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4.3 The left plot shows the 3D matter power spectrum (top), the transfer
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4.4 We test the NN(ZA) and NECOLA models, which are trained on sim-
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lines represent the 16th (and 84th) percentile of the predictions. As
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also works for models with massive neutrinos and w ̸= −1. The curve

with the largest difference in the neutrino cross-correlation coefficient

corresponds to a model with Mν = 0.4 eV. Figure taken from [6] under

a CC BY license. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
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6.1 We show two images of the gas distribution of two distinct IllustrisTNG

simulations. The one on the top displays the results for a simulation

with high supernova feedback strength, while the one on the bottom is

from a simulation with low supernova feedback. The color represents

gas temperature, while its brightness corresponds to the gas density.

Finally, we apply an extinction based on gas metallicity. As can be
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Abstract

Multi-billion dollar cosmological surveys are being conducted almost every decade

in today’s era of precision cosmology. These surveys scan vast swaths of sky and

generate tons of observational data. In order to extract meaningful information from

this data and test these observations against theory, rigorous theoretical predictions

are needed. In the absence of an analytic method, cosmological simulations become

the most widely used tool to provide these predictions in order to test against the

observations. They can be used to study covariance matrices, generate mock galaxy

catalogs and provide ready-to-use snapshots for detailed redshift analyses. But cos-

mological simulations of matter formation in the universe are one of most compu-

tationally intensive tasks. Faster but equally reliable tools that could approximate

these simulations are thus desperately needed. Recently, deep learning has come up

as an innovative and novel tool that can generate numerous cosmological simulations

orders of magnitude faster than the traditional simulations. Deep learning models of

structure formation and evolution in the universe are unimaginably fast and retain

most of the accuracy of conventional simulations, thus providing a fast, reliable, ef-

ficient and accurate method to study the evolution of the universe and reducing the

computational burden of current simulation methods.

In this dissertation, we will focus on deep learning-based models that could mimic the

xxxix



process of structure formation in the universe. In particular, we focus on developing

deep convolutional neural network models that could learn the present 3D distribution

of the cold dark matter and generate 2D dark matter cosmic mass maps. We employ

summary statistics most commonly employed in cosmology and computer vision to

quantify the robustness of our models.

This dissertation is organized as follows: Chapters 1, 2 and 3 discuss the basics and

detailed overview of cosmology, cosmological simulations and deep learning. Chapter

4 presents a convolutional neural network model that maps 3D dark matter distribu-

tion from fast and mildly accurate COLA simulations to slow and accurate N-body

simulations. In chapter 5, we develop a novel neural network generative model that

could create statistically independent and robust mass maps of cold dark matter dis-

tribution in the universe. Chapter 6 discusses the CAMELS project, a suite of 4, 233

high resolution N-body and hydrodynamics cosmological simulations that combines

astrophysics and cosmology. Finally, we discuss a novel and efficient algorithm that

could reconstruct the muon trajectories in water Cerenkov detectors in chapter 7.
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Chapter 1

An Overview of Cosmology

Our universe evolved over billions of years from uniform fluctuations in matter den-

sity to its current state. This present form of our universe has characteristic features

that include cosmic filaments, voids and galaxy clusters [10]. Studies of the large-

scale structure of the universe provide us with useful information about the nature

of gravity, dark matter and dark energy, and the composition of the universe. This

information is then used to revise the formulation of various theories of structure for-

mation and evolution which results in a reformed understanding of the finer workings

of the universe. In this chapter, we define the ΛCDM model of cosmology and explore

the most important observables used to extract information about our universe.
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1.1 Basic Concepts

1.1.1 Scale factor

The relative expansion of the universe is parameterized by a dimensionless quantity

called the cosmic scale factor. The scale factor is denoted by a and embodies the

evolution of the universe and describes the scaling up of all physical distances in the

cosmos including the separation of galaxies, and the wavelengths of photons. The

distance between the coordinates of two points is called the comoving distance (r),

and the distance that roughly corresponds to where a distant object would be at a

specific moment of cosmological time is called the proper or physical distance

(x(t)). When the universe expands, the comoving distance remains the same but the

proper distance increases, and is given by

x(t) = a(t) r, (1.1)

A depiction of scale factor is shown in figure 1.1
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Figure 1.1: The comoving distance (r) between the points on a hypothetical
grid remains the same as the universe expands. The physical distance (x)
though, is proportional to the scale factor at that time (a(t)) times the
comoving distance (see equation 1.1). Note that t1 < t2 < t3. As the scale
factor gets larger over time, so does the physical distance. By convention,
the scale factor is assumed to be 1 at the present time i.e., a(t0) = 1.

1.1.2 Redshift

The expansion of the universe causes the conformal stretching of photons emitted

by the distant objects at earlier times. This means that the wavelength of the light

emitted, λemitted, from a source at an earlier time (tearlier) has been stretched to

λobserved at the present time (tpresent) due to this expansion. From this, we can define

the redshift of a source as:
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z =
λobserved − λemitted

λemitted

. (1.2)

This implies that the wavelength that we observe today is larger than the wavelength

emitted originally by a factor of a(tpresent)/a(tearlier). This relates redshift to the scale

factor as:

1 + z =
a(tpresent)

a(tearlier)
. (1.3)

As a(tpresent) = 1 by convention, the above equation reduces to

a(tearlier) =
1

1 + z
. (1.4)

This means that the light we observe from a source at redshift z was emitted when

the universe was smaller than today by a factor of 1 + z. The scale factor at that

time is given by equation 1.4.
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1.1.3 Hubble’s Law

The Hubble parameter measures how rapidly the scale factor changes and is defined

as :

H(t) =
1

a

da

dt
=

ȧ

a
. (1.5)

The value of the Hubble parameter evaluated at the current time is called the Hubble

constant and is denoted by H0. At low redshifts, the Hubble constant relates the

recessional velocities of galaxies and their distances from the observer through the

Hubble’s Law [11] as:

v = H0 d. (1.6)

It is conventional to parameterize H0 in distance-based measurements as h = H0/100.

The units of H0 are km/(sec Mpc).

1.1.4 Homogeneity and Isotropy

We know that the matter in the universe is clustered in the form of stars group-

ing together to form galaxies on smaller scales and galaxies grouping together to

form galaxy structures on larger scales. Despite the observed fact that the universe
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is clumpy and contains clustered matter at all scales, cosmologists very frequently

use a basic assumption in their analyses of cosmological observables, known as the

Cosmological Principle. It states that:

The universe is both homogeneous and isotropic on the largest scales.

This principle results from the understanding that the forces in nature are expected

to act uniformly throughout the universe and therefore should not produce any ob-

servable irregularities in the large-scale structure of the distribution of matter in the

universe, which itself evolved from a gaussian distribution of primordial matter density

field. The absence of a preferred location in the universe is termed as homogeneity. It

means that at any given point in time, the universe will look the same at every single

point in space. Isotropy, on the other hand, means that there is no preferred direction

in the universe. That is, from our current location, no matter which direction we look

into, the universe will always appear to be the same. Both homogeneity and isotropy

may appear to be separate concepts but are well interconnected in reality.

1.1.5 Matter Power Spectrum

The matter density in the universe at any time t can be expressed in terms of the

mean density and a local fluctuation as follows:
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ρ(x⃗) = ρ̄(1 + δ(x⃗)), (1.7)

where δ(x⃗) is the overdensity at location x⃗. Expanding δ(x⃗) into Fourier modes, we

obtain

δ(x⃗) ≡ ρ(x⃗) − ρ̄

ρ̄
=

∫
δ(k⃗)e−i k⃗.x⃗d3k, (1.8)

where k is the wavenumber given by k = 2π/λ. We define the two-point correla-

tion function, ξ(x), as the excess probability of finding two galaxies separated by a

distance x compared to a random distribution of galaxies. It can be thought of as a

clumpiness factor - the higher the value for some distance scale, the more clumpy the

universe is at that distance scale. The power spectrum is most commonly defined as

the fourier transform of the two-point correlation function:

ξ(r) =

∫
d3k

(2π)3
P (k)ei.⃗k.(x−x′) (1.9)

The power spectrum is thus given by averaging over fourier space as:

< δ(k⃗) δ(k⃗′) > = 2π3 P (k) δ(k⃗ − k⃗′), (1.10)
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which gives,

P (k) = |δ2(k⃗)|. (1.11)

The matter power spectrum is the square of amplitude of the fourier modes of the

matter density perturbation. The ΛCDM power spectrum asymptotes to P (k) ∼

k1 for small k, and P (k) ∼ k−3 for large k. Figure 1.2 shows the linear matter

power spectrum for PLANCK1 [1] cosmology obtained using CAMB [12] at different

redshifts.

According to the theory of inflation [13–16], the universe underwent a rapid expansion

during the very early times which stretched the quantum mechanical fluctuations to

macroscopic scales. Since quantum mechanical fluctuations are random, the primor-

dial density perturbations can be well described by a gaussian random field. The

primordial power spectrum is parameterized as a power law Pprimordial(k) ∝ kn, with

n = 1 corresponding to scale-invariant spectrum proposed by Harrison and Zeldovich

[17, 18].

1The Planck satellite is the European Space Agency’s first mission to study the origins of the
universe. It surveyed the microwave sky measuring the cosmic microwave background (CMB), the
afterglow of the Big Bang, and the emission from gas and dust in our own Milky Way galaxy.
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Figure 1.2: The linear power spectrum at various redshifts in the history
of the universe. The cosmological parameters from PLANCK [1] are used.

1.1.6 Bispectrum

Huge cosmological information is extracted from various large-scale measurements of

the universe through the use of two-point correlation function, or it’s fourier trans-

form, the power spectrum. The power spectrum fully characterizes a gaussian random

field with zero mean and hence is a very important tool for studying the density field

of the universe. However, the multi-scale and nonlinear nature of some physical

processes like gravitational dynamics and galaxy biasing induces signatures of non-

gaussianity in the density field of the universe. This non-gaussianity manifests itself
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in the large-scale observations in the form of elongated filaments, compact galaxy

clusters, and very prominent underdense regions called cosmic voids. These features

of the cosmic web can not be fully characterized by the 2-point statistics, and higher

order statistics are needed to study them.

Similar to equation 1.10, at the three-point level,

< δ(k⃗1)δ(k⃗2)δ(k⃗3) > ≡ δD(k⃗123) B(k⃗1, k⃗2, k⃗3), (1.12)

where δ(k⃗) is the overdensity in the fourier space and k⃗123 ≡ k⃗1 + k⃗2 + k⃗3.

In the matter density field of the universe, the bispectrum captures the amount of

matter in various triangle configurations, and hence is primarily used to study elon-

gated galaxy filaments.

1.2 The ΛCDM Model

The Lambda-CDM (ΛCDM) model, also known as the Concordance model or Stan-

dard model of cosmology, is the current theoretical framework that describes our

universe with just six parameters. It is also called the Concordance model or the
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Standard model of Cosmology. Current high-precision cosmological observations in-

cluding the Cosmic Microwave Background (CMB) [19], the observations of distant

supernovae [20], and the large-scale structure of galaxies [21] have stunningly con-

firmed this model. This model states that rooted in the event of Big Bang, the

universe evolved from an almost uniform distribution of matter and energy to its

present day state. In other words, the early universe was almost entirely smooth and

had only small fluctuations/ripples in matter density (manifested in the Cosmic Mi-

crowave Background (CMB) [19] observations). These initially minuscule overdense

fluctuations in the density attracted more and more mass as the universe expanded

[22] and gave birth to the present day cosmic web of matter. The ΛCDM model

includes a cosmological constant (Lambda or Λ) and cold dark matter (CDM) as the

most prominent constituents. The cosmological constant makes up most of the part

of the universe (around ∼ 68%)[1] and provides an explanation for the universe’s ob-

served accelerating expansion. The Dark Matter (DM) makes about 85% of the entire

matter in the universe which is about 27% of the total content of the universe, and

can neither reflect, nor absorb nor transmit light. The composition of dark matter

is presently unknown and there are numerous hypotheses of what it might consist

of, including but not limited to Massive Compact Halo Objects (MACHOs), Weakly

Interacting Massive Particles (WIMPs), and Axions. Various experiments like Ax-

ion Dark Matter Experiment (ADME) [23, 24], Korea Invisible Mass Search (KIMS)
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[25, 26], and DarkSide [27, 28] are presently underway to detect dark matter signa-

tures from the outer universe. Dark matter provides an explanation for the dynamics

of galaxies and galaxy clusters that appear to have more gravitational attraction than

expected from the models of galaxy formation, dynamics and gravitational lensing.

The ordinary matter, also known as the baryonic matter, consists of all the matter we

can directly see or observe, like the galaxies, stars, interstellar dust and gas, planets

and every kind of matter we can think of and make up only about 5% of the universe.

A pie chart of the composition of the universe is shown in Figure 1.3.

1.3 Cosmological Parameters

ΛCDM relates many observed phenomena to six apparently arbitrary parameters

determinable from observation. These are as follows:

† The Hubble parameter (H): It is the normalized rate of expansion and is

given as H = ȧ/a, where a is the cosmic scale factor (see 1.1.3).

† Total Matter density parameter (Ωm): It describes the actual density of all

the matter (dark and ordinary) in the universe relative to the critical density2,

and is given as Ωm = ρ/ρcritical. Here, ρcritical is defined as ρcritical = 3H2/8πG

2The critical density is the matter density of a spatially flat universe. It is the density at which
the universe is at balance, and neither expands due to the global expansion nor contracts due to
gravity. It’s current value is given by 9× 10−27 kilograms per cubic meter.
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Figure 1.3: The composition of our universe. Image credit: European
Space Agency under CC BY-SA 3.0 IGO license.

where H is the Hubble’s parameter and G is the universal gravitational constant.

† Baryonic matter density parameter (Ωb): It describes the actual density

of the ordinary (baryonic) matter relative to the critical density, and is given

as Ωb = ρb/ρcritical. Note that the total energy density of the universe is given

by Ωm + ΩΛ = 1, where Ωm = Ωcdm + Ωb + Ων . Ωcdm and Ων are the cold dark

matter density parameter and the neutrino density parameter respectively.
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† Scalar spectral index (ns): The scale-dependence of the Cosmic Microwave

Background power spectrum constrains the slope of the primordial scalar power

spectrum, which is conventionally parameterized by the power-law index ns,

called the scalar spectral index. An ns = 1 corresponds to the scale-invariant

spectrum.

† Amplitude of density fluctuations (σ8): It measures the amplitude of den-

sity fluctuations (the linear power spectrum) at the scale of 8 h−1Mpc.

† Age of the universe (t0): The present day age of the universe has been found

to be 13.8 billion years and is another significant cosmological parameter.

The six parameters of the ΛCDM model provides an astonishingly accurate descrip-

tion of the universe. The values of these cosmological parameters from PLANCK [9]

observations are listed in Table 1.1.

Table 1.1
A list of cosmological parameters in the standard model of the cosmology

and their experimentally calculated values from Planck TT, TE,
EE+lowE+lensing [9].

Parameter Description Value
Ωm Total matter density 0.3158
Ωb Baryonic matter density 0.0494
ns Linear spectral index 0.96605
σ8 Variance in matter fluctuations at 8 Mpc/h 0.8120
t0 Age of the universe 13.7971
H0 Hubble Constant 67.32
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1.4 Cosmological Observables

1.4.1 Cosmic Microwave Background (CMB)

The cosmic microwave background (CMB) is the leftover radiation from the Big Bang.

The universe was filled with hot plasma of particles (mostly neutrons, electrons and

protons) and radiation (photons) when it was born around 13.8 billion years ago.

The photons in this plasma continuously interacted with the free electrons as the

rate of expansion of the universe was smaller than the rate of scattering of photons

with electrons. Therefore, the photons could not travel long distances and the early

universe was opaque. As the universe continued expanding, it cooled down and

around 380,000 years ago, it’s temperature dropped down to around 3000 K. At this

temperature, the electrons combined with protons to form neutral hydrogen atoms.

The photons could now travel unhindered into the expanded volume of the universe

and the universe became transparent. Due to the further expansion of the universe

for billions of years, the wavelengths of these photons now grew (redshifted) to the

microwave region of electromagnetic spectrum (roughly 1 mm) and the universe is

currently cooled to around 2.725 K. These photons that last scattered 380, 000 years

ago fill the universe today and create a background glow that can be detected by

far-infrared and radio telescopes. This is called the Cosmic Microwave Background
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(CMB) radiation, and is shown in Figure 1.4.

Figure 1.4: The anisotropies in the Cosmic Microwave Background
radiation. The figure shows the variations/fluctuations in the temperature
field of the universe that correspond to the first light of the universe when
it was 380, 000 years old. The orange parts correspond to the regions of
higher temperatures while the blue parts represent the colder regions of the
universe. Image credit: European Space Agency under CC BY-SA 3.0 IGO
license.

The CMB is often characterized by an angular power spectrum of its anisotropies

(CMB anisotropies) showing the temperature variation for coefficients of a multipole

expansion of the temperature over the celestial sphere. From the angular power

spectrum, scales in the early universe can be determined, and values such as the six

parameters of the ΛCDM model can be checked for consistency with the CMB.
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1.4.2 The Large-Scale Structure

The Large Scale Structure (LSS) of the universe refers to the intricate pattern of

galaxies and other cosmological matter on very large scales, typically much larger

than the scales of individual galaxies or groups of galaxies. The matter is pulled

together on smaller scales to form bigger structures (like gravity pulling together gas

to form stars) and the same process happens at larger scales (gravity pulling together

stars to form galaxies) and a hierarchy of scale is thus developed. This leads to the

formation of vast, correlated structures of matter that are billions of light years in

length. The distinct features of this large-scale structure are galaxy clusters, filaments

and cosmic voids. These together form a spiderweb-like pattern spanning thousands

of millions of light years and thus are collectively called the ‘Cosmic Web’. Galaxy

clusters are the clusters of galaxies that consist of hundreds or thousands of galaxies,

hot plasma and large amounts of invisible dark matter. They cluster together in

a hierarchical fashion to make what are called the superclusters or the clusters of

galaxy clusters. Filaments are long sheets, walls or needle-like structures made from

thousands to millions of galaxies. They are typically hundreds of millions of light

years in length and around 20 million light years thick. They are one of the largest

structures found in the universe and give the appearance of honey-comb structures in

the cosmic web. Cosmic voids, on the other hand, are the vast underdense regions of

the universe with negligible structure and thus almost no matter density. The average
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density of the cosmic voids is around one-tenth the average density of the universe and

a typical void can stretch anywhere from 20 million to hundreds of millions of light

years. The abundance of voids can be used to test the non-gaussianity of primordial

perturbations, which constrains the models of inflation [29] and they also provide

stringent tests for galaxy formation models because of an almost lack of galaxies [30]

in them. Figure 1.5 shows the large scale structure formed by the galaxies out to

around 2 billion light years. The point where the two slices intersect at the center of

the figure is the observational point i.e., Earth.

Over time, the universe keeps getting more and more clustered as gravity keeps pulling

more and more matter together. The LSS observations tell us about the strength of

gravity in the universe. Different galaxies at different distances from us correspond

to different times in the history of our universe as the light from those galaxies takes

time to reach us and the speed of light remains constant in space. This means that

the further we look out into space, the further we are actually looking back in time.

Figure 1.6 shows a simulation of cold dark matter in an expanding universe under the

effect of gravity alone. The observable for LSS is the galaxy power spectrum, Pgal(k)

which is theoretically modelled as:

Pgal(k) = b2Pm(k) + Ps. (1.13)
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Figure 1.5: A map of the galaxies discovered by the Sloan Digital Sky Sur-
vey (SDSS). Each red point in the map is an individual galaxy. The network
of galaxies forming thread-like filaments and thick points of intersection i.e.,
clusters are evident. The black, empty regions inside the web denote the
underdense regions, the cosmic voids. A larger redshift corresponds to the
galaxies farther from the Earth (center of the figure) and thus much earlier
in time. Image credit: M. Blanton and the Sloan Digital Sky Survey.

Here, Pm(k), b and Ps are the matter power spectrum at scale k, the galaxy bias

(scale-independent) and the shot noise contributions respectively. The bias reflects
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the fact that galaxies act as biased tracers of the underlying dark matter distribution,

and Ps arises from the discrete point-like nature of the galaxies as tracers of the dark

matter [31].

Figure 1.6: A simulation showing the evolution of the universe over time.
In earlier times (left), the matter density was almost uniform and then grav-
ity started pulling matter together to form larger patterns. Clustered regions
became more clustered and sparse regions became much sparse. Note that
the amount of clustering in the present day (far right) is much larger than the
one during earlier times (far left). The same is true for sparsity. A web-like
structure is thus evident. Also note that as the fabric of the universe itself ex-
pands over time, the box shown in the simulation also gets bigger over time.
But as the simulation uses comoving coordinates and periodic boundary con-
ditions, the box appears to be the same size. Image credit: National Cen-
ter for Supercomputer Applications by Andrey Kravtsov (The University of
Chicago) and Anatoly Klypin (New Mexico State University).Visualizations
by Andrey Kravtsov.https://astro.washington.edu/n-body-shop
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Chapter 2

Cosmological Simulations

Current cosmological surveys of large-scale structure take numerous observations each

second. In order to extract meaningful information from these surveys, we need

rigorous theoretical predictions. However, galaxy structure formation and evolution

is highly complicated due to the multi-physics and multi-scale nature of the study.

The only way to deal with these complexities is to make use of computer simulation

methods. Computer simulations of cosmological evolution are a very indispensable

tool in the hands of astrophysicists that help us track the evolution of billions of

particles, be it dark matter, galaxies, gas particles or neutrinos, over the course of

billions of years. As dark matter acts as the skeleton on which the galaxies form, it

also behaves as the backbone of these simulations and is therefore a key component

of these simulations.
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Based on type of particles, cosmological simulations are usually divided into dark

matter-only simulations, such as N-body simulations, and dark matter plus baryons

simulations, such as hydrodynamical simulations [32]. Figure 2.1 shows a snapshot

of an N-body dark matter-only simulation of our universe. A snapshot refers to the

particular distribution of the positions, velocities or accelerations of all the particles

in the entire volume of the simulation during a specific instant of time in the history

of the evolution of the universe.

Figure 2.1: A snapshot from the BlueTides simulations. The figure
above shows a zoomed-in view of the most massive dark matter halo (1013

MSun) at a redshift of z = 6.5. The length of the simulation region is
400c Mpch−1. Image credit: The BlueTides Project[2].
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2.1 N-body Simulations

The N-body simulations are a suite of cosmological simulations in which the Cold Dark

Matter (CDM) particles are evolved under the effect of gravity alone. CDM refers to

that component of Dark Matter (DM) which is known to neither reflect, nor transmit

nor absorb any light and has excessively slow thermal velocity, hence termed cold.

Dark matter builds the backbone for the formation of galaxies, which are expected

to form at the centers of DM overdensities, called halos. An N-body simulation

evolves a large number of massive CDM particles interacting with each other through

Newtonian gravity only and since our universe began with matter distributed almost

uniformly, the simulation starts with particles only slightly perturbed from a uniform

grid and nearly at rest. Most cosmological simulations employ Newtonian rather than

relativistic gravity, which provides a good approximation since linear structure growth

is identical in the matter-dominated regime in the two theories, and non-linear large-

scale structure induces velocities far below the speed of light. See [33] for a technical

review of N-body simulations.

Typically, we take N3 (where N usually ranges from 100 to 2000) particles in a

comoving cosmological volume of size roughly between 100 Mpc to 10, 000 Mpc. The

initial conditions (ICs) of the universe which refer to the initial three-dimensional

positions of all of these particles, are typically sampled from a gaussian random field
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having a specific power spectrum. Power spectrum is a quantity that denotes the

amount of structure at different scales in the universe. It is of utmost importance in

cosmology as it is predicted directly in the cosmological models incorporating inflation

and dark matter (see sections 1.1.5 and 4.4.1.2). After that, invoking the laws of

Newtonian gravity and including the properties of dark energy and various other

physical effects, these particles are displaced from their initial condition positions.

During this process of evolution which is quantified in timesteps or redshifts, the

initial density field (which is gaussian) becomes increasingly non-gaussian and leads to

the formation of complex networks of matter, giving rise to prominent structures such

as halos, filaments, sheets and voids [34, 35]. Dark matter only N-body simulations

numerically solve the Poisson’s equation which is a very computationally intensive

task in itself. This is because the forces on each one of these billions of simulating

particles due to the rest need to be recalculated at each timestep of the evolution. This

needs to be done in short time intervals to retain the precision of the approximations

and requires that the updates to these particle positions be frequent. Currently, the

speed of these simulations is a large bottleneck for cosmological surveys like DESI,

EUCLID or LSST.
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2.2 QUIJOTE Simulations

Quijote [3] is a suite of 44, 100 simulations that are specifically created to extract

the cosmological information embedded in small, nonlinear modes enabling tighter

constraints of the cosmological parameters. These simulations are primarily designed

to easily quantify the information content of different statistics into the fully nonlinear

regime. All Quijote simulations are N-body simulations only, run using TreePM

code GADGET-III, which is an improved version of GADGET-II [36]. The initial

conditions of all the simulations are generated at z = 127. The input matter power

spectrum and transfer functions are obtained by rescaling the z = 0 matter power

spectrum and transfer functions from CAMB 1 [37]. From the input matter power

spectrum and transfer functions, displacements and peculiar velocities employing the

Zel’dovich approximation [38] (for cosmologies with massive neutrinos) or second-

order perturbation theory (for cosmologies with massless neutrinos) are computed.

The displacements and peculiar velocities are then assigned to particles that are

initially laid on a regular grid.

All simulations have a cosmological volume of 1 (h−1Gpc)3. The majority of the

simulations follow the evolution of 5123 CDM particles (plus 5123 for simulations

1CAMB is a cosmology code for calculating cosmological observables, including CMB, gravitational
lensing, source count and 21cm angular power spectra, matter power spectra, transfer functions and
background evolution. The code is in Python, with numerical code implemented in fast modern
Fortran.
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with massive neutrinos), which is considered to be the fiducial configuration and

serves as the benchmark against with simulations run with variations in parameters

are compared. The snapshots are generated and saved at redshifts 0, 0.5, 1, 2, and

3. A snapshot from the Quijote simulations is shown in Figure 2.2.

Figure 2.2: A two-dimensional snapshot from the QUIJOTE suite gen-
erated using the N-body code GADGET-III. Image credit: The Quijote
Simulations[3].
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2.3 COLA: Fast LPT-based Simulations

One of the fast approximations to the N-body codes is using Lagrangian Perturbation

Theory (LPT) methods to solve the equations of structure formation and evolution.

All N-body simulation codes perform numerous timesteps in order to obtain a much

reasonable approximation to structure formation both at large and small scales. How-

ever, Lagrangian Perturbation Theory (LPT) or its modifications very well describe

the large scales (∼ 100Mpch−1 at z = 0).

In N-body codes, the time integration for the large scales solves for the linear growth

factor. Therefore, by using only a few timesteps leads to a bad estimate of the linear

growth factor which miscalculates the power at large scales. But the exact value of the

linear growth factor is well-known (see for example, [22]). This fact is made use of in

various approximate methods of N-body simulations that use LPT and the large and

small scales in N-body codes are decoupled. The large scales are evolved using second-

order LPT and the small scales using a full-blown N-body code. This decoupling is

enabled by transforming the system to a frame of reference that is comoving with

the LPT observers and recasting the equations accordingly. This allows to take large

N-body time-steps, thus saving a lot of computations, while at the same time keeping

the accuracy on the largest scales.
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COLA or COmoving Lagrangian Acceleration method [39] is an example of such an

LPT-based approximation to the traditional N-body method for solving for the large

scale structure (LSS) in a frame that is comoving with observers following trajectories

calculated in LPT. COLA can generate large ensembles of accurate mock halo catalogs

very cheaply, that are used to study weak lensing and galaxy clustering. These

catalogs are essential for performing detailed error analysis for ongoing and future

surveys of LSS. A snapshot of the density field of the Universe generated with the

COLA code is shown in Figure 2.3.

Figure 2.3: A cosmic web of the Universe. It represents the overdensity
field of the cold dark matter particles in a region of side 1 Gpch−1. CDM
particles were placed on a grid and the system was evolved from a redshift
of z = 9 up to a redshift of z = 0 using the COLA method with the standard
cosmological model parameters given in Table 1.1.

28



This thesis makes use of both the QUIJOTE and COLA simulations. The two promi-

nent codes to implement COLA are L-PICOLA [40] and MG-PICOLA [41]. MG-

PICOLA contains support for simulations with massive neutrinos and has been used

in the works described in this thesis.
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Chapter 3

Deep Learning

Deep learning (DL) is a subset of machine learning that uses Artificial Neural Net-

works (ANNs) to carry out various supervised, unsupervised and reinforcement learn-

ing algorithms. It essentially uses a neural network (NN) with three or more layers

and these NNs attempt to mimic the behavior of the human brain, although far from

matching its ability, and thus “learn” from large amounts of data. Additional hidden

layers help in optimizing and refining the accuracy of the network.

Deep learning is extensively used in numerous Artificial Intelligence (AI) applications

and services and lie behind various day-to-day products and services such as voice as-

sistants, language translators, recommender systems, fraud financial detectors, spam

checkers, self-driving cars, etc. Deep learning enables us to perform various analytical
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and physical tasks and improving automation all without any human intervention.

3.1 Supervised and Unsupervised Learning

Supervised learning is a type of machine learning technique that uses labeled datasets.

These datasets are designed to train or “supervise” the models. The models use these

labeled inputs and outputs and in an attempt to minimize the error between the actual

and predicted labels, learn the representations of these datasets over time.

Supervised learning can be broadly classified into two types of problems:

1. Classification: It is the process of classifying the data into different classes

or categories, such as classifying images into dogs or cats or classifying the

handwritten digits into their actual numeric digit forms, classifying an email

as spam or non-spam, etc. They can be further divided into various types

such as binary classification, multi-class classification, etc. Some examples of

classification algorithms are linear classifiers, support vector machines (SVMs),

decision trees, random forests, and convolutional neural network (CNN)-based

classifiers.

2. Regression: This is another type of supervised learning that uses an algorithm

to understand the relationship between dependent and independent variables

32



in a data. Rather than classifying the data into various classes, a regression

model uses the existing data to train and predict numerical values based on dif-

ferent data points. They are used, for example, to predict the future prices of

stocks, to predict the house market rates, or changes in health trends in a demo-

graphic, etc. Prominent regression algorithms are linear regression, polynomial

regression, and lasso regression.

3.2 Neural Networks

Deep learning neural nets, also called the artificial neural nets, use a combination of

weights, biases and inputs to try to simulate the learning process of the human brain.

These elements work together to accurately recognize, classify, and describe objects

within the data. These networks contain millions of neurons or nodes, each learning

an aspect of data, like a curve, an edge or some depth, for example, in case of image

data.

These networks contain a number of nodes that are connected to each other and

form a layer. Numerous layers are connected in an hierarchical fashion, such that

each layer builds upon the previous layer to refine and optimize the output of the

task that can be a categorization or a prediction. The output of each layer acts as

the input of the next layer. The flow of computations through the network is called
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forward propagation. The input and output layers of a neural network are ‘visible’

layers while the layers in between are hidden from the user and are thus called the

hidden layers. The input layer is the first layer where the deep learning model ingests

the data for processing and the output layer is the final layer that makes a prediction

or a classification. A typical neural network with three hidden layers is shown in

Figure 3.1.

Figure 3.1: A typical neural network. The first layer (orange) is the input
layer that represents the data, followed by three hidden layers (yellow) and
finally the output layer (green). Note how each neuron or node in a layer
is connected to all the nodes of the next layer. This ensures that all the
information extracted by one layer is passed on to all possible nodes in the
next layer which combine it to form higher-level representations.

Another important process in deep learning algorithms is backpropagation. The mode

or network uses optimization algorithms like Gradient Descent (GD) to calculate

the error in predictions and compute the loss function. It then propagates this loss

34



function back through the network to adjust the weights and biases of each node. This

is called the training process of the network. The forward pass of data and backward

pass of loss function allow the network to effectively learn the representations in the

data by continuing to reduce the error in predictions. This makes the algorithm more

accurate over time.

Although Figure 3.1 shows a simple neural network, practical deep learning networks

are usually highly complex and deep1 in architecture as the real world data can be

very big and complicated. The more the number of hidden layers, the deeper the

network is. Figure 3.2 shows various deep neural nets for the ImageNet [42–45] data.

The topmost network in the figure is resnet, a very deep feed-forward neural network

with hundreds of layers and various skip connections to jump over some layers.

3.3 Loss Functions

A loss function (or cost function, loosely) is a metric that we evaluate to quantify

how happy or unhappy we are with our model. It compares the predictions of our

model with the actual ground truth and helps in updating the weights and biases of

the model.

Loss function is a measure of the accuracy of the neural network with respect to a

1Depth refers to the number of hidden layers used in the network.
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Figure 3.2: Example network architectures for ImageNet data. Bottom:
the VGG-19 model [4] (19.6 billion FLOPs) as a reference. Middle: a plain
network with 34 parameter layers (3.6 billion FLOPs). Top: a residual
network with 34 parameter layers (3.6 billion FLOPs). The dotted shortcuts
increase dimensions. Image credit: He, K. et al (Proceedings of the IEEE
conference on computer vision and pattern recognition 2016).

given training sample and expected output. It provides the performance of a neural

network as a whole. In deep learning, the goal is to minimize the cost function. For

that, we use the concept of gradient descent.

The loss function in a neural network quantifies the difference between the expected

outcome and the outcome produced by the machine learning model. From the loss

function, we can derive the gradients which are used to update the weights. The

average over all losses constitutes the cost. A loss function is denoted by L.

“The cost function reduces all the various good and bad aspects of a possibly complex

system down to a single number, a scalar value, which allows candidate solutions to

be ranked and compared” (Page 155, [46]).
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3.3.1 Mean Squared Error (MSE) Loss

Mean squared error (MSE) is the most commonly used loss function and is specifically

used in regression. The loss is the mean overseen data of the squared differences

between true and predicted values, or writing it as a formula.

L(y, ŷ) =
1

N

N∑
i=0

(y − ŷ)2 (3.1)

where ŷ is the predicted value. MSE is sensitive towards outliers and given several

examples with the same input feature values, the optimal prediction will be their

mean target value. This should be compared with Mean Absolute Error, where the

optimal prediction is the median. MSE is thus good to use if we believe that the

target data, conditioned on the input, is normally distributed around a mean value,

and when it’s important to penalize outliers extra much. MSE is also good when we

want large errors to be significantly (quadratically) more penalized than small ones.

3.3.2 Binary Crossentropy (BCE) or Log Loss

Binary crossentropy is a loss function that is used in binary classification tasks. These

are tasks that answer a question with only two choices (yes or no, A or B, 0 or 1,
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left or right). Several independent such questions can be answered at the same time,

as in multi-label classification or in binary image segmentation. Formally, this loss is

equal to the average of the categorical crossentropy loss on many two-category tasks.

The binary crossentropy loss function calculates the loss of an example by computing

the following average:

Loss = − 1

output

output size∑
i=1

yi . log(ŷi) + (1 − ŷi) . log(1 − ŷi) (3.2)

where ŷi is the ith scalar value in the model output. yi is the corresponding target

value, and output size is the number of scalar values in the model output. This is

equivalent to the average result of the categorical crossentropy loss function applied

to many independent classification problems, each problem having only two possible

classes with target probabilities yi and 1 − yi.

3.4 Semantic Segmentation

Semantic Image Segmentation refers to the task in computer vision in which we label

specific regions of an image in accordance with what is being shown in it. The aim

of semantic segmentation is to read an image and label each pixel of that image into
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a corresponding class of what is being represented by that pixel. As the predictions

are for every pixel of the image, it is also called dense prediction or a pixel-wise

classification task. An example of semantic segmentation is shown in Figure 3.3.

Figure 3.3: Various regions of the image (left) are segmented to corre-
sponding classes (right) by a semantic image segmentor; the bicycles are in
green, the people in light pink, and the background in black. Image credit:
The PASCAL VOC Dataset.

It is to be noted that in semantic segmentation, we do not separate the instances

of the same class; we only care about denoting a class or category of each pixel. In

other words, if our image consists of two non-connected islands in an ocean, semantic

segmentation will classify the ocean as one class and the two islands as another class.

There exists a different class of models, known as instance segmentation models,

which do distinguish between separate objects of the same class. So for the same

image, instance segmentation will return three classes; one for the ocean and one

each for the two islands. The difference between semantic and instance segmentation
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is shown in Figure 3.4.

Figure 3.4: Difference between semantic segmentation (left) and instance
segmentation (right). The left figure shows only two classes: the background
in black and the five people in the foreground in light pink. The figure on the
right shows seven classes: one for background (black), one each for the five
persons (red, green, dull yellow, blue and purple) and one for some hands
on some shoulders (silver). Image credit: The PASCAL VOC Dataset.

There are various applications of segmentation models including but not limited to:

1. Autonomous vehicles: Cars need to be equipped with the required perception

to understand, estimate, and learn from their surroundings so that self-driving

cars can safely integrate into our existing roads. An example of this is shown

in Figure 3.5.

2. Medical Image Diagnostics: Analysis of various scans like MRI, CT, X-ray

and Ultrasound of brain, heart, lungs and other organs performed by radiologists

can be augmented by machines which helps in reducing the time required to

run concerned diagnostic tests.

3. Geographic Information Systems: In Geographic Information Sciences
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(GIS), semantic segmentation can be used for land cover classification or for

extracting roads or buildings from satellite imagery. An example of this is

shown in Figure 3.6.

Figure 3.5: A screenshot of a scene in traffic (left) and it’s real time seg-
mented (right). Image credit: The SYNTHIA-Rand-CVPR16 dataset[5].

Figure 3.6: A satellite image on the left after feeding through a trained im-
age segmentation model segments various regions of the image where pixels
match closely with each other. Image credit: The ArcGIS Developers.

41

http://synthia-dataset.net/wp-content/uploads/2016/06/gros_cvpr16-1.pdf
https://developers.arcgis.com/python/guide/how-unet-works/


3.5 Convolutional Neural Networks

A Convolutional Neural Network (ConvNet or CNN hereafter) is a deep learning

algorithm which takes an input image, assigns importance (learnable weights and

biases) to various aspects or objects in the image and is able to differentiate one from

the other. The architecture of a ConvNet is analogous to that of the connectivity

pattern of neurons in the human brain and was inspired by the organization of the

visual cortex. This is depicted in Figure 3.7.

Individual neurons respond to stimuli only in a restricted region of the visual field

known as the Receptive Field. A collection of such fields overlap to cover the entire

visual area. A ConvNet is able to successfully capture the spatial and temporal

dependencies in an image through the application of relevant filters.

ConvNets are being used almost everywhere with some of their applications being in

but not limited to Image Classification, Image Retrieval, Image Detection, Image Seg-

mentation, Face Recognition, Video Classification, Pose Recognition, Game playing,

Image Captioning and Stylistic Artworks. They are called convolutional networks

because their basic operation is related to the convolution of two signals which is the

element-wise product and sum of a filter and the signal.
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Figure 3.7: Our eye observes a particular image and the neural networks
interpret the information from the field of vision in a hierarchical manner.
LGN, V1, V2, V3, etc. can be thought of as the activation maps after
the output of previous layer passes through a hidden layer and selectively
activating some neurons. Each information from the previous layer is passed
on to the next layer which combines them together to form higher-order
representations. This series of information extraction carries on until the
information in the raw image is fully extracted and the image is finally
interpreted by the brain after passing through the last layer. Image credit:
Jonas Kubilius under CC BY 4.0 license.

3.5.1 Filters

A lot of the details of what makes up an image is actually contained in its edges

or outlines. It’s one of the reasons why we can easily distinguish objects in cartoon

sketches. ConvNets also extract features from images by detecting edges, which

represent image features. They use filters which are sets of learnable weights that
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detect spatial patterns such as edges or curves in an image by detecting the changes

in intensity values of the image. A filter can be thought of as storing a single template

or pattern. An example of the application of a filter on an image is shown in figure

3.8.

Figure 3.8: The application of the Sobel filter along the x-axis in an
image. This filter will detect edges in the image.

While the first few layers of a CNN are comprised of edge detection filters (low level

feature extraction), deeper layers often learn to focus on specific shapes and objects

in the image. Although the filters are hand-engineered in primitive methods, with

enough training, ConvNets have the ability to learn these filters by itself.

3.5.2 Activation functions: Rectified linear unit (ReLU)

The input data (x) in a neural network is passed through a linearity to obtain wx+b,

where w are the weights and b are the biases. After passing through this linearity, an
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activation function (ϕ) is responsible for transforming this summed weighted input

from the node into the activation of the node or output for that input as:

output = ϕ(wx + b) (3.3)

The rectified linear activation function or ReLU for short is a piecewise linear function

that will output the input directly if it is positive, otherwise, it will output zero. It

is given as:

ReLU(x) = max(0, x) (3.4)

Figure 3.9 shows the ReLU function.

ReLU has become the most prominent activation function for many types of neural

networks as the models implementing ReLU are easier to train and less computation-

ally intensive compared to other activations. Various modifications of ReLU include

Leaky ReLU, Parametric ReLU, and Gaussian-error linear unit (GELU).
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Figure 3.9: The ReLU activation function.

3.5.3 Pooling

The output feature maps (the outputs of neural network layers) are sensitive to the

location of the features in the input. This sensitivity limits the ability of the network

to generalize well over the entire training data. One approach to address this issue
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is to down sample the feature maps. The down sampled feature maps then become

more robust to the changes in the position of the feature in the image. This is known

as local translation invariance.

Pooling layers are one of the downsampling techniques that summarize the presence

of features in the patches of the feature maps. Max pooling and average pooling are

two common pooling techniques that summarize the average presence of a feature

and the most activated presence of a feature respectively.

Max Pooling is a pooling operation that calculates the maximum value for patches of

a feature map, and uses it to create a downsampled (pooled) feature map. It is usually

used after a convolutional layer. Figure 3.10 shows the max pooling operation.

Figure 3.10: The Max Pooling operation. The most activated features
(here pixel values) in each 2 × 2 region of the original matrix on the are
extracted.
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3.5.4 U-Net

U-Net [47] is a CNN-based architecture that was designed by Ronneberger, Fischer

and Brox for fast and precise segmentation of images in the field of biomedical sciences.

Semantic segmentation is also known as pixel-wise classification, where we classify

each pixel of an image as belonging to a particular class. In the field of semantic

segmentation, it is still one of the most popular end-to-end architectures and while

performing extremely well, has surpassed many other models in various challenges.

Figure 3.11 shows the architecture of a U-Net.

It consists of a contracting path and an expansive path. The contracting path fol-

lows the typical architecture of a convolutional network. It consists of the repeated

application of two 3× 3 convolutions, each followed by a rectified linear unit (ReLU)

and a 2 × 2 max pooling operation with stride 2 for downsampling. At each down-

sampling step we double the number of feature channels. Every step in the expansive

path consists of an upsampling of the feature map followed by a 2 × 2 convolution

(“up-convolution”) that halves the number of feature channels, a concatenation with

the correspondingly cropped feature map from the contracting path, and two 3 × 3

convolutions, each followed by a ReLU. The cropping is necessary due to the loss of

border pixels in every convolution. At the final layer a 1 × 1 convolution is used to

map each 64-component feature vector to the desired number of classes. In total, the
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Figure 3.11: The U-Net architecture. The left path is encoding or
downsampling which forgets the information about “where” in the figure
and tries to extract the information of “wha” in it. After the bottleneck at
the bottom, the decoding or upsampling starts. This again reconstructs the
“where” of the information in the image and loses the “what” of it. The
output is the segmented map of the input image tile. Image credit: The
original U-Net paper.

network has 23 convolutional layers.

3.6 Generative Adversarial Networks (GANs)

A Generative Adversarial Network, or GAN [48] for short, is a type of deep learning

approach to generative modeling using neural networks like convolutional neural nets
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(CNNs) or densely connected (linear) layers.

Generative modeling refers to the unsupervised learning technique in machine learning

that involves automatically discovering and learning the regularities or patterns in

data, or understanding the underlying statistical distribution of the data in such a

way that the generative model can generate or output new examples that can no

longer be distinguished from the real samples and seem to come from the original

dataset.

GANs work in a game-theoretic approach, unlike a conventional neural network. It

consists of two networks which are adversaries to each other; one of them is a Genera-

tor (G) and the other is the Discriminator (D). The whole GAN network tries to learn

generating new fake data from a training distribution through this two-player game

between adversaries, who are in a constant battle throughout the training process.

Since an adversarial learning method is adopted, we need not care about approximat-

ing intractable density functions.

The goal of the generator (G) is to generate real-looking data (or images in case of

computer vision tasks) while being trained on the generator network. The discrimina-

tor (D) on the other hand, tries to classify examples as either real (from the domain

of the training data) or fake (generated by the generator). Both G and D are battling

constantly wherein G tries to fool D by generating images that look more and more

real and D tries not to be fooled and classify the images generated by G as fakes as
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much as possible. To generate very real-looking images, a really good G is needed

otherwise it will never be able to fool D and convergence will never be achieved.

Similarly, if D is not good, it will classify both the fake and the real images as real,

even if the fake images do not make any sense. This means that the model is never

actually trained and hence never produces the desired output. The algorithm works

as follows:

† The input is a random noise vector (z) that can be Gaussian distributed (usually

drawn from a unit-normal distribution N(0, 1)), uniform distributed or can be

some other structured input.

† The generator G, takes the latent vector z and parameterized by a neural net-

work, gives the output G(z).

† The discriminator D, also parameterized by a neural network, inputs real sam-

ples x and fake samples G(z) i.e., the samples generated by G, and outputs

scores D(x) and D(G(z)) respectively. Each score represents the belief of dis-

criminator in the sample being real i.e. coming from the distribution of the real

data, pdata(x). This score, when scaled to [0, 1] can also be loosely interpreted

as an implicit likelihood of the data given D i.e. p(x|D).

† The predictions of D are compared to the actual, true labels and a loss is

computed (L(D,G)).
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† This loss is backpropagated, first through D and then through G to update the

weights and biases of both.

† Steps 1-5 are repeated over several epochs while iterating through the entire

dataset.

The loss function in case of GANs is given by:

min
G

max
D

L(G,D) = Ex∼pdata(x)[logD(x)] + Ez∼pz(z)[1 − logD(G(z))], (3.5)

where E is the expectation function.

As a GAN is effectively a min-max problem, G and D compete so that G minimizes

and D maximizes the above loss function. A typical GAN workflow is shown in Figure

3.12.

One of the disadvantages of GANs is that they are more unstable to train as both the

networks (G and D) are trained from a single backpropagation. In addition, GANs

are therefore very sensitive to the choice of objective function as well as the choice

of hyperparameters. Furthermore, GANs can not be used to perform any inference

queries.
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Figure 3.12: The Generator takes a random noise vector and outputs
samples of fake data. The Discriminator compares this fake data from the
Generator with the real data and outputs the degree of realness of the fake
data.

In spite of these shortcomings, GANs are an exciting and rapidly changing field,

delivering on the promise of generative models in their ability to generate realistic

examples across a range of problem domains, most notably in image-to-image trans-

lation tasks such as translating photos of summer to winter or day to night, and

in generating ultra-realistic photos of objects, scenes, and people that even humans

cannot tell are fake.

3.6.1 Conditional GANs

GANs are a type of generative models that are capable of generating new random

plausible data samples similar to the training dataset. But they suffer from a serious

practical drawback. There is no way to control the types of images other than trying

to figure out the complex relationship between the latent space input to the generator
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and the generated images. Conditional GANs or CGANs [49] are a modified form

of conventional GANs that involve the conditional generation of data by a generator

model. Data generation can be conditional on a class label if available, allowing the

targeted generation of data of a given type. This is shown in Figure 3.13.

Figure 3.13: A typical Conditional Generative Adversarial Network
(CGAN). A random noise and the condition is fed to the Generator which
then generates fake data. The Discriminator takes the fake data, the real
labels/conditions, and the real data in order to determine the probability of
the fake data being real.

A Conditional GAN provides two added advantages to the model:

1. Faster convergence: The convergence of the model will be faster. The random

distribution that the fake images follow will start to have a distribution.

2. Controlled output: The output of the Generator can be controlled at any

time by providing the label for the data that needs to be generated.
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3.7 Hyperparameters

In Machine and Deep learning, hyperparameters are the variables which determine

the network structure (e.g. the number of hidden layers) and the variables which

determine how the network is trained (e.g. the learning rate). Hyperparameters are

set before training i.e. before optimizing the weights and bias. There are basically

two kinds of hyperparameters: 1) related to the network structure, and 2) related to

the training process.

3.7.1 Network hyperparameters

Hyperparameters that characterize the architecture of the network are called network

hyperparameters. They determine the strength, capacity, robustness and depth of

the network. Various network hyperparameters include the number of hidden layers,

dropout, initialization of the network weights, and activation functions.

3.7.2 Training hyperparameters

These hyperparameters control various features of the training including but not lim-

ited to speed, converging efficiency, optimization type, and the training time. Various
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hyperparameters used for training a network include the learning rate, number of

epochs and the batch size.

The learning rate controls the amount by which the weights and biases of a model are

changed in response to the estimated error. A small learning rate could result in long

training times while a large learning rate could lead to an unstable training process

or the model never reaching the global minima of the loss function. An epoch occurs

when the entire data passes through the model once. For example, if a model needs

to be trained on 50, 000 images in batches of 100 images, an epoch occurs when all

the 50, 000 images pass through the model once. The batch size is thus 100 and the

number of batches in one epoch is 50, 000/100 = 500.

There are various methods available in literature for finding the most optimized hyper-

parameters for a given learning problem such as manual search, grid search, random

search, and Bayesian optimization.
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Chapter 4

NECOLA: Towards a Universal

Field-level Cosmological Emulator

In this Chapter, we develop a deep convolutional neural network that models the

process of structure formation in the universe.

4.1 Abstract

We train convolutional neural networks to correct the output of fast and approxi-

mate N-body simulations at the field level. Our model, Neural Enhanced COLA,

–NECOLA–, takes as input a snapshot generated by the computationally efficient
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COLA code and corrects the positions of the cold dark matter particles to match the

results of full N-body Quijote simulations. We quantify the accuracy of the network

using several summary statistics, and find that NECOLA can reproduce the results

of the full N-body simulations with sub-percent accuracy down to k ≃ 1 hMpc−1.

Furthermore, the model, that was trained on simulations with a fixed value of the

cosmological parameters, is also able to correct the output of COLA simulations

with different values of Ωm, Ωb, h, ns, σ8, w, and Mν with very high accuracy:

the power spectrum and the cross-correlation coefficients are within ≃ 1% down to

k = 1 hMpc−1. Our results indicate that the correction to the power spectrum

from fast/approximate simulations or field-level perturbation theory is rather univer-

sal. Our model represents a first step towards the development of a fast field-level

emulator to sample not only primordial mode amplitudes and phases, but also the

parameter space defined by the values of the cosmological parameters.

4.2 Introduction

In order to extract valuable information about fundamental physics from cosmic sur-

veys, we need theoretical predictions to confront the collected data. On semi-linear

scales, analytic tools like perturbation theory [50] can be used to provide such theoret-

ical predictions. However, on non-linear scales, where a large amount of cosmological

information resides [e.g. 51–70], numerical simulations become necessary.
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Cosmological simulations can be classified into two broad categories: 1) N-body sim-

ulations that model the matter field accounting only for the force of gravity, and 2)

hydrodynamic simulations that model not only gravity but also fluid hydrodynamics

and astrophysical effects such as the formation of stars and feedback from black holes.

While computationally more efficient than hydrodynamic simulations, N-body simula-

tions are still expensive, and running large sets or high-resolution simulations require

a significant computational cost [e.g. 51, 71–79]. To overcome this, several meth-

ods have been developed that are much less computationally demanding but come

at the expense of being less accurate (e.g., ALPT [80], PThalos [81], PINOCCHIO

[82], FastPM [83], COLA [40, 84, 85], EZMOCKS [86], FlowPM [87], PATCHY [88],

log-normal models [89, 90], HALOGEN [91], MUSCLE-UPS [92], QPM [93], HaloNet

[94] and mass-Peak Patch [95, 96]).

Being able to run fast and accurate simulations is of main importance in cosmology

in order to provide the theoretical predictions needed to retrieve the maximum in-

formation from cosmological surveys. In this work, we try to build a bridge between

the fast and approximate COLA simulations, and the expensive and accurate full N-

body simulations using deep learning. Deep learning techniques have been used more

recently to generate superresolution realizations of the full phase-space matter distri-

bution of the Universe from the low-resolution N-body simulations [97, 98]. We build

on the work of [99] and [100] who used neural networks to find the mapping between

the displacement field generated by the Zel’dovich approximation to the one from fast
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and full N-body simulations, respectively. In this work, we train convolutional neural

networks to correct the particle positions from COLA simulation snapshots to match

those of full N-body Quijote simulations. The most important conclusion of our work

is that our model seems to be universal, i.e., once trained on simulations with a fixed

value of cosmological parameters, our network is able to correct the particle positions

of COLA simulations with any other cosmology with surprising accuracy: the power

spectrum is accurate at the 1% level down to k = 1 hMpc−1.

This paper is organized as follows. In Section 4.3, we describe the simulations we

use and the architecture of our neural network model. We present the results of the

trained network in Section 4.4. Finally, we draw our conclusions in Section 4.5.

4.3 Methods

In this section, we describe the two types of simulations we used, together with the

model architecture and the training procedure.
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4.3.1 Simulations

4.3.1.1 Full N-body simulations

We made use of the Quijote full N-body simulations [51] to both train and test the

model. The simulations used in this work follow the evolution of 5123 cold dark

matter (CDM) particles (plus 5123 neutrino particles in the case of massive neutrino

cosmologies) from z = 127 down to z = 0 in a periodic volume of (1000 h−1Mpc)3. We

train the network using a set of 100 simulations from the fiducial cosmology, where

the values of the cosmological parameters are fixed to: Ωm = 0.3175, Ωb = 0.049,

h = 0.6711, ns = 0.9624, σ8 = 0.834, w = −1, Mν = 0.0 eV. These simulations are

only different in the value of the initial random seed.

We test the accuracy of our network on simulations with very different cosmologies

to the one used in the training. For this, we made use of 100 of 2,000 simulations

of the latin hypercube contained in the Quijote simulations, where the values of

the cosmological parameters span the range Ωm ∈ [0.1, 0.5], Ωb ∈ [0.03, 0.07], h ∈

[0.5, 0.9], ns ∈ [0.8, 1.2] and σ8 ∈ [0.6, 1.0]. In these simulations, not only the set of

values of the cosmological parameters is different, but the initial random seed varies

as well. Furthermore, we test the accuracy of our network on models with massive

neutrinos and on models where the dark energy equation of state is w ̸= −1, making
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use of Quijote simulations labeled M+
ν , M++

ν , M+++
ν , w+, and w−1. On average, each

of the Quijote simulations used in this work required ∼ 500 CPU hours to run. We

refer the reader to [51] for further details on the Quijote simulations.

4.3.1.2 Approximate N-body simulations

The fast and approximate simulations we use in this work are run with the CO-

moving Lagrangian Acceleration (COLA) [84] method, that combines second-order

Lagrangian perturbation theory (2LPT) [101] on large scales with N-body methods

on small scales. In particular, we use the MG-PICOLA [41] package. For each Qui-

jote full N-body simulation, we run a COLA simulation by matching 1) the number

of particles, 2) the set of values of the cosmological parameters, and 3) the value of

the initial random seed, which gives rise to identical initial Gaussian field for both

Quijote and COLA. These simulations require fewer time steps than the full N-body

simulations and are therefore much more computationally efficient. Each COLA sim-

ulation is run with 30 time steps equally spaced in log from z = 9 down to z = 0. On

average, these simulations only take 3 CPU hours to run.
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4.3.2 Model

4.3.2.1 Input and Target

Let us write the displacement vector of a particle as d⃗ = x⃗f − x⃗i, where x⃗f and x⃗i

are the final (z = 0) and initial (Lagrangian) position of the particle. Our goal is to

train a neural network to correct the positions of the particles generated by COLA,

to match them with those from a full N-body simulation, i.e.

x⃗f,Nbody = g(x⃗f,COLA) (4.1)

where g is an unknown function. Note that the right-hand side of Eq. 4.1 should

not be taken as the position of the particular particle considered, but also of all

its neighboring particles. To preserve translational equivariance, we use displacement

vectors instead of absolute particle positions. Thus, the input to the network is d⃗COLA,

rather than x⃗f,COLA. The network is trained to learn d⃗Nbody − d⃗COLA = x⃗f,Nbody −

x⃗f,COLA.
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4.3.2.2 Model Architecture

We follow Alves de Oliveira et al. [102] and use a V-Net [103] based model that

consists of 2 downsampling and 2 upsampling layers connected in a ”V” shape. Blocks

of two 33 convolutions connect the input, the resampling, and the output layers. 13

convolutions are added over each of these convolution blocks to realize a residual

connection. We add batch normalization after every convolution except the first one

and the last two, and leaky ReLU activation with a negative slope of 0.01 after every

batch normalization, as well as the first and the second to last convolutions. The

last activation in each residual block acts after the summation, following Milletari

et al. [103]. As in U-Net/V-Net, at all resolution levels (with the exception of the

bottleneck levels), the inputs to the downsampling layers are concatenated to the

outputs of the upsampling layers. All layers have a channel size of 64, except for

the input and the output, that have 3 channels (the displacement vector along each

cartesian coordinate), as well as those after concatenations (128-channeled). Finally,

the input (d⃗COLA) is directly added to the output, so that the network could learn

the corrections to match the target (d⃗Nbody − d⃗COLA). Stride-2 23 convolutions and

stride-12 23 transposed convolutions are used in downsampling and upsampling layers,

respectively. A diagram of the network architecture is shown in Figure 4.1.

Following Alves de Oliveira et al. [102], we minimize a loss function given by L =
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Figure 4.1: The diagram shows the architecture of our model, NECOLA.
The top leftmost cube (orange) represents the input and the top rightmost
cubes (orange and purple) represent the output. The cubes in yellow and
green represent various multi-channel feature maps. The number inside each
cube represents the size of the feature map while the number on the top of
each cube represents the number of channels in the map. See section 4.3.2.2
for more details on the convolution operations. Figure taken from [6] under
a CC BY license.

loge(LδL
λ
∆), where Lδ is the Mean Squared Error (MSE) loss on n(x) (the particle

number in voxel x) and L∆ is the MSE on the displacement vector d⃗. With this

loss function, we are able to train the model to make accurate predictions in both

Lagrangian and Eulerian spaces. By combining the two losses with logarithm rather

than summation, we can account for their absolute magnitudes and trade between

their relative values. λ here serves as a weight on this trade-off of relative losses and

λ = 1 works pretty well in our case.

The input cannot be fed into the network at once due to the big size of the data

(3 × 5123), and we thus divide it into smaller chunks first. We crop the data into

subcubes of size 3 × 1283, corresponding to a simulation box of length 250 h−1Mpc.
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In order to preserve the physical translational equivariance, no padding has been used

in the 33 convolutions, which results in an output that is smaller than the input in

spatial size. This limitation is compensated by padding the input cubes periodically

with 20 voxels on each side so that the effective spatial size of the input becomes

3×1683. Furthermore, data augmentation is implemented to enforce the equivariance

of displacement fields under rotational and parity transformations. We use the Adam

optimizer [104] with a learning rate of 0.0001, β1 = 0.9 and β2 = 0.999, and reduce

the learning rate by half when the loss does not improve for 3 epochs. The model is

trained on 70 realizations for 100 epochs and the remaining realizations are used for

validation (20) and final testing (10). From now on, we will refer to this model as

NECOLA, from Neural Enhanced COLA, in order to avoid any confusion with the

model by Alves de Oliveira et al. [102], which uses Zel’dovich simulations as input

and a different value of λ. Note that the model architecture of NECOLA is the same

as that of Alves de Oliveira et al. [102].

4.3.3 Benchmark models

In order to compare the predictions of our model, we have used four different bench-

marks:

† COLA. This benchmark represents the results of running the COLA simulation

66



itself.

† ZA. In this case, the positions of the particles at z = 0 are computed using the

Zel’dovich approximation.

† mod(ZA). This benchmark represents our model but trained on ZA simulations

as input and correcting the output to match the target N-body simulations.

† NN(ZA). This benchmark is the model developed by Alves de Oliveira et al.

[100], that takes as input ZA simulations and corrects the output to match full

N-body simulations. We refer the reader to Alves de Oliveira et al. [100] for

further details on this model.

4.4 Results

In this section, we investigate the performance of our model. We first make use of

several summary statistics to quantify the accuracy of our model for simulations with

the same cosmology as the one used to train the network. Then, we investigate how

well does our network extrapolate to other cosmological models.
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4.4.1 Fiducial cosmology

We first present the results of testing the network on simulations that have the same

cosmology as the one used for its training.

4.4.1.1 Visual comparison

Before quantifying the accuracy of the network using summary statistics, we perform

a visual inspection of its output. In Fig. 4.2, we show the distribution of matter at

z = 0 from the full N-body simulation (top row), the COLA simulation (middle row),

and NECOLA (bottom row).

While looking at large scales, the agreement between the three methods is really

good, but when we look at small scales, some differences are visible. In the case

of COLA, the output is more diffuse and halos do not exhibit a high concentration

in their centers, in contrast to the corresponding N-body simulation. On the other

hand, NECOLA produces much sharper results, clearly defining the positions and

boundaries of dark matter halos.
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Figure 4.2: The figure shows the cold dark matter density fields for
the target N-body simulations (top), the input/benchmark COLA simu-
lations (middle) and the predictions of our model (bottom), at a scale of
1000 Mpc h−1 (left column), 250 Mpc h−1 (middle column) and 50 Mpc h−1

(right column). Each figure is a zoomed-in image of the white box in the
figure on its left. Figure taken from [6] under a CC BY license.

4.4.1.2 Power spectrum

The power spectrum is defined as the Fourier transform of the 2-point correlation

function (2PCF), which measures the excess probability of finding a pair of random
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Figure 4.3: The left plot shows the 3D matter power spectrum (top),
the transfer function (middle) and the cross-correlation coefficient (bottom),
while the right plot shows the bispectrum for k1 = 0.15 hMpc−1 and k2 =
0.25 hMpc−1 (top) and the bispectrum ratio (bottom) for the target N-
body simulations (solid black), the COLA simulations (dotted blue), the ZA
approximations (dash-dotted green), mod(ZA) (solid yellow), and NECOLA
(dashed red). As can be seen, NECOLA outperforms all benchmarks in all
cases. Figure taken from [6] under a CC BY license.

galaxies (or points) at a given separation compared to the one from a random distri-

bution. The power spectrum is one of the most important summary statistics used

in cosmology since for Gaussian density fields (like the one our Universe resembles on

large, linear scales), it fully characterizes the statistical properties of the field.

In the top-left panel of Fig. 4.3, we show with a solid black line the average power

spectra from 10 Quijote simulations of the test set. The dotted blue line shows the

average power spectrum from the corresponding COLA simulations, while the green
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dot-dashed line outputs the average power spectrum of Zel’dovich-evolved simula-

tions. The solid yellow and dashed red lines show the average power spectrum from

mod(ZA) and NECOLA, respectively. As can be seen, the worst model is the one

that only employs the Zel’dovich approximation, followed by the COLA simulation.

In order to better visualize the differences between the output of the N-body sim-

ulation and the networks, we plot in the middle-left panel of Fig. 4.3 the transfer

function, defined as

T (k) =

√
Ppred(k)

Ptarget(k)
, (4.2)

where Ppred(k) and Ptarget(k) are the average matter power spectra of the predictions

and the target density fields respectively. Values close to 1 indicate a better agreement

between the prediction and the target. As can be seen, both networks achieve a sub-

percent accuracy on the power spectrum down to k = 1 hMpc−1, though the results

obtained from NECOLA are slightly more accurate. We note that in the case of the

Quijote simulations, it does not make sense to look into much smaller scales than

k ∼ 1 hMpc−1, as those are not numerically converged in the simulations due to

mass resolution [51].

We note that there exist state-of-the-art power spectrum emulators such as COSMIC

EMU [105–107], FRANKEN EMU[108] and MIRA TITAN [109, 110] that are com-

putationally faster and more accurate in estimating the power spectrum but are not

used in our comparisons as the primary objective of our work is to provide a field-level
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emulator itself and not a power spectrum emulator.

4.4.1.3 Cross-Correlation Coefficient

In Fourier space, every mode can be written as δ(k⃗) = Aeiθ, where A and θ are the

mode amplitude and phase, respectively. When using the power spectrum, we are

effectively comparing how well the amplitude of the modes from the network and the

simulation agree. However, that statistic neglects the correlations in mode phases,

which are very important in the non-linear regime. To quantify the correlations

between the mode phases, we use the cross-correlation coefficient, r, defined as

r(k) =
Ppred×target(k)√
Ppred(k)Ptarget(k)

, (4.3)

where the numerator is the cross-power spectrum between the predictions and the

target and the denominator contains the auto-power spectrum of the prediction and

the target. Values of r close to 1 indicate a very good correlation in mode phases. In

the bottom-left panel of Fig. 4.3, we show the cross-correlation coefficient averaged

over the testing set for the different cases considered. We find that NECOLA achieves

the highest accuracy, being within 1% down to k = 1 hMpc−1.
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4.4.1.4 Bispectrum

The third statistic that we consider to quantify the agreement between the full sim-

ulations and the network predictions is the bispectrum, defined as

⟨δk1δk2δk3⟩ ≡ δD(k123)B(k1,k2,k3), (4.4)

where δ(k) the overdensity in the Fourier space and k123 ≡ k1 + k2 + k3.

Differently to the power spectrum, the bispectrum quantifies the correlation between

triplets of modes in closed triangles. For Gaussian density fields, this quantity is

zero, and therefore, its amplitude and shape capture information about the non-

Gaussianities in a given field. In the top-right panel of Fig. 4.3, we show the bispec-

trum for k1 = 0.15 hMpc−1 and k2 = 0.25 hMpc−1 as a function of the angle between

k1 and k2, θ. On this scale, we cannot see large differences, besides the fact that

the Zel’dovich approximation underestimates the amplitude of the bispectrum, as

expected. In the bottom-right panel of Fig. 4.3, we show the ratio between the differ-

ent bispectra to the bispectrum of the N-body simulation. We find that both neural

networks give very accurate results, although NECOLA is slightly more accurate.

The above values of k1 and k2 are chosen in order to probe the nonlinear scales of the

Universe at which the non-Gaussian signatures in the mass distribution (induced by
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non-linear gravitational instability) are imprinted. The model has been evaluated at

other values of k1 and k2 as well, and performs equally well.

Figure 4.4: We test the NN(ZA) and NECOLA models, which are trained
on simulations with a fixed cosmology, on models with very different values
of the cosmological parameters. The left and middle panels show the results
when using 100 simulations of the Quijote latin-hypercube (that vary Ωm,
Ωb, h, ns, and σ8), while the right panel displays the results for cosmologies
with massive neutrinos and a dark energy equation of state different to −1.
The red lines represent the median while the blue lines represent the 16th
(and 84th) percentile of the predictions. As can be seen, NECOLA not only
performs better than NN(ZA), but it is surprisingly accurate all the way
down to k ∼ 1 hMpc−1. Besides, it also works for models with massive
neutrinos and w ̸= −1. The curve with the largest difference in the neutrino
cross-correlation coefficient corresponds to a model withMν = 0.4 eV. Figure
taken from [6] under a CC BY license.

4.4.2 Model Extrapolation

We now explore how our model extrapolates to cosmologies different from the one

used to train the model.
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We first test the extrapolation properties of the model on the parameters Ωm, Ωb, h,

ns, and σ8 by using 100 simulations of the Quijote latin-hypercube set. We emphasize

that for the simulations in this set, the values of these 5 cosmological parameters are

varied at the same time, together with the value of the initial random seed. For each

of these simulations, we run its COLA counterpart and input it to the network, which

corrects the positions of the particles.

For each cosmology, we compute the power spectrum of the output of NECOLA and

of the full N-body Quijote simulation. In Fig. 4.4, we show in the middle panel

the transfer function together with the cross-correlation coefficient. As can be seen,

NECOLA is able to correct the output of the COLA simulations in all cases with

surprising accuracy: below ≃ 1% down to k = 1 hMpc−1.

Next, we repeat the same exercise but using NN(ZA) and show the results in the

left panel of Fig. 4.4. As can be seen, the network trained on COLA snapshots

exhibits much stronger extrapolation features than the one trained on Zel’dovich

displacements.

We now investigate if NECOLA is also able to correct COLA outputs for simulations

with massive neutrinos. We emphasize that no simulations used for training the

model contain massive neutrinos. For this, we made use of simulations from the

M+
ν , M++

ν , and M+++
ν Quijote sets, corresponding to cosmologies with sums of the

neutrino masses equal to 0.1 eV, 0.2 eV, and 0.4 eV. In these simulations, we have
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both dark matter and neutrino particles. From each set, we take 10 simulations and

run their COLA counterpart. Next, we input to NECOLA the displacement vectors

of the dark matter particles of the COLA simulation, and NECOLA outputs the

corrected positions of the dark matter particles for these massive neutrino models.

Table 4.1
Computational cost associated to running a full N-body simulation, a

COLA simulation, NN(ZA) and NECOLA. Note that in case of NECOLA
and NN(ZA), we report the GPU wall time.

Simulation N-body (QUIJOTE) Fast (COLA) NECOLA (PyTorch-GPU) NN (ZA)
CPU-/GPU-sec 106 104 125 59

In the right panel of Fig. 4.4, we show the results of this calculation with yellow

lines. As can be seen, NECOLA is able to correct the positions of the dark matter

particles such that their power spectrum and cross-correlation coefficient agree with

the full N-body calculation below 1% down to k = 1 hMpc−1. We note that although

our network only works with the cold dark matter field, assuming a linear neutrino

field correlated with the initial Gaussian field will, for most of the cases, give very

accurate predictions for the total matter field [111]. On the other hand, the cold dark

matter field is the one responsible for the abundance and clustering of dark matter

halos and galaxies [112, 113]. In Giusarma et al. [114], the authors proposed a deep

learning-based Convolutional Neural Network (U-Net) model to generate simulations

with massive neutrinos from standard ΛCDM simulations without neutrinos. Their

model was able to reproduce the 3-dimensional spatial distribution of matter upto
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scales of 0.7 hMpc−1 (see Figure 4 of Giusarma et al. [114]), thus emulating the

effect of massive neutrinos on the large-scale structure. It is interesting to note that

NECOLA gives more accurate results than the model by Giusarma et al. [114] at all

scales, capturing the effects of non-linear evolution.

Lastly, we study the performance of our model for cosmologies with values of the

dark energy equation of state, w, different from -1. For this, we made use of the 10

simulations of the w+ and w− Quijote sets, that have a value of w equal to-0.95 and

-1.05, respectively. For each of these simulations, we run their COLA counterpart

and compute the displacement vectors. We then input those into the network that

returns the corrected positions of the dark matter particles. In the right panel of

Fig. 4.4, we show with green lines the results of computing the transfer function and

cross-correlation coefficient between the output of the network and the full N-body

simulations. As can be seen, in this case as well, NECOLA is able to correct the

output of the cosmologies that it has never seen before.

4.4.3 Computational cost

A typical N-body simulation takes roughly 500 CPU hours to run, or ∼ 106 CPU

seconds, while a single COLA simulation takes around 3 CPU hours or ∼ 104 CPU

seconds. We run our CNN model on 1 GPU (320 NVIDIA P100-16GB) using PyTorch
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[115] and it takes ∼ 125 GPU seconds to run. A runtime comparison of the target,

benchmark, and our model is shown in Table 4.1. Thus, in practice, the main limita-

tion of our model comes from the computational cost associated with running COLA

simulations itself. Despite this, our model allows us to speed up the computational

cost by a factor of 100.

4.5 Summary

Providing accurate theoretical predictions is necessary in order to extract the maxi-

mum amount of information from upcoming cosmological surveys. The computational

cost of running full N-body simulations is currently too expensive to carry out stan-

dard analysis such as MCMC. On the other hand, fast simulations can reduce the

computational cost by orders of magnitude at the expense of sacrificing accuracy.

In this work, we have shown that we can use neural networks to correct the output

of approximate simulations to match full N-body simulations from the Quijote suite.

Our model, coined NECOLA, from Neural Enhanced COLA, has been trained on

simulations with a fixed value of the cosmological parameters. We have shown that

our model is not only able to correct the output of COLA simulations run with the

same cosmology as the one used to train the network, but is also able to correct

COLA simulations that have very different values of the parameters Ωm, Ωb, h, ns,
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σ8, Mν , and w. This surprising feature of our network indicates that the correction

from the output of COLA to a full N-body might be universal, i.e. independent of

cosmology.

This may have important consequences for perturbation theory studies, that are able

to accurately model the linear and perturbative regime but fail on non-linear scales.

Our work indicates that a generic, cosmology-independent correction may be feasible,

at least in the case of the power spectrum.

Our network can be used as a field-level emulator for covariance estimation, likelihood-

free analysis, detecting features in the cosmic web and to explore not only the initial

modes amplitudes and phases [116], but also the cosmological parameter space [117].

We note however that further work is needed to claim that our model is precise for

statistics other than the power spectrum and cross-correlation function when using

it in extrapolation. In future work, we will quantify the accuracy of our network on

other summary statistics like bispectrum, halo mass function, etc. Additional work is

also needed to incorporate velocities into this framework, that will allow performing

studies in redshift-space. Besides, further work is needed to quantify the accuracy

of NECOLA at redshifts other than the one used for training, together with the

universality of the network under changes of simulation resolution.
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Overall, this work opens an interesting direction in the development of fast and gen-

eralized field-level emulators needed to maximize the scientific return of upcoming

cosmological missions.

The trained models, predictions and statistics extracted from the testing and ex-

trapolation sets are hosted under the public github repository https://github.

com/neeravkaushal/cola-to-nbody.git and the model has been trained using the

map2map code https://github.com/eelregit/map2map.git.
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Chapter 5

νGAN: Conditional GAN-based

Emulator for Cosmic Web

Simulations with Neutrinos

In this Chapter, we develop a Generative Adversarial Network (GAN) that gener-

ates two dimensional cosmic webs conditioned on a range of neutrino masses. Our

model could generate cosmic webs from a small latent vector space using CNN-based

upsampling. We test the accuracy and quality of our generated cosmic webs using

several summary statistics and present our preliminary results in this chapter.
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5.1 Abstract

The presence of relic neutrinos significantly affects the evolution of density perturba-

tions in the universe. Due to their large free streaming lengths, neutrinos suppress

structure formation at small scales. In order to compare the information extracted

from large-scale cosmological surveys, rigorous theoretical predictions of the effect of

neutrinos on the evolution of universe are needed. A significant tool to obtain these

predictions is running dark matter N-body cosmological simulations of the universe in

the presence of massive neutrinos which is very computationally expensive. It takes

around 700 CPU hours to run a single N-body simulation with a specific massive

neutrino [118]. In this work, we propose a deep-learning based generative adversar-

ial network (GAN) model that could emulate our universe with a specified neutrino

mass. Our model νGAN generates 2D cosmic webs conditioned on neutrino masses in

the range 0.0 eV to 0.8 eV. The generated samples are statistically independent, un-

correlated and indistinguishable from the actual samples. We compare the accuracy

of our results visually and on various summary statistics prominent in cosmology.

Preliminary results indicate that the generated samples are accurate to within 5%

on power spectrum between k = 0.01 to k = 0.5. This opens up a new avenue for

research on a universal cosmology-injected emulators that could be conditioned on a

number of cosmological parameters to provide reliable, accurate and fast emulators

as substitutes for traditional simulations.
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5.2 Introduction

Neutrinos are one of the most abundant particles in the universe with number densi-

ties somewhat less than photons. They were relativistic at early times and behaved

as radiation. At the present time, unlike photons, neutrinos are non-relativistic and

are known to have rest mass. This tells that the relic neutrinos can produce signifi-

cant effects on the cosmological observables, particularly on the low-redshift evolution

of cosmological density perturbations. Neutrinos have large thermal velocities unlike

other gravitating massive species like cold dark matter or baryons, and thus neutrinos

leave distinctive signatures in many cosmological observables. They strongly affect

the background evolution of the universe, as well as the evolution of cosmological per-

turbations. Current and future state-of-the-art cosmological surveys such as Euclid

[119], DESI [120], WFIRST [121], LSST [122], and CMB-S4 [123], are expected to

improve the constraints on the cosmological parameters and provide information that

could reduce the error in the constraints on neutrino masses and their mass ordering.

In order to compare the results from the measurement of these cosmological variables,

rigorous theoretical predictions of the spatial distribution of matter and luminous

tracers in the presence of massive neutrinos are required. Analytic tools like pertur-

bation theory [50] can be used to provide such predictions at semi-linear scales. Most

of the information, however, resides on nonlinear scales [e.g. 51–70]. In the absence
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of an analytical model in cosmology, numerical simulations with massive neutrinos

provide the most powerful tool to study these nonlinear scales and compare against

the observations. Particularly, the N-body simulations evolve cosmological matter

fluctuations under gravity alone, allowing to compare the theory with predictions

and generating mock galaxy catalogs, compute covariance matrices, and optimize ob-

servational strategies. Various N-body simulations with massive neutrinos have been

developed and used over the past couple of years. They have helped in studying the

impact of neutrino masses on clustering in fully nonlinear scale in real space [112, 124–

127], on clustering and abundance of halo and cosmic voids [113, 128, 129], and on

clustering of matter in real-space [130, 131]. The major drawback of cosmological

N-body simulations is that they are very computationally expensive to run. A single

N-body simulation requires large computational resources and a runtime in days or

even weeks. This computational bottleneck limits the amount of information we can

extract from observational data and check against the theory. Faster methods of gen-

erating cosmological simulations are thus needed that could accelerate this process

while maintaining the accuracy and reliability of the predictions.

Over the past decade, deep learning has come out to be one of the most efficient

and reliable tool to either generate cosmological simulations or map from less accu-

rate simulations to more accurate ones, or to generate superresolution realizations of

the full phase-space matter distribution of the universe from low resolution N-body

simulations [6, 97–100, 132]. More recently, a class of deep learning neural networks
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called the generative adversarial networks (GANs) have been extensively used to gen-

erate various kinds of cosmological maps of the universe like dark matter cosmic webs

[132], weak lensing convergence maps [133], and non-tomographic sky convergence

maps [134].

In this work, we use deep convolutional GANs to generate 2D cosmic webs of the

universe, conditioned on a range of neutrino masses. Deep generative models can ef-

fectively learn the complex probability distributions of the data and can generate new,

random and statistically independent and identically distributed data samples after

training on a set of N-body simulations. These new data samples are uncorrelated to

the training examples. We condition our model, called νGAN, on neutrino masses so

that after training, we can generate dark matter cosmic webs with arbitrary neutrino

masses. After training the network, numerous new samples can be generated within

a matter of seconds. Conditioning on neutrino masses, on the other hand, provides

overcoming the computational bottleneck of generating variable mass neutrino simu-

lations using traditional methods. We test our results on various summary statistics

viz the power spectrum, the transfer function, the pixel intensity histograms, peak

statistics and structural similarity tests. We find that our model is accurate to 5%

on the power spectrum between k = 0.01 to k = 0.5.

This paper is organized as follows. Section 5.3 briefly introduces and discusses condi-

tional GAN and the data we used for training our GAN model. Section 5.4 discusses
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the training process, model architecture and hyperparameters while section 5.5 dis-

cusses the results obtained. Finally, we draw conclusions and other discussions in

section 5.6.

5.3 Methods

5.3.1 Conditional GAN

A conditional Generative Adversarial Network, or CGAN [48] for short, is a type of

deep learning approach to conditional generative modeling using neural networks like

convolutional neural nets (CNNs) or densely connected (linear) layers. The network

consists of a generator and a discriminator. The goal of the generator is to create

fake data as close to the real data as possible while the goal of the discriminator is

to classify the real data as real and fake data as fake. Both the networks work in

a game-theoretic approach and achieve convergence through training. Once trained,

the generator can create new samples that are indistinguishable to the real samples

(See 3.6 or more details).

The model we use in this work conditions the generator (G) and the discriminator

(D) both on a parameter y, which in this work would be the neutrino mass.
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The algorithm works as follows:

† The input is a random noise vector (z) that can be Gaussian distributed (usually

drawn from a unit-normal distribution N(0, 1)), uniform distributed or can be

some other structured input.

† The generator G, takes the latent vector z and the random variable (the condi-

tion) y and parameterized by a neural network, gives the output G(z, y).

† The discriminator D, also parameterized by a neural network, inputs real sam-

ples x and fake samples G(z, y) i.e., the samples generated by G, and outputs

scores D(x) and D(G(z, y)) respectively. Each score represents the belief of dis-

criminator in the sample being real i.e. coming from the distribution of the real

data, pdata(x). This score, when scaled to [0, 1] can also be loosely interpreted

as an implicit likelihood of the data given D i.e. p(x|D).

† The predictions of D are compared to the actual, true labels and a loss is

computed (L(D,G)).

† This loss is backpropagated, first through D and then through G to update the

weights and biases of both.

† Steps 1-5 are repeated over several epochs while iterating through the entire

dataset.
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For more details on a conditional GAN, see section 3.6.1.

5.3.2 Data

The various steps involved in the generation and preprocessing of data are as follows:

† We run N-body simulations using COLA approximation [84, 85] with MG-

PICOLA1[41] code. The simulations follow the evolution of 10243 cold dark

matter (CDM) particles in the presence of neutrinos with masses 0.0, 0.1, 0.4,

and 0.8 eV from a redshift of z = 9 to z = 0 in 50 timesteps. The cosmo-

logical parameters used for these simulations are ΩM = 0.3175, ΩB = 0.0490,

ns = 0.9624, σ8 = 0.8340, H = 67.11, and mν = (0.0, 0.1, 0.4, 0.8). We generate

2 realizations for each neutrino mass and thus 10 realizations in total for all the

5 neutrino masses. Each simulation gives the 3D spatial coordinates of 10243

cold dark matter particles.

† Following [132], for each realization, we take this 3D cube of particle positions

and divide the positions along x-axis into 1000 equal segments. We then extract

2D slices of particle positions in the y-z plane and choose 500 non-consecutive

2D slices of position coordinates. We repeat the same procedure along the y

and the z axes and thus obtain 1500 2D slices for one realization and thus 15000

1https://github.com/HAWinther/MG-PICOLA-PUBLIC
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for the entire data (10 realizations).

† These 2D slices are then pixelized into 256 × 256 slices. The value at each

pixel here corresponds to its particle count. This effectively makes the data 2D

grayscale images of size 256 × 256. These images are then smoothed with a

gaussian filter of standard deviation 1. The only difference is that instead of

the pixel values being integers, they are now floating point numbers with a huge

range of magnitudes.

† The data is then scaled to [−1, 1] as this scaling has been found to be very

effective in improving the performance of the model [132]. The scaling also

allows the final activation of the generator to be tanh. The original data (ρ)

and the scaled data (ρ(x)) are related by the transformation:

ρ(x) =
2x

x + a
− 1, (5.1)

where a was chosen to be 4.

This transformation is very similar to the logarithmic function. As the cosmic web of

the universe spans a dynamic range of magnitudes between the almost empty cosmic

voids and the super-massive galaxy clusters, this transformation enhances the contrast

on the network of filaments, galaxy sheets and dark matter halos. a in 5.1 controls

the median value of the images and has been fixed to 4 throughout the training of
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the network.

5.4 Implementation

We use a Wasserstein deep convolutional generative adversarial network (WGAN)

[135] instead of a standard DCGAN. While the discriminator of a conventional GAN

outputs a probability value that denotes its confidence in the degree of realness of the

sample, the discriminator of a WGAN assigns a score to each sample based on the

distance between the real and fake distribution. This distance, which is a measure of

the distance between two probability distributions, is called the Wasserstein or Earth

Mover’s distance (see [136] for a nice review on the difference between GANs and

WGANs). The discriminator in case of a WGAN is called a critic.

Like conventional GANs, our WGAN model, νGAN, consists of a generator and a

discriminator. The generator consists of one linear layer and six transposed convo-

lutions. The neutrino mass mν is concatenated to the latent vector z of size 200 at

the start and operated on by a linear layer. This is followed by upsampling by six

transposed convolutions of filter sizes 5 and 3 with strides 2 and 1 respectively. Each

upsampling operation is followed by a batch normalization and a relu activation, ex-

cept for the final layer where we use a tanh activation and no batch normalization.

Tables 5.1 shows the architecture of the generator.
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Table 5.1
Generator architecture of our model.

Layer Operations Filter Dimension
z bs ×200
h0 linear + identity bs ×512 ×16 × 16
h1 deconv + BatchNorm + ReLU 5 × 5 bs ×256 ×32 × 32
h2 deconv + BatchNorm + ReLU 5 × 5 bs ×128 ×64 × 64
h3 deconv + BatchNorm + ReLU 3 × 3 bs ×128 ×64 × 64
h4 deconv + BatchNorm + ReLU 5 × 5 bs ×64 ×128 × 128
h5 deconv + BatchNorm + ReLU 3 × 3 bs ×64 ×128 × 128
h6 deconv + Tanh 5 × 5 bs ×1 ×256 × 256

The discriminator consists of one linear layer and four convolutions. The convolutions

use a filter of size 5 and stride 2 and double the channels and reduce the feature size

by half with each operation. They are followed by batch normalization and a leaky

relu activation with parameter 0.2. After the convolutions, the data is squeezed, and

the neutrino mass is concatenated to it. Finally, a linear layer is applied which gives

the desired output. Table 5.2 shows the discriminator details.

Table 5.2
Discriminator architecture of our model.

Layer Operations Filter Dimension
X bs ×1×256×256
h0 conv + BatchNorm + Leaky ReLU 5×5 bs ×64×128×128
h1 conv + BatchNorm + Leaky ReLU 5×5 bs ×128×64×64
h2 conv + BatchNorm + Leaky ReLU 5×5 bs ×256×32×32
h3 conv + BatchNorm + Leaky ReLU 5×5 bs ×512×16×16
h4 linear + identity bs ×1

93



WGANs were used to eliminate mode collapse and induce stable training. The net-

works were trained until convergence was achieved in terms of a stable distance be-

tween the generated and real images. The hyperparameters used for training are

shown in table 5.3.

Table 5.3
Hyperparameters used for model training.

Hyperparameter Value
Learning rate (G, D) (10−5, 10−5)
Batch size 16
Latent vector size 200
Latent vector distribution Standard Normal
Optimizer ADAM
Gradient Penalty 1000
β1, β2 0.5, 0.999
Augmentation True
Epochs 300

5.5 Results

In this section, we assess the performance of our model in various ways. First, we

perform a visual comparison of the synthetic and the actual images. Second, we

perform a quantitative assessment of the results using various summary statistics.
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5.5.1 Visual Comparison

We compare the results of the N-body samples and νGAN-generated samples visually.

Figure 5.1 shows 10 random images of cosmic web from the N-body simulations

(top) and 10 random samples generated by νGAN (bottom). It can be seen that

νGAN captures the prominent visual artifacts of the data quite well. The structure

of filaments and halos are well reproduced. This shows the capability of GANs to

reproduce the cosmic web. It should be noted that in this figure, there is no need

for the samples in the bottom two panels to be the same as the samples in top two

panels.

The parameterization of our model on neutrino masses can be checked by generating

the images using the same latent vector space and a different neutrino mass. Figure 5.2

shows the images from N-body simulations (top) and νGAN (bottom) using various

neutrino masses. The latent vector in νGAN and the random seed in the simulations

are separately fixed, so as to visually assess the images for different neutrino masses

under the same fixed conditions. As can be seen, all the images from νGAN in the

bottom row of figure 5.2 look the same. The effect of neutrinos on the clustering

of matter at small scales is too small to be evident visually from the cosmic web

images. Please note that the images in the top row should not be compared to the

corresponding images in the bottom row.
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Figure 5.1: The top two panels show 10 cosmic webs from N-body simu-
lations while the images in the bottom two panels are generated by νGAN.
Each bright spot in the image denotes the average number of dark mat-
ter particles or the density contrast (see 1.1.5) in that pixel location. Note
that the pixel values are scaled to [-1,1] and the top 10 images are not to be
visually compared to the bottom 10 images.

We now show the comparison of our model and the simulations using the most com-

monly employed statistics in cosmology called the cosmological summary statistics,

and the similarity metrics used in computer vision.
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Figure 5.2: The top panel shows the cosmic webs from our simulations
while the bottom ones are generated by νGAN. Note that for the top images,
the random seed during the simulations was fixed and for the bottom images,
the latent vector was fixed. The images in the top row therefore look similar
to each other and the same is true for the bottom row. The images in the
top row are not comparable to the images in the bottom row.

5.5.2 Power Spectrum and Transfer Function

Figure 5.3 shows the average 2D power spectra and transfer function (see eqn. 4.2

in 4.4.1.2) comparison between the actual N-body simulations (black curve) and the

samples from our model (red curve) for various neutrino masses. The upper limit on

the neutrino mass from the latest experiments [137] is 0.8 eV, which we use in our

analyses. It can be seen that the power spectra are almost overlapping and have very

small margin of error, especially at smaller scales. In order to better quantify and

visualize the differences between the truth and the predictions in the power spectrum,
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we also show the transfer function in the bottom panel. We focus our analysis on

angular scales larger than a few Mpc. This is primarily because currently, the N-

body simulations do not agree well in their predictions for smaller scales [132, 138].

The model performs really well with roughly a 95% accuracy between k = 0.01 and

k = 0.5 for all neutrino masses. The predictions start to get worse at k > 0.5

which induces a noise in transfer function at those scales. This can be attributed to

nonlinear processes at small scales of the universe, which makes the predictions worse

on smaller scales. Currently, we are working on improving this error margin to much

smaller values at nonlinear scales.

Figure 5.3: Power spectrum and transfer function comparison. The
top panel shows the average 2D power spectra of the N-body images (black
curves) and the ones generated by νGAN (red curves) for various neutrino
masses. The difference in power spectra is very small (within 5%) at linear
and mildly nonlinear scales.
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5.5.3 Pixel Intensity Histogram

Figure 5.4 shows the distribution of mass map pixels (Npixels) in N-body and νGAN-

generated maps. Mass map histogram and peak counts are simple computer vision

statistics that compare maps and constrain cosmological models [139, 140]. The pixel

intensity histograms in general shows a good agreement with significant differences

appearing only for the lowest pixel intensity values. The same has also been detected

in the works of [133] and [141]. The small pixel values correspond to the black regions

of the image which denote the cosmic voids. The top panel shows the mass histograms

and the bottom panel shows the fractional difference in predictions wrt the actual

values. The number of pixels for small pixel values (at around −1) are predicted (red

curve) to be slightly more than the actual N-body samples (black curve). This might

be attributed to the model not learning to reproduce the distribution of structure

around the cosmic voids by overestimating the voids.

5.5.4 Pixel Peak Histogram

Although the power spectrum fully characterizes the information embedded in a gaus-

sian field, to extract the information stored in the non-gaussianities in the field, we
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Figure 5.4: A comparison of pixel intensity histogram of the samples gen-
erated from the N-body simulations and our model, νGAN. The curves are
averaged over 500 samples. The major difference is at lower pixel intensity
values.

need higher order statistics (see 1.1.6 for a detailed description). The higher-order

statistics are usually very computationally intensive. A popular alternative to power

spectrum to analyze the density distribution of the cosmic webs is the ”peak statis-

tics”. These extract the non-gaussian features present in the data and are commonly

employed to analyze weak lensing data [140, 142]. A peak refers to a pixel in the

image that has a higher value than all of its immediate 24 neighbors. The peaks are

then counted as a function of their height.

We show in figure 5.5 the distribution of mass map peaks (Npeaks), which describes the

distribution of values at the local maxima of the map. All the pixels greater than their

5× 5 patch neighborhood i.e., 24 neighbors are searched and extracted. A histogram

of the extracted peak values is then computed. Finally, the median histogram of
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500 such images is computed along with their 16% and 84% percentiles from N-body

simulations and νGAN. The plots in the top panel show the peak statistics histograms,

while the bottom panel plots show the fractional difference in the number of peaks.

This shows that the samples from the N-body images and the νGAN images are very

close to each other.

Figure 5.5: A comparison of pixel peaks. The solid lines show the median
histogram from 500 samples generated by νGAN and from N-body simula-
tions.The corresponding color shades show the 16%th and 84%th percentile
of the distribution. Note that the pixels are scaled to [-1,1].

5.5.5 Multi-Scale Structural Similarity Index (MS-SSIM)

A common problem encountered while working with GANs is that the network is

trained in such a poor way that the generator keeps producing a small subset of data
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and is not able to learn the variance in the entire distribution of the data. This is

known as the problem of mode collapse2. νGAN gets rid of mode collapse by using

a bigger latent vector (z) of size 200. This can be evidenced from the fact that in

figure 5.1, each image that νGAN generates is stunningly different from the others,

giving a direct evidence that the model does not suffer from mode collapse.

The Multi-scale structural similarity index (MS-SSIM) is a very commonly used im-

age similarity measure used in image analysis studies. It is very useful in detecting

whether a model suffers from mode collapse or not. One of the main reasons of study-

ing this is that the cosmological summary statistics of the truth and predictions can

still agree well with each other, even if the model suffers from mode collapse.

The MS-SSIM between two images returns a score between 0 and 1 where 0 means

identical images and 1 means completely different images. The cosmic web images

are stochastic and are only similar statistically, we compute the MS-SSIM between

an ensemble of 2000 images from N-body simulations and νGAN. This is because,

we are more interested in the similarity between a large set of images than between

individual images [134]. Following [134], we calculate the significance of the difference

in MS-SSIM scores as follows:

2An example of mode collapse would be of a GAN trained on a dataset of handwritten digits from
0 to 9. This network would keep producing only a small subset of digits (say 2, 4 and 9) and will
never learn the entire dataset if it suffers from model collapse.
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sSSIM = 2
⟨SSIMνGAN⟩ − ⟨SSIMN-body⟩
σ[SSIMνGAN] + σ[SSIMN-body]

(5.2)

where ⟨SSIM⟩ is the mean score and σ[SSIM] is the standard deviation. The smaller

this score is, the more similar are the images generated by νGAN and N-body simula-

tions. We calculate the mean and standard deviation of MS-SSIM score between 500

randomly selected images for each neutrino mass, both for νGAN and the original

N-body. Table 5.4 shows the values of SSIM significance scores between N-body and

νGAN-generated samples for various neutrino masses. All the scores are less than

1 and are very strong indicators that νGAN preserves the statistics of the actual

N-body samples. The samples generated by νGAN thus agree very well with the

N-body images.

Table 5.4
MS-SSIM scores for νGAN for each neutrino mass

Neutrino mass (in eV) MS-SSIM score
0.0 0.58
0.1 0.48
0.4 0.41
0.8 0.43
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5.6 Conclusions

In this work, we showed how a class of generative models, called generative adversar-

ial networks, can be used to learn the dark matter cosmic web of the universe in the

presence of neutrinos. We developed a deep Wasserstein GAN model to mimic the

structure formation in the universe. Our model, νGAN conditions on neutrino masses

and generate statistically independent and uncorrelated samples of the 2D cosmic web.

Using a bigger latent size, νGAN eliminates the problem of mode collapse, which is

verified with the Multi-scale structural similarity score between the generated and

real samples. The model converges pretty well and the samples generated by it are

visually indistinguishable from the actual N-body samples. We also check the accu-

racy of νGAN’s predictions using various cosmological and computer vision summary

statistics. The power spectrum, transfer function, pixel intensity histogram, peak

statistics, and the MS-SSIM significance score between νGAN-generated samples and

the N-body samples agree really well. This shows that νGAN indeed produces novel

data instead of just mimicking the training N-body data, which has also been seen

in several past works [48, 132–134, 141, 143]. The most important feature of our ap-

proach is that our model can generate new samples of the cosmic web in a fraction of

a second on modern GPU-based systems. Compared to a traditional N-body simula-

tion, this is a speedup of orders of magnitude. This directly addresses the limitation

of the computational bottleneck in generating new simulations of the universe and
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reduces the computational burden on the current resources. In the future, the need to

efficiently generate vast N-body simulations will increase due to upcoming large-scale

cosmological surveys that will generate vast swaths of observational data. Various

kinds of new analysis methods based on deep learning [144] or advanced statistics

[145] will aim to extract more information from the cosmological data and GANs will

play a very pivotal role in providing theoretical predictions to compare against this

data.

5.7 Future Works

In the future, we aim to improve the accuracy and reliability of our model. Cur-

rently, the model is not performing very well on small nonlinear scales and the largest

scales (due to cosmic variance). We will try to improve the predictions of νGAN on

these scales by incorporating a different approach of training, wherein the network

will be trained on the residual of the matter maps between the fiducial cosmology

(massless neutrinos) and the massive neutrino cosmology. This should, in principle,

enable the model to ignore the effects of cosmic variance and learn the residual pixels

themselves at all scales. We will also use higher-order statistics such as bispectrum,

Minkowski functionals, and cross-correlation functions. Finally, it would also be in-

teresting to explore the number of simulations needed to train νGAN for a given

precision requirement.
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Chapter 6

The CAMELS project: public data

release

6.1 Abstract

The Cosmology and Astrophysics with MachinE Learning Simulations (CAMELS)

project was developed to combine cosmology with astrophysics through thousands

of cosmological hydrodynamic simulations and machine learning. CAMELS contains

4,233 cosmological simulations, 2,049 N-body and 2,184 state-of-the-art hydrody-

namic simulations that sample a vast volume in parameter space. In this paper

we present the CAMELS public data release, describing the characteristics of the
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CAMELS simulations and a variety of data products generated from them, including

halo, subhalo, galaxy, and void catalogues, power spectra, bispectra, Lyman-α spec-

tra, probability distribution functions, halo radial profiles, and X-rays photon lists.

We also release over one thousand catalogues that contain billions of galaxies from

CAMELS-SAM: a large collection of N-body simulations that have been combined

with the Santa Cruz Semi-Analytic Model. We release all the data, comprising more

than 350 terabytes and containing 143,922 snapshots, millions of halos, galaxies and

summary statistics. We provide further technical details on how to access, download,

read, and process the data at https://camels.readthedocs.io.

6.2 Introduction

Recent advances in deep learning are triggering a revolution across fields, and cos-

mology and astrophysics are not left behind. Applications include parameter infer-

ence [146–153], superresolution [154–156], generation of mock data [157–159], paint-

ing hydrodynamic properties on N-body simulations [100, 160–169], improving the

halo-galaxy connection [170–174], removing/cleaning astrophysical effects [175–177],

emulating non-linear evolution and speeding up numerical simulations [6, 178–180],

learning functions to interpolate among simulation properties [181, 182], estimating

masses of dark matter halos [183–187] and galaxy clusters [188–194], finding uni-

versal relations in subhalo properties [195], generating realistic galaxy images [196],
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model selection and classification [e.g. 197], and improving SED fitting techniques

[198, 199], among many others (see Stein 2001 for a comprehensive compilation). At

its core, many of these results are based on using neural networks to approximate

complex functions that may live in a high dimensional space. These techniques have

the potential to revolutionize the way we do cosmology and astrophysics.

From the cosmological side we have now a well established and accepted model: the

Λ cold dark matter (ΛCDM) model. This model not only describes the laws and

constituents of our Universe, but it is also capable of explaining a large variety of

cosmological observables, from the temperature anisotropies of the cosmic microwave

background to the spatial distribution of galaxies at low redshift. The model has

free parameters characterizing fundamental properties of the Universe such as its

geometry, composition, the properties of dark energy, the sum of the neutrino masses,

etc. One of the most important tasks in cosmology is to constrain the values of the

these parameters with the highest degree of accuracy. In that way, we may be able

to provide answers to fundamental questions such as: “What is the nature of dark

energy?” and “What are the masses of the neutrinos?”

Many studies have shown that there is a wealth of cosmological information located

on mildly to highly non-linear scales that need summary statistics other than the

power spectrum to be retrieved [51–70, 201–203]. Extracting the maximum amount

1https://github.com/georgestein/ml-in-cosmology
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of information from these scales presents two main challenges. First, the optimal

summary statistics that fully characterizes non-Gaussian density fields is currently

unknown. Second, these scales are expected to be affected by astrophysical effects,

such as feedback from supernovae and active galactic nuclei (AGN), in a poorly under-

stood way [e.g. 204, 205]. Due to this uncertainty, cosmological analysis are typically

carried out avoiding scales that are affected by astrophysical processes.

On the other hand, the cosmological dependence on astrophysical processes such as

the formation and evolution of galaxies is typically neglected. Thus, while intrinsically

linked, cosmology and galaxy formation tend to progress in parallel with limited

interactions. Building bridges between cosmology and galaxy formation will thus

benefit the development of both branches and contribute to an unified understanding.

Unfortunately, the interplay of cosmology and astrophysics takes places on many dif-

ferent scales, including non-linear ones. This implies that cosmological hydrodynamic

simulations are among the best tools to model and study the interactions between

cosmology and astrophysics. However, given the uncertainties in both cosmology and

galaxy formation models, it would be desirable to run simulations for different values

of the cosmological parameters and also for different astrophysical models. Finally,

if the number of simulations is large enough, one can make use of machine learning

techniques to extract the maximum amount of information from the simulations while

at the same time being able to develop high-dimensional interpolators to explore the
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parameter space without having to run additional simulations.

The Cosmology and Astrophysics with MachinE Learning Simulations (CAMELS)

project [206] was conceived to combine cosmology and astrophysics through numerical

simulations and machine learning. At its core, CAMELS consists of a set of 4,233

cosmological simulations that have different values of the cosmological parameters

and different astrophysical models. All these virtual universes can be used as a large

dataset to train machine learning algorithms.

The CAMELS project was first introduced and described in detail in Villaescusa-

Navarro et al. [206]. The theoretical justification behind some of its main features

(e.g. the use of a latin-hypercube covering a big volume in parameter space) was

presented in Villaescusa-Navarro et al. [207]. Since then, a number of different works

have made use of the CAMELS simulations to carry out a large and diverse variety

of tasks:

1. In [195] CAMELS was used to identify a universal relation between subhalo

properties using neural networks and symbolic regression.

2. In [208] CAMELS was used to train convolutional neural networks to inpaint

masked regions of highly non-linear 2D maps from different physical fields.

3. In [146] CAMELS was used to show that neural networks can extract cosmo-

logical information and marginalize over baryonic effects at the field level using
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multiple fields simultaneously.

4. In [147] CAMELS was used to show that neural networks can place robust,

percent level, constraints on Ωm and σ8 from 2D maps containing the total

matter mass of hydrodynamic simulations.

5. In [209] the CAMELS Multified Dataset, a collection of hundreds of thousands

of 2D maps and 3D grids for 13 different fields was presented and publicly

released.

6. In [157] CAMELS was used to train a generative model that can produce diverse

neural hydrogen maps by end of reionization (z∼6) as a function of cosmology.

7. In [186], a model based on Graph Neural Networks (GNNs) was trained on the

data from the CAMELS simulations to predict the total mass of a dark matter

halo given its galactic properties while accounting for astrophysical uncertain-

ties.

8. In [187] the GNN models proposed in [186] and trained on CAMELS data were

used to obtain the first constrain on the mass of the Milky Way and Andromeda

using artificial intelligence.

9. In [210] CAMELS was used to investigate the potential of auto- and cross-power

spectra of the baryon distribution to robustly constrain cosmology and baryonic

feedback.
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10. In [211] CAMELS was used to reduce the scatter in the Sunyaev-Zeldovich (SZ)

flux-mass relation, Y -M , to provide more accurate estimates of cluster masses.

11. In [212] CAMELS was used to study deviations from self-similarity in the Y -M

relation due to baryonic feedback processes, and to find an alternative relation

which is more robust.

12. In [213] CAMELS was used to demonstrate the strong constraints that next-

generation measurements of the y-distortions could provide on feedback models.

13. In Moser et al. [214] CAMELS was used to compute thermal and kinetic SZ

profiles. A Fisher analysis was performed to forecast the constraining power of

observed SZ profiles on the astrophysical models varied in the simulations.

14. In [215] CAMELS was used to investigate whether the value of the cosmological

parameters can be constrained using properties of a single galaxy.

15. In Jo et al. [216] CAMELS has been exploited to infer the full posterior on

the combinations of cosmological and astrophysical parameters that reproduce

observations such as cosmic star formation history and stellar mass functions

using simulation-based inference.

16. Perez et al. [217] created CAMELS-SAM, a third larger ‘hump’ of CAMELS

by combining N-body simulations with the Santa Cruz semi-analytic model of

galaxy formation. CAMELS-SAM contains billions of galaxies and represents a
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perfect tool to investigate and quantify the amount of cosmological information

that can be extracted with galaxy redshift surveys.

In this paper, we describe the characteristics of the CAMELS simulations together

with a variety of data products obtained from them, and we publicly release all

available data. This paper is accompanied by the online documentation hosted at

https://camels.readthedocs.io, containing further technical details on how to

access, read, and manipulate CAMELS data. We believe that the CAMELS data

will trigger new developments and findings in the fields of cosmology and galaxy

formation.

This paper is organized as follows. In Sec. 6.3 we briefly describe the simulations of

the CAMELS project and their scientific goals. The specifications of the data release

are outlined in detail in Sec. 6.4. In Sec. 6.5 we describe how to access and download

the data together with the overall data organization. We conclude in Sec. 6.6.
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6.3 Simulations

6.3.1 Overview

CAMELS consists of a set of 4,233 cosmological simulations: 2,049 N-body and 2,184

hydrodynamic. All simulations follow the evolution of 2563 dark matter particles and

2563 fluid elements (only the hydrodynamic simulations) from z = 127 down to z = 0

in a periodic box of (25 h−1Mpc)3 volume. The initial conditions were generated at

z = 127 using second order perturbation theory (2LPT)2. The linear power spectra

were computed using CAMB [12]. The mass resolution is approximately 1.27 ×

107 h−1M⊙ per baryonic resolution element and the gravitational softening length is

approximately 2 kpc. For each simulation we have saved 34 snapshots, from z = 6 to

z = 0. All simulations share the value of these cosmological parameters: Ωb = 0.049,

h = 0.6711, ns = 0.9624,
∑

mν = 0.0 eV, w = −1. However, the value of Ωm and σ8

varies from simulation to simulation.

The state-of-the-art hydrodynamic simulations have been run using two different

codes, AREPO [218, 219] and GIZMO [220], and they made use of the IllustrisTNG

[221, 222] and SIMBA [223] galaxy formation models, respectively. However, the

values of four astrophysical parameters vary from simulation to simulation. Two

2https://cosmo.nyu.edu/roman/2LPT/
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Figure 6.1: We show two images of the gas distribution of two distinct
IllustrisTNG simulations. The one on the top displays the results for a sim-
ulation with high supernova feedback strength, while the one on the bottom
is from a simulation with low supernova feedback. The color represents gas
temperature, while its brightness corresponds to the gas density. Finally,
we apply an extinction based on gas metallicity. As can be seen, the effect
of feedback is very pronounced: it not only affects the gas abundance and
temperature on the smallest galaxies but it also changes the gas distribution
in the most massive galaxies.
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parameters, ASN1 and ASN2, control the efficiency of supernova feedback, while the

other two parameters, AAGN1 and AAGN2, parametrize the efficiency of feedback from

supermassive black holes, as described in more detail below. In Fig. 6.1 we illustrate

visually the effect of changing one of the astrophysical parameters in one simulation.

As can be seen, while the large-scale structure remains unchanged, changing the

efficiency of supernova feedback has a large effect on both small and large galaxies.

For each hydrodynamic simulation, CAMELS includes its N-body counterpart. The

N-body simulations have been run with GADGET-III [224]. With the simulation

snapshots and initial conditions we also release the Gadget parameter files, CAMB

parameters files, and linear power spectra used to run the simulations.

6.3.2 Organization

The CAMELS simulations are divided into three different suites:

† IllustrisTNG. All simulations run with the AREPO code and employing the

IllustrisTNG model belong to this suite. There are 1,092 IllustrisTNG simula-

tions in CAMELS.

† SIMBA. All simulations run with the GIZMO code and employing the SIMBA

subgrid model belong to this suite. There are 1,092 SIMBA simulations in
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CAMELS.

† N-body. All N-body simulations belong to this suite. There are 2,049 N-body

simulations in CAMELS.

We provide further details on each suite below. Each simulation suite contains four

different sets, depending on the way the values of the cosmological parameters, as-

trophysical parameters, and initial conditions random phases are organized:

† LH stands for latin-hypercube. This set contains 1,000 simulations, each with

different values of Ωm, σ8, ASN1, ASN2, AAGN1, AAGN2, and the initial conditions

random phases. In the case of the N-body suite, this set contains 2,000 simula-

tions varying Ωm, σ8 and the initial conditions random phases, such that they

match those from the IllustrisTNG and SIMBA LH sets.

† 1P stands for 1 parameter at a time. This set contains 61 simulations with the

same values of the initial conditions random seed. The simulations only differ

in the value of a single cosmological or astrophysical parameter at a time, with

11 variations for each, including the set of fiducial values. In the case of the

N-body suite, this set contains 21 simulations varying Ωm and σ8.

† CV stands for cosmic variance. This set contains 27 simulations that share the

values of the cosmological and astrophysical parameters. The simulations only

differ in the value of the initial conditions random seed. There are 27 N-body
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counterpart simulations for this set.

† EX stands for extreme. This set contains 4 simulations that have the same value

of the initial conditions random seed and the same value of the cosmological

parameters. One of them represents a model with no feedback, while the other

two have either extremely large supernova or AGN feedback. The N-body suite

only contains 1 simulation.

For further details on the CAMELS simulations we refer the reader to Villaescusa-

Navarro et al. [206] and references therein.

6.3.3 Parameters

Both the IllustrisTNG and SIMBA simulation suites model galaxy formation by fol-

lowing Newtonian gravity in an expanding background, hydrodynamics, radiative

cooling, star-formation, stellar evolution and feedback, SMBH growth and AGN feed-

back. IllustrisTNG also follows magnetic fields in the MHD limit and SIMBA follows

dust grains. The implementations of gravity and hydrodynamics solvers differ be-

tween the codes, as well as the parameterizations of radiative cooling, star-formation

and stellar evolution. However, the most consequential differences between the suites

are in the implementations of feedback in the form of galactic winds and from AGN,

since the physics of these processes are the least theoretically understood as well as
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least observationally constrained. Therefore, these are also the parts of the physi-

cal modeling which we have chosen to apply variations to, through the parameters

mentioned above, ASN1, ASN2, AAGN1, AAGN2, as described next.

CAMELS was designed to sample a large volume in parameter space. Thus, the value

of both the cosmological and astrophysical parameters is varied within a very broad

range:

Ωm ∈ [0.1, 0.5], (6.1)

σ8 ∈ [0.6, 1.0], (6.2)

ASN1 ∈ [0.25, 4.0], (6.3)

ASN2 ∈ [0.5, 2.0], (6.4)

AAGN1 ∈ [0.25, 4.0], (6.5)

AAGN2 ∈ [0.5, 2.0]. (6.6)

In both the LH and 1P sets, the value of Ωm and σ8 is sampled linearly, while the

value of the astrophysical parameters is varied in logarithmic scale.

In both models, ASN1 represents a normalization factor for flux of the galactic wind

feedback. In IllustrisTNG it is implemented as a pre-factor for the overall energy
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output per unit star-formation [222], while in SIMBA it is implemented as a pre-

factor for the mass-loading factor (wind mass outflow rate per unit star-formation

rate) relative to that predicted by higher-resolution simulations [225]. In both models,

ASN2 represents a normalization factor for the speed of the galactic winds. This

implies that for a fixed ASN1, changes in ASN2 in IllustrisTNG affect the wind speed

in concert with the mass-loading factor (to keep a fixed energy output), while in

SIMBA changes in ASN2 affect the wind speed in concert with the wind energy flux

(with a fixed mass-loading factor).

In both models, AAGN1 represents a normalization factor for the energy output of

AGN feedback while AAGN2 affects the specific energy of AGN feedback. However,

the implementations of AGN feedback are quite significantly different between the

suites and so is the effect of those parameters. In IllustrisTNG, AAGN1 is imple-

mented as a pre-factor for the overall power injected in the ‘kinetic’ feedback mode

[221], while in SIMBA it is implemented as a pre-factor for the momentum flux of

mechanical outflows [226] in the ‘quasar’ and ‘jet’ feedback modes. In IllustrisTNG,

AAGN2 directly parameterizes the burstiness and the temperature of the heated gas

during AGN feedback ‘bursts’, while in SIMBA it controls the speed of continuously-

driven AGN jets. We refer the reader to Villaescusa-Navarro et al. [206] for a detailed

description of the feedback parameter variations in CAMELS.
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It is very important to remark that, in light of the discussion above, while the cosmo-

logical parameters in the N-body, IllustrisTNG, and SIMBA suites represent the very

same physical effect, the astrophysical parameters in the SIMBA and IllustrisTNG

suites do not. The reason is that these parameters characterize similar physical pro-

cesses but in different subgrid models. Thus, one should not attempt to match these

parameters across suites. In other words, when doing, e.g., parameter inference from

some observable to the value of the cosmological and astrophysical parameters, and

the model is trained on IllustrisTNG simulations, one can attempt to test the model

to see if it is able to recover the correct cosmology from SIMBA simulations. On the

other hand, one should not try to infer the value of the astrophysical parameters of

IllustrisTNG simulations from a model trained on SIMBA simulations.

To illustrate the differences between the IllustrisTNG and SIMBA simulations we

have taken all galaxies of all simulations belonging to the LH sets of both suites. For

each galaxy we consider 8 different properties and in Fig. 6.2 we show 1D and 2D

distributions of them. As can be seen, while the distributions overlap in all cases,

there are noticeable differences in all cases.

6.4 Data Description

In this section we describe the different data products we release.
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Figure 6.2: In this plot we illustrate the similarities and differences between
the IllustrisTNG and SIMBA suites considering eight different properties of
the subhalos: 1) stellar mass, M∗, 2) gas mass, Mg, 3) black-hole mass, MBH,
4) stellar half-mass radius, R∗, 5) stellar metallicity, Z∗, 6) gas metallicity,
Zg, 7) maximum circular velocity, Vmax, and 8) star-formation rate, SFR. We
show the 1-dimensional and 2-dimensional distribution of these properties
for all galaxies in the LH sets of the IllustrisTNG (orange) and SIMBA
(green) suites. Masses are in units of 1010/(M⊙/h), R∗ in kpc/h, Vmax in
km/s and SFR in M⊙/yr; the logarithm of each variable is shown except for
the metallicity and the SFR.
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6.4.1 Snapshots

We release the full snapshots generated by the Gadget-III, AREPO, and GIZMO

codes. For each simulation, we have 34 snapshots from z = 6 down to z = 0 (we pro-

vide further details in the online documentation about the redshifts of the snapshots).

We also release the initial conditions of each simulation.

All initial condition files and the snapshots of all simulations contain the positions,

velocities, and IDs of the particles. The snapshots of the hydrodynamic simulations

contain additional fields that store properties of the gas, stars, and black-hole par-

ticles. Examples are the masses of the particles, the electron fraction from gas or

the age of the star particles. We note that the simulations from the IllustrisTNG

and SIMBA suites are not identical in terms of the fields they store. The differences

reflect the different subgrid models employed in these two simulations. The structure

and contents of the IllustrisTNG snapshots are the same as in the publicly released

IllustrisTNG simulation data [227]. Likewise, the SIMBA snapshots are identical in

format to that available on the publicly released SIMBA database3.

The snapshots are stored as hdf5 files, and we provide details in the online documen-

tation on how to read and manipulate the data from them.

3http://simba.roe.ac.uk
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6.4.2 Halo and subhalo catalogues

We release the halo and subhalo catalogues generated from the CAMELS simulations.

The halos and subhalos have been identified using SUBFIND [228, 229], Rockstar

[230], and the Amiga Halo Finder [AHF; 231]. The codes have been run on top of

all snapshots of all simulations. In total, we release 506,022 catalogues that contain

millions of halos, subhalos, and galaxies. We now describe the catalogues in more

detail.

6.4.2.1 Subfind

Subfind [228, 229] was run on-the-fly for the IllustrisTNG simulations while for the

SIMBA and N-body simulations it was run in post-processing. Subfind identifies

both halos and subhalos, and computes several physical quantities for them in both

the N-body and hydrodynamic simulations. We release all Subfind catalogues (one

per simulation and redshift) for all simulations and all redshifts. The data is stored

as hdf5 files, and we provide details on how to read the data and the information

stored in them in the online documentation.
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6.4.2.2 Amiga Halo Finder

AHF [231] was run in post-processing for the IllustrisTNG and SIMBA simulations.

AHF utilizes isodensity contours to locate halo centers. Halo virial radii are defined

to represent spherical overdensity regions with 200 times the critical density. We

release the AHF catalogues for all simulations and redshift snapshots, including (1)

global halo properties, (2) radial profiles, and (3) particle ID lists to identify the host

halo of each particle. We provide further details on the format and how to read these

catalogues in the online documentation.

6.4.2.3 Rockstar

In addition to the Subfind and AHF halo catalogs, we also release halo catalogs

constructed using the Rockstar halo finder [230]. Rockstar identifies dark mat-

ter halos based on an adaptive hierarchical refinement of friends-of-friends in six-

dimensional phase space plus time. Substructures are identified using successively

smaller linking length and particles are assigned to the inner-most substructures,

which are defined as halo seeds, based on their phase-space proximity. We release

Rockstar halo catalogs of all 34 snapshots from z = 6 to 0 for all simulations.

Furthermore, we use Consistent-Trees [232] to generate merger trees from the
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Rockstar halo catalogs. We note that Consistent-Trees ensures consistency of

halo mass, position, and velocity across time steps. Since all CAMELS simulations

have only 34 snapshots, we perform the following exercise to quantify its validity.

We have compared the Rockstar + Consistent-Trees outputs at z = 0 from

two CAMELS simulations that have the same initial conditions but different time

resolution (34 versus 200 snapshots). We find good agreement between the outputs

for certain proxies of merger history such as peak mass and half-mass assembly time.

However, we caution readers when using more detailed properties of the halo merger

histories, such as accretion history, which are affected by the lower time sampling. All

Rockstar catalogues and Consistent-Trees merger trees occupy 1.2 Terabytes

of data.

6.4.2.4 CAESAR

We release full cross-matched galaxy/halo catalogs for each snapshot generated using

the yt extension package Caesar4. Caesar identifies halos based on a 3-D friends-

of-friends (FoF) algorithm using a linking length of 0.2 times the mean interparticle

spacing, and within each halo it identifies galaxies based on a 6D FoF with a link-

ing length of 0.0056 times the mean interparticle spacing applied only to dense gas

(hydrogen number density nH < 0.13 cm−3) and star particles.

4caesar.readthedocs.io
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Caesar then calculates a huge number of properties for each halo and galaxy, includ-

ing physical properties such as masses and sizes for each component, dynamical prop-

erties such as velocity dispersions, and photometric properties using the Flexible Stel-

lar Population Synthesis [233, 234] package5. There are over 130 bands pre-computed,

both apparent and absolute magnitudes, both with and without dust extinction. Ex-

tinction is calculated via the line-of-sight dust content to each star along a chosen

viewing axis (for IllustrisTNG, a Milky Way-like dust-to-metal ratio is assumed),

providing pseudo-radiative transfer that generally agrees with full radiative transfer

calculations within 0.1 magnitudes. An extinction law is assumed that is a compos-

ite of Milky Way for low galaxy specific star formation rates (sSFR< 10−10 yr−1),

Calzetti for high (sSFR> 10−9 yr−1), and interpolated in between, with a further in-

terpolation in galaxy stellar metallicity to incorporate an SMC law such that at above

solar metallicity no SMC law is folded in, while for metallicities below one-tenth solar

it is fully SMC (regardless of sSFR).

All this information is stored in a single hdf5 file for each snapshot, called a Cae-

sar catalog. Quantities from the catalog can be loaded into Caesar using simple

Python list comprehension, and it is straightforward to access halo information for

a given galaxy and vice versa. Caesar also provides particle membership lists for

each galaxy/halo, so that one can compute any user-desired quantity by loading the

5See https://caesar.readthedocs.io/en/latest/catalog.html for the full list of quantities.
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particles from the original snapshot6. Caesar also provides the functionality to com-

pute progenitors and descendants of galaxies and/or halos across different snapshots,

though this information has not been pre-computed.

Caesar catalogs typically are roughly 1% of the size of the corresponding snapshots,

so they provide a compact and manageable way to access galaxy and halo data quickly

and conveniently. Caesar also interfaces seamlessly with yt for further analysis and

visualization. See the online documentation and caesar.readthedocs.io for more

details.

6.4.3 Void catalogues

We release void catalogs built from the CAMELS simulations with the Void IDenti-

fication and Examination toolkit (VIDE) [235]. VIDE, based on ZOBOV [236], has been

widely used to find voids both in data—e.g. voids from the SDSS BOSS [237, 238]

and eBOSS [239] datasets, or data from DES [240]—and simulations [e.g. 241–244].

Furthermore, VIDE has also been applied to hydrodynamic simulations [245, 246],

showing its suitability for the CAMELS dataset.

VIDE was run on top of CAMELS galaxies, that were defined as subhalos containing

more than 20 star particles. Given the size of the CAMELS simulations, and the

6Caesar works most straightforwardly with the PyGadgetReader package for this; see the Cae-
sar documentation for examples.
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extended size of cosmic voids (that usually span sizes from 5 − 100 h−1Mpc), the

number of voids for each CAMELS simulation is relatively small. The VIDE catalogues

store information about the positions, sizes, ellipticities, and member galaxies of each

void. In the online documentation we provide further details on how to read and

manipulate the VIDE catalogues.

6.4.4 Lyman-alpha spectra

We release mock Lyman-α spectra generated using a public, well-tested code exhibited

in Bird et al. [247] and used previously for studies of the Lyman-α Forest in Gurvich

et al. [248]. The spectra is generated for 5,000 sightlines randomly placed through the

simulation box. This spectral data was generated for the IllustrisTNG and SIMBA

suites for all simulation sets at all redshifts. The locations of the random sightlines

vary across snapshots.

The total absorption along a sightline is the sum of the absorption from all the nearby

gas cells. The simulated spectra has a spectral resolution of 1 km/s and any lines with

an optical depth of τ < 10−5 are neglected. For further details on the artificial spectra

calculation, we direct the reader to Bird et al. [247]. In the online documentation we

provide details on how to read and manipulate the Lyman-α spectra.
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6.4.5 Summary statistics

We release a large set of summary statistics, containing power spectra, bispectra, and

probability distribution functions. This data can be used for a large variety of tasks

such as carrying out parameter inference and building emulators.

6.4.5.1 Power spectrum

The power spectrum is the most prominent summary statistic of cosmology. The

procedure used to carry out this task is the following. First, the positions and masses

of the considered particles are read from the snapshots. Next, the masses of the

particles are deposited into a regular grid with 5123 voxels using the Cloud-in-Cell

mass-assignment scheme (MAS). We then Fourier transform that field and correct

modes amplitudes to account for the MAS. Finally, the power spectrum is computed

by averaging the square of the modes amplitudes

P (ki) =
1

Ni

∑
k∈kbin

|δ(k)|2 , (6.7)

where the k-bins have a width equal to the fundamental frequency, kF = 2π/L (L

is the box size), and Ni is the number of modes in the k-bin. The wavenumber
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associated with each bin is

ki =
1

Ni

∑
k∈kbin

k . (6.8)

We have computed the power spectra of the total matter for both the N-body and the

hydrodynamic simulations. Besides, for the hydrodynamic simulations we have also

computed the power spectra of the gas, dark matter, stars, and black hole components.

We have done this for all snapshots of each simulation. We have made use of Pylians7

to carry out the calculation. In total, we release 440,946 power spectra. All power

spectra occupy ≃ 10 Gigabytes of data.

The above methods are inefficient if we wish to compute the power spectrum at large

k, since they require a unwieldy FFT grid. In this regime, alternative methods such

as configuration-space power spectrum estimators [249] can be of use, since their

computational cost decreases as the minimum scale increases. We provide power

spectrum multipoles computed up to k = 1, 000 hMpc−1 and ℓmax = 4, using a

combination of the above Pylians code and the hipster pair-counting approach

package [250], switching between the two at k = 25 hMpc−1 and convolving the

small-scale spectra with a window of size R0 = 1 h−1Mpc for efficiency. Spectra are

computed at z = 0 for all matter species listed above, and we include results from

each simulation of the LH set from the IllustrisTNG, SIMBA, and N-body suites in

both real- and redshift-space, with the latter using three choices of redshift-space

axis. In total we compute 44,000 power spectra up to k = 1, 000 hMpc−1, requiring

7https://pylians3.readthedocs.io
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≃ 14, 000 CPU-hours and occupying ≃ 0.6 Gigabytes of storage.

For all spectra, we store the value of k in each k-bin, the value of P (ki), and (for the

large-scale spectra) the number of modes in each bin. We provide further details on

how to read and manipulate these files in the online documentation.

6.4.5.2 Bispectrum

On large scales, the first non-Gaussian statistic of interest is the bispectrum, encoding

the three-point average of the density field. In this release, we provide bispectrum

measurements from gas, dark matter and total matter for the 1,000 simulations of the

LH set of the IllustrisTNG and SIMBA suites, as well as 1,000 N-body simulations.

These are performed at redshift zero, both in real-space and redshift-space (for three

choices of line-of-sight). Additional data can be computed upon request.

On large scales, bispectra are computed analogously to §6.4.5.1, first gridding the

data with 1283 voxels using a Triangular-Shaped-Cloud MAS scheme. We then use

the Pylians estimator [251], implementing the approach of Watkinson et al. [252],

which practically computes the following sum via a series of FFTs:

B(k1, k2, µ) =

∑
k1

∑
k2
δ(k1)δ(k2)δ(−k1 − k2)

NT (k1, k2, µ)
. (6.9)

133



The bispectrum is parametrized by two lengths, k1 and k2, and an internal angle

µ ≡ k̂1 · k̂2, with NT (k1, k2, µ) giving the number of triangles per bin. We use 20

k-bins with ∆k = 0.25 hMpc−1 ≈ kF , and ten linearly spaced µ bins.

The above method becomes prohibitively expensive as kmax (and thus the FFT grid)

increases. To ameliorate this, we compute the bispectra at large k using the hipster

code, as for the small-scale power spectra, here convolving the spectra with a smooth

window of scale R0 = 2 h−1Mpc. This computes the Legendre multipoles of the

bispectrum, related to Eq. 6.9 by

B(k1, k2, µ) =
∞∑
ℓ=0

Bℓ(k1, k2)Lℓ(µ), (6.10)

for Legendre polynomial Lℓ(µ), and uses 25 linearly spaced k-bins in the range

[0, 50]hMpc−1 for ℓ ≤ 5, subsampling to 105 particles for efficiency. These bispectra

are computed for the same simulations as before, and will allow information to be

extracted from very small scales. In total, 28,000 bispectra are estimated using each

method, requiring ≃ 70,000 CPU-hours and ≃ 2.1 Gigabytes of storage.

6.4.5.3 Probability distribution function

We estimate probability distribution functions (PDF) for 13 different physical fields

using the 3D grids of the CAMELS Multifield Dataset (CMD) (see Sec. 6.4.8). The
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PDFs are calculated for all the fields: 1) gas temperature, 2) gas pressure, 3) neutral

hydrogen density, 4) electron number density, 5) gas metallicity, 6) gas density, 7)

dark matter density, 8) total mass density, 9) stellar mass density, 10) magnetic fields,

11) ratio between magnesium over iron, 12) gas velocity, and 13) dark matter velocity,

for all the grid sizes, i.e., 128, 256 and 512 at redshifts 0.0, 0.5, 1.0, 1.5, and 2.0. The

PDFs are calculated as follows. First, the 1,000 3D grids from all simulations in the

LH set are read into memory. We then calculate the minimum value across grids and

if it equals 0, a small offset is added to all voxels of all grids. The offset, ε, is given

by

ε =
minnon−zero

1020
, (6.11)

where minnon−zero denotes the non-zero minimum of all the 1,000 grids. Then we

log-transform the entire field (to the base 10) and construct a histogram of 500 bins

between the minimum and maximum values of the entire field. Finally, we save to

disk the number of counts in each bin for each grid in the considered field.

6.4.6 Profiles

We provide three-dimensional spherically-averaged profiles of gas density, thermal

pressure, gas mass-weighted temperature, and gas mass-weighted metallicity for the
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1P, LH, and CV sets of both the IllustrisTNG and SIMBA suites. We follow Moser

et al. [253] in extracting halo information and construction of the profiles. Specifically,

we use illstack_CAMELS8 (a CAMELS-specific version of the original, more general

code illstack used in Moser et al. 253), to generate the three-dimensional profiles,

extending radially from 0.01−10 Mpc in 25 log10 bins. The profiles are stored in hdf5

format which can be read with the python script provided in the illstack_CAMELS

repository.

6.4.7 X-rays

We provide mock X-ray photon lists in the form of SIMPUT fits files for all halos

above 1012 M⊙ across all hydrodynamic CAMELS runs at redshift z = 0.05 obtained

from the snapshot 032. The SIMPUT files are generated using the pyXSIM package9

and contain positional coordinates in RA and DEC coordinates and energy in units of

keV. These files serve as inputs into other software packages, including SOXS10 and

SIXTE [254] that generate mock observations for specific telescopes using custom

instrument profiles. These SIMPUT files can also represent idealized observations by

an X-ray telescope, and we also provide a single collated file with projected radial

surface brightness (SB) profiles for all halos for the soft X-ray band (0.5-2.0 keV) in

8https://github.com/emilymmoser/illstack_CAMELS
9http://hea-www.cfa.harvard.edu/~jzuhone/pyxsim/
10http://hea-www.cfa.harvard.edu/~jzuhone/soxs/
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units of erg s−1 kpc−2. This file holds 1.6 × 105 radial profiles across the 2,190 1P,

CV, LH, and EX simulations.

6.4.8 CAMELS Multifield Dataset

The CAMELS Multifield Dataset, CMD, is a collection of hundreds of thousands of 2D

maps and 3D grids generated from CAMELS data. CMD contains 15,000 2D maps for

13 different fields at z = 0, and 15,000 3D grids, at three different spatial resolutions

and at five different redshifts. The data was generated by assigning particles positions

and properties (e.g. mass and temperature for the temperature field) to either 2D

maps or 3D grids. There are many possible machine learning applications of this

dataset, e.g.: 1) parameter inference [146, 147], 2) summary or field level emulation,

3) mapping N-body to hydrodynamic simulations, 4) superresolution, and 5) time

evolution. In total, CDM represents over 70 Terabytes of data. We refer the reader

to [209] and the CMD online documentation11 for further details on this dataset.

6.4.9 CAMELS-SAM

CAMELS-SAM represents a newer third ‘hump’ of CAMELS, mimicking its construc-

tion and purpose but using larger N-body volumes that are populated with galaxies

11https://camels-multifield-dataset.readthedocs.io
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using the Santa Cruz semi-analytic model (SAM, Somerville et al. 255, 256) of galaxy

formation. The N-body simulations are run with AREPO [219], and follow the evo-

lution of 6403 dark matter particles over a periodic box of (100 h−1 cMpc)3 volume

from z = 127 to z = 0. For each simulation we save 100 snapshots. The initial

conditions were otherwise generated as described in §6.3, with the same underlying

cosmology, and a newly generated latin hypercube varying Ωm, σ8, and three SAM

parameters. Those parameters were chosen as the ones closest to the astrophysical

parameters varied in CAMELS. Two parameters control the amplitude and rate of

mass outflow from massive stars out of a galaxy, and the third parameter broadly

controlling the strength of the radio jet mode of AGN.

Like CAMELS, CAMELS-SAM has an LH set containing 1,000 simulations. The

values of the cosmological and astrophysical parameters in the set are organized in a

latin-hypercube. We additionally have 5 simulations in the CV set where the value

of the initial random seed varies and the 5 parameters are held fixed to their fiducial

values. Finally, a 1P set with 12 simulations exists, where the SC-SAM was run at

the smallest and largest value of each SAM parameter for two of the CV simulations.

It is important to emphasize the differences between the original CAMELS and the

CAMELS-SAM simulations. First, CAMELS-SAM consists of N-body simulations

with a volume 64× larger than the former, while CAMELS contains both N-body

and hydrodynamic simulations. Second, CAMELS-SAM stored 100 snapshots while
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CAMELS only kept 34. Third, galaxies are modelled in very different ways: in

CAMELS they arise from the hydrodynamic simulations while in CAMELS-SAM

they are modelled through the Santa Cruz semi-analytic model.

For all CAMELS-SAM simulations, we release:

† The halo and subhalo catalogues from both Subfind and Rockstar.

† The merger trees generated from Consistent trees.

† The galaxy catalogues from the Santa Cruz SAM.

The galaxy catalogues are stored as .dat text files with comma-separated values.

These files contain information about the halo and galaxies from all snapshots of

a given simulation. The exact available properties, their organization and units,

and example code to open these files can be found on the CAMELS-SAM online

documentation12. The total size of these data products is around 35 Terabytes.

The raw data (compressing full N-body snapshots across redshifts) has been stored

on tape and its content can be retrieved upon request. We refer the reader to Perez,

Genel, et al. (2022) for further details on CAMELS-SAM, as well as a proof-of-

concept of its power using clustering summary statistics to constrain cosmology and

astrophysics with neural networks.

12https://camels-sam.readthedocs.io
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6.5 Data Access and structure

In this section we describe the different methods to access the data and its structure.

6.5.1 Data Access

We provide access to CAMELS data through four different platforms:

† Binder. Binder is a system that allows users to read and manipulate data

that is hosted at the Flatiron Institute through either a Jupyter notebook or a

unix shell. The system provides access to the entire CAMELS data and allows

users to perform calculations that do not require large amounts of CPU power.

We note that heavy calculations are not supported by this system, and we

recommend the user to download the data locally and work with it accordingly.

We provide the link to the Binder environment in the online documentation.

All CAMELS data can be accessed, read, and manipulated through Binder.

We provide further technical details on Binder usage in the online documenta-

tion.

† Globus. Globus13 is a system designed to transfer large amounts of data in an

13https://www.globus.org
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Pk

IllustrisTNG IllustrisTNG_DM SIMBA SIMBA_DM

LH_0 LH_1 LH_999. . . 1P_0 1P_1 1P_65 CV_0 CV_1 CV_26 EX_0 EX_1 EX_2 EX_3. . . . . .

Pk_c_z=0.86.txt   Pk_m_z=0.10.txt  Pk_s_z=2.15.txt
Pk_c_z=0.95.txt   Pk_m_z=0.15.txt  Pk_s_z=2.30.txt
Pk_c_z=1.05.txt   Pk_m_z=0.21.txt  Pk_s_z=2.46.txt
Pk_c_z=1.15.txt   Pk_m_z=0.27.txt  Pk_s_z=2.63.txt
Pk_c_z=1.25.txt   Pk_m_z=0.33.txt  Pk_s_z=2.80.txt
Pk_c_z=1.36.txt   Pk_m_z=0.40.txt  Pk_s_z=3.00.txt
Pk_c_z=1.48.txt   Pk_m_z=0.46.txt  Pk_s_z=3.49.txt
…

Figure 6.3: This scheme shows the generic structure of CAMELS data.
The top level represents the type of data it contains (power spectra in this
case). Inside that folder there are typically four folders containing the data
for the three different simulation suites: IllustrisTNG, SIMBA, and their N-
body counterparts (IllustrisTNG DM and SIMBA DM). Within each of those
folders there are numerous folders, containing the data from the different
simulations belonging to each suite; i.e. the simulations from the four sets:
LH, 1P, CV, and EX. Finally, inside each of those folders the user can find
the data products themselves. In this particular case, the power spectra for
the different component.

efficient way. All CAMELS data can be transferred through globus. We provide

the globus link in the online documentation14. Users can transfer the data to

either another cluster or directly to their personal computer.

† Url. We also provide a uniform resource locator (url) to access the data through

a browser. We do not recommend transferring large quantities of data using

this procedure, as both the speed and its reliability is much worse than globus.

14Since this link may change with time, we make it available in the online documentation, where it
can be updated if needed.
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On the other hand, to download small amounts of data, such as a particular

power spectrum or a halo catalogue, it may be useful. All CAMELS data can

be accessed and downloaded through the url. We provide the url link in the

online documentation where it will be always updated.

† FlatHUB. FlatHUB is a platform that allows users to explore and compare

data from different simulations by browsing and filtering the data, making sim-

ple preview plots, and downloading sub-samples of the data. We provide access

to the Subfind halo and subhalo catalogues of the IllustrisTNG and SIMBA

suites through this platform. We provide a link to FlatHUB in the online doc-

umentation.

6.5.2 Data Structure

The data is organized in different folders that contain similar type of data:

† Sims. This folder contains the raw data from the simulations, such as initial

conditions, snapshots, and parameter files. This folder contains 205 terabytes

of data.

† FOF Subfind. This folder contains the SUBFIND halo and subhalo cata-

logues described in Sec. 6.4.2.1. This folder contains 4 terabytes of data.
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† AHF. This folder contains the AHF halo catalogues described in Sec. 6.4.2.2.

This folder contains 6 terabytes of data.

† Rockstar. This folder contains the Rockstar halo and subhalo catalogues

together with the merger trees from Consistent-trees as described in Sec.

6.4.2.3. This folder contains 1 terabyte of data.

† Caesar. This folder contains the Caesar halo and galaxy catalogues described

in Sec. 6.4.2.4. This folder contains around 1 terabyte of data.

† Pk. This folder contains the power spectra described in Sec. 6.4.5.1. This

folder contains approximately 10 gigabytes of data.

† Bk. This folder contains the bispectra measurements described in Sec. 6.4.5.2.

This folder contains approximately 2.6 gigabytes of data.

† CMD. This folder contains the CAMELS Multifield Dataset. This folder con-

tains 76 terabytes of data.

† VIDE Voids. This folder contains the void catalogues described in Sec. 6.4.3.

This folder contains 200 megabytes of data.

† Lya. This folder contains the Lyman-α spectra described in Sec. 6.4.4. This

folder contains 14 terabytes of data.

† PDF. This folder contains the probability distribution function measurements

described in Sec. 6.4.5.3. This folder contains more than 1 gigabyte of data.
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† Profiles. This folder contains the spherically-averaged 3D profiles described in

Sec. 6.4.6. This folder contains 48 gigabytes of data.

† X-rays. This folder contains the X-rays photon lists described in Sec. 6.4.7.

This folder contains over 100 gigabytes of data.

† SCSAM. This folder contains all CAMELS-SAM data products described in

Sec. 6.4.9. This folder contains more than 50 terabytes.

† Utils. This folder contains additional files that can be useful to the user,

including a file with the value of the scale factors corresponding to simulation

snapshots and files indicating the values of the cosmological and astrophysical

parameters of each simulation.

When possible, we have organized the data in the different folders in a self-similar

way. We show the generic data structure scheme in Fig. 6.3. The data is first

organized into folders that contain: 1) the IllustrisTNG hydrodynamic simulations,

2) the SIMBA hydrodynamic simulations, 3) the N-body counterparts of 1), and 4)

the N-body counterparts of 2). Inside each of these folders the user can find many

different sub-folders whose name refers to the specific simulation set and realization:

e.g. the first simulation of the LH set is denoted as LH 0. Finally, inside each of

those folders the user can find the data with the particular characteristics of each

data product. We note that these folders may contain data products for a particular

CAMELS simulation at all redshifts.
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For some data products, e.g. CMD and CAMELS-SAM, the data organization is

slightly different to the one outlined above. In those cases, we provide further details

in the online documentation.

6.6 Summary

The goal of the CAMELS project is to connect cosmology with astrophysics via

thousands of state-of-the-art cosmological hydrodynamic simulations and extract the

maximum amount of information from them via machine learning. CAMELS contains

4,233 cosmological simulations, 2,049 N-body simulations and 2,184 state-of-the-art

hydrodynamic simulations sampling a vast volume in parameter space using two inde-

pendent codes that solve hydrodynamic equations and implement subgrid physics in

very distinct ways. CAMELS data have already been used for a large variety of tasks,

from providing the first constraints on the mass of the Milky Way and Andromeda

galaxies using artificial intelligence to showing that neural networks can extract in-

formation from vastly different physical fields while marginalizing over astrophysical

effects at the field level.

In this paper we have described the characteristics of the CAMELS simulations and a

variety of additional data generated from them, including halo, subhalo, galaxy, and

void catalogues, power spectra, bispectra, Lyman-α spectra, probability distribution
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functions, radial profiles, and X-rays photon lists. We have also described CAMELS-

SAM, a collection of more than 1,000 galaxy catalogues created by applying the Santa

Cruz Semi-Analytic Model to a set of hundreds of N-body simulations. We have made

all this data publicly available, comprising hundreds of terabytes. We provide access

to the data through different platforms, including a Binder environment for interactive

data manipulation with Jupyter notebooks, a Globus link for efficient transfer of

large amounts of data, and the FlatHUB platform for quick exploration of Subfind

(sub)halo catalogues. We emphasize that the information outlined in this paper may

become outdated as additional data products become available over time. However,

the online documentation located at https://camels.readthedocs.io will always

be updated accordingly.

It is also important to be aware of the limitations associated to the CAMELS simu-

lations. First, the volume sampled by each individual simulation is relatively small,

(25 h−1Mpc)3, inhibiting the formation of the most extreme objects in the Universe

such as galaxy clusters and large voids. Second, while CAMELS covers a large vol-

ume in parameter space, it would be desirable to make it even larger by including

other cosmological and astrophysical parameters. Third, CAMELS only contains two

distinct suites of hydrodynamic simulations: IllustrisTNG and SIMBA. Ideally, we

would like to expand CAMELS to simulations performed with additional codes em-

ploying different subgrid models. Fourth, the resolution of CAMELS may not be

high enough for some astrophysical problems. Future versions of CAMELS will be
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designed to tackle these limitations.

We believe that CAMELS data will become a powerful tool for the community.
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Chapter 7

A Novel RID Method of Muon

Trajectory Reconstruction in

Water Cherenkov Detectors

7.1 Abstract

Cosmic rays that strike the top of the Earth’s atmosphere generate a shower of

secondary particles that move toward the surface with relativistic speeds. Water

Cherenkov Detectors (WCDs) on the ground can detect charged muons which are
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one of the many particles generated in the shower, with Cherenkov Imaging tech-

nique. A large number of these muons travel in WCD tanks near the speed of light

in vacuum, faster than the speed of light in water and so trigger isotropic Cherenkov

radiation, which is detected by the Photomultiplier tubes (PMTs) placed inside the

tanks. When the radial component of the speed of muon toward a PMT drops from

superluminal to subluminal, it records Cherenkov light from an optical phenomenon

known as Relativistic Image Doubling (RID), which causes two Cherenkov images of

the same muon suddenly appear, with both images moving in geometrically opposite

directions on the original muon track. The quantities associated with the RID effect

can be measured experimentally with a variety of detector types and can be used to

find various points on the original trajectory of the muon. In this paper, a detailed

study of reconstructing the trajectory of a muon entering a Water Cherenkov Detec-

tor, using the RID technique has been presented. It is found that the measurements

of standard RID observables enables a complete reconstruction of the trajectory of

the muon to a high degree of accuracy with less than 1% error.

7.2 Introduction

When a single high energy particle like a gamma-ray photon strikes the top of the

Earth’s atmosphere, it produces a cascade of other particles which travel down to-

ward the surface with relativistic speeds [257]. This air shower consisting of a variety
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of charged and uncharged particles, also contains a charged muon whose lifetime is

roughly 2.2 microseconds in its rest frame of reference [258], but owing to its relativis-

tic speed, this lifetime is dilated in the frame of reference of the Earth. Therefore,

the charged muons can reach the surface of the Earth without decaying.

These charged muons enter large tanks in Water Cherenkov Detectors (WCDs) that

are made specifically to detect the former. The muons traveling faster than the

speed of light in water, trigger Cherenkov radiation [259], which can be observed by

a number of detectors inside the tanks.

Recently, an optical phenomenon known as Relativistic Image Doubling (RID) [260–

263] has gained much attention. With RID, objects moving superluminally in a

medium (faster than the medium speed of light) can appear twice simultaneously to

an observer. When the radial speed of the muon toward a detector inside WCD drops

from superluminal to subluminal, two bright Cherenkov images of the muon suddenly

appear and diverge. This non-classical creation of images has been experimentally

observed by Clerici et al. [264] wherein the authors investigated the kinematic effects

linked with the superluminal motion of a light source using high temporal resolution

imaging techniques and found image pair annihilation and creation when the speed

of the source towards the observer dropped from superluminal to subluminal prop-

agation regions. Furthermore, Velten et al. [265] experimentally observed temporal

inversion effects using the light-in-flight (LiF) femto-photography and showed that in
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the single image visualization of a video of a laser pulse traveling through a bottle of

a specific liquid, the events could appear to happen at incorrect timings and can also

appear in the wrong temporal order. This could also create effects that could seem

to move superluminally. Faccio and Velten [266] provides a review of various time of

flight distortions and relativistic effects observed by the light-in-flight photography

techniques. The same RID effect has been hypothesized to help explain light curves in

gamma-ray bursts [267]. Recently, RID effects have been suggested to be commonly

found in images of air showers by Imaging Atmospheric Cherenkov Telescopes [268]

and the Cherenkov images of the muon in Water Cherenkov Detectors [7].

In this work, it is shown how this unique and interesting optical phenomenon can

be used to completely reconstruct muon tracks in ground-based Water Cherenkov

Detectors (WCDs) like those deployed by Auger [269], HAWC [270], Kamiokande

[271], and IceCube [272]. It is shown that the trajectory of a muon traveling inside

a WCD with a constant velocity, can be completely reconstructed by extracting two

points on its trajectory with at least three detectors observing an RID effect, given

an estimate of an independent measurement of the muon velocity.

The paper is structured as follows. In Section 2, the conceptual basis for RIDs is

reviewed briefly in relation to how they can be detected from inside the WCDs. For

a detailed discussion of the mathematical framework behind the concepts, the reader

is referred to Nemiroff and Kaushal [268] and Kaushal and Nemiroff [7]. In Section
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3, the RID algorithm for the reconstruction of a muon track starting from the top

of the tank and ending at the tank floor, is developed mathematically using systems

of non-linear equations. In section 4, a simulated trajectory of a muon entering a

WCD tank similar to the tanks used in the High-Altitude Water Cherenkov (HAWC)

observatory, is reconstructed. It is assumed that a typical WCD is equipped with a

PMT that records brightness as a function of time and a digital camera that records

brightness as a function of angular position (or a video detector that records both

the brightness of the muon track and its angular position with time). In Section

5, different methods of further constraining the particle trajectory using the RID

algorithm and the advantages of this technique are discussed.

7.3 RID: A Brief Review

Several RID concepts discussed in this section are followed from Nemiroff and Kaushal

[268]. Consider a cosmic ray muon traveling with a speed v > cw, where cw is the

speed of light in water, and entering a WCD tank filled with water up to height H. It

enters the top of the tank at time t = 0 through point A and leaves the bottom of the

tank through point B. The muon is assumed to be at a constant speed v throughout

the tank.

As soon as the muon enters the tank, it causes the emission of isotropic Cherenkov
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radiation around its track in a cone, which is observed by the detectors placed at

the bottom of the tank, as its “Cherenkov image”. A detector inside the advanced

Cherenkov cone of the muon will observe the phenomenon of Relativistic Image Dou-

bling (RID). From the point of view of such a detector, the muon will first traverse

a path starting from its entry point A (See Figure 7.1) in the tank down to a height

zC from the bottom of the tank, where the radial component of its speed toward the

detector (vr) equals the water speed of light (cw). In this region of the track, the ra-

dial speed of the muon toward the detector is faster than the speed of the Cherenkov

radiation it causes. So, this region of the muon track will be seen by the detector

time-backwards i.e. the Cherenkov radiation emitted increasingly earlier along the

muon track will reach the detector at increasingly later times. This happens because

the emissions of the muon precede the muon itself in this region and therefore, this

part of the track will appear to go up from height zC along the track. After the muon

has descended down past zC , its radial speed toward the detector will be slower than

its Cherenkov light, so this region of the muon track will appear normally to the de-

tector i.e. the muon will appear to travel down towards the exit point monotonically

with time. Therefore, the detector first observes the muon at height zC on its track

and not at the point of its entry in the tank. After the muon is first seen at zC , it is

simultaneously seen at two locations on its original track, one below and other above

zC .

Note that a detector outside the Cherenkov cone of the muon will not observe an RID
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effect because the radial speed of the muon toward this detector is always subluminal,

even though the total speed of the muon is always superluminal. For such a detector,

the muon will appear to travel from the entry point A to the exit point B classically.

The detector is located at the floor of the tank at D, a distance L from the point of

entry A and M from the point of exit B. The path length of the muon in the tank

is given by H
cos θ

where θ is the angle between the muon path and the vertical. The

height of the muon from the ground at any time t during its course in the tank is

given by z. This is shown in Figure 7.1.

The time taken by the detector to observe the muon since the muon entered the tank

is given by ttotal which can be written as the sum of two times. The first is the time

taken by the muon to descend to a height z from the ground, tdescend and the second

is the time taken by the light to reach from that location at height z to the detector,

tradiation. The “critical height” where the muon is first seen by the detector is given

by zC and it occurs at a time tmin, when ttotal is a minimum. This can be found by

solving dttotal/dz = 0 for z [268]. For a muon entering the tank from the top and

leaving through the bottom, zC is given by

zC = H −
(
L cosα− cwL sinα√

v2 − c2w

)
cos θ, (7.1)

where α is the angle between the detector and the muon track through point A.
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Figure 7.1: A muon enters the top of a WCD tank through A and leaves
through the bottom at B. The path length of the muon inside the tank is
given by P (= H/ cos θ) while the distances of the detector D from A and
B are given by L and M respectively [7]. Figure taken from [8] under a CC
BY license.

The “critical angle”, ϕC , corresponding to the critical height zC , where the muon is

first seen by the detector, is the angle between the line joining the detector D with

the point X of critical height on the muon path (i.e. DX) and the line joining the

detector with the exit point B of muon at the WCD floor (i.e. BD). It is given by
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ϕC = arccos

(
(P 2 + L2 + M2) cos θ + 2L cosα(zC − P cos θ) − 2PzC

2M cos θ
√

L2 − 2L cosα
(
P − zC

cos θ

)
+
(
P − zC

cos θ

)2
)
. (7.2)

where P is the path length of the muon inside the tank (See Figure 7.1).

After tmin, two images of the muon are observed simultaneously by the detector at

heights z± from the ground and angular locations ϕ± wrt the detector-exit point

line (i.e. BD). Once the height and time of each image of the pair is known, their

apparent brightness can be calculated using their transverse velocities [268].

7.4 Reconstruction of Muon Trajectory: Algo-

rithm

Consider a muon entering the WCD tank from the top through point A with coor-

dinates (xA, yA, H) and leaving from the bottom through point B with coordinates

(xB, yB, 0). The tank contains four detectors at the bottom arranged in a Y-pattern

as shown in Figure 7.2. We only require a minimum of three detectors to develop

the mathematical formulation for reconstruction of the trajectory. Consider detectors

D1, D2 and D3 at locations (xD1, yD1, 0), (xD2, yD2, 0) and (xD3, yD3, 0) respectively.
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These detectors are assumed to be inside the advanced Cherenkov cone of the muon

and therefore, all three of them will observe an RID effect.

Figure 7.2: A top view of the WCD water tank. The three detectors
D2, D3 and D4 are arranged in an equilateral triangle with detector D1 at
the circumcenter of the triangle. Only detectors D1, D2 and D3 will be
considered for the reconstruction of the muon trajectory.

A detector here is considered to be a combination of a PMT which records the bright-

ness and time of the muon trajectory and a video detector tracking both the angular

position and brightness in time. Instead of a video detector, a digital camera could

also be used as a static detector providing a record of brightness and angular location

of the muon.
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In order to completely reconstruct the trajectory of the particle, at least two points

on its track need to be estimated. Consider the triangle ABD between a detector

and the entry and exit points of the muon in the tank (Figure 7.1).

A system of 3 non-linear equations can be set up for each detector as follows,

√
L2 + M2 − 2 L M cosϕi =

H

cos θ√
M2 + N2 − 2 M N cosϕC =

zC
cos θ√

L2 + N2 − 2 L N cos(ϕi − ϕC) =
H − zC

cos θ


(7.3)

where the critical height zC , the critical angle ϕC and the angle between the entry and

exit point of the muon through the detector, ϕi (= ∠ADB), are the RID observables

that can be measured experimentally. The angle θ can be written in terms of lengths

M and N and can be computed from the light curve of the muon and an independent

measurement of its velocity. This will be calculated for the example case of a muon

entering a HAWC-like WCD in the next section.

This system of equations (7.3) has a unique solution for the parameters

L, M and N which are then evaluated for each pair of detectors i.e.

(Li,Mi, Ni, Lj,Mj, Nj) ∀ (i, j) = (1, 2), (1, 3), (2, 3).

Now, for any single detector system, say D1 −D2, a system of 4 non-linear equations
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with 4 unknown variables (xA, yA, xB, yB) can be set up to find the coordinates of

points A and B, as follows

(xA − xD1)
2 + (yA − yD1)

2 + H2 = L2
1

(xB − xD1)
2 + (yB − yD1)

2 = M2
1

(xA − xD2)
2 + (yA − yD2)

2 + H2 = L2
2

(xB − xD2)
2 + (yB − yD2)

2 = M2
2


(7.4)

Solving the above system of equations for one detector system gives a number of

possible values of coordinates of A and B, because there are more than one A and

B pairs that can have the same lengths L, M and N . The actual coordinates of A

and B and thus the correct muon trajectory can be completely extracted by solving

system (7.4) for the other two detector systems i.e. D1 − D3 and D2 − D3 as well

and the actual coordinates are the ones that are common to all the detector pairs.

In general, the more the detectors, the higher the precision on the constraints of the

muon trajectory. With 4 detectors, 6 possible detector pairs can be formed that are

sufficient to pinpoint the coordinates to a very high degree of precision.
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7.5 Reconstruction of Muon Trajectory: Example

In this section, a simulated trajectory will be reconstructed for a muon incident on a

HAWC-like WCD tank from the top at A and exiting through B, making some angle

θ wrt the vertical. The light curve for the muon in this case is shown in Figure 7.3.

The height of the water level in the tank, H, is 4.5 meters and the four detectors are

placed at the bottom of the tank in a Y-pattern [273].

Figure 7.3: Light curve of a muon entering the WCD from the top and
leaving through the bottom of the tank. The brightness on the y-axis is
normalized wrt the brightness at the entry point as seen by the central
detector. The dashed curve represents the Cherenkov image of the muon
going towards the exit point B on the ground while the solid curve represents
the image going up towards the entry point A. Figure taken from [8] under
a CC BY license.

It can be seen from Figure 7.3 that only three of the four detectors will see an RID

effect. The dashed curve represents that Cherenkov image of the muon which is going
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downwards along the original muon track up to the exit point B while the solid curve

represents the Cherenkov image going up towards the entry point A.

For a detector observing an RID, the total time duration of the dashed curve is given

by

∆tdashed =
(AB

v
+

BD

c

)
−
(AX

v
+

DX

c

)
=

zC
v cos θ

+
M −X

c

(7.5)

and therefore, the value of cos θ is

cos θ =
c zC

v (c ∆tdashed + X −M)
(7.6)

Plots of heights and angular locations of the Cherenkov images of the muon versus

the total time since the entry of muon in the tank, corresponding to the light curve

shown in Figure 7.3, are shown in Figures 7.4 and 7.5. These plots are generated for

the case of a muon incident at an angle using the RID code [274].

A number of parameters that can be derived from these plots and can be experi-

mentally measured, along with their values for the example case considered in this
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Figure 7.4: A graph of image heights versus the total time elapsed since
the entry of muon in the tank. Note that for detector 3, there is no value of
zC inside the tank. Therefore, detector 3 is not inside the Cherenkov cone
and will not observe an RID event. Figure taken from [8] under a CC BY
license.

section, are listed in Table 7.1. The value of v can be obtained by an independent

measurement of the Cherenkov angle of emission of the muon using standard methods

employed in various Cherenkov detector systems. All the other parameters except the

unknowns can be obtained by the measurement of RID observables.

Solving the system of equations (7.3) yields the values of L, M and N for the three

detectors which represent the detector - entry point distance (DiA), the detector - exit

point distance (DiB) and the detector - critical height distance (DiX) respectively.

These are shown in Table 7.2.
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Figure 7.5: A plot of angular locations versus the total time for the
Cherenkov images of the muon. Different detectors see the muon for the
first time at different critical angles corresponding to different critical heights
from the ground. Figure taken from [8] under a CC BY license.

The values of L and M for the three detectors are subsequently put in the system

of equations (7.4) to obtain several sets of solutions for the coordinates of A and B

of the muon representing the possible trajectories. The correct solutions is the one

common to all the three detector pairs. The resulting coordinates of A and B are

averaged over the three detector systems and are shown in Table 7.3. The significance

of N is discussed in the next section.

It is seen from the table that the estimated values for the coordinates of the entry

and exit point of the muon are very close to the actual values generated with simu-

lations and the percentage error in extracting the coordinates is less than 1% in this
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Table 7.1
A list of all parameters and their values for the example muon incidence of
section 4. The objective is to find the unknown coordinates of the muon
entry and exit points. The systems of non-linear equations (7.3) and (7.4)
are solved to first obtain a measure of L, M and N for each detector and
then the values of unknown parameters depicting the coordinates of A and

B.

Parameter Value (SI units) Description
H 4.5 Height of the WCD tank
xA, yA, zA Unknown, Unknown,

H
Coordinates of the muon entry point A

xB, yB, zB Unknown, Unknown,
0.0

Coordinates of the muon exit point B

xD1, yD1, zD1 0.0, 0.0, 0.0 Coordinates of detector D1

xD2, yD2, zD2 −0.925, 1.602, 0.0 Coordinates of detector D2

xD3, yD3, zD3 1.85, 0.0, 0.0 Coordinates of detector D3

zC1 2.896 Critical height for detector D1

zC2 1.618 Critical height for detector D2

zC3 3.530 Critical height for detector D3

ϕC1 0.813 Critical angle for detector D1

ϕC2 0.595 Critical angle for detector D2

ϕC3 1.031 Critical angle for detector D3

ϕi1 1.014 Angle between the entry and exit point through detector
D1

ϕi2 0.961 Angle between the entry and exit point through detector
D2

ϕi3 1.164 Angle between the entry and exit point through detector
D3

∆tdashed1 3.88 Time for which the Cherenkov image going downwards
from zC1 is visible to detector D1

∆tdashed2 1.54 Time for which the Cherenkov image going downwards
from zC2 is visible to detector D2

∆tdashed3 6.23 Time for which the Cherenkov image going downwards
from zC3 is visible to detector D3

cvacuum 3.0 × 108 Speed of light in vacuum
cw cvacuum/1.33 Speed of light in water
v cvacuum Speed of muon in water

case. Thus, the two points on the muon track are completely extracted with the mea-

surements of observables of a typical RID phenomenon, which enables a complete

reconstruction of the trajectory of the muon. The precision of the measurements

of RID quantities, in turn, helps in further constraining this trajectory to a higher

precision.
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Table 7.2
Solution for the system of equations (7.3) for each of the three detectors. L
is the distance between the detector and the muon entry point A, M is the
distance between the detector and the muon exit point B, and N is the

distance between the detector and the point X at critical height zC where
the muon is first observed by that detector. These values are fed to the
system of equations (7.4) to extract the coordinates of the muon entry

point A and exit point B.

Parameter Value
L1,M1, N1 5.6362, 2.7968, 4.2393
L2,M2, N2 5.6460, 2.0217, 2.9679
L3,M3, N3 5.1384, 2.8906, 4.3154

Table 7.3
The solution for the system of equations (7.4). Columns 2 to 4 are the
coordinates of A and B obtained from each possible pair of detectors.

Column 5 and 6 contain the mean values and the actual simulated values
pertaining to the light curves of the muon trajectory respectively. Finally,

the last column contains the percentage errors in results.

Results
Parameter D1 −D2 D2 −D3 D1 −D3 Mean Actual

Values
Error

xA 2.3873 2.3746 2.3848 2.382 2.400 0.75%
yA 2.4120 2.4244 2.4222 2.420 2.400 0.83%
xB 0.7820 0.7808 0.7816 0.781 0.787 0.76%
yB 2.6853 2.6856 2.6859 2.686 2.684 0.07%

The Cherenkov light from the muons is usually seen to be emitted into a forward

cone with the direction of motion of the charged particle as the axis of the cone.

The opening angle of the Cherenkov cone depends on the index of refraction of the

medium. In water where the refractive index is 1.33, the opening angle of Cherenkov

radiation is 41◦. This angle is also calculated using the RID algorithm and comes

out to be 41.22◦, which is a fractional error of around 0.5% and demonstrates the
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accuracy and reliability of this algorithm.

It is to be noted that in order for the detectors to observe the RID event, the critical

height (zC) for each detector should be less than the height of the water tank as the

detector could only observe the events occurring inside the volume of the tank. It

follows, therefore,

0 < zCi
< H

or,
−Pi

Li

<
sinαi√
q2 − 1

− cosαi < 0,

where q = v/cw > 1 and i denotes the detector number. For the case where the muon

enters the tank from the top and leaves from the bottom or vice-versa, this solves to,

secαi < q <

√√√√√√sec4(αi

2
)
(
L2
i + P 2 − 2LiP cosαi

)
(

(Li + P ) tan2(αi

2
) − Li + P

)2 , for P < Li cosαi, αi ∈ (0,
π

2
)

or,

secαi < q <
Mi

|P − Li cosαi|
, for P < Li cosαi, αi ∈ (0,

π

2
) (7.7)
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and

secαi < q, for P ≥ Li cosαi, αi ∈ (0,
π

2
) (7.8)

Inequalities 7.7 and 7.8 give the muon velocity constraints for which the detectors will

observe the RID event and these constraints also agree with the simulations. Thus,

the RID observations can also independently constrain the velocity of the muon and

can be used as an additional method to check against the standard muon velocity

estimation techniques currently used in the WCDs.

For a detector to observe RID, the distance (x) traveled by the muon after entering

the tank should be less than the distance at which the RID event occurs. This

distance depends on the interplay of velocity (v) of the muon and the time resolution

of the detector. Given that the velocity of the muon entering the WCD tank follows

some distribution, it is straightforward to calculate the time resolution that would

provide the minimum spatial resolution on the muon path that could be observed by

the detectors. Our simulations for the muon velocity used in Table 7.1 show that a

detector having a lower time resolution than 10 ns (i.e. timesteps higher than 10 ns)

will not be able to observe any RID event. This, though, does not mean that the RID

event does not occur for that detector. It simply means that that particular detector

will not be able to observe the RID event for lower resolutions, because the muon will
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already be outside the tank before the detector measures the associated observable

at the next time step. The system error of reconstruction of the muon trajectory

is thus of the order of time resolution of the detector, which in our example case is

10 nanoseconds. This time resolution will be higher for muons traveling closer to

(and obviously higher than) the speed of light in water than the ones traveling with

speeds much higher than the speed of light in water. A detailed discussion on various

detector types and their time resolutions is provided in the next section. On the other

hand, as evident from inequalities 7.7 and 7.8, there exist upper and lower velocity

bounds for particular muon trajectories such that for muons traveling with speeds

outside those bounds, the detector will never observe the RID, no matter how high

the resolution. This is due to the fact that the RID for these muon trajectories occur

at locations that are outside the water tanks, thus inaccessible to be observed by the

detectors.

7.6 Discussion

As we have seen, the complete trajectory of the muon can be reconstructed from

the experimentally measured RID observables like the critical height zC , the critical

angle ϕC , etc. A minimum of three detectors observing RID are required for this

reconstruction. To further constrain the muon trajectory to much precise values, the

system of equations (7.3) can be solved for at least four detectors observing an RID
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followed by solving a non-linear system of twelve equations given by,

(xA − xDi)
2 + (yA − yDi)

2 + H2 = L2
i

(xB − xDi)
2 + (yB − yDi)

2 = M2
i

(xXi − xDi)
2 + (yXi − yDi)

2 + z2Ci = N2
i


∀ i = 1, 2, 3, 4 (7.9)

where i represents a single detector. This system of equations, when solved within

some error tolerance, will give 6 points on the path of the muon trajectory.

One of the many parameters involved in the working of the RID technique that can

quantify the detectibility of the muon trajectory are θ (the angle between the muon

trajectory and the vertical) and ϕi (the angle between the entry and exit point of

the muon through the detector). The current methods of estimation of the muon

trajectory in WCDs [275–278] use a completely different algorithm that also involves

an independent estimation of the muon velocity in the WCD tank, which is another

parameter in our reconstruction method. One of the assumptions of the RID tech-

nique is that this muon velocity is constant during the entire muon track across the

WCD.

It should be noted that the RID method fails to work if no detector observes the RID

event or if no more than 2 detectors observe the RID event. Though, It has been

shown by Kaushal and Nemiroff [7] using two separate simulation algorithms, that of
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all the muons entering the WCD, between 85% and 90% will be observed to trigger

RID event by at least one detector, thus indicating that it should be very common

for HAWC-like WCDs to observe RID events.

As the images of the muon after the RID event fade within a few nanoseconds,

it might seem that these light curves are practically immeasurable. However, the

increasing frame rate of capturing images, attributed to computer technology and

miniaturization, have resulted in imagers that are able to capture sub-nanosecond

events [264]. Firstly, there are hybrid pixel detectors which are fast time-stamping

cameras sensitive to optical photons, such as MAPS-based PImMS-1 and PImMS-2

with a 12.5 nanoseconds resolution, a CMOS-based TimepixCam with a 10 nanosec-

ond resolution and a Hybrid CMOS-based Tpx3Cam with a 1.6 nanosecond resolution

(See Nomerotski [279] for a full review). Secondly, there are numerous Microchannel

plate-based photomultiplier tubes (MCP-PMTs) whose time response can be as fast

as 100 picoseconds FWHM with a gain of up to 107 [280]. To observe small events

in close temporal proximity to much larger signals, the response of MCP-PMTs can

be gated with an on/off ratio of up to 1013 in just 2 nanoseconds. It is worth noting

that Hamamatsu PMTs (that are currently employed in HAWC detectors) models

R3809U-(50,51,52,53) have the response time of 1.2 nanoseconds and can very eas-

ily observe the RID event duration, even in case of the fast dimming phase. These

technological innovations raise the possibility of placing video detectors inside WCDs

that can resolve RID events in both time and angle. Alternatively, simple digital
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cameras may be placed that can resolve the Cerenkov images only in angle, leaving

the temporal resolution to the PMTs.

Using the trajectory representing the fast dimming phase (or the muon image that

seems to go along the original muon direction) is one of the two trajectories that

can be independently used for the reconstruction. Another method to improve the

estimation of the trajectory is to use the slow dimming trajectory i.e., the muon light

curves for the Cherenkov image going upwards (solid curves in Figure 7.3). The same

algorithm when applied to the Cherenkov images going upward, will give more sets

of values for the coordinates of A and B, further decreasing the error in the final

estimates, enabling a much more precise trajectory. This has not been done in this

work as the goal of this work is to just introduce how the RID technique can be used

for this reconstruction with the least amount of information that could possibly be

extracted from the RID events.

The RID technique have a number of advantages over the traditional reconstruction

methods currently employed in WCDs. First, only three detectors observing RID

are needed to reconstruct the muon’s trajectory unlike numerous PMTs currently

employed in various WCD facilities around the world. Additional PMTs will only

increase the precision of the reconstruction. Second, RID method can be used as an

independent technique to constrain the muon velocities and can be used as a check
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against the traditional methods of estimating muon velocities. Third, the RID re-

construction method is a much more generalized algorithm that can be employed in

other Cherenkov detection principles (such as the Imaging Atmospheric Cherenkov

Telescope (IACT) imaging and the Ring-imaging Cherenkov (RICH) detector sys-

tems) that usually employ different techniques of reconstruction after the detection

of Cherenkov photons by the PMTs.

There are also some limitations and complexities associated with the RID technique.

First, as the detector itself is an extended structure and not a point, its large size

might result in the light travel time across its surface being significant when com-

pared to the time taken by the Cherenkov light to reach the detector. Then any light

curve that a PMT measures will convolve the size and shape of the PMT, not just

the geometry inherent to the muon’s path. Second, because RID events are observer-

dependent even for the same muon trajectory, the locations of the detectors are very

important. Simply adding together the brightness of different images from multiple

PMTs, at the times of the brightness measurements, for example, will typically con-

volute RID effects beyond recognition. However, a careful reconstruction accounting

for the timing of separate RID events as seen by different detectors should be possible

that could enhance RID detection and better determine the muon’s real track inside

the WCD [268].

The RID algorithm can independently confirm the information about the muon’s
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trajectory, including the brightness along its path. When combined with the stan-

dard algorithms used at Water Cherenkov Detector systems for the reconstruction

of Cherenkov cone, it can greatly constrain the muon trajectory with much smaller

errors. This, in turn, can reduce the cost of construction, maintenance and working

of a very large number of detectors usually deployed in such systems.

The same RID algorithm can also be used in Imaging Atmospheric Cherenkov Tele-

scopes (IACTs) to reconstruct the trajectory of the secondary charged particles in

the air showers. This can greatly reduce the number of telescopes used in the IACT

systems and provide much better directional estimates of the shower.

In sum, the RID method is a novel reconstruction algorithm that provides a highly

accurate, simple and effective technique to reconstruct the trajectories of muons

in WCDs and can greatly reduce the number of detectors used at typical Water

Cherenkov Detector systems.

7.7 Future Impacts

Various water Cherenkov detector systems around the world use thousands of Photo-

multiplier Tubes (11,129 PMTs in Super-Kamiokande detector in Japan, for example)
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in order to detect the Cherenkov radiation emitted by muons from the cosmic air-

showers entering the water tanks. Cherenkov detection is based on the simple fact

that the greater the accuracy of reconstructing the air shower trajectory, the bet-

ter the pinpointing of the source of the cosmic/gamma rays. This work presents an

entirely new technique to reconstruct the same shower trajectory in a much simpler

manner. It shows that no more than 3 PMTs observing RID are needed to extract the

complete muon trajectory within a percent level accuracy, and increasing this number

to 4,5 or 6 PMTs will only increase the accuracy of the reconstruction.delimits the

manufacturing and installation of numerous highly expensive PMTs. This work can

also serve as a standard theoretical check against the experimentally extracted muon

trajectories in Water Cherenkov Detectors.

I believe that the RID reconstruction method may have the potential to change the

way present WCD systems construct cosmic-ray trajectories with muons, by provid-

ing a very accurate, efficient, reliable and economically viable method to the WCD

community. It is based on a very intuitive phenomenon and is aimed towards the

next generation of Cherenkov detectors. If implemented, this technique will reduce

the number of PMTs currently used in water-based Cherenkov detectors. This can

further play a phenomenal role in the reconstruction of air showers as well by con-

straining the shower trajectory with Imaging Atmospheric Cherenkov Telescopes.
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structure of the Universe and cosmological perturbation theory. , 367:1–248,

September 2002. doi: 10.1016/S0370-1573(02)00135-7.

201

https://www.pnas.org/content/118/19/e2022038118
https://www.pnas.org/content/118/19/e2022038118
http://dx.doi.org/10.1093/mnras/stab2113
http://dx.doi.org/10.1093/mnras/stab2113


[102] Renan Alves de Oliveira, Yin Li, Francisco Villaescusa-Navarro, Shirley Ho,

and David N. Spergel. Fast and Accurate Non-Linear Predictions of Universes

with Deep Learning. arXiv e-prints, art. arXiv:2012.00240, November 2020.

[103] Fausto Milletari, Nassir Navab, and Seyed-Ahmad Ahmadi. V-net: Fully con-

volutional neural networks for volumetric medical image segmentation, 2016.

[104] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimiza-

tion, 2017.

[105] Katrin Heitmann, David Higdon, Martin White, Salman Habib, Brian J.

Williams, Earl Lawrence, and Christian Wagner. The Coyote Universe. II. Cos-

mological Models and Precision Emulation of the Nonlinear Matter Power Spec-

trum. , 705(1):156–174, November 2009. doi: 10.1088/0004-637X/705/1/156.

[106] Katrin Heitmann, Martin White, Christian Wagner, Salman Habib, and David

Higdon. The Coyote Universe. I. Precision Determination of the Nonlinear

Matter Power Spectrum. , 715(1):104–121, May 2010. doi: 10.1088/0004-637X/

715/1/104.

[107] Earl Lawrence, Katrin Heitmann, Martin White, David Higdon, Christian Wag-

ner, Salman Habib, and Brian Williams. The Coyote Universe. III. Simulation

Suite and Precision Emulator for the Nonlinear Matter Power Spectrum. , 713

(2):1322–1331, April 2010. doi: 10.1088/0004-637X/713/2/1322.

202



[108] Katrin Heitmann, Earl Lawrence, Juliana Kwan, Salman Habib, and David

Higdon. The Coyote Universe Extended: Precision Emulation of the Matter

Power Spectrum. , 780(1):111, January 2014. doi: 10.1088/0004-637X/780/1/

111.

[109] Katrin Heitmann, Derek Bingham, Earl Lawrence, Steven Bergner, Salman

Habib, David Higdon, Adrian Pope, Rahul Biswas, Hal Finkel, Nicholas Fron-

tiere, and et al. The mira–titan universe: Precision predictions for dark en-

ergy surveys. The Astrophysical Journal, 820(2):108, Mar 2016. ISSN 1538-

4357. doi: 10.3847/0004-637x/820/2/108. URL http://dx.doi.org/10.3847/

0004-637X/820/2/108.

[110] Earl Lawrence, Katrin Heitmann, Juliana Kwan, Amol Upadhye, Derek Bing-

ham, Salman Habib, David Higdon, Adrian Pope, Hal Finkel, and Nicholas

Frontiere. The Mira-Titan Universe. II. Matter Power Spectrum Emulation. ,

847(1):50, September 2017. doi: 10.3847/1538-4357/aa86a9.

[111] Elena Massara, Francisco Villaescusa-Navarro, and Matteo Viel. The halo

model in a massive neutrino cosmology. , 2014(12):053, December 2014. doi:

10.1088/1475-7516/2014/12/053.

[112] F. Villaescusa-Navarro, F. Marulli, M. Viel, E. Branchini, E. Castorina, E. Se-

fusatti, and S. Saito. Cosmology with massive neutrinos I: towards a realistic

203

http://dx.doi.org/10.3847/0004-637X/820/2/108
http://dx.doi.org/10.3847/0004-637X/820/2/108


modeling of the relation between matter, haloes and galaxies. , 3:011, March

2014. doi: 10.1088/1475-7516/2014/03/011.

[113] E. Castorina, E. Sefusatti, R. K. Sheth, F. Villaescusa-Navarro, and M. Viel.

Cosmology with massive neutrinos II: on the universality of the halo mass func-

tion and bias. , 2:049, February 2014. doi: 10.1088/1475-7516/2014/02/049.

[114] Elena Giusarma, Mauricio Reyes Hurtado, Francisco Villaescusa-Navarro, Siyu

He, Shirley Ho, and ChangHoon Hahn. Learning neutrino effects in Cosmology

with Convolutional Neural Networks. arXiv e-prints, art. arXiv:1910.04255,

October 2019.

[115] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Brad-

bury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein,

Luca Antiga, Alban Desmaison, Andreas Kopf, Edward Yang, Zachary De-

Vito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,

Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative

style, high-performance deep learning library. In H. Wallach, H. Larochelle,
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