advancing the application of biopolymers.

Ionic Liquids (ILs). ILs are a class of salts that stay as liquids at low temperatures

(usually less than 100 °C). They own chemical and thermal stability, nonflammability,

and extremely low vapor pressure. ILs with a melting point below room temperature

are called room-temperature ILs. Their enormous potential in research was just

recently explored after being first found by Walden in 1914. There are 1012 possible

ion combinations for ILs. Large, unsymmetrical ions and delocalized charges are main

reasons to cause low melting points of ILs. Because there are so many different ion

combinations, it is feasible to create IL solvents that have particular qualities for a

given use.
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ILs have a variety of physical characteristics that appeal to a wide range of appli-

cations. These desired characteristics are important since the solvent evaporation is

constrained by their low vapor pressure, which eliminates the requirement for respira-

tory protection and exhaust systems. This characteristic also improves their recycling,

which is one of the reasons they are frequently referred to as “green solvents”. As

solvents, ILs appear to be highly polar due to their ionic nature, resulting in their

enhanced biopolymer dissolving capacity that will be discussed in this thesis.

1.2.2 Related machine learning studies

More and more scholars use machine learning methods for research on physical and

thermodynamic properties of soft materials. Chan et al. created machine learning

models, which reduce computations by two orders of magnitude than atomistic mod-

els, to accurately forecast both the temperature with maximum water density and the

melting point of ice [12]. Liu et al. used support vector regression for predicting the

thermodynamic properties of pure fluids and their mixtures [13]. The machine learn-

ing model developed by Deng et al. can reliably forecast the dielectric constants for

organic liquids and their mixtures with water [14]. To predict the free energies of sol-

vation across a range of solvents, Hutchinson et al. implemented a machine learning

framework, which outperforms the widely used traditional topology-based algorithm

in terms of accuracy and the contribution of each feature to dielectric constants [15].
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A machine-learning-based molecular dynamics simulation accelerates the calculation

of excess chemical potentials for the solute ions Na+ and Cl− in the molten NaCl liquid

by 3 orders of magnitude[16]. Graph neural networks are used to simulate the implicit

solvent potential in molecular dynamics simulations by learning from explicit solvents

behaviors in simulations [17]. Wei et al. exploited convolutional neural networks to

successfully distinguish solutions containing amino acids from those containing salts

in both the liquid and solid stages [18]. Alshehri et al. also used convolutional neural

networks to differentiate between different salt concentrations in water by classifying

photos of saline particles with various concentrations. [19]. In Tovey’s work, they

reported a machine learning study looking at how self-diffusion coefficients, electrical

conductivity, and ion-ion distances of molten NaCl changes in high temperatures [20].

Sun et al. developed machine learning models for forecasting the refractive index and

viscosity of ILs, and used ensemble learning techniques to improve the predictive per-

formance [21]. Dhakal et el. constructed both support vector regression and artificial

neural networks to investigate the ionic conductivity of imidazolium-based ILs [22].

Chandrasekaran et al. exploited a deep neural network, which is trained with more

than 4500 polymers and the accompanying solvents/nonsolvents, for solvent selection

in polymers [23].
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1.2.3 Significance of machine learning on soft-matter physics

The discovery and invention of novel materials are ever-growing interests in mate-

rials science research, and an in-depth understanding of the atomistic or molecular

mechanisms of chemical and physical properties is often required when fabricating

and controlling nanotechnological devices.

There are some limitations for convention techniques in soft-matter physics. First, for

some expensive materials, the number of experimental data is limited, because it is

costly to collect many data from them. As a type of special and expensive materials,

ILs draw international attention because of their high thermal stability, high electrical

conductivity, and low viscosity. ILs are composed of pure ions and are molten salts

at room temperature due to weak ion interactions. ILs are promising materials as

cell electrolytes due to these properties mentioned above and are environmental-

friendly solvents. Second, researchers can perform computer simulations to decrease

the expense. However, a soft-matter system cannot be simply captured by a single

parameter, which causes a significant cost of computations. Moreover, calculating

statistical average from hundreds of, even thousands of, simulations are required.

To discover and study on novel materials in the 21st century, we should take ad-

vantage of new techniques. Machine learning is a promising tool. Machine learning
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implemented models have already been used in games and robots, so it is possible to

be used in soft-matter physics to discover new materials or estimate the new phenom-

ena of materials. In Chapters 4, 5, 6, and 7, machine learning methods are exploited

for prediction of lithium dendrite growth in ion-containing liquids, dielectric responses

of pure solvents and solutions, and phase behaviors of polymer-ILs mixtures.

1.3 Thesis Outline

Chapter 2 presents the designed diffusion limited aggregation model for lithium den-

drite in lithium-ion batteries, principles of dendrite growth and ion movements. Basic

definitions on artificial neural networks, ensemble neural networks, neural network

training and some techniques to improve performance of neural network are also in-

troduced.

Chapter 3 presents design of new MC model on lithium-ion batteries. This model

accounts for the mechanism of dendrite growth inside the battery and simplifies the

calculation. Results are discussed showing how salt ions and ILs suppress lithium

dendrite growth.

Chapter 4 presents design of ENNs, evaluation of ENNs, predictions of ENNs on

lithium dendrite height and aspect ratio. Results are discussed showing how an ENN
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outperform a single NN.

Chapter 5 presents data collection, data collection, design of sub-NNs for seven types

of pure solvents with 76 training data points. In this chapter, a new architecture

of sub-NN for capturing features of pure solvents’ dielectric constants is proposed

incorporating sandwich structure in it.

Chapter 6 presents data collection, design of sub-NNs under ENNss for salt-doped

solvents. Results are discussed showing how batch normalization (BN) impacts on

training ENN model with large variances training data to predict dielectric constants.

Chapter 7 presents combination of supervised learning and unsupervised learning

on the cellulose solubility. Results are discussed showing how clustering algorithms

efficiently determine the number of phases and predict the boundaries between phases.

Finally, Chapter 8 provides the conclusions and discusses the future work.
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Chapter 2

Methodology

The current chapter presents essential knowledge of the diffusion-limited aggregation

model for lattice MC simulations, NNs in supervised learning methods, and clustering

techniques in unsupervised learning methods, and they are applied to solve problems

in subsequent chapters.

2.1 Diffusion-limited aggregation model

Our lattice model based on the diffusion-limited aggregation (DLA) algorithm consists

of a cathode at the top, an anode at the bottom, and an electrolyte between them.

The gist of the lattice DLA model includes the idea that when the reaction mechanism
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of microscopic events is intractable, the algorithm that solidification over the coarse-

grained, mesoscopic length scales occurs at the lattice points is assumed. The validity

of the model is often checked against bulk values such as the fractal dimension and

the scaling law of the growth rate of solidification. Here, the molar concentration of

the lithium ion in Li-ion batteries typically falls in the range of 0.1 to 1 M. In this

case, the volume fractions of the lithium ion fall in the range of 0.00013 to 0.0013, and

the molar concentrations are significantly smaller than those of other ionic species.

For example, when the volume fraction of the added salt is 0.2, the ratio of the molar

concentration of the lithium ion to that of the added salt falls in the range of 0.8 to

8%. In other words, the contribution of the ionic strength of the lithium ion to those

of the added salt is relatively insignificant. Thus, as an analog of the DLA model for

the zinc dendrite formation [24], we treat the lithium ions dissolved in electrolytes as

implicit (background) ions. The distance between each lattice point is 2 Å, and the

lattice size is N×N, where N = 51. We fix the potentials of the anode (or dendrite)

and cathode to 0 V and 0.5 V (unless otherwise noted), respectively. The periodic

boundary condition is used in the direction parallel to the electrodes (see Fig.1.2).

If we apply the periodic boundary condition, the electrode can be regarded as an

infinite plate.
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Figure 2.1: 2D schematic illustration of the lattice model. The blue circles
describe the lithium dendrites, whereas the white circles describe dendrite
candidates (or solvents) and salt ions, respectively. Reproduced from Ref.
[1] with permission from the Royal Society of Chemistry.

2.1.1 Lithium dendrite growth

We illustrate our lattice system in Fig.2.1. The blue circles represent the deposited

lithium metals forming the lithium dendrite. The dendrite blobs stem from the neg-

ative electrode and thus have the same potential as that of the negative electrode.

The white circles indicate the empty site for the candidate for the lithium dendrite in

our MC method. Salt ions can also occupy those empty sites. The electric potential

ϕi,j at the lattice point (i, j) consists of the electric potential ϕE
i,j produced by the

electrodes and the Coulomb potential ϕC
i,j produced by the ions (treated as an explicit

particle) as follows:

ϕi,j = ϕE
i,j + ϕC

i,j (2.1)
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Note that the growth of the lithium dendrite indicates changes in the shape of the

anode surface. Accordingly, the electrostatic field between the electrodes also changes

due to the change in the boundary condition of the electrostatic potential on the

anode. With these altered boundary conditions due to the geometric changes, we

need to solve Laplace’s equation [25]

∆2ϕE = 0 (2.2)

Here, we write Eq. (2) on the lattice in the following form [26]:

ϕE
i,j =

(ϕE
i+1,j + ϕE

i−1,j + ϕE
i,j+1 + ϕE

i,j−1)

4
(2.3)

Here, ϕE
i+1,j, ϕE

i−1,j, ϕE
i,j+1, and ϕE

i,j−1 designate the electrostatic potentials of four

neighboring lattice points around the (i, j) site. We note that the lattice model of

Chen and Jorné included the effect of the electrical conductivity κ of water according

to the modified Laplace equation, ∇[κ(r⃗ϕ(r⃗)] = 0 [24]. However, the analysis of

experimental data suggested that the electrical conductivity of water was about 1%

of that of the dendrite, and the effect on the lattice model is insignificant. Given

this situation, we do not consider the electrical conductivity κ in the present study.

Concomitantly, this model simplification also enables us to explore the minimal effect

to inhibit dendrite formation.
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The Coulomb potential ϕC
i,j with the dielectric constant εr is given by

ϕC
i,j =

1

4πε0εr

∑
k

qk
rk

(2.4)

where qk is the k-th ionic charge and rk is the distance between the lattice point (i, j)

and the k-th ion. Fig.2.2 illustrates the lattice occupancy of the ions with diameter d

= 4 Å and d = 2 Å. The ions cannot be overlapped due to the effect of the excluded

volume.

A further remark about the treatment with the electrostatic interactions is discussed

in the subsection, “A remark about the DLA model as a cellular automaton”.

Figure 2.2: Lattice occupancy of asymmetric particles in the lattice model.
Reproduced from Ref. [1] with permission from the Royal Society of Chem-
istry.
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We perform the MC update according to the local potential ϕi,j. This algorithm in-

cludes two update processes regarding the ion configuration and the dendrite growth.

Our MC simulation causes the concentration gradient and the electric field gradient

along the lines of the continuum theory for ion diffusion in Ref [27]. Here, we note

that the computational cost of solving Eq.(2.2) for the trial configuration for the MC

update by interaction is nominal because the solution is very close to the original

potential (i.e., the initial guess). The DLA algorithm of the nucleation (or the pat-

tern formation) at the lattice point (i, j) in Refs. [24] and [26] assumes the following

heuristic growth probability:

pi,j =
(ϕi,j)

η∑
<i,j>(ϕi,j)η

(2.5)

Eq. 2.5 indicates the nucleation probability that the empty lattice point adjacent

to the occupied lattice point is converted to the new dendrite point caused by the

lithium deposition. The denominator represents the sum of the electrostatic potentials

of all dendrite candidates (i.e., empty points adjacent to the occupied points). When

ϕi,j ≤ 0, we set the probability to zero, assuming that the electron is unlikely to

transfer from the electrode to the lithium ions in the negative potential area. The

exponent η is the model parameter suggested by Niemeyer et al. [26] and associates

the local potential with the nucleation probability. Experiments show that different

metals have different values of the fractal dimension of the dendrites [28]. Thus,

the exponent η can be determined by the fractal dimension observed in experiments.
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For example, η for the zinc dendrite may be fixed to reproduce the observed fractal

dimension 1.7 [24]. However, we are not aware of the fractal dimension of the lithium

dendrite and therefore vary the values in the present study.

2.1.2 Ion movement

Here we write the total potential energies of the system before and after updating the

positions of the ions as Uold and Unew, respectively. If the trial update decreases or does

not change the potential energy, we accept the new state; otherwise, we accept the new

state if a uniform random number becomes smaller than the Boltzmann distribution

e−
(Unew−Uold)

kT . The dendrite growth is significantly slower than the translational motion

of the ions in the electrolytes. Accordingly, we consider the ratio of the trial update of

the dendrite growth to that of the ion positions to be 1:500. It should also be noted

that the present DLA algorithm is a clustering method to account for the fractal

pattern of solidification and does not involve the explicit timescale of the deposition

process [24, 26].
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2.2 Supervised learning

2.2.1 Artificial neural network

Machine learning method is becoming more and more popular in recent decades.

People expect computers to predict meaningful outputs by learning from given input

data. An artificial neural network is a typical machine-learning model. An artificial

neural network is composed of an input layer, several hidden layers, and an output

layer. And each layer contains several neurons. The number of hidden layers and the

number of neurons in each of these layers depend on the complexity of the considered

system. Fig. 2.4 shows a typical ANN architecture with two hidden layers.

The number of neurons of input layer and output layer rely on the available training

data. In this thesis, inputs are features affecting the system, outputs are properties

we would like to look at. The details of NNs will be stated in corresponding chapters.

The number of neurons in hidden layer can be one or more, and is usually larger than

number of neurons in input layer and output layer. Because if the number of neurons

in hidden layer is less than that in input layer, information is lost as it moves forward

to the next layer.

Data is received through the input layer neurons and then transformed to the neurons
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Figure 2.3: General structure of artificial neural network with two hidden
layers.

in the first hidden layer through the weighted connections established between the

input layer and the first hidden layer. The neurons between neighboring layers are

fully connected via weights w
(L)
ij . The weight wij represents the strength of the

connection between i-th neuron in a layer and j-th neuron in the next layer of the

network. For example, the j-th neuron in 1st hidden layer takes input xi from input

layer, the output value of the j-th neuron, h
(1)
j , in 1st hidden layer is computed from

weight w
(1)
ij , bias b1, and activation function σ using Eq. 2.6. This equation explain

how the incoming data (xi) is processed by j-th node in the next layer and Fig.2.4

represents this process. Finally, the result is transferred to the neuron in the next
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layer.

h
(1)
j = σ(

m∑
i=1

(w
(1)
ij × xi + b1)) (2.6)

Neural networks with larger size (more layers and more neurons per layer) can be

used to solve more complicated problems. By adjusting weights and biases using an

optimizer, the artificial neural network can be used for prediction. In general, the

optimizer should optimize weights and biases and then check the whole network by

minimizing a loss function.

Backpropagation is the most popular optimization algorithm now, among them, gra-

dient descent method is the most conventional method. By calculating the gradient

of loss function in terms of a weight, the weight can be modified to obtain a smaller

value of the loss function. Besides, stochastic gradient descent is a modified gradient

descent method. Unlike gradient descent, stochastic gradient descent uses the gra-

dient calculated from small batches of training dataset instead of the whole training

dataset.

The data used to train the neural network is called training data. Training data need

to be split into training dataset and validation dataset. The inputs are delivered to the

neural network, and the loss function is measured by comparing the network output
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and truth. The training process will stop at a given number of cycles (Epochs).

Because the initial weights are usually randomly arranged, the number of epochs

should not be too small.

In terms of optimizing process, stochastic gradient descent is a modified gradient

descent method. Unlike gradient descent, stochastic gradient descent uses the gra-

dient calculated from small batches of training dataset instead of the whole training

dataset.

2.2.1.1 Early Stopping

Early stopping is often used to prevent the network from overfitting, by stopping

training once the loss function is no longer improving. We can add a patience to

early stopping to make sure that the increase of the loss function is not because of

fluctuation. For example, patience = 30 leads to stopping training if there is no

improvement on loss function within 30 epochs.

2.2.1.2 Loss function

Loss function is a real-time function between predicted values by neural network and

target values, also called error function. The goal of training a neural network is
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optimizing weights for connected neurons by minimizing loss function. The selection

of loss function depends on the type of model, cross entropy loss function is selected

while optimizing classification models, mean squared error (MSE) is most common

loss function for non-classification models. The MSE of training is expressed by:

MSE =

∑
(y − ŷ)2

n
(2.7)

where ŷ is the output predicted by network, y is the target value, n is the number of

training datasets.

The training process adjusts the unknown network parameters such as weights or

biases to minimize the MSE function. As training goes, a typical loss function is like

Fig. 2.4.

Figure 2.4: Typical training and validation losses vs. epochs.
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2.2.1.3 Activation function

Popular activation functions include the piecewise function, radial basis function,

the tangential function and the logistic function. In general, a non-linear function

usually serve as an activation function σ. Because in some cases, a non-linear can act

as a threshold, only values larger than the threshold can proceed to the next layer.

Besides, non-linear functions can capture non-linear relationship between inputs and

outputs, while linear activation functions can only describe linear relationship. It is

obvious that NNs become more powerful with non-linear activation function. Among

them,“ReLU” (rectified linear unit) function is one of the most common activation

functions used in neural network. For example, a process of passing values from a

layer to the next layer is applying a linear combination of weights (w), inputs and bias

(b), then applying a ReLU function (Eq. 2.6), thus we get output = relu(w×input+b).

Other typical activation functions are listed below:

Figure 2.5: Different types of activation functions.

1. Linear Activation function: This is an activation function that outputs the

weighted sum of the input. This essentially acts as “no activation function”
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and transfers the input directly to the output. In other words:

σ(x) = x (2.8)

2. Logistic sigmoid: Since the derivatives of sigmoids are simple to compute, train-

ing algorithms with sigmoid functions are highly efficient. The output of this

activation function ranges from 0 to 1. The logistic sigmoid is defined as

σ(x) =
1

1 + e−ax
(2.9)

3. Tangential Sigmoid: It is similar to the logistic sigmoid, but the value range of

its output is from -1 to 1. The common equation for a tangential sigmoid is:

σ(x) =
1− eax

1 + eax
(2.10)

4. Radial Basis function: One of the most common radial basis functions is the

Gaussian function, the output is the maximum, 1, when input is 0:

σ(x) = e−(ax)2 (2.11)
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5. Periodic functions: One of the example is sine function.

σ(x) = sin(x) (2.12)

2.2.1.4 Batch normalization

Here, the stochastic gradient descent, an iterative method that optimizes an objective

function via the updates of the weights and biases, is often invoked for training the

feedforward NNs. However, the gradient is often vanishingly small and therefore the

NNs train slowly, specifically when inputs to the layers are large. To circumvent this

problem, we also employ batch normalization (BN), a normalization scheme recently

proposed by Ioffe and Szegedy, that accelerates the training of the NNs [29]. Since

BN algorithm is new, its application to soft-matter systems is limited.

In general, normalization fixes the means and variances of the inputs to each layer.

Ideally, the normalization would be performed over the complete training set. How-

ever, it is not practicable to apply normalization on the total training data especially

with stochastic optimizer. As a result, the total training data are divided into batches,

and normalization is limited to each batch. By dividing by the batch’s standard de-

viation and removing the batch’s mean value, BN specifically normalizes each batch

of training data. Let us use b to represent a batch with m samples. The mean and
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variance of the batch could be written as

µb =
1

m

m∑
i=1

xi

σ2
b =

1

m

m∑
i=1

(xi − µb)
2

(2.13)

where µb and σb are the mean and standard deviation of the batch, respectively. Then

inputs xi of BN layer could be normalized using

x̂i =
xi − µb

σb

(2.14)

where x̂i is the output of BN layer. The BN in Keras applies a transformation that

maintains the mean output close to 0 and the output standard variance close to

1, mitigating the problem of internal covariate shift [30]. By applying BN, neural

networks not only accelerate the training speed, but also be less likely to stuck in

local minimum because it narrows the range of input data. We will explore the effect

of BN on scattering data in this thesis.

2.2.2 Ensemble neural network

The ensemble neural network (ENN) consists of a set of sub-NNs with different weight

initialization or other hyper-parameters in the training process to solve a problem,

like wisdom of crowds.
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Figure 2.6: Basic ensemble neural network diagram.

2.2.2.1 Linear regression combination

The outputs produced from each sub-NNs are combined using linear regression: OE =

c0+c1O1+c2O2+c3O3+..., where On(n = 1, 2, 3. . . ) is the output from n-th sub-NN,

OE is the output of ENN, and cn(n = 0, 1, 2. . . ) is the coefficient of its corresponding

sub-NN. The linear regression linearly fits a linear model with coefficients c0, c1, ..., cn

by minimizing the sum of squared estimate of errors between the targets in the dataset

and the prediction OE from the ENN. The linear regression yields a substantially low

value to |cn| when a sub-NN is poorly trained, whereas |cn| for a well-trained sub-NN

becomes relatively large. Thus, the predictions of well-trained sub-NNs weigh more
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heavily than those of pooly trained sub-NNs. This is how sub NNs are jointly used

to make a prediction. Briefly, linear regression combination fits a linear model with

coefficients c1, c2, . . . , cn to minimize the residual sum of squares between the targets

in the dataset and the targets predicted by sub-NNs. Linear regression model will find

the best fit linear line, including the optimal coefficients and intercept to minimize

the error.

2.2.2.2 Bootstrap aggregating (bagging)

Figure 2.7: Diagram of bootstrap aggregating (bagging).

Bootstrap aggregating, also known as bagging, is a standard machine learning ensem-

ble meta-algorithm that is commonly used to reduce variance within a noisy dataset.

In bagging, samples are randomely selected from original training data and aggregate

(Fig. 2.7). It is an algorithm created to enhance ensemble learning’s accuracy and

robustness. Meanwhile, it also reduces variance and helps to avoid overfitting.
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2.3 Unsupervised learning

Unsupervised learning is discovering input-output relationships for unlabeled data.

An interesting question is raised that how clusters are determined by unsupervised

learning to correlate with physical and thermodynamic properties.

2.3.1 K-means clustering

The K-means clustering is one of the basic and primary used algorithms for unsu-

pervised learning. The unlabeled dataset is divided into k separate clusters using an

iterative technique, and each data point is assigned to a single cluster that shares

characteristics with the others.

Data points are classified into their nearest cluster. The “K” in K-means indicates

the number of clusters that be classified. The algorithm takes the unlabeled dataset

as input, selects random K points as centroids, groups similar data points based on

distance between them, calculates the variance and update the new centroid of each

cluster, and reassigns each data point to the new closest centroid of each cluster until

centroids do not change.

Fig. 2.8 illustrates how K-means clustering works. And the value of k should be
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predetermined in this algorithm, if K=2, there will be two clusters, and for K=3,

there will be three clusters, and so on.

Figure 2.8: K-means clustering algorithm.

The K-means clustering algorithm start being utilized to classify soft materials based

on their specific properties recently. K-means was used to separate two types of

polymers, polycarbonate and polystyrene [31]. And it is also used to predict Young’s

modulus and ultimate tensile strength of carbon-fiber-reinforced polymers [32] and to

cluster the defect and defect-free regions in glass fibre reinforced polymers with given

features [33].

2.3.2 Agglomerative clustering

Agglomerative clustering is another algorithm for unsupervised learning I am going to

use. Agglomerative clustering is one category of hierarchical clustering analysis that
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Figure 2.9: Agglomerative clustering algorithm.

seeks to build a hierarchy of clusters. It is a “bottom-up” approach: Each observation

starts in its own cluster, and pairs of clusters are merged as one while going up the

hierarchy.

Specifically speaking, agglomerative clustering algorithm recognizes each data point

as an individual cluster at the beginning. To merge the closest pair of clusters, it

calculates the distance between each of the clusters. Then, the similar clusters are

iteratively merged to form a cluster according to the distance until all points are

merged into one last cluster. Fig. 2.9 give an example for agglomerative clustering.

Data points in agglomerative clustering can produce a tree-like hierarchy called a

dendrogram (right figure in Fig. 2.9). Numbers in x-axis represent data points in the

left figure. The number of clusters will be automatically arranged when the distance

of centroids is fixed, that is, we can see how many classes from a dendrogram visually.
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The classification of polymer groups were investigated by Lukasiak et al. using K-

means clustering and hierarchical clustering based on pattern recognition [34]. Re-

cently, hierarchical cluster analysis was used to cluster polymers based on solid-state

properties [35]. The application of unsupervised learning on soft materials research

are very limited.
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Chapter 3

Lithium Dendrite Growth in

Highly Concentrated Ions

This chapter will exhibit effects of ion charge q, ion sizes d− and d+ , dielectric

constant εr, model parameter η, and applied voltage V on lithium dendrite growth.

In the subsequent subsections, we consider two cases as follows: (1) For symmetric

ions, we set the grid size (2 Å) to the cation diameter d+ and the anion diameter d−.

(2) For asymmetric ions, we consider (d+, d−) = (4 Å, 2Å) and (2 Å, 4 Å).
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3.1 Introduction

Specifically, a general treatment to inhibit the dendrite growth will not only help to

improve the safety of Li-ion batteries but also give further insights into the electrode-

position process in the electrochemical industry [36, 37]. Nevertheless, this research

objective remains challenging because (1) there exist a wide choice of system param-

eters, such as the size of ions, the size asymmetry between the ions in electrolytes,

dielectric constant, and applied voltage, and (2) the reactions associated with the

dendrite growth involve multiple length and time scales. This complexity also often

complicates the computational modeling of the dendrite formation under various en-

vironments, and thus a reduction in the number of model parameters would also help

in identifying the optimal design of the electrolyte systems.

Over the past few decades, many studies have aimed to improve the stability of the

electrodes [38, 39, 40, 41], the qualities of electrolytes[6, 42, 43, 44, 45, 46, 47, 48, 49],

and separator materials [50, 51] and the charging methods [25, 52, 53] of lithium-ion

batteries. Numerous researchers have recently reported metal electrodepositions in

ionic liquid (IL)-containing electrolytes [36, 43, 54, 55, 56]. Among others, an ex-

perimental study by Pearson et al. [56] suggests that the ionic strength plays an

important role in causing substantial differences in dendrite growth between ILs and
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conventional organic liquid electrolytes. For example, the number of the nuclei in-

creases and the dendrite growth rate decreases as the ionic strength is increased.

Moreover, ILs increase the electrolyte viscosity, thus retarding dendrite formation.

Similarly, our experimental observation of lithium dendrite in a combination of 1M

LiPF6 in EC/DMC electrolyte and 10% IL [BMIM][TFSI] also showed remarkably

uniform, unconventional dendrite growth in Section 3.4. Therefore, further theo-

retical investigation of the effect of the ionic strength on the inhibition of dendrite

formation, particularly with the visualization of dendrite growth and electrostatic

potential maps, would probably provide a deeper understanding of the inhibition

mechanism of dendrite growth.

Dendrite growth involves various physical and chemical interactions that occur over

multiple lengths and time scales [57]. Accordingly, various computational approaches,

such as Monte Carlo (MC) simulations [25, 58, 59], molecular dynamics (MD) sim-

ulations [60], Brownian dynamics (BD) simulations [25], and phase-field models

[61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76] have been developed.

For example, Selis and Seminario performed classical MD simulations and investi-

gated the relationship between charging methods and lithium dendrite formation in a

nanobattery [60]. However, the time scale of the MD simulations is typically limited

to the order of nanoseconds and cannot adequately account for the mechanism of

mesoscopic or macroscopic metal dendrite growth associated with salt ions and ILs.

BD simulations are also particle-based methods but can access longer time scales
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and larger length scales. Aryanfar et al. presented a novel coarse-grained MC model

based on Brownian motions to explore the effect of electric current density on dendrite

formation [25]. Nevertheless, BD typically assumes implicit solvents, is often inad-

equate to account for strong electrostatic correlations, and is normally well-defined

for solid bodies with vast amounts of collisions due to surrounding molecules within

the momentum relaxation time. Phase-field models are powerful tools to study the

nucleation and dendrite growth that occur on relatively longer time scales and larger

length scales [61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76]. Never-

theless, the model of the free energy often contains numerous adjustable parameters

and may be constructed somewhat arbitrarily or empirically [66]. Thus, the devel-

opment of more computationally tractable models with a relatively small number of

model parameters that account for metal dendrite growth on the timescales beyond

nanoseconds and the length scales beyond nanometers would also be convenient and

beneficial from both the theoretical and experimental viewpoints.

Along the lines of a simulation method consisting of a minimal set of model pa-

rameters, Chen and Jorné developed a lattice simulation model for metal dendrite

formation by considering zinc electrodeposition [24], given that the diffusion-limited

aggregation (DLA) model captures the pattern formation of the dendrite growth. This

hypothesis is legitimate because the DLA model serves as an algorithm (or a cellular

automaton [77, 78] that simulates the solidification in which the microscopic reaction

mechanisms are largely unknown and/or practically intractable. For example, the
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super-rough dynamics of tumor growth were discovered to exhibit the linear molecu-

lar beam epitaxy universality class [79, 80, 81], a feature which can be simulated by

the DLA (or Eden) model [82]. In the study by Chen and Jorné, the electrodeposition

and morphology of zinc dendrites in a two-dimensional battery were observed. The

fractal dimension determined by digitizing photographs was 1.7 and was consistent

with the value 1.71 calculated by the simulations using the DLA model originally

developed for a dielectric breakdown proposed by Niemeyer et al [26]. Thus, despite

the drastic simplification of the coarse-grained lattice model, the agreement between

theory and experiment is remarkable. Unfortunately, however, this lattice-simulation

model has not been substantially developed over the past decades, and thus the ap-

plication of the simulation model to salt-doped liquids and highly concentrated ions

remains limited.

In this chapter, we study the effect of small salt ions and large salt ions that mimic

ILs on dendrite growth by considering the height and aspect ratio of the dendrite.

We develop the DLA model on the lattice originally proposed by Niemeyer et al. to

mimic lithium dendrite growth in electrolytes, mainly motivated by the model feasi-

bility for zinc dendrite [24]. Moreover, it is well known that although the DLA model

(or cellular automaton model) largely simplifies or ignores reaction mechanisms on

atomistic and molecular scales, it often captures the macroscopic formation pattern of

solidification. Likewise, our present cellular automaton model for electrodepositions
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does not contain many atomistic and molecular details regarding the reaction mech-

anism of the metal solidification, yet it provides a convenient tool to investigate how

the electrostatic interactions affect dendrite formation with a minimal set of model

parameters and thus to identify a possible mechanism for the dendrite inhibition

caused by the small salt ions and ILs. Regarding the thermodynamic ensemble of ion

configurations, we employ the lattice model of large ions with the excluded volume

by Borukhov et al. [83]. This lattice model accounts for the electrical double layer

near charged surfaces. In this chapter, we consider the dendrite growth to be limited

to two-dimensional systems for computational simplicity.

3.2 Computational methods

The amount of the salts is represented by the lattice occupancy that indicates the

ratio of the number of the lattice sites occupied by the salt ions to the number of

the total lattice sites. The objective of the present study is to examine how the

dendrite surface grows with the salt ions. Thus, in addition to the calculation of the

average height of the dendrite at a given Monte Carlo (MC) step, we calculate the

aspect ratio H
L
of the dendrite to characterize the dendrite morphology, where H and

L designate the height and width of dendrites, respectively. For example, when the

dendrite shape is relatively flat with a wider length and smaller height, the aspect

ratio becomes small. We run 200 samples for each parameter space.
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Figure 3.1: Ion distributions from the electrodes for the dendrite-free sim-
ulation. The diameter of the cation (anion) is 2 Å. (a) Distance from the
anode vs. the number N+ (N−) of the cations (anions). N = 11 and the
lattice occupancy of the ions is 76 %. (b) Distance from the anode vs. the
ratio of N+ to N−. N = 51 and the lattice occupancy of the ions is 60
%. Reproduced from Ref. [1] with permission from the Royal Society of
Chemistry.

To examine the model applicability for highly concentrated ions, we performed

dendrite-free simulations with the dielectric constant εr = 20 for small [Fig. 3.1(a)]

and large [Fig. 3.1(b)] systems. Overall, the results show the following two key

features for large ions with excluded volume: the monolayer adsorption of the coun-

terions near the electrodes and the recovery of the bulk density at a distance of a few

monolayers from the electrodes. This fact is analogous to the results of the mean-field

approximation [83] for ions with excluded volume and a MD simulation [84] for ILs

in a dielectric continuum.
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3.3 Results and discussion

With new MC model, we simulate the dendrite growth process.

Figure 3.2: Snapshots of dendrite growth process in a simulation anima-
tion. From left to right, dendrite grows as the MC step increases until a
short-circuit.

3.3.1 Mechanism of dendrite suppression

Note that a tip with a sharp edge on the metal electrode exhibits a stronger elec-

trical field [10], which was mentioned in Section 1.1.3. Thus, lithium ions tend to

be deposited preferentially around the pointy regions of the dendrite, compared to

rounded or smooth regions because of “tip effect” (see Fig. 3.3a). Accordingly, the

dendrite solidification near the pointy regions tends to grow rapidly and form tree-like

structures.

However, when ILs are added, the cations tend to accumulate near the pointy regions
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Figure 3.3: Schematic illustration of lithium deposition: (a) tip effect
and (b) electrostatic shielding due to electric-field screening. Note that the
actual electrostatic fields do not align parallel but are in highly anisotropic
directions due to the dendrites. Reproduced from Ref. [1] with permission
from the Royal Society of Chemistry.

of the dendrite, forming a layer of positive charges that cause electrostatic shielding

(Fig. 3.3b). These positively charged layers repel incoming Li ions from the pointy

regions, and accordingly cause the Li ions to be deposited more preferentially on the

adjacent area of the pointy regions. Thus, this deposition mechanism suppresses the

rapid growth of the pointy regions of the lithium dendrite and leads to a relatively

uniform formation of the dendrite. The anions clustered near the dendrite structure

lower the local potential of the regions for dendrite candidates, and accordingly, this

mechanism enhances the inhibition of the dendrite growth.

Thus, if the dielectric constant of the electrolyte changes, the distribution of cations

43



Figure 3.4: Snapshot of the potential map for 1 % salts. The color bars
indicate the potential difference from the anode potential. The brighter the
color, the larger the potential. The dielectric constants of the electrolytes are
(a) εr = 80 and (b) εr = 20. Blue and yellowish-green particles represent the
cations and anions, respectively. Reproduced from Ref. [1] with permission
from the Royal Society of Chemistry.

and anions will be affected. Then we illustrate the electric potential map for 1 % salt

concentration with no dendrite formation in Fig. 3.4. When the dielectric constant

is high (Fig. 3.4a), the color gradually becomes brighter from the anode to the cath-

ode, indicating a moderate change in the electric potential between the cathode and

anode. The cations (blue) and anions (yellowish-green) are isolated from each other.

However, ion pairing and ion clustering occur as the dielectric constant decreases to

εr = 20 (Fig. 3.4b). The spatial changes in the color gradation between the cath-

ode and anode becomes relatively more inhomogeneous. These preliminary results

suggest that both the ion aggregation and the resultant spatial inhomogeneity of the

electric potential may become critical in considering the dendrite growth.
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3.3.2 Symmetric ions with d+ = d−

Figure 3.5: Effects of the ionic charge, the dielectric constant on dendrite
growth for the symmetric ions (d+ = d− = 2Å). Reproduced from Ref. [1]
with permission from the Royal Society of Chemistry.

We now consider the dendrite formation (Fig. 3.5). In Fig. 3.5a and Fig. 3.5b,

the black line indicates that the addition of tiny amounts of salt ions (≤ 5 %) causes

significant decreases in the aspect ratio and average height ⟨H⟩. However, the changes
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in both the aspect ratio and average height ⟨H⟩ with increasing salt concentration vary

non-monotonically, and thus there appear to be optimal values of salt concentration

to maximize the uniformity of the dendrite shape and to inhibit the dendrite growth.

Here, we attribute the rise from the local minima around 2 % of the volume fraction to

increases in the number of ion pairs that do not participate in electrostatic shielding.

Moreover, to consider the significance of the electrostatic interactions for dendrite

growth relative to that of the excluded volume interactions, we eliminate the ionic

charges on the salt ions. In other words, for comparison, we replace the salt ions

with uncharged particles. However, the addition of the uncharged particles (1) does

not substantially decrease the aspect ratio unless the volume fraction exceeds about

50 % (Fig. 3.5a) and (2) causes no noteworthy change in the average height ⟨H⟩

(Fig. 3.5b). These results suggest that the large inhibition of dendrite growth arises

primarily from the effect of the electrostatic interactions.

Importantly, the salt ions cause the spatial gradient of the electric potential to be more

locally inhomogeneous but more globally isotropic than the uncharged counterparts

do. This is particularly notable in the regions around the dendrite (see the insets in

Fig. 3.5b). Here, note the basic rule that the tip of the dendrite tends to grow to the

brighter regions for the positive, higher electric potential. However, due to the global

uniformity of the potential gradient near the dendrite, such a dendritic formation

becomes notably more isotropic. Thus, we suggest that this effect facilitates the

lateral growth of the dendrite, significantly flattening the dendrite shape.
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Next, we consider the effect of the dielectric constant on the dendrite growth (Fig.

3.5c and Fig. 3.5d). As in Fig. 3.5a and Fig. 3.5b, sharp decreases in the aspect

ratio Fig. 3.5c) and average height (Fig. 3.5d) from 0 % to 5 % occur. Here, the

difference in the dielectric constant does not notably change the overall trend of

the aspect ratio and the average height when the lattice occupancy of the salt ions

is ≲ 40 %. However, when the volume fraction exceeds about 40 %, the effect of

the dielectric constant becomes distinct. It is not entirely clear why decreasing the

dielectric constant to εr = 20 causes the local maximum point to shift to the region

at the lower salt concentration. Nevertheless, the potential map in the inset shows

that the dendrite in the electrolyte with εr = 20 is surrounded by the black regions

that indicate that the electric potential is lower than that of the anode. Thus, as

indicated by Eq. 2.5, these negative potential spots appear to inhibit the dendrite

growth.

Fig. 3.6a and Fig. 3.6b show the effect of the model parameter η in Eq. 2.5 on the

dendrite growth. The average height (Fig. 3.6b) is significantly affected by the η

value, whereas the changes in aspect ratios are relatively insignificant. Moreover, the

difference in the trend of the average height among the lines (Fig. 3.6b) changes non-

monotonically. That is, the results change as “black” → “red” → “blue” → “purple”

when increasing the η value from 0 to 2. Fig. 3.6b also indicates that the decrease in

the average height when increasing the salt concentration is monotonic when η = 0.5.

Thus, in terms of the Li-ion battery design, we do not need to be concerned about
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Figure 3.6: Effects of the parameter η, and the applied voltage on dendrite
growth for the symmetric ions (d+ = d− = 2Å). Reproduced from Ref. [1]
with permission from the Royal Society of Chemistry.

the optimal salt concentration that maximally inhibits the dendrite growth.

Fig. 3.7 illustrates the significance of the value η for the dendrite growth at 60 % salt

concentration. The results also suggest that it is important to evaluate the η value

[or the accurate form of the probability in Eq. 2.5] using more atomistic models that

account for the probability of dendrite deposition.
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Figure 3.7: Snapshots of the dendrite structure with different η values for
60% symmetric ILs and the dielectric constant εr = 20. The light blue and
blue points correspond to the cations and anions, respectively. Reproduced
from Ref. [1] with permission from the Royal Society of Chemistry.

In Fig. 3.6c and Fig. 3.6d, we change the applied voltage from 0.5 V to 5.0 V. In

the case of large voltages such as 5.0 V, we observed the charge separation between

the conducting plates, as illustrated by the inset of Fig. 3.6c. The overall trends

of both the aspect ratio and average height remain similar when the applied voltage

is changed. However, notable non-monotonic variations in these values occur when

the salt concentration exceeds about 40 %. Accordingly, 0.5 V becomes the optimal

operating voltage to inhibit the average height.

In Fig. 3.8a-d, we also consider relatively larger symmetric ions and their uncharged

counterparts with d = 4 Å to study the size effect. These large ions also mimic an IL.

Interestingly, unlike the result in Fig. 3.5b, the larger uncharged particles promote

the dendrite inhibition (Fig. 3.8b), probably due to the larger excluded volume.

Nevertheless, the ions more significantly inhibit the dendrite growth. Moreover, unlike

the result in Fig. 3.5b, the inhibition trend is nearly monotonic. Therefore, ILs would

be more tractable in designing Li-ion batteries.
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Figure 3.8: Effects of the ionic charge and the parameter η on dendrite
growth for the symmetric ions (d+ = d− = 4Å). Reproduced from Ref. [1]
with permission from the Royal Society of Chemistry.

Note that changes in the η cause substantial differences in the aspect ratio and average

height (Fig. 3.8c and Fig. 3.8d). As in the case of Fig. 3.6b, η = 0.5 gives rise to

a significant inhibition of the average height, and the inhibition effect is even more

significant. Note that the overall trends of the aspect ratio and average height are

the same among the different η values. Thus, we suggest that a choice of the η value

does not alter our conclusion obtained in the present study.
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3.3.2.1 Brief summary

To conclude this subsection, we briefly summarize the mechanism of the dendrite

growth with the symmetric small ions as follows: (1) Small amounts of salt ions

enhance electrostatic shielding near the dendrite and particularly its pointy regions,

and accordingly the dendrite growth is significantly inhibited. (2) Increasing the salt

concentration enhances ion clustering, and such ionic aggregates reduce the number

of ions that participate in electrostatic shielding. Accordingly, ion clustering weak-

ens the driving force for the inhibition of the dendrite growth until a very high salt

concentration such as 80 % is reached. Our results and simulation animation suggest

that when the salt concentration is very high, small ion clusters tend to aggregate

and to form larger clusters, coherently moving over the entire system. These ions do

not tightly bind to each other, and the ion clusters do not live as independent charge-

neutral objects. Such large clusters widely cover the dendrite surface and yield the

effect of electrostatic shielding. (3) Alternatively, the large ions that mimic ILs signif-

icantly inhibit ion clustering, and this effect continues to inhibit the dendrite growth

more significantly than the small ions do. This result would probably rationalize

the remarkably uniform, unconventional dendrite growth observed in our experiment

in Section 3.4. Nevertheless, the current observation is on the macroscopic scale,

whereas our simulation is on the nanometer scale. Thus, further study to bridge the

gap between the length scales is required.
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3.3.3 Asymmetric ions with d+ = 2d−

In this subsection, we demonstrate that the size asymmetry between the cation and

anion can be critical to inhibit the dendrite growth. We consider the cation and anion

diameters to be 4 Å and 2 Å, respectively.

Both the aspect ratio (Fig. 3.9a) and average height (Fig. 3.9b) decrease upon the

addition of small amounts of salt ions. However, unlike the symmetric uncharged

particles in Fig. 3.5a, the aspect ratio does not notably change even when the salt

concentration is as high as 80 %. Importantly, these variations are monotonically

decreasing and nearly reach plateaus. Thus, we do not need to be concerned about

identifying the optimal salt concentration to inhibit the dendrite growth. The inhibi-

tion trend for the asymmetric ions is relatively simpler to control than for the small

symmetric ions. Here, we observed in the snapshots that ion pairing and clustering

are relatively weakened, probably because the cations are large. Thus, we attribute

the observed plateaus in the aspect ratio and average height to this size effect.

In contrast to the results in Fig. 3.5 and 3.6, we observed nearly monotonically

decreasing functions in Fig. 3.9c-d and 3.10. The results are almost unchanged

compared to the changes in the dielectric constant, the model parameter η, and the

applied voltage, except for Fig. 3.10c. As in the case of the symmetric ions (Fig.
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Figure 3.9: Effects of the ionic charge, the dielectric constant on dendrite
growth for the asymmetric ions (d+ : d− = 2 : 1). The x-axis is the lattice
occupancy of the salts or uncharged particles. ⟨H⟩ designates the average
height calculated after 2×107 MC steps. The applied voltage is 0.5 V. The
dielectric constants are εr= 80. Reproduced from Ref. [1] with permission
from the Royal Society of Chemistry.

3.6), the decrease in the average height is maximized when η = 0.5 (Fig. 3.10b).

Specifically, unlike the symmetric ions, the effect of the applied voltage on the av-

erage height ⟨H⟩ is relatively insignificant over nearly the entire salt concentrations

(Fig. 3.10d). These results also suggest that the inhibition of dendrite growth can be
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Figure 3.10: Effects of the parameter η and the applied voltage on dendrite
growth for the asymmetric ions (d+ : d− = 2 : 1). The x-axis is the lattice
occupancy of the salts or uncharged particles. ⟨H⟩ designates the average
height calculated after 2×107 MC steps. The applied voltage is 0.5 V in
(a)-(b). The dielectric constants are εr= 20. Reproduced from Ref. [1] with
permission from the Royal Society of Chemistry.

relatively easier when the cation size is large enough to weaken ion pairing and clus-

tering. Probably due to this fact, ILs would serve as a good substance to substantially

inhibit and flatten the dendrite growth.
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3.3.4 Asymmetric ions with 2d+ = d−

Figure 3.11: Effects of the ionic charge, the dielectric constant, the param-
eter η, and the applied voltage on dendrite growth for the symmetric ions
(2d+ = d− = 4Å). Reproduced from Ref. [1] with permission from the Royal
Society of Chemistry.

Finally, we consider the cation and anion diameters to be 2 Å and 4 Å, respectively.

The overall trends of the results in Fig. 3.11, Fig. 3.12 are very similar to those in

Fig. 3.9, Fig. 3.10. Nevertheless, unlike the results in Fig. 3.9, the effect of the
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Figure 3.12: Effects of the ionic charge, the dielectric constant, the param-
eter η, and the applied voltage on dendrite growth for the symmetric ions
(2d+ = d− = 4Å). Reproduced from Ref. [1] with permission from the Royal
Society of Chemistry.

dielectric constant on the aspect ratio and average height ⟨H⟩ becomes insignificant

(Fig. 3.11c and Fig. 3.11d). Moreover, the increase in the voltage slightly increases

the dendrite growth (Fig. 3.12c and Fig. 3.12d). Thus, we suggest from the strong

similarity between Fig. 3.9, 3.10 and Fig. 3.11, 3.12 that a critical factor to inhibit

dendrite growth is not to change the type of the size asymmetry in ILs, but instead,
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to decline ion pairing and clustering.

3.4 Experimental Observation

Figure 3.13: Lithium dendrite growth. (a) Original Li foil, (b) lithium
deposits under 1M LiPF6 in EC/DMC, and (c) lithium deposits under 1M
LiPF6 in EC/DMC + 10% [BMIM][TFSI]. Reproduced from Ref. [1] with
permission from the Royal Society of Chemistry.

We illustrate our experimental observation of lithium dendrite growth in a combi-

nation of 1M LiPF6 in EC/DMC electrolyte and 10% IL [BMIM][TFSI]. Fig. 3.13

shows that the addition of the ionic liquid significantly suppresses lithium dendrite

and makes the growth trend remarkably uniform in the lateral direction.
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3.5 Conclusion

The present lattice model is considered a cellular automaton, in which a minimal

assigned rule on a regular grid of cells yields a qualitative feature of physical phenom-

ena. Typically, cellular automata involve model parameters to reproduce a certain

degree of complexity in targeted growth mechanisms [77, 78]. Here, note that our

present treatment of the electrostatic interactions does not account for the effects of

image charges and the diffusion of the lithium ions near the dendrites, whereas these

factors may also affect the dendrite growth. However, we assume that the electro-

static interactions due to these effects are electrically screened to a large degree by

the highly concentrated ions, and thus the effects are relatively weaker. Therefore, we

attribute the two effects to the model parameter η for our cellular automaton model,

as the consistency between the present computational algorithm for implicit-metal

ion models and the observed fractal dimension of zinc dendrites was demonstrated by

Chen and Jorné [24].

We have developed the DLA model proposed by Niemeyer [26] and later developed

for zinc dendrite growth by Chen and Jorné [24]. The present study was also mo-

tivated by our recent experimental observation regarding remarkably uniform, un-

conventional lithium dendrite growth in Fig. 3.13. Despite the simple algorithm

of the growth patterns, the original toy model accounts for the fractal dimensions
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observed for dielectric breakdown and zinc dendrite. In other words, the model con-

tains an adjustable parameter that controls the growth probability, but it can be

fixed when the fractal dimension is determined in experiments. The present study

relies on the strong applicability of the model to the pattern formation due to the

electrostatic fields. Thus, we applied the algorithm of the pattern formation to metal

dendrite growth in salt-containing liquids between the conducting plates. The main

conclusion in our study is summarized as follows: (1) the addition of salt ions can

significantly flatten the dendrite shape and inhibit the dendrite growth, primarily due

to electrostatic shielding near the pointy regions of the dendrite. (2) It is critical to

weaken ion pairing and clustering in electrolytes to inhibit the dendrite growth. Our

results show that small salt ions appear to have difficulty achieving this requirement

and lead to the undesirable non-monotonic behavior of the dendrite growth as a func-

tion of the salt concentration. However, large salts such as ILs can be dissociated

near the operating temperatures to a great degree to solve this issue. (3) The size

asymmetry that occurs when either the cation or the anion is large (4 Å or larger)

affects the dendrite’s shape and growth, primarily because ion pairing and clustering

are significantly inhibited. In this case, the inhibition of the dendrite growth is not

significantly affected by changes in the dielectric constant and applied voltage. The

overall conclusion from (1) to (3) remains unchanged when 0 ≤ η ≤ 2, and appears to

hold true in general. Thus, we suggest that ILs be a prospective material to inhibit

metal dendrite formation. Among others, the present simulations suggest that ILs
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with large size asymmetry between the cation and anion serve as a good electrolyte

in lithium-ion batteries, as consistent with our experimental observation for lithium

deposits under 1 M LiPF6 in EC/DMC + 10% [BMIM][TFSI] in Fig. 3.13.

Concomitantly, the 2D growth appears to be more constrained than the 3D growth.

In the case of a 3D model, the dendrite growth in the new lateral direction may

easily occur when the ions inhibit the longitudinal growth of the dendrite toward the

cathode. Still, this lateral growth appears to facilitate the uniformity of the dendrite

surface. Thus, we anticipate that our overall conclusion remains unchanged even in

a 3D model.
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Chapter 4

Surrogate Model for Prediction of

Lithium Dendrite Growth

4.1 Introduction

Nevertheless, the generalization of the MC simulations with various model parameters

and the achievement of good statistical convergence with a large number of samples

are not easy tasks in general. Moreover, we are aware that like other simulation

techniques for dendrite formation, the present lattice MC simulation model may still

involve a limitation on the direct comparison between the simulation and experimental

data because real systems are typically larger than the simulation length scale, and the
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entire description of the electrostatic nature on the nanoscales regarding the dendrite

formation is often significantly challenging. Thus, we also need a generic, tractable

method that provides the design principle of electrochemical devices for the dendrite

inhibition in electrolytes. To this end, we also considered a surrogate model using

ENNs in machine learning techniques, or their variant, have proved to be useful tools

that can outperform a single NN in various studies [85, 86, 87, 88, 89]. We show

that our ENNs reasonably captures the non-monotonic trends of the MC simulation

results, even though the number of simulation samples at each data point is decreased

from the order of 200 to 20. Thus, our surrogate model serves as a convenient tool that

enables fast characterization and design of the electrolytes with dendrite formation.

4.2 Computational methods

4.2.1 Data

The data for ENNs are produced from the MC simulations discussed in the previous

chapter. The inputs are factors that affect dendrite growth, they are volume fraction

φ (%), dielectric constant εr, model parameter η, and applied voltage V . The outputs

are dendrite height H, and its aspect ratio A. The range of volume fraction is 0.0%

- 80.0%, the range of dielectric constant is 20.0 - 80.0, the range of model parameter
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Input Output
φ εr η V H A
1.0 20.0 1.0 0.5 23 0.589744
3.0 20.0 1.0 0.5 22 0.536585

Table 4.1
Input variables used in this study

is 0.0 - 2.0, the range of applied voltage is 0.5 - 5.0 V . Because the size of battery

system is 51 × 51, the values of dendrite height ranges from 0 - 50, and the values of

aspect ratio ranges from 0.0 - 2.0. Based on those, I selected 20 samples from each (φ,

εr, η, V ) parameter space. Examples of the inputs and outputs are shown in Table

4.1.

4.2.2 Design of ENN

Figure 4.1: Architecture of subNN for lithium dendrite growth prediction.
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We employed 20 samples for each volume fraction to train our ENNs using Keras [30].

These samples are split into three parts: training, validation, and test datasets. As

illustrated in Fig. 2.6, our ENN consists of an ensemble of 8 sub-NNs (Fig. 4.1) that

have identical architecture with different activation functions. They are combined

using linear regression. The topology of sub-NNs is 4-32-32-2, which represents the

number of neurons in an input layer, the first hidden layer, the second hidden layer,

and an output layer, respectively. We evaluated the model by the mean squared error

(MSE) of the predicted value (ŷ) and the target value (y) as Eq.2.7.

The neurons are fully connected between the neighboring layers, and each connection

has a weight. For the activation functions, we used ReLU, Gaussian, tanh, and

trigonometric functions (Fig. 4.2). To reduce overfitting the model, we performed

the early stopping of training with a patience setting of 20 steps. Finally, we construct

Figure 4.2: Typical types of activation functions.

a surrogate model that accounts for the lithium dendrite growth via training datasets

derived from the MC simulations. We employed the dielectric constant εr, the model

parameter η, the voltage V , and the volume fraction φ for the input variables and
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set the aspect ratio and the average height in the output layer. In the present study,

one hidden layer is not sufficient to capture the training datasets, especially for the

non-monotonic trend of the results, but two hidden layers are adequate. From the

calculation of the MSE, we also empirically found that the sub-NN with 32 neurons

per hidden layer serves as a good architecture.

Table 4.2 and Table 4.3 show our ENNs and sub-NNs, respectively. We use different

kinds of activation functions for sub-NNs to increase the diversity. The strucuture

“ReLU-X-ReLU” means that using ReLU funtion for the 1st hidden layer, X (X =

ReLU, sine, cosine, sigmoid, tanh or Gaussian function) for the 2nd hidden layer, and

ReLU function for the output layer.

ENN (ID) Activation Functions in sub-NN
1 ReLU-X-ReLU, X=sine, cosine, sigmoid, Gaussian
2 ReLU-X-ReLU, X=ReLU, cosine, sigmoid, Gaussian
3 ReLU-X-ReLU, X=sine, tanh, sigmoid, Gaussian
4 ReLU-X-ReLU, X=sine, relu, sigmoid, Gaussian

Table 4.2
Activation function structures of ENNs.

Sub-NN (ID) Activation Functions
1 ReLU-X-ReLU, X = sine
2 ReLU-X-ReLU, X = sine
3 ReLU-X-ReLU, X = ReLU
4 ReLU-X-ReLU, X = ReLU
5 ReLU-X-ReLU, X = sigmoid
6 ReLU-X-ReLU, X = sigmoid
7 ReLU-X-ReLU, X = Gaussian
8 ReLU-X-ReLU, X = Gaussian

Table 4.3
Activation function structures of subNNs in No.4 ENN (bold one).
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Hyper-parameters that impact the network’s design and training are summarized in

Table 4.4.

Hyper-parameter Value or function
Number of subNN in an ENN 8

Number of hidden layers in a subNN 2
Number of activated neurons each hidden layer 32

Activation function in 1st hidden layer ReLU
Activation function in 2nd hidden layer {Sine; ReLU; Sigmoid; Gaussian}
Activation function in output layer ReLU

Patience of early-stopping 10
Train-test split ratio 4:1

Optimization algorithm Adam optimizer
Learning rate in optimization algorithm 0.001
Cost or loss function each subNN use Mean square error (Eq. 2.7)

Accuracy metrics Mean absolute percentage error

Table 4.4
Hyper-parameters and their values or functions in the ENN model.

4.3 Results and discussion

ENN (ID) Training Error Validation Error Test Error
1 13.582 (25.6%) 13.646 (24.8%) 15.323 (29.4%)
2 13.593 (24.6%) 13.965 (24.2%) 14.959 (28.8%)
3 13.356 (24.7%) 13.348 (23.9%) 14.998 (29.0%)
4 13.573 (25.5%) 13.863 (26.0%) 14.823 (29.0%)

Table 4.5
Training, validation, and test errors of different ENNs. The MAPE is

shown in parentheses (Lower is better.)

We trained 4 ENNs with different activation functions (Table 4.2). Table 4.3 shows

architectures of sub-NNs of No.4 ENN in Table 4.2. Here, the chance of overfitting

tends to decrease as the difference between the training error and validation error
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sub-NN (ID) Training Error Validation Error Test Error
1 506.762 (60.8%) 486.218 (60.8%) 495.212 (61.0%)
2 506.761 (59.9%) 486.217 (60.0%) 495.210 (60.2%)
3 507.018 (100%) 486.466 (100%) 495.465 (100%)
4 17.232 (25.0%) 18.275 (26.9%) 18.838 (27.7%)
5 14.942 (26.0%) 15.282 (28.0%) 16.785 (28.9%)
6 14.520 (24.0%) 15.728 (25.8%) 16.814 (26.7%)
7 15.175 (23.9%) 15.658 (25.9%) 17.162 (26.6%)
8 15.528 (25.2%) 15.524 (26.8%) 17.186 (27.5%)

Table 4.6
Training, validation, and test errors of the sub-NNs in No.4 ENN (bold one

in Table 4.5). The MAPE is shown in parentheses.

decreases. Note that some sub-NNs are poorly trained with an error of about 500, yet

the corresponding ENN outperforms any sub-NNs and thus provides a good prediction

with relatively small errors. Thus, the ENNs can efficiently avoid the local minimum

in the MSE that is more likely to occur in a single NN.

We plotted the predicted average heights and the aspect ratio of lithium dendrites in

Fig. 4.3 and Fig. 4.4. In Fig. 4.3, we compared the MC simulation result with one

of the excellent sub-NNs (No.5 sub-NN in Table 4.6) containing the sigmoid function

for the activation function in the second layer. Note that we used only 20 samples

for each volume fraction (i.e., each data point in the figures) to train each sub-NN.

Still, our ENNs can reasonably capture and predict the non-monotonic trend of both

the average height and the aspect ratio. Fig. 4.4 shows the comparison between the

MC simulation result with the prediction from No. 4 ENN in Table 4.5. Other ENNs

also provide similar consistencies between the MC simulation and ENN prediction.

Although some sub-NNs may have large errors, their combination with good sub-NNs
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(d)(c)

(a) (b)

(e) (f)

Figure 4.3: Comparison between the MC simulation and No.5 sub-NN in
Table 4.6 for the average height and the aspect ratio. The solid lines indicate
the prediction from the sub-NN in the range of 1% to 80% volume fraction
of salts. The squares indicate the statistical averages calculated from the
same datasets of the MC simulations as those used in Fig. 3.3c-d and Fig.
3.4a-d. Reproduced from Ref. [1] with permission from the Royal Society of
Chemistry.

tends to provide a robust, relatively accurate ENN. Overall, we suggest that although

a single NN can be employed as a surrogate model for the MC simulations, the ENNs
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(d)(c)

(a) (b)

(e) (f)

Figure 4.4: Comparison between the MC simulation and ENN prediction
for the average height and the aspect ratio. The symbols and lines are
defined as in Fig. 4.3. Reproduced from Ref. [1] with permission from the
Royal Society of Chemistry.

are not sensitive to initial weights and are robust against the choice of the activation

functions, compared to a single NN.
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4.4 Conclusion

We considered a surrogate model that accounts for the MC simulations using ENNs.

In our study, we found that a single NN can be consistent with the MC simulation

results, but ENNs with sub-NNs can be more robust against the choice of the activa-

tion functions and can easily be trained from various initial weights. This is mainly

because the ENNs can be trained well when poor sub-NNs are combined with good

sub-NNs. Importantly, unlike 200 samples for the average of the MC simulation re-

sults for each volume fraction (i.e., each data point), we used only 20 samples for

training. Thus, our surrogate model serves as an alternative to the computationally

demanding MC simulations.
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Chapter 5

Ensemble Neural Network for

Predicting Dielectric Constants of

Pure Solvents

5.1 Introduction

The use of machine learning methods enable the construction of surrogate models

that capture highly nonlinear features that are dependent on a number of model

parameters, which used to be a challenging task when performed using traditional

optimization algorithms.
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Of particular importance in materials science is that NNs can considerably reduce

the required computational expense and burden when applied to molecular dynamics

(MD) simulations, as largely reviewed in Ref. [90]. Recent examples of the application

of NNs in MD simulations include NNs trained for the free energy of coarse-grained

molecules [91], NNs trained on quantum molecular dynamics configurations for the

dielectric constant of water [92], ML potentials obtained from NNs for the structure

and permeability of water [93], NNs used to produce a Hamiltonian for an electronic

structure [94], and an NN-assisted MD method to reduce the computations required

when conducting open-boundary simulations [95].

On the technical side of optimization algorithms, an ensemble of linear gross do-

mestic product estimates was shown to enhance the model accuracy and improve

its generalization [96]. Along similar lines of research, NN ensembles appear to be

straightforward methods for enhancing the versatility of NNs [97] and accordingly im-

proving the accuracy of the resulting models when combined with the optimal linear

combination of trained NNs [98]. Thus, the effectiveness of ensemble NNs (ENNs)

in various systems has been explored for several decades, and the applications in-

volving MD simulations include ENNs for determining the potential energy surface

of a bimolecular reaction [99], a combination of different ML models for studying the

dynamics of water droplets [100], and the analysis of the potential energy surfaces of

various Lennard–Jones fluids with two types of ENNs [101]. Nevertheless, the study

of ENNs combined with MD simulations remains significantly limited, particularly
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with respect to the dielectric properties of materials [92].

Although the coarse-grained simulations for Stockmayer Fluids (SFs) can be substan-

tially faster than the atomistic simulations [102], the exploration of the molecular pa-

rameters that simultaneously account for various salt-free and/or salt-doped liquids

over vast parameter space may easily become impractical, especially for multicompo-

nent liquid and ion mixtures.

Thus, a more computationally fast surrogate model that captures the present MD

simulation should be critical, at least, in the following two perspectives: First, such a

surrogate model considerably facilitates researchers to identify appropriate molecular

parameters of SFs in the system involving various types of liquids and, if any, salt

ions.

Second, the calculation of the dielectric constant is often statistically noisy due to the

thermal fluctuation of molecular polarization, and thus, the large statistical fluctua-

tion tends to make the statistical convergence of the dielectric constant calculation

relatively slow. The iterative reparameterization of the model by repeatedly checking

the statistics of the dielectric constant after the equilibration for the timescale of 1-20

ns is undoubtedly a daunting task. In this regard, the surrogate model is preferred

to be constructed from a relatively small amount of simulation data.

In this chapter and the next chapter, we show that ENNs serve as efficient surrogate
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models for Stockmayer Fluid MD simulations that provide the dielectric constants of

polar solvents and NaCl solutions. These two chapters aim to show how NNs can

help address the problem of calculating dielectric constants, and discusses our general

theoretical framework for reducing computational costs arising from the statistical

ensemble of MD simulations. ENNs trained with MD simulation output datasets,

including small datasets obtained with a low-sampling rate, can provide predictions

of the dielectric constants for various model parameters without running additional

MD simulations. Advantages of the use of ENNs include the following objectives: (1)

ENNs can provide the model parameters for multiple solvents and salt ions. (2) Unlike

statistical averages calculated from ensembles of vast numbers of configurations, ENNs

require relatively small amounts of simulation data for training. (3) Even if a single

large NN performed equivalent computations, training data might be too large for

the memory. With ENNs, however, various batch and ensemble methods can be used

to split the data into parts that can be more quickly processed. (4) Typically, the

objective (loss) function of NNs has many local minima, and the backpropagation

algorithm for the optimization of the objective function often results in a movement

towards these minima (the so-called “local minimum problem”). However, ENNs

tend to prevent model training from getting stuck in these local minima.
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5.2 Computational methods

Accordingly, we employ ENNs in machine-learning methods because this modeling

worked efficiently in the study of lithium dendrite growth in ILs that involved similar

computational requirements in Chapter 4. In this chapter, we develop an ENN to

predict the dielectric constant of salt-free solvents trained by MD simulation results.

Here, an ENN consists of multiple sub-NNs and each sub-NN has its own structure.

The idea of this method arises from an analogue of wisdom of crowds, in which a

hybrid of all predictions from the sub-NNs should provide a better prediction than

the individual.

5.2.1 Data

I collected our in-house datasets regarding averaged dielectric constants from thou-

sands of MD simulations of 7 types of pure solvents, water, MeOH, EtOH, Acetone,

1-Propanol, DMSO, and DMF. They were calculated using MD simulations based on

their properties. Those properties are inputs for training, they are dipole moment µ,

diameter of solvent molecule σ, number density ρ, and Lennard-Jones (LJ) parameter

ϵLJ for the solvent-solvent interaction. The output is dielectric constants εr of pure

solvents.
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For inputs, the range of dipole moment is 0.0 - 3.7 Debye, the range of diameter is

2.5 - 5.2 Å, the range of LJ parameter is 0.01 - 0.10 kcal/mol, the number density

is 0.007 - 0.034 Å−3. For outputs, the range of dielectric constants of them are 0.0 -

212.2. Examples of the inputs and calculated outputs, and their corresponding type

of pure solvents are shown in Table 5.1.

Type Input Output
µ σ ρ ϵLJ εr

Water 1.73 2.5 0.033474 0.01 94.87
MeOH 2.02 4.0 0.014889 0.01 23.64
EtOH 2.13 3.6 0.011333 0.05 15.64
Acetone 2.66 4.6 0.008148 0.05 21.27

1-Propanol 2.7 5.2 0.008037 0.10 32.63
DMSO 3.0 4.3 0.008481 0.10 38.85
DMF 3.0 5.0 0.007815 0.10 49.21

Table 5.1
Examples for input variables and output for pure solvents.

5.2.2 Design of sub-NN

In general, ENN can be considered a learning technique where many neural network

models are joined to solve one problem. An ENN is composed of n sub-NNs, and

each sub-NN can have its own structure (see Fig. 5.1). By combining all predictions

of sub-NNs, like ensemble of wisdom, the ENN can make a better prediction.

We consider an ensemble of 8 sub-NNs that have identical architecture. The topology

of sub-NNs is 4 inputs, 11 hidden layers with 30 neurons per hidden layer, and 1 output
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Figure 5.1: The sub-NN structure for the pure solvents. The inputs are the
dipole moment µ, the solvent diameter σ, the number density ρ, and the LJ
parameter ϵLJ for the solvent-solvent interaction. The output is dielectric
constant εr.

(i.e., 4-30-30-30-30-30-30-30-30-30-30-30-1), see Fig. 5.1(a)). We also evaluated the

model by MSE (Eq. 2.7).

The weights of all sub-NNs are randomly initialized and are optimized by minimizing

the loss function. The MSE indicates the standard error for the evaluation of NN’s

performance. However, we also provide the mean absolute percentage error (MAPE)

100%
n

∑
|y−ŷ

ŷ
| that serves as an alternative measure to analyze the performance. For

activation functions, we employ ReLU, Gaussian, and sine functions. Specifically,

we found that the sandwich structure such as “X-Y-X” and “X-Z-X”, with X =
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ReLU is critical for substantially enhancing the performance of the sub-NNs and

accordingly the ENN. Specifically, Y = sine, and Z = Gauss. This architecture is the

best architecture we can find. To reduce overfitting of the models, we also perform

the early stopping of training with a patience setting of 30 epochs. Hyper-parameters

are summarized in Table 5.2.

Hyper-parameter Value or function
Number of subNN in an ENN 4

Number of hidden layers in a subNN 11
Number of activated neurons each hidden layer 30

Activation function for hidden layers
X-Y-X-Z-X-Y-X-Z-X-Y-X, where
X=ReLU, Y=sine, and Z=Gauss

Activation function in output layer ReLU
Patience of early-stopping 30

Batch size 20
Train-test split ratio 4:1

Optimization algorithm Adam optimizer
Learning rate in optimization algorithm 0.001
Cost or loss function each subNN use Mean square error (Eq. 2.7)

Accuracy metrics Mean absolute percentage error

Table 5.2
Hyper-parameters and their values or functions in the ENN model.

We produce 76 samples for the set of polar solvents by changing the dipole moment

µ, the solvent diameters σ, the LJ parameters ϵLJ , and the number density ρ and

calculating the dielectric constant εr for each sample from the average of 10000 MD

configurations. We thus train the ENN with 76 averaged values using the Keras API

[30].

To enhance the model accuracy, we duplicated these 76 samples 5 times to employ
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76×5 samples and divided all data into two parts: training datasets and validation

datasets. Normally, data samples are classified into training, validation, and test

datasets. However, we only split them into training and validation datasets to maxi-

mally utilize the limited number of samples for training. After training all sub-NNs,

outputs from them are combined to yield the output of the ENN via linear regression.

5.3 Results and discussion

Pure Solvents Training Error Validation Error
Sub-NN1 29.1 (17.2%) 25.5 (15.7%)
Sub-NN2 20.3 (20.3%) 18.1 (19.0%)
Sub-NN3 11.8 (7.2%) 8.2 (7.0%)
Sub-NN4 26.9 (21.6%) 29.6 (20.4%)

Table 5.3
Training and validation errors (MSEs) of sub-NNs for pure solvents. The

MAPE is shown in parentheses. The topology of the sub-NNs is
4-30-30-30-30-30-30-30-30-30-30-30-1, and the sequence of the activation

functions consists of X-Y-X-Z-X-Y-X-Z-X-Y-X-X, where X=ReLU,
Y=sine, and Z=Gauss.

Pure
solvents

Constituent
sub-NNs

Training Error Validation Error

ENN1 1,2,3 11.7 (6.3%) 7.9 (8.3%)
ENN2 1,2 18.6 (22.2%) 15.0 (26.2%)
ENN3 1,2,4 16.4 (15.0%) 14.1 (17.0%)

Table 5.4
Training and validation errors (MSEs) of different ENNs for salt-free

solvents. The MAPE is shown in parentheses.

Table 5.3 and 5.4 show training and validation errors of ENNs and sub-NNs, re-

spectively. Sub-NNs have the same topology and activation function, the difference
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among them is the initial weights. ENNs in Table 5.4 are combinations of sub-NNs

in Table 5.3. ENN1 consists of sub-NN1 and sub-NN2. ENN2 consists of sub-NN1,

sub-NN2, and sub-NN3. ENN3 consists of sub-NN1, sub-NN2, and sub-NN4. Note

that most sub-NNs are poorly trained with an error of 18 - 30, among them, we can

find that No.3 sub-NN is the best subNN. By including the best sub-NN in ENN, the

ENN achieves the very low error. And we can also conclude that the corresponding

ENN outperforms any sub-NNs and thus provides a good prediction with relative

small errors. Unlike the sub-NNs, the errors of ENN1 are not substantially changed

by the initial model parameters. The robustness of the training performance to the

combination of sub-NNs arises mainly from the fact that in linear regression, well-

trained sub-NNs are weighted more significantly than sub- NNs with relatively poor

performance.

Because the numbers of training data and validation data are limited, one or two

poor prediction may cause a significant increase on MAPE, causing a “poor-trained”

subNN. Thus, the ENNs can efficiently avoid the local minimum in the MSE that is

more likely to occur in single NN.

We plotted the dielectric constant of 7 solvents with different LJ parameters in Fig.

5.2. We focus on the solvent diameter and the LJ parameter because the Onsager

equation (the standard mean-field theory for the dielectric constant) cannot predict

changes in the dielectric constant with respect to the two [103]. Here, the total
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Figure 5.2: Dielectric constants predicted by No.1 ENN for different pure
solvents with ϵLJ=0.01 (squares), 0.05 (circles), and 0.10 (triangles). The
solid lines indicate the prediction from the ENN, solid symbols indicate
the statistical averages calculated from the MD simulations. Solvents are:
(a)water, (b)MeOH, (c)EtOH, (d)acetone, (e) 1-Propanole, (f)DMSO, and
(g)DMF. Reproduced from Ref. [2] with permission from the Materials Re-
search Society.

number of training data are limited to 76 samples for all the solvents, and Fig. 5.2

includes 65 samples.

In Fig. 5.2, we compared the MD simulation result with No.4 ENN prediction. Note

that we use 1 sample for each diameter (1 sample for each point in Fig. 5.2) to train

each sub-NN, however, the sample is obtained from 10,000 MD simulations, so that

the training sample is the “true” statistical average compared to one MD simulation
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sample. Overall, the ENN reproduces the trends in εr for almost all of the solvents,

and is sufficient to guide the selection of model parameters to obtain a particular value

of εr (e.g., for future MD simulations). Here, we note that conventional NNs consisting

of only ReLU and sigmoid functions are unlikely to capture the observed variations in

the dielectric constants, such as the nonmonotonicity between the solvent diameter

σ and the LJ parameter ϵLJ . To address this nonmonotonicity, we find that the

inclusion of a sine function sandwiched by ReLUs considerably improves the training

efficiency, and a Gaussian function sandwiched by ReLUs further improves the results.

As discussed before, however, the combination of these sub-NNs is the essence of

the substantial improvement and robustness of the model accuracy, mitigating the

local minimum issue and providing the model robustness against poorly trained sub-

NNs. Concomitantly, we test BN in one or more layers and find that BN makes the

prediction results worse. The reason for this could be due to the insufficient amount

of training data. Nevertheless, in the case of NaCl solutions in the next chapter, we

show that BN averages the results and improves the performance of ENNs when the

training data are statistically noisy.

5.3.1 Reorganizing ENN with 3 subNNs

Since No.3 subNN is the best subNN, and No.1, No.2 and No.4 are almost the same

level training, we ensemble these three “poor-trained” sub-NNs together to make a
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prediction. Results are shown in Fig. 5.3. Comparing with Fig. 5.2, we can see

that three bad-trained sub-NNs can also make a good prediction, even though the

predictions in Fig. 5.3 are not as good as the predictions made in Fig. 5.2. For

EtOH, sub-NN3 captures its features, so that ENN including sub-NN3 can predict

the EtOH’s dielectric constant better.

Figure 5.3: Dielectric constants predicted by No.3 ENN consisting of three
poorly trained sub-NNs (sub-NN1, sub-NN2, and sub-NN4). The solid lines
indicate the prediction from the ENN, solid symbols indicate the statisti-
cal averages calculated from the MD simulations. Solvents are: (a)water,
(b)MeOH, (c)EtOH, (d)acetone, (e)1-Propanole, (f)DMSO, and (g)DMF.
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5.3.2 Effect of combination method

Fig. 5.4 represents the results of a hybrid of three sub-NNs via a combination neural

network (com-NN). Outputs from the three sub-NNs become inputs for the com-NN

with one hidden layer consisting of 16 neurons. All activation functions in the hidden

layer are ReLUs. The change in the number of the hidden layer did not provide any

notable changes in the results.

Figure 5.4: Dielectric constants of salt-free solvents predicted by ENN1
consisting of four sub-NNs combined through a neural network. Reproduced
from Ref. [2] with permission from the Materials Research Society.
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5.4 Conclusion

We constructed ENNs for the calculation of the dielectric constants of polar sol-

vents. For the training data, we used Stockmayer fluid MD simulation methods that

accounted for the dielectric responses of dipolar salt-free solvents. We require sine

function in the present NN architecture because our ENNs with activation layers con-

taining sine and Gaussian functions captured the trends of the dielectric constants

of seven polar solvents. Sinusoidal activation functions often yield large numbers of

shallow local minima [104], but our ENNs appeared to mitigate this issue.

Therefore, ENN is more robust to be employed than a single NN as a surrogate

model for the MD simulations. Especially, periodic functions like sine functions can

be applied in a very deep neural network with limited amount of training data to

learn better. And ENNs with well-designed sub-NNs can still provide a steady and

reasonable prediction without affected by one or several poor-trained sub-NNs. In

addition, the results of the com-NN resemble those derived from the linear regression

method. Thus, we suggest that the complexity of the hybridization for the output

layer is unlikely to substantially improve the prediction.
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Chapter 6

Ensemble Neural Network for

Predicting Dielectric Constants of

Salt-doped Solvents

6.1 Introduction

In this chapter, an ENN is developed to predict the dielectric constant of salt-doped

solvents trained by MD simulation data points. This chapter is organized as follows.

Firstly, the data collection and the design of sub-NNs of ENNs will be described in

section 6.2. Secondly, results and discussions in terms of the impact of bagging, BN,
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and the combination method on predictions are presented in section 6.3. Thirdly, a

brief conclusion is shown in section 6.4.

6.2 Computational methods

6.2.1 Data

Input Output
cs ϵLJ εr

0.17931 0.01 28.69
0.53793 0.01 20.55
1.0759 0.10 50.00
1.6138 0.10 12.14
2.6896 0.50 34.28
3.9448 0.50 16.34

Table 6.1
Examples for input variables and output for salt-doped solvents.

We collected every single dielectric constants from 2100 MD simulations of salt-doped

solvents with different salt concentrations. We employ the dipole moment 1.73 D

throughout all these simulations because this dipole moment provides the dielectric

constant 80.2 consistent with the experimental value. Two properties are inputs for

training, they are Lennard-Jones (LJ) parameter ϵLJ for the ion-ion interaction and

salt concentration cs. The output is dielectric constants εr of salt-doped solvents.

For inputs, the range of salt concentration is 0.0-5.0 M, the range of LJ parameter
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is 0.01-0.50 kcal/mol where the upper limit is larger than salt-free solvents. For

outputs, the range of dielectric constants of them are 7.5-362.8. Examples of the

inputs and calculated outputs, and their corresponding type of pure solvents are

shown in Table 6.1. For training data, we randomly select 40 configurations from 2100

configurations collected from simulation runs performed with given salt concentration

and LJ parameter.

Thus, the total numbers of the simulation data and the training data amount to

2100×(the number of data points) and 40×(the number of data points), respectively.

Here, we represent the latter data set as a poor training data set. To examine the ro-

bustness and efficacy of the ENN method, we intentionally enhanced statistical noise

in the training data by the MD simulations, in which we terminated equilibration runs

for all salt concentrations at 1 ns and began sampling. The dielectric constants calcu-

lated from the average of the total dipole moment over 2100 configurations serves as

ground truth to examine the efficacy of our ensemble networks with BN and bagging,

particularly when we substantially reduce the number of training data.

6.2.2 Design of sub-NN

For prediction of NaCl-containing water, we construct the ENN consisting of 5 iden-

tical sub-NNs with the topology of 2-50-50-50-50-1 (2 inputs, 4 hidden layers with
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Figure 6.1: The sub-NN structure for NaCl-containing water. The in-
puts are the salt concentration cs and the LJ parameter ϵLJ for the ion-ion
interaction.

50 neurons per hidden layer, and 1 output) (see Fig. 6.1). Since the training data

are more random, the number of neurons is increased to pass more information to

the next layer, so that we constructed a shallower sub-NN with more neurons in

hidden layers. The sequence of the activation function is (BN-ReLU)-Gauss-(BN-

ReLU)-(BN-ReLU)-ReLU. To avoid the local minimum of training and accelerate the

training speed, we use BN before each ReLU activation function. We assume that 40

samples are a reasonable number to maintain the Gaussian assumption in the BN. We

also evaluate the model with the MSE loss function and perform the early stopping

of training with a patience setting of 30 epochs. From the calculation of the MSE,

we also empirically found that the sub-NN with 50 neurons per hidden layer serves
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as a good architecture.

Hyper-parameter Value or function
Number of subNN in an ENN 5

Number of hidden layers in a subNN 4
Number of activated neurons each hidden layer 50

Activation function in 1st hidden layer Batch Normalization + ReLU
Activation function in 2nd hidden layer Gaussian
Activation function in 3rd hidden layer Batch Normalization + ReLU
Activation function in 4th hidden layer Batch Normalization + ReLU
Activation function in output layer ReLU

Patience of early-stopping [15; 20; 25]
Batch size [20; 30]

Train-test split ratio 4:1
Optimization algorithm Adam optimizer

Learning rate in optimization algorithm 0.001
Cost or loss function each subNN use Mean square error (Eq. 2.7)

Accuracy metrics Mean absolute percentage error

Table 6.2
Hyper-parameters and their values or functions in the ENN model.

To increase the diversity of ENN, We combine sub-NNs with different patience and

batch sizes. Details are as follows: sub-NN1 (patience = 15, batch size = 20), sub-NN2

(patience = 20, batch size=30), sub-NN3 (patience=20, batch size=20), sub-NN4

(patience=25, batch size=30), and sub-NN5 (patience=25, batch size=20). Hyper-

parameters are summarized in Table 6.2.
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#ENNs (ID
number)

Training Error Validation Error

1 1015.5 (85.2%) 1164.9 (102.3%)
2 1040.4 (85.4%) 1078.0 (104.0%)
3 1039.8 (85.1%) 1088.7 (102.6%)

Table 6.3
ENN training errors and validation errors. The topology of sub-NNs are all

2-50-50-50-50-1. The MAPE is shown in parentheses.

Sub-NN
(No.1 ENN)

Training Error Validation Error

1 1054.9 (90.1%) 1215.5 (92.7%)
2 1210.1 (103.1%) 1418.3 (107.3%)
3 1347.8 (97.2%) 1565.5 (99.86%)
4 1206.4 (96.0%) 1384.9 (87.9%)
5 1890.1 (101.6%) 2170.8 (105.5%)

Table 6.4
Sub-NNs training error and validation error of sub-NNs of No.1 ENN (bold
one in Table 6.3). The topology of sub-NNs are all 2-50-50-50-50-1. The

MAPE is shown in parentheses.

6.3 Results and discussion

Table 6.3 and Table 6.4 show the training and validation errors of our ENNs and

sub-NNs, respectively. We also provide MAPE in parentheses. Note that unlike the

case of the salt-free solvents, the training data consists of the values before taking

the average and thus includes large statistical fluctuations. Accordingly, the training

and validation errors appear to be large (Table 6.3 and Table 6.4).

The performance of ENNs consisting of five of these sub-NNs is shown in Table 5.3,

we listed some other ENN examples, among them all sub-NNs’ details of the bold row
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(ENN1) are shown in Table 6.4. Here, ENN1 outperforms any of its sub-NNs. Unlike

relatively large variations in the errors of sub-NNs in Table 6.4, the errors of ENNs

are more stable. Thus, the training of ENNs is more robust than that of sub-NNs.

Because we use batch normalization in sub-NN, none of sub-NN is trapped in local

minimum, so that each sub-NN are well-trained, which helps ENN to predict. Batch

normalization increases the chance of jumping out of local minimum, and increasing

the number sub-NNs does not significantly improve the ENN prediction.

The reason we do not use BN in previous chapter for salt-free solvents training is the

limited number of training data. We calculate standard deviation while using BN,

but the training data are statistical average values, so that the training data are not

noisy. In that case, the BN cannot significantly enhance the prediction, and it also

cannot significantly accelerate the speed of training. However, utilizing BN on 40

samples with noisy information can significantly accelerate the speed of training and

obtain a good prediction by smoothing the noise.

Fig. 6.2 shows the ground truth and the prediction of ENN1, in which the salt

concentration cs and the LJ parameters ϵLJ for the ion-ion and ion-water interactions

are changed. Note that training data at given salt concentration and LJ parameter

(i.e., a data point) consists of only 40 configurations, although we need more training

data to produce the ground truth. Thus, the training data may be disparate from

the ground truth, yet the prediction compares favorably with the ground truth, i.e.,
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the dielectric constant calculated from the average of the total dipole moment over

2100 configurations at each data point.

Figure 6.2: Comparison between the ground truth and the ENN predic-
tion for the dielectric constant. Only BN was used. The solid lines indicate
the predictions from the ENN for different salt concentrations cs and dif-
ferent LJ parameters between the ions. “LJ” designates ϵLJ ion, ion, where

ϵ
(ion,ion)
LJ =ϵ

(+,+)
LJ =ϵ

(+,−)
LJ =ϵ

(−,−)
LJ =ϵ

(water,+)
LJ =ϵ

(water,−)
LJ . The symbols indicate

the ground truth (the average over 2100 configurations at each data point).
Reproduced from Ref. [2] with permission from the Materials Research So-
ciety.

6.3.1 Effect of batch normalization on prediction

Table 6.5 shows the difference in the dielectric constant between the prediction derived

from the poor training data sets and the average calculated from the poor training

data sets or the ground truth. Note that the predictions with BN are worse than

those without BN when compared with the average calculated from the poor training
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ϵLJ kcal/mol 40 configurations 2100 configurations

0.01
No BN 78.2 (15.7%) 65.1 (13.0%)
BN 99.0 (16.4%) 25.4 (8.8%)

0.10
No BN 88.7 (15.1%) 130.1 (18.8%)
BN 186.1 (18.6%) 37.0 (9.8%)

0.50
No BN 28.4 (11.1%) 79.8 (19.9%)
BN 155.9 (20.9%) 54.5 (10.9%)

Table 6.5
MSEs (MAPEs in parentheses) of the prediction of the ENNs for

NaCl-containing water with and without BN, relative to the average of the
dielectric constant calculated from the poor training data sets and the
ground truth. These results were calculated from Fig. 6.2 and Fig. 6.3.

data sets. In contrast, the performance of BN becomes better when compared with

the ground truth, as highlighted in bold. This difference indicates that BN drives the

prediction derived from the poor training data sets to approach the ground truth.

Thus, BN qualitatively improves on training, tracking down the optimal values of the

dielectric constant out of the noisy datasets.

To illustrate the role of BN, we show Fig. 6.3, in which the dielectric constants

calculated from individual configurations widely spread around the mean values. Note

that the averages calculated from the poor training data sets may not be close to the

ground truth, thus they can be highly inaccurate values. Nevertheless, when we use

BN, the predictions derived from the poor training data sets do not trace the false

averages and instead tend to approach the ground truth. On the other hand, when we

do not use BN, the predictions tend to approach the false averages. For example, this

fact would be straightforwardly noticed at the data point for ϵLJ = 0.1 kcal/mol and

cs = 3.407 M and at nearly all data points for ϵLJ = 0.5 kcal/mol. Thus, BN-combined
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ENNs appear to be robust against the significant reduction in the number of training

data, and therefore, would considerably speed up the parameter adjustment and the

exploration of new features in noisy data over vast parameter space.

6.3.2 Effect of bootstrap aggregating (bagging) on prediction

Finally, we also employed bagging, a treatment for decreasing variance to avoid over-

fitting. By randomly grouping training data, we obtained 5 different training datasets

and then fed these training data into 5 different sub-NNs. Our results showed that

bagging can outperform BN, but a hybrid of BN and bagging makes the prediction less

accurate, as highlighted by bold figures in Table 6.6. In Fig. 6.4, the results obtained

from the bagging-only method can more accurately capture the nonmonotonicity in

low salt concentrations with all LJ parameters and the nonmonotonicity in high con-

centrations in the case of ϵJ = 0.5 kcal/mol. Nevertheless, the optimization of the

bagging size (the number of training data in bags selected from original training data

to create diverse samples) is crucial to outperforming BN. However, this optimiza-

tion may not always be guaranteed or may require further computational expense

because the training performance depends on various hyperparameters. Therefore,

the addition of BN between the activation layers would be relatively straightforward

to substantially improve the ENN performance.
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Figure 6.3: Efficacy of BN with (a) ϵLJ = 0.01 kcal/mol, (b) ϵLJ = 0.10
kcal/mol, and (c) ϵLJ = 0.50 kcal/mol. The solid and dashed lines indi-
cate the ENN predictions with BN and without BN, respectively. The grey
symbols indicate the average over the 40 configurations at each data point,
whereas the standard deviations are represented by error bars. The ENNs
with BN improves on training. Reproduced from Ref. [2] with permission
from the Materials Research Society.
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ϵLJ kcal/mol Bagging 40 configurations Ground truth

0.01
No BN 78.4 (14.7%) 31.1 (10.2%)
BN 132.5 (18.1%) 73.2 (14.1%)

0.10
No BN 171.8 (18.3%) 88.6 (16.4%)
BN 245.3 (20.9%) 97.0 (13.6%)

0.50
No BN 123.8 (16.1%) 17.2 (6.9%)
BN 285.7 (28.7%) 169.1 (20.5%)

Table 6.6
MSEs (MAPEs) of the prediction of the ENNs for NaCl-containing water
with and without BN under bagging, relative to the dielectric constant
calculated from the poor training data sets and the ground truth. These

results were calculated from Fig. 6.4.

6.3.3 Effect of combination method

Fig. 6.5 represents the results of a hybrid of five sub-NNs via a combination neural

network (com-NN). Outputs from the five sub-NNs become inputs for the com-NN

with three hidden layers consisting of 16 neurons each. All activation functions in

the hidden layer are ReLUs. In this case, the com-NN worsens when the number

of the neurons in the hidden layer increases to 30 or decreases to 10. Decreases in

the number of the hidden layer did not provide any notable changes in the results.

The results of the com-NN resemble those derived from the linear regression method.

Thus, we suggest that the complexity of the hybridization for the output layer is

unlikely to substantially improve the prediction.
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Figure 6.4: BN + bagging (solid line) and bagging only (dashed line)
with (a) ϵLJ = 0.01 kcal/mol, (b) ϵLJ = 0.10 kcal/mol, and (c) ϵLJ = 0.50
kcal/mol. The symbols indicate the ground truth. The performance of the
bagging-only method is tantamount to or somewhat exceeds that of BN-
only method. Reproduced from Ref. [2] with permission from the Materials
Research Society.

6.4 Conclusion

For salt-doped liquids, we trained ENNs with poor training data sets that are in-

sufficient to produce the ground truth. Moreover, the training data widely spreads

around the mean values at each data point. Moreover, the training data were widely

distributed around the mean values for each MD parameter set. In this case, with
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Figure 6.5: Dielectric constants of salt-doped solvents predicted by ENN1
consisting of sub-NNs combined through a neural network. Reproduced from
Ref. [2] with permission from the Materials Research Society.

highly noisy data, BN or bagging enabled the predictions of ENNs to compare favor-

ably with the full-simulation averages when employed independently. In other words,

BN and bagging make the prediction of ENNs trace the optimal values derived from

noisy datasets. Therefore, the ENNs are trained using 50-times less data than is used

to calculate the dielectric constants from MD simulations. The predictions of ENNs

trained on this small amount of data and using BN or bagging are in relatively good

agreement with the full MD results.

Thus, we suggest that ENNs with BN or bagging substantially reduce the number of

simulation runs and thus save computational effort. For example, the ENNs trained

with a small number of possible input parameters can be used to choose values of

the model parameters that best match target experiments, without having to run
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more MD simulations. The present methods would also be useful to simultaneously

determine a number of model parameters for multicomponent systems.
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Chapter 7

Unsupervised Learning on

Cellulose Solubility in Ionic Liquids

7.1 Introduction

Unsupervised learning is discovering input-output relationships for unlabeled data.

Several clustering and classification methods were compared including K-means clus-

tering and hierarchical clustering on cellulose-containing systems. Talik et al. use

machine learning tools for an empirical data analysis of the mutual interactions of

water with cellulose polymers [105]. Random Forest fromMachine learning algorithms
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is used to predict cellulose-rich material properties with ILs pretreatment [106]. Aro-

matic anions, such as salicylate anion, are known to improve the solubility of various

types of cellulose [107, 108]. Nevertheless, interesting ILs have not been analyzed.

In this chapter, we will classify solubility phases in ion-containing liquids based 18

experimental data points. As we know, data from experiments are often significantly

limited, because experiments are time-consuming and costly. Hence, extracting useful

features from limited experimental data may be challenging. Since the data points

are unlabeled for classification, unsupervised learning will provide an automatic and

easy way to achieve this task.

7.2 Computational methods

I will combine supervised learning and unsupervised learning on this problem. The

ENN discussed in the previous section is a supervised-learning algorithm. Then I’ll

apply the unsupervised learning, K-means clustering and agglomerative clustering for

classifying the boundaries for phases.
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Figure 7.1: Ternary diagram of cellulose solubility based on experimental
data. The color bar indicates cellulose solubility (wt%).

7.2.1 Data

Data is collected from our collaborator who works on solubility of cellulose in ILs

mixtures. The ILs mixtures include one type of cation EMIM+ and three types of

anions (Cl−, MeP−, OAc−). The features of data include molar ratio of three types

of anions ([Cl], [MeP], [OAc]), and the cellulose solubility (wt%). Fig. 7.1 shows a

ternary diagram for cellulose solubility changing with molar ratio of ions based on

experimental data. The values of ion molar ratio are between 0.0 - 1.0. The range
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of solubility is 0 - 20 % according to the training data. The number of experimental

data is 18. And all experimental data reside on the three axises. And the color within

the triangle in Fig. 7.1 is interpolated, which is linearly estimated.

7.2.2 Design of ENN

Figure 7.2: DNN structure for predicting cellulose solubility. This DNN
has five input neurons and one output neuron. The DNN1, DNN2 have the
identical structure with three input neurons ([Cl], [MeP] and [OAc]).

First, the deep neural network (DNN) I designed with three inputs ([Cl], [MeP], and

[OAc]), 3 hidden layers with 30 neurons each layer, and one output. The activation

function for all layers are ReLU. Through training, I found that the prediction of single

DNN is not stable, the red region (low [Cl]) in Fig. 7.1 cannot be well predicted.
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Figure 7.3: ENN structure for predicting cellulose solubility.This NN has
five input neurons and one output neuron. The DNN1, DNN2 have the
identical structure with ENN but only three input neurons ([Cl], [MeP] and
[OAc]).

Then, I decide to construct an ENN to predict the phase behaviors of cellulose and

ILs mixtures. It has been proven in previous chapters that an ENN outperforms a

single NN. The structure of the ENN is shown in Fig. 7.2. The architecture of my

ENN is 5-30-30-30-1, all activation function are ReLU. Three of inputs are molar ratio

of three types of anions, the other two of inputs come from predictions of DNNs (Fig.

7.1). Both DNNs has identical structures. The architectures of ENN is 5-30-30-30-1.

In addition, I also set up patience = 10 for early stopping to prevent over-fitting.
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Hyper-parameter Value or function
Number of input neurons in DNN 3
Number of input neurons in ENN 5

Number of hidden layers 3
Number of activated neurons each hidden layer 30

Activation function in hidden layers ReLU
Activation function in output layer ReLU

Patience of early-stopping 10
Batch size 6

Optimization algorithm Adam optimizer
Learning rate in optimization algorithm 0.001
Cost or loss function each subNN use Mean square error (Eq. 2.7)

Accuracy metrics Mean absolute percentage error

Table 7.1
Hyper-parameters and their values or functions in the ENN model.

7.3 Results and discussions

Fig. 7.4 shows the prediction from ENN, we can see that the distribution of the

cellulose solubility is very close to that of experimental data shown in Fig. 7.1.

The color bar represents the cellulose solubility (wt%), red color indicates higher

solubility, which happens in area around ([Cl], [MeP], [OAc]) = (0.0, 0.2, 0.8). Blue

color indicates lower solubility, which happens in area around ([Cl], [MeP], [OAc]) =

(0.3, 0.7, 0.0). Based on this ternary diagram, we believe that the ion [OAc] favors

the cellulose solubility to some degree.

Fig. 7.5 shows results predicted by K-means clustering. K = 2 in Fig. 7.5(a), which

means two clusters. One is the high solubility area, the other is the low solubility area.
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Figure 7.4: Ternary diagram of cellulose solubility based on ENN predic-
tions. The color bar indicates cellulose solubility (wt%).

And in Fig. 7.5, K=5 that means five clusters. We can see five phases with different

cellulose solubility in ILs. From orange at the left to purple at the right bottom

corner, phases gradually change from the solubility-unfavored to solubility-favored.

In Fig. 7.6(b), results predicted by agglomerative clustering is quite similar with

K-means clustering. The colors only represent clusters, because the color is arranged

randomly. Two colors indicates two phases, even though the color is reversed between

Fig. 7.5(a) and Fig. 7.6(b). I fixed the squared distance between clusters’ centroids as
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Figure 7.5: The boundary for solubility predicted by K-means clustering,
where (a) K = 2 and (b) K = 5.

Figure 7.6: (a) A dendrogram for agglomerative clustering. The red line is
where to cluster, the number of interceptions indicates the number of clus-
ters. In the diagram, 2 interception represents 2 clusters. (b) The boundary
for solubility predicted by agglomerative clustering, which has 2 clusters.

the red line trims in Fig. 7.6(a), where the distance2 = 100, the result turns out to be 2

classes. Within 10% solubility difference, samples are merged into one phase. If I move

the red line toward to bottom in the dendrogram, where the distance2 = 25 which
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Figure 7.7: (a) A dendrogram for agglomerative clustering. The red line is
where to cluster, the number of interceptions indicates the number of clus-
ters. In the diagram, 5 interception represents 5 clusters. (b) The boundary
for solubility predicted by agglomerative clustering, which has 5 clusters.

means the distance between clusters’ centroids become closer. Within 5% solubility

difference, samples are merged into one phase. In Fig. 7.7(a), we can visually see

more interceptions between the red line the tree-like hierarchy dendrogram, that is,

the result turns out to have more clusters (Fig. 7.7(b)). And more clusters may imply

more phases that not explored yet in this ternary solubility diagram.

7.4 Conclusion

In conclusion, by combining the supervised learning and the unsupervised learning,

my machine learning algorithms are able to learn the ternary diagram and how many

phases it is supposed to have from limited experimental data. Based on the ENN
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predictions, I can utilize clustering algorithms to decide the number of phases and

to clarify their boundaries. We found strong evidence of a solubility-favored phase

(left part of 2 clusters) and a solubility-unfavored phase (right part of 2 clusters), and

know the relation between the ion concentration and the cellulose solubility. Cellulose

solubility increases as [Cl] decreases, [OAc] promote solubility, and [MeP] does not

have significant impact on solubility.

In addition, the number of phases has to be specified when using K-means clustering,

while the number of phases is not required for agglomerative clustering. And the

phases predicted by K-means clustering may be different on different runs because of

the random initialization of points. However, agglomerative clustering always predict

the same phases.
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Chapter 8

Summary and Future Perspectives

8.1 Summary

We have developed the DLA model proposed by Niemeyer [26] and later developed

for zinc dendrite growth by Chen and Jorné [24]. The present study was also mo-

tivated by our recent experimental observation regarding remarkably uniform, un-

conventional lithium dendrite growth in Fig. 3.11. Despite the simple algorithm

of the growth patterns, the original toy model accounts for the fractal dimensions

observed for dielectric breakdown and zinc dendrite. In other words, the model con-

tains an adjustable parameter that controls the growth probability, but it can be

fixed when the fractal dimension is determined in experiments. The present study
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relies on the strong applicability of the model to the pattern formation due to the

electrostatic fields. Thus, we applied the algorithm of the pattern formation to metal

dendrite growth in salt-containing liquids between the conducting plates. The main

conclusion in our study is summarized as follows: (1) The addition of salt ions can

significantly flatten the dendrite shape and inhibit the dendrite growth, primarily due

to electrostatic shielding near the pointy regions of the dendrite. (2) It is critical to

weaken ion pairing and clustering in electrolytes to inhibit the dendrite growth. Our

results show that small salt ions appear to have difficulty achieving this requirement

and lead to the undesirable non-monotonic behavior of the dendrite growth as a func-

tion of the salt concentration. However, large salts such as ILs can be dissociated

near the operating temperatures to a great degree to solve this issue. (3) The size

asymmetry that occurs when either the cation or the anion is large (4 Å or larger)

affects the dendrite’s shape and growth, primarily because ion pairing and clustering

are significantly inhibited. In this case, the inhibition of the dendrite growth is not

significantly affected by changes in the dielectric constant and applied voltage. The

overall conclusion from (1) to (3) remains unchanged when 0≤ η ≤2, and appears to

hold true in general. Thus, we suggest that ILs be a prospective material to inhibit

metal dendrite formation. Among others, the present simulations suggest that ILs

with large size asymmetry between the cation and anion serve as a good electrolyte

in lithium-ion batteries, as consistent with our experimental observation for lithium
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deposits under 1M LiPF6 in EC/DMC + 10% [BMIM][TFSI] in experiments. Con-

comitantly, the 2D growth appears to be more constrained than the 3D growth. In

the case of a 3D model, the dendrite growth in the new lateral direction may eas-

ily occur when the ions inhibit the longitudinal growth of the dendrite toward the

cathode. Still, this lateral growth appears to facilitate the uniformity of the dendrite

surface. Thus, we anticipate that our overall conclusion remains unchanged even in

a 3D model. Finally, we considered a surrogate model that accounts for the MC

simulations using ENNs. In our study, we found that a single NN can be consistent

with the MC simulation results, but ENNs with sub-NNs can be more robust against

the choice of the activation functions and can easily be trained from various initial

weights. This is mainly because the ENNs can be trained well when poor sub-NNs

are combined with good sub-NNs. Importantly, unlike 200 samples for the average

of the MC simulation results for each volume fraction (i.e., each data point), we used

only 20 samples for training. Thus, our surrogate model serves as an alternative to

the computationally demanding MC simulations.

Subsequently, we constructed ENNs in machine-learning methods for the calculation

of the dielectric constant of salt-free and salt-doped liquids. For training data, we

used SF MD simulation methods that account for the dielectric response of dipolar

fluids. We showed that our ENNs with the activation layers containing sine and gaus-

sian functions capture the trends of the dielectric constant of seven salt-free solvents.

For salt-doped liquids, we trained ENNs with poor training data sets that are not
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enough to produce the ground truth. Moreover, the training data widely spreads

around the mean values at each data point. In this case with highly noisy data, BN

or bagging substantially enables the prediction of ENNs to compare favorably with

the ground truth when employed independently. In other words, BN and bagging

make the prediction of ENNs trace the optimal values out of noisy datasets. Thus,

we suggest that ENNs with BN or bagging substantially reduce the number of sim-

ulation measurements and thus save computational expense. The present method

would also be useful to simultaneously determine a number of model parameters for

a multicomponent system.

Then we combined unsupervised learning with supervised ensemble learning for pre-

dicting the ternary behaviors of cellulose and ILs mixtures. With hierarchical clus-

tering, the number of phases is not necessary to be specified, and the prediction by

hierarchical clustering is more stable than K-means clustering because it does not

rely on random initialization.

8.2 Future perspectives

There are challenges for machine learning algorithms but their usefulness, accuracy

and their ability to take in the battery characteristics as inputs cannot be ignored.

This work can be extended to other battery chemistry. Only four inputs are used
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in this study, more battery characteristics can be incorporated as inputs for better

lithium dendrite suppression. And surrogate model architecture designs will give

an idea to MC simulations, MD simulations, and phase-field models that have large

number of tunable parameters, to accelerate simulation process with higher accu-

racy. Artificial neural networks provide prediction values. Additionally, we can use

Gaussian process or Bayesian neural networks to provide predictions with uncer-

tainty. However, implementing a Bayesian neural network requires more statistical

and mathematical expertise.

Before the machine learning era, research on properties of soft-matter systems has

employed many of the well-established physical and mathematical ideas, even though

now machine learning is also developed based on mathematical algorithms. The

fitting of model parameters sometimes has been seen more inconvenient than the

crucial model generation process in research, and the machine learning helps reduce

the workload of parameter fitting.

The research on physical, thermodynamic, and electrochemical properties of soft-

matter systems could not only be based on numerical data, but also could be

graph/image data. Deploying machine learning on these graph/image data could

be efficient. Artificial neural networks are only one application of machine learning

techniques, unsupervised learning, reinforcement learning, and other machine learn-

ing techniques can also provide new paths for soft-matter physics research. However,
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physical knowledge is the key to solving the issues. Meanwhile, the black-box nature

of machine learning techniques will be greatly diminished along with the addition of

physical knowledge.
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