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Abstract

Rolling window is a popular tool in time series analysis. When conducting hypoth-

esis testing on each window simultaneously, multiple testing problem occurs. In the

literature in rolling window analysis, it appears that bootstrap is the most frequently

used, if not only, method to address the multiple testing issue. This thesis aims to

adapt multiple testing correction methods that are popular in genome-wide associ-

ation study to the time series rolling window context. In particular, some of these

methods require the knowledge of the correlation structure of test statistics. In ge-

netics, this structure can be obtained from an external source, which may not exist in

time series. To overcome this difficulty, we adopt the AR sieve idea, which enables the

computation of correlation structure based on the estimated AR coefficients. We also

present the finite sample simulation to illustrate the performance of these methods.

xxi





Chapter 1

Introduction

Rolling window has been widely used in time series analysis and econometrics. How-

ever, multiple testing issue occurs when hypothesis testing is performed on a number

of windows at the same time. It seems that econometrics scholars usually employ

bootstrap-based methods to handle the multiple testing problem in the rolling win-

dow setting, and this problem has not gotten enough attention yet [29].

Multiple testing is a challenging problem in Genome-wide association studies

(GWAS). Researchers in GWAS are interested in determining the relationship be-

tween single nucleotide polymorphisms (SNPs) and phenotypes; in other words, how

variations in gene sequences affect individuals’ observable traits. For example, stud-

ies are conducted to determine if the differences in the lipid metabolic genes affect

1



the lipid metabolism pathways[47]. Since the tests, which detect the associations

between SNPs and phenotypes, are performed on multiple phenotypes against SNPs,

the problem of multiple comparisons happens, making it necessary to adjust p-values

to reduce the chance of making type I errors. In addition, sharing individual level

data has many restrictions with different institutions for the purpose of research.

Therefore, statistical methods, to combine p-values using the summarized statistics,

are also important when the whole data set is less accessible [37]. Researchers in

GWAS have been aware of these problems for a long time, and a large number of

methods have been proposed. These methods can be divided in two categories. One

involves p-values without considering the dependence structure of test statistics, and

the other specifies the dependence structure of test statistics.

First, we discuss the methods without modeling the dependency structure. The

Bonferroni correction [6] is a classical method to control the familywise error rate

(FWER). This method constructs the cut off value α
n

at the significance level α

divided by the number of tests n. However, the Bonferroni correction is known to

be conservative typically when the number of tests is very large [32]. Simes [43]

proposes an improvement of the Bonferroni correction. The Simes method rejects the

null hypothesis if p(i) ≤ iα
n
for at least one i = 1, 2, . . . , n. The Simes method is more

powerful than the Bonferroni correction. Harmonic mean p-value [19] controls the

FWER. Wilson [51] mentions that by the assumptions of the generalized central limit

theorem, an asymptotically exact p-value can be computed from the harmonic mean

2



p-value. Although Wilson [51] did not prove the generalized central limit theorem

under dependent setting, according to [51]’s simulations, HMP has reasonable power,

better than the Bonferroni correction, even when the tests are dependent. Besides

the methods to control FWER, Benjamini and Hochberg [4] propose controlling the

False Discovery Rate (FDR) when conducting multiple comparisons. Benjamini and

Yekutieli [5] also prove the Benjamini-Hochberg procedure can control FDR when

tests are positively dependent.

Now, we explore some methods enhancing the statistical power by modeling the

dependency structure of tests. Gene-based association test using extended Simes

procedure (GATES) [26] and trait-based association test that uses extended Simes

procedure (TATES) [48] are inspired by the Simes method. Both GATES and TATES

work well in combining univariate p-values to an overall p-value under the presence

of possible dependency among p-values. The Minimum p-value (MinP) is another

method requires the covariance matrix of test statistics. MinP is constructed to de-

termine the most significant test statistics. The test statistics asymptotically follows

a multivariate normal distribution under the null [37]. The key step for MinP is find-

ing out the covariance matrix of test statistics. The O’Brien’s method (OB) considers

a linear combination of test statistics. However, OB may have a disadvantage when

dealing with heterogeneous means. Yang et al. [52] propose a random splitting and

cross-validation methods can overcome the heterogeneous mean limitation.

3



The above mentioned techniques have been successfully applied in GWAS. In this

thesis, we take the initiative to explore how these methods perform in the time series

rolling window setting to address the multiple testing issue. We select methods from

the two categories of GWAS methods. OB, GATES and MinP are the three methods

involving the correlation matrix or the covariance matrix of test statistics . Benjamini-

Hochberg procedure (BH) and the harmonic mean p-value proposed by Wilson [51]

(HMP) are the methods only need the original p-values. We also present residual

bootstrap minimum p-value (MinpBt) [41], which is a commonly used method in time

series to address the multiple testing problem. These methods will be elaborated in

times series context in Chapter 3.

In GWAS, the dependency structure can be obtained from an external source, which

does not exist in time series. To overcome this difficulty, we propose to approximate

the unknown time series data structure to an autoregressive (AR) model by adopting

the idea of AR sieve. We derive the theoretical covariance and correlation matrices

of test statistics using the estimated autoregressive coefficients from the estimated

model, which can be applied in methods that use the dependency structure of tests.

We also use the AR sieve idea to compute the standard error if each test statistic,

rather than using the conventional heteroskedastistic and autocorrelation consistant

(HAC) esitmatiors [33]. The results from our simulations indicate that the methods

we adopt can effectively work in the time series rolling window setting when the

dependency is not too strong.

4



This thesis is constructed as follows. In Chapter 2, we introduce the three popular

p-value combination methods in GWAS that utilizes covarinace structure among the

tests: GATES, MinP and OB. In Chapter 3, we describe the major hurdles in im-

plementing all the methods to the time series rolling window setting, and propose

a remedy based on an AR sieve idea. The finite sample simulation results are pre-

sented in Chapter 4. In Chapter 5, we summarize the simulation results and discuss

the future work. Additional simulation results are presented Appendices A – D.
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Chapter 2

Methods in GWAS

In this chapter, we briefly review GATES, OB, and MinP in GWAS. Detecting re-

lationships between SNPs and phenotypes is a prominent study in genetics. SNPs

are the differences in gene sequences among individuals, and phenotypes are traits

or observed gene expressions such as eye colors and blood types. For instance, [24]

investigates if 2.6 million SNPs with a more than 100, 000 individuals of European

ancestry, are associated with any of four lipid phenotypes: cholesterol, low-density

lipoprotein cholesterol, high-density lipoprotein cholesterol and triglycerides. Since

multiple phenotypes are probably related to SNPs, it is hard to detect the whole

associations between SNPs and phenotypes if performing single test on one pheno-

type against each SNP. Therefore, conducting a test on multiple phenotypes against
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each SNP can increase the statistical power. In this example, it is necessary to ad-

just p-values since millions of tests are performed. Numerous techniques have been

developed to address the multiple comparison in GWAS. We choose three popular

methods, GATES, MinP and OB in GWAS, following [24]’s setting.

Consider a linear regression model, where the number of individuals is m, SNPs are

explanatory variables x, and n phenotypes are response variables y. In general, co-

variates, such as age and sex, appear in GWAS to adjust the strength of associations

between SNPs and phenotypes [30]. For simplicity, we present a model, without co-

variates, testing the associations of the i-th phenotype with one SNP for i = 1, . . . , n.

yit = β0i + β1ixt + ϵit for t = 1, . . . ,m,

where xt is an explanatory variable (SNP), β0i and β1i are the intercept and slope

of the linear regression model. In GWAS, the observations are usually assumed in-

dependent across different individuals but not necessarily across different response

variables (phenotypes). That is, for each i = 1, . . . , n, ϵit are assumed independent

and identically distributed (iid) with mean zero and variance σ2
ϵi > 0.

To investigate the relationship between x and y, existing studies focus on testing

whether the regression coefficients are zero. For each i, one can test H0i : β1i = 0

versus Hai : β1i ̸= 0 to see if the given explanatory variable has any significant

7



effect on the ith response variable. The test statistic to test H0i can be a z-score

Zi =
β̂1i

se(β̂1i)
, where β̂1i is the least square estimator of β1i and se(β̂1i) is its standard

error under the iid error assumption. The global null and alternative hypotheses

are H0 : all H0i are true and Ha : at least one H0i is false. To test the global

null hypothesis, understanding the behavior of the vector Z = (Z1, · · · , Zn)
′ of test

statistics for all n response variables is necessary. Note that Z approximately follows

a multivariate normal distribution with mean zero and n × n covariance matrix Σ

under the null hypothesis H0 [24, 52]. The p-value pi for each test can be calculated

from this normal distribution. The correlation matrix among p-values is denoted as

Φp. We refer the p-value for the global null H0, combining pi, as the overall p-value.

Since the observations can be dependent across i = 1, . . . , n, Σ and Φp are not nec-

essarily diagonal. Estimating Σz or Φp is one of the key steps in the GWAS methods

we will review in this sections. In particular, Φ̂p, the estimated ΦP , is one of the

key elements in GATES, which will be introduced in Section 2.1. The estimated Σ,

denote as Σ̂, for OB and MinP will be discussed in Section 2.2 and Section 3.3.
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2.1 Gene-based Association Test that uses Ex-

tended Simes Procedure

We start by ranking p-values pi in an ascending order p(1), p(2), p(3), . . . , p(n). The

Simes method [43] combines p-values by rejecting the null hypothesis when p(i) ≤ iα/n

for at least one i among n tests, where α is the significance level. Even though

the Simes method is more powerful than the Bonferroni method, it may still be

too conservative when p-values are highly correlated [26]. The Simes method is a

foundation for many methods that utilize the correlation structure of p-values. Li

et al. [26] proposes an extended Simes method, named GATES, to evaluate SNP-

based p-values and combines the overall p-value by selecting the minimum ordered i-

th SNP-based p-value. GATES is different from phenotype based p-value combination

method. GATES tests multiple SNPs versus one phenotype whereas phenotype based

p-value method tests multiple phenotypes to one SNP. Van der Sluis et al. [48] borrows

the GATES idea and develops the phenotype p-value combining technique known as

TATES. Since this approach is mainly based on [26]’s idea, we refer this approach

GATES, rather than TATES.

For GATES, one of the crucial processes is estimating the correlation matrix of SNP-

based p-values. Li et al. [26] approximates the correlation matrix of p-values by

9



fitting a sixth order polynomial. To generate the response variables (SNPs), [26]

proposes to use SNP’s variant components alleles. In general, each SNP has two

alleles. The correlation coefficient of alleles, denoted as r, can be obtained from

an external resources in GWAS. We simplify the steps of achieving this sixth order

polynomial are listed below.

1. Simulate two SNPs, based on r and allele frequencies under Hardy-Weinberg

equilibrium in genetics, m times. Perform association tests on alleles for each

SNP, resulting in two p-values.

2. Conduct the simulation 10, 000 times and calculate the correlation coefficients

of the p-values.

3. Increase allele frequencies and r by 0.05 each time from minimum to maximum.

Repeat Steps 1 and 2 for each allele frequencies and r and then a series of

correlation coefficients of the p-values for each condition are generated.

4. Fit a sixth order polynomial, regressing the p-value correlation coefficients on

r.

Using the external information r and this sixth order polynomial, we can approximate

the n × n correlation matrix Φ̂p among p-values. We calculate eigenvalues from the

full correlation matrix Φ̂p and from the top i × i submatrices of Φ̂p. After applying

an indicator function I(x), the effective number of all p-values me and the effective

10



number of top i independent p-values me,i are obtained. GATES proposes the overall

p-value as follows

PGATES = min
i=1,...,n

mep(i)
me,i

.

The effective number of top i independent p-values are expressed as

me,i = i−
i∑

b=1

[I(λb > 1)(λb − 1)] > 0 for i = 1, . . . , n,

where λb is the bth eigenvalue of the top i × i submatrix of the correlation matrix

Φ̂p, and I(x) is an indicator function. When i equals to n, me is computed using

eigenvalues from the entire correlation matrix Φ̂p.

GATES is a useful tool for computation, statistical power enhancement, and type

I error control when dependency exists. Furthermore, since GATES does not need

the raw data for computation, it can be employed even when the data structure is

complicated. However, in time series, we do not have the external information r. We

adapt GATES in Section 3.3 to a time series rolling window setting, proposing an AR

sieve approach to compensate the lack of external information.
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2.2 Minimum p-value Method

MinP, or minimum p-value, is equivalent to the maximum absolute value of the n test

statistics Z:

TMinP = max
1≤i≤n

|Zi|.

To obtain the overall p-value, one of the most popular methods is developed by

Conneely and Boehnke [12] when test statistics are correlated. They propose a rapid

numerical integration to calculate the overall p-value, and the p-value of MinP can

be shown as

pMinP = 1−
∫ TMinP

−TMinP

· · ·
∫ TMinP

−TMinP

f(Z1, . . . , Zn; 0, Σ̂)dZ1 . . . dZn,

where f(Z1, . . . , Zn; 0, Σ̂) is the density function of a multivariate normal distribu-

tion with mean zero and covariance matrix Σ̂. Note that this method requires an

estimation Σ̂ of the covariance matrix Σ among the test statistics. In GWAS, this

information is often available from an external source. For the rolling window setting,

we propose to use the AR sieve approach to estimate Σ̂. See Section 3.4 on how the

MinP is implemented in a rolling window setting.
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2.3 O’Brien’s method

O’Brien’s method is a rank-sum-type test to combine p-values, which is widely used

in clinical research [23]. However, OB may have a disadvantage when dealing with

heterogeneous means. [52]. OB suggests the linear combination of Z1, Z2, · · · , Zn,

with (Σ̂)
−1

and e = (1, 1, . . . , 1)′ of length n. The global OB test statistic is

TOB = e
′
(Σ̂)

−1
Z.

It is easy to see that the OB test statistics TOB approximately follows a normal

distribution with mean zero and variance e′(Σ̂)
−1
e based on the central limit theorem

or if Z is normal. To implement OB, covariance matrix Σ̂ of test statistics needs to

be estimated. Again, we can use the AR sieve idea to estimate Σ̂. See 3.5 for more

details on OB method in rolling window.
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Chapter 3

Multiple Testing in Rolling

Window

In this section, we adapt the methods described in chapter 2 in the context of time

series rolling window and discuss BH, MinpBt and HMP. When applying GWAS-

inspired methods in a rolling window setting, we face two major obstacles. One chal-

lenge is the difficulty of approximating the standard error. The conventional approach

is the heteroskedasticity and autocorrelation consistent (HAC) estimation [53], but it

is well-known that the HAC estimation suffers from severe size distortion when the

dependence is strong [33]. The other obstacle is the lack of external information for

the estimation of the covariance matrix of test statistics. In this chapter, we propose
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the AR-sieve idea. This idea is originally from the AR sieve bootstrap [6] to approx-

imate stationary time series data to an autoregressive (AR) model. The number of

lag can be chosen by an information criterion. In this thesis, we use the Bayesian

Information Criterion (BIC), but other information criteria can also be considered.

Based on the fitted AR model, we can compute the standard errors for each test

statistic as well as the correlation covariance matrices of the test statistics across

the windows. GATES, OB, and MinP can then be applied to the time series rolling

window setting. In this thesis, we consider a simple mean test setting for brevity.

3.1 Zero Mean Test

Consider a set of time series data Xt = µt+ut for t = 1, . . . , T , where T is the total

data length, µt is the mean and ut is the error process. We assume that the error ut

is a stationary linear process. We consider overlapping rolling windows with a fixed

window size m that moves forward in time. The number of windows is n = T −m+1.

We consider the following simple mean:

H0i : µi = 0 for all i = 1, . . . , n versus Hai : µi ̸= 0 for some i.
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Recall that in the linear model for GWAS in Chapter 2, the number of individuals m

in GWAS plays a similar role as the length of a fixed rolling window. The number of

phenotypes n corresponds to the number of windows in time series.

We construct a zero mean test statistic of the i-th rolling window

Zi = X i, for i = 1, . . . , n,

where X i =
1
m

∑i+m−1
t=i Xt is the sample mean of the i-th rolling window. It is worth

mentioning that in genetics, s.e.(β̂i), in the z-score calculation, is obtained from the

iid assumption, which is not appropriate for time series. In the next section, we

introduce AR sieve approach to approximate {Xt}Tt=1 to an AR(p̂) model, where p̂ is

the number of lags in the AR model chosen by the information criteria. Based on the

fitted AR(p̂) model, we can compute the standard error for Zi, and therefore, p-value

for each rolling window using the standard normal distribution function. The AR

sieve modeling step also allows to calculate the correlation matrix of test statistics

across window, which is necessary for GATES, OB and MinP.

3.2 AR Sieve Modeling

Bühlmann [8] proposes the AR sieve bootstrap, which approximates time series data
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to an AR(p̂) process. A large body of literature has shown that AR sieve produces a

good approximation of the errors process [1, 2, 7, 8, 9, 21, 25]. We use this approach

to fit the original time series data {Xt}Tt=1 to calculate the standard error of test

statistic as well as the variance of test statistics for rolling windows. The steps are

outlined below.

1. Fit an AR(p) model to {Xt}Tt=1 for each p = 1, . . . , pmax:

Xt −X =

p∑
i=1

ρi(Xt−i −X) + ϵt, t = 1, . . . , T,

where X = T−1
∑T

t=1Xt is the sample mean of Xt and ϵt are iid random vari-

ables with mean zero and finite variance σ2
t > 0.

2. Determine the lag p̂ by choosing the minimum BIC such that p̂ =

argmin
p∈{1,2,...,pmax}

{BIC(AR(p))}.

3. Denote the autocovariance of Xt, Ĉov(Xi, Xi+h), from the estimated AR(p̂) as

γ̂(h). For example, if p̂ = 1 then γ̂(h) =
ρ̂h1 σ̂

2
t

1−ρ̂21
, where σ̂ and ρ̂1 are the maximum

likelihood estimates of σ2
t and ρ1, respectively. In general, γ̂(·), can be written

as a function of estimated AR coefficients ρ̂1, ρ̂2, . . . , ρ̂p̂. The estimated variance

of the test statistic for one rolling window is

V̂ar(Zi) =
1

m2

m−1∑
k=0

m−1∑
g=0

γ̂(|g − k|). (3.2)
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Since the test statistics Zi approximately follows a normal distribution, the p-

value for each rolling window is 2(1−Φ(|Zi|)) , where Φ is the standard normal

cumulative distribution function.

An alternative approach to find the estimated s.e.(β̂i) is using a HAC estimation

[53]. However, from the simulation results in Appendix B, the HAC estimation does

not control the size well. This size distortion is well-known in literature [33]. When

smaller width m for rolling windows are chosen, the size distortion would become

even worse [33, 50]. We propose to use the AR sieve approximation to alleviate the

size distortion issue.

As discussed in Chapter 2, MinP, GATES and OB needs to estimate the correlation

and covariance matrices of test statistics. The steps we propose to calculate them

based on the AR sieve model are listed:

1. Pick any two windows with distance h: Wi = (Xi, . . . , Xi+m−1) and Wi+h =

(Xi+h, . . . , Xi+m−1+h), where h ranges from 0 to T −m and i = 1, . . . , n. The

corresponding test statistics for these two windows are Zi and Zi+h.

2. Calculate the theoretical covariance of test statistics for Wi and Wi+h as

Cov(Zi, Zi+h) =
1

m2

m−1∑
k=0

m−1∑
g=0

Cov(Xi+k, Xi+h+g).
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Recall that γ̂ is the sample autocovariances of {Xt}Tt=1 based on the estimated

AR coefficients. The estimated autocovariance among the tests, Cov(Zi, Zi+h),

can be rewritten as

Ĉov(Zi, Zi+h) =
1

m2

m−1∑
k=0

m−1∑
g=0

γ̂(|h+ g − k|). (3.3)

The (i, j)-th element of the estimated n×n covariance matrix Σ̂z of test statistics

using AR sieve approximation is Ĉov(Zi, Zj) obtained from (3.3).

3. The correlation of test statistics using the estimated AR(p̂) coefficients between

any two windows can be expressed as

Ĉor(Zi, Zi+h) =
Ĉov(Zi, Zi+h)

V̂ar(Zi)
=

∑m−1
k=0

∑m−1
g=0 γ̂(|h+ g − k|)∑m−1

k=0

∑m−1
g=0 γ̂(|g − k|)

. (3.4)

The (i, j)-th element of Ω̂z is Ĉor(Zi, Zj) obtained from (3.4). Note that the

diagonal elements of Ω̂z are exactly 1 indicating the distance between two win-

dows is 0. The off-diagonal elements of Ω̂z are ordered by the distance between

two windows from 1 to T −m− 1.
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3.3 Adjusted Gene-based Association Test that

uses Extended Simes Procedure

In this section, we adapt GATES to the rolling window setting. Let p(1), p(2), . . . , p(n)

be the ascending ordered p-values for n windows. The overall p-value is computed

by combining the individual p-values into one smallest weighted p-value PGATES as

follows:

PGATES = min
1≤i≤n

(
mep(i)
me,i

)
, (3.5)

where me stands for the effective number of independent p-values of all n windows

and me,i represents the effective number of independent p-values of the top i p-values

for i = 1, . . . , n. Following the original GATES idea, the calculations of me and me,i

include eigenvalues from the correlation of p-values, which has been calculated in

Section 3.2. We modify the sixth order polynomial in GATES for our setting. To

obtain Ω̂p, we first calculate the estimated correlation matrix of test statistics Ω̂z, and

then fit Ω̂z with the sixth order polynomial to estimate Ω̂p. In this process, we consider

an AR(1) model with data length T = 100, AR(1) coefficients δ1 = 0, 0.1, . . . , 0.9,

and window sizes m = 10, 11, . . . , 50 are considered. The length of the p-value vector

is n = T −m+ 1 and the distance between two windows h = 0, 1, . . . , T −m.

The steps to approximate Ω̂p are listed below.
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1. Fix δ1 and m. Randomly generate 10, 000 AR(1) data with AR coefficient δ1

and data length T = 100. Compute the test statistics and their p-values on

rolling windows.

2. Calculate the n by n sample correlation matrix Λp of p-values, based on the

10, 000 replications.

3. Using (3.4), compute the theoretical correlation of test statistics Λz using the

true AR(1) structure and the true AR(1) coefficient.

4. For each h, compute the average of the correlations of p-values from Λp and the

average of correlation of test statistics from Λz.

5. Repeat Steps 1-4 for all pairs of δ1 and m. We have two sets of data for all the

AR(1) coefficient δ1 and window size m combinations: one is the averages of

the sample correlations of p-values with the same h for all the pairs of δ1 and

m, referred as Avgp. The other is the averages of the theoretical correlations of

test statistics with the same h for all the pairs of δ1 and m, denoted as Avgz.

6. Regress Avgp on Avgz, setting Avgp as the response variable. The sixth order

polynomial fitted in our simulation is Âvgp = −0.000076 − 0.068106Avgz +

1.572703Avg2z−5.706136Avg3z+14.000826Avg4z−15.196462Avg5z+6.379301Avg6z

with the coefficient of determination R2 = 0.9901. See Appendix A for the fitted

curve plot.

7. Swap the row and columns of Ω̂z, which is obtained from (3.4), according to
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the rank order of p-values. Denote the ordered matrix as Ω̂zo, and its (i, j)-

th element as Ω̂zo,i,j. Define Ω̂po for Ω̂p, similarly to Ω̂zo. The (i, j)-th ele-

ment of Ω̂po can be obtained as −0.000076− 0.068106Ω̂zo,i,j + 1.572703Ω̂2
zo,i,j −

5.706136Ω̂3
zo,i,j + 14.000826Ω̂4

zo,i,j − 15.196462Ω̂5
zo,i,j + 6.379301Ω̂6

zo,i,j.

We also consider the sixth order polynomial using the AR(1) coefficient from −0.9

to 0.9 by 0.1. While the two sets of sixth order polynomials based on nonnegative

AR coefficients δ1 = 0, . . . , 0.9 and the new set of coefficients including the negative

correlation result in very similar sizes and statistical powers in the same setting in

our unreported simulation. For the rest of this thesis, we only report the results with

the sixth order polynomials from the non-negative AR(1) coefficients.

Thereafter, recalling the calculations of me and me,i, we compute the eigenvalues λb

from the top i× i submatrix of Ω̂po and calculate me,i using me,i = i−
∑i

b=1[I(λb >

1)(λb − 1)] > 0 for i = 1, . . . , n. When i = n, λb is determined from the full matrix

Ω̂po and me = me,n. Now, we can use (3.5) to get the overall PGATES. Comparing

with the significance level α, if PGATES is larger than α, we cannot reject the null,

suggesting that there is no mean change in the original time series data.
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3.4 Adjusted Minimum p-value Method

The theoretical covariance matrix of the test statistics is taken into consideration by

OB and MinP. Let Z = (Z1, Z2, · · · , Zn)
′ be the vector of zero mean test statistics.

Since Zi are sample means, Z approximately follows a multivariate normal distribu-

tion with mean zero and a covariance matrix Σ̂z. Each element of Σ̂z can be estimated

by equation (3.3). We write the estimated

MinP obtains the maximum absolute value of test statics among all windows, repre-

senting as

TminP = max
1≤i≤n

|Zi|,

The combined test statistic TminP follows multivariate normal distribution with mean

zero and covariance Σ̂z [12]. The MinP p-value can be found from this multivariate

normal distribution. If the calculated overall p-value is greater than the significance

level, we cannot reject the null, indicating there is no mean change in the original

data. MinP is a very popular approach since it has a simple calculation and it is

expected more powerful when the rolling windows are correlated [54].
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3.5 Adjusted O’Brien’s method

OB can be adjusted to a linear combination of the individual rolling window test

statistics with equal weights.

TOB = e′Σ̂−1
z Z,

where e = (1, 1, · · · , 1)′ is the equal weight vector and the overall test statistics TOB

follows a normal distribution with mean zero and the variance e′Σ̂−1
z e under the null.

The OB p-value can be found using its distribution. If the overall p-value is less than

α, then there is enough evidence that the mean changes not to zero in the original

time series data. OB is easy to be implemented and handles the independent and

dependent test statistics, which is suitable for our rolling window structure in time

series. However, it is less powerful when the mean of data is heterogeneous [52].

The methods involved with the theoretical correlation or covariance matrix of test

statistics have been discussed. The remaining portion of this chapter will provide

introductions to the approaches that only require original test statistics or p-values
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3.6 Benjamini-Hochberg procedure

The Benjamini-Hochberg procedure is widely used in multiple testing and it controls

FDR at the significance level. FDR is the the number of false positive discoveries

divided by the number of total discoveries. Benjamini and Hochberg [4] proposed

this idea to estimate the proportion of incorrect rejections which is less conservative.

Let’s assume the null hypothesis are H1, H2, . . . , Hn, and the corresponding p-values

in an ascending order p(1), . . . , p(n) for n rolling windows. BH finds the largest i at

the given significance level α and works as follows, i0 = max
{
i : p(i) ≤ α i

n

}
. Then if

i0 exist, we reject H(1), . . . , H(i0), otherwise, we cannot reject the null hypotheses.

3.7 Harmonic Mean p-value

The harmonic mean p-value method is combining p-values when the dependency

exists. Harmonic mean p-value controls FWER. FWER is the probability of having

at least one false positives. Controlling FWER are more stringent than controlling

FDR. Harmonic mean p-value can be expressed as p̊ =
∑n

i=1 wi∑n
i=1 wip

−1
i

, where wi is the

weight of the ith hypothesis. The weights can be the equal weights wi =
1
n
in our

setting. With the assumption of generalized central limit theorem, Wilson [51] proves
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that an asymptotically exact p-value pp̊ can be calculated as follows:

pp̊ =

∫ ∞

1
p̊

fLandau(x| log n+ 0.874,
π

2
)dx

where the Landau distribution probability density function is fLandau(x|µ, σ) =

1
πσ

∫∞
0

e−s
(x−µ)

σ
− 2

π
s log(s) sin(2s)ds. HMP proposed by Wilson [51] can be used to con-

trol the size when the p-values are dependent with each other. We adopt this method

to manage the dependency among the rolling windows. In addition, we compare the

harmonic mean p-value and the harmonic mean p-value proposed by Wilson. From

the unreported simulation results, the size is better controlled by Wilson’s harmonic

mean p-value at the expense of power. The simulation results in our study show that

when the dependency between rolling windows is very strong, we have high inflated

type I error and low power for many methods. In order to better control the size, we

continue the study using Wilson’s harmonic mean p-value approach.

3.8 Residual Bootstrap Method

MinpBt is a method bootstrapping the residuals (3.1) from the fitted AR model.

We follow the procedures from [41] and break down the procedure in six steps to

implement the method.
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1. We apply rolling window on the original time series data Xt and store the

maximum absolute mean Zo among all n windows.

2. We fit the data to an AR(p̂) as mentioned earlier this chapter, and then save

the residuals ϵ̂t and coefficients ρ̂i where i is from 1 to p̂ from the AR sieve

approximation model. The fitted residuals under the null can be expressed as

êt = (Xt −X)−
p̂∑

i=1

ρ̂i(Xt−i −X) for t = p̂+ 1, . . . , T. (3.1)

3. Let T be the sample size of the bootstrapped time series data, then we generate

the bootstrap data as

X∗
t = ρ̂1X

∗
t−1 + ρ̂2X

∗
t−2 + · · ·+ ρ̂p̂X

∗
t−p̂ + ϵ∗t , for t = p̂+ 1, . . . , n,

where ϵ∗t is randomly drawn from the saved residuals ϵ̂t with replacement.

4. After having the bootstrap time series X∗
t , we again apply rolling window and

store the maximum absolute mean Z∗
1 among all n windows.

5. Repeat steps 3 to 4 B times. We can obtain a vector of bootstrapped test

statistics Z∗ = {Z∗
1 , Z

∗
2 , . . . , Z

∗
B}.

6. The critical value is determined as 95th percentiles of Z∗ and then compare the

critical value with Zo.
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This bootstrap method does not require the covariance matrix of test statistics among

rolling windows. MinpBt can be effective in enhancing power and control the size close

to the nominal level. Even though it can be simply implemented, the computation

time is long.
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Chapter 4

Simulation

In this section, we explore the size, the power and the size adjusted power for all

methods discussed in Chapter 3. We begin by introducing the settings throughout the

simulation. After that, we look at how sensitive the AR sieve technique is to the actual

data generation process. We then compare the size, the power, and the size adjusted

power for all methods to determine the optimal window size ranges. After determining

the optimal window size, we compare how the strength of dependence affect the

size, the power and the size adjusted power. Lastly, we compare the performance of

rejection rates for all the p-value combination methods.

We consider 1, 000 Monte Carlo replications, the length T of each time series is 100

and the number of bootstrap replications B is 500 for the MinpBt. The model in the
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simulation is

Xt = µt + ut for t = 1, . . . , T (4.1)

where µt is the mean and ut is the error process. We consider the error process in

two cases: AR(1) and ARMA(1, 1).

1. AR(1) model is ut = ρut−1+ εt, where the AR(1) coefficient ρ ranges from −0.8

to 0.8 by 0.2 and εt is i.i.d from the standard normal distribution.

2. ARMA(1, 1) model is ut − ρut−1 = εt + θεt−1. We use two sets of ρ and θ: (0.2,

0.1) and (0.7, −0.3). εt is i.i.d from the standard normal distribution.

The variance of εt could be other options and here we choose 1 in our simulation.

Under the null, the mean µt is set to 0 for all t = 1, . . . , T = 100. Under the

alternative, we consider two cases:

Case 1 : µt = 0.5 { t
T
≤ 1

3
} and µt = 0 { t

T
> 1

3
};

Case 2 : µt = 1 { t
T
≤ 1

3
} and µt = 0 { t

T
> 1

3
}.

The window size m is from 10 to 60 by 5, and the significance level is 5%. We use

two R packages in our simulation. To fit an AR(p̂) model and obtain the estimated

AR coefficients, we use the Arima function in the forecast package in R, setting the

method to ML in the function. Another package we use is harmonicmeanp in R. We
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use the function p.hmp to calculate the overall HMP p-value.

4.1 The Effect of AR Sieve Approach for Individ-

ual p-values

As mentioned in Chapter 3, HAC estimator could be another option for us to find

the p-values for each rolling window. We evaluate the distributions of p-values to

see if the HAC estimation in our rolling window setting works. The findings are

detailed in Appendix B.5. Given the distributions of p-values, it appears that the

HAC estimation does not yield good p-values. In order to acquire good p-values, we

employ the AR sieve technique. We also examine whether fitting the error process

using AR sieve approach can produce good p-values.

we generate data on (4.1) where AR(1) and ARMA(1, 1) are on the error process

discussed above. We demonstrate the original p-values distribution with a fixed win-

dow size 25 when the error process is AR(1). We also provide p-values distributions

for window sizes 10, 45 and 60 in Appendix B.1 – B.3 and p-value distribution for

ARMA(1, 1) in Appendix B.4.
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Figure 4.1: This figure shows when window size is 25, the p-values behav-
iors, under the null, for each AR(1) coefficient individually in the subfigures
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Figure 4.2: This figure shows when window size is 25, the p-values behav-
iors, under the alternative µt = 0.5 { t

T ≤ 1
3} and µt = 0 { t

T > 1
3}, for each

AR(1) coefficient individually in the subfigures
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Figure 4.3: This figure shows when window size is 25, the p-values behav-
iors, under the alternative µt = 1 { t

T ≤ 1
3} and µt = 0 { t

T > 1
3}, for each

AR(1) coefficient individually in the subfigures

Figure 4.1 illustrates that, when the strength of dependency in the data generating

process is positively strong, adopting AR sieve approach cannot produce uniformly

distribution p-values under the null. Figure 4.2 is the p-value distribution under the

alternative Case 1. It is seems that more p-values are under the nominal rejection rate

5% and ,as the dependency strength positively increases, it is less powerful. Figure

4.3 is the p-value distribution under the alternative Case 2. The behavior of p-values

are slightly different than the behavior in Case 1. Figure 4.3 displays that some

p-values are near 1 and most of the p-values are near 0, which could result in less
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power under the alternative when performing p-value combination methods. Based

on the distributions of p-values with different fixed window sizes, we conclude that,

regardless of the window sizes, estimating the unknown data structure using the AR

sieve approach has its limitation when the unknown data are highly correlated. but

better than hac at least.

4.2 The Effect of Window Size in Rolling Window

Analysis

In Section 4.1, we discuss that the distribution of p-values from the estimated AR(p̂)

process, and in this section, we explore how the window size selection affects the p-

value combination methods. When applying p-value combination methods on rolling

windows, the window size is important because it affects the dependency structure

of test statistics. The calculation of the correlation and covariance matrix of tests

statistics on rolling windows can be found in equations (3.3) and (3.4). We conduct

simulation and generate data from (4.1) where the error processes are AR(1) and

ARMA(1,1) discussed above. We present selected results in this section. The full

detailed results can be found in Appendix C.
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Figure 4.4: This figure shows the size comparison for the six methods when
AR(1) coefficient ρ is −0.2, 0, 0.4 and 0.6.
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Figure 4.5: This figure shows the power and the size adjusted power com-
parisons for the six methods when AR(1) coefficient ρ is −0.2. Referring the
simulation setting, Case 1 is µt = 0.5 { t

T ≤ 1
3} and µt = 0 { t

T > 1
3}; Case 2

is µt = 1 { t
T ≤ 1

3} and µt = 0 { t
T > 1

3}
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Figure 4.6: This figure shows the size, power and size adjusted power
comparisons for the six methods when AR(1) coefficient ρ is 0. Referring
the simulation setting, Case 1 is µt = 0.5 { t

T ≤ 1
3} and µt = 0 { t

T > 1
3};

Case 2 is µt = 1 { t
T ≤ 1

3} and µt = 0 { t
T > 1

3}
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Figure 4.7: This figure shows the power and the size adjusted power com-
parisons for the six methods when AR(1) coefficient ρ is 0.4. Referring the
simulation setting, Case 1 is µt = 0.5 { t

T ≤ 1
3} and µt = 0 { t

T > 1
3}; Case 2

is µt = 1 { t
T ≤ 1

3} and µt = 0 { t
T > 1

3}
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Figure 4.8: This figure shows the power and the size adjusted power com-
parisons for the six methods when AR(1) coefficient ρ is 0.6. Referring the
simulation setting, Case 1 is µt = 0.5 { t

T ≤ 1
3} and µt = 0 { t

T > 1
3}; Case 2

is µt = 1 { t
T ≤ 1

3} and µt = 0 { t
T > 1

3}

Figure 4.4 is the size comparison for the six methods when AR(1) coefficient ρ is −0.2,

0, 0.4 and 0.6 respectively. Figure 4.5 – 4.8 are the power and the size adjust power
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comparisons for the six methods under the alternative for Case 1 and Case 2. We

notice that no matter the strength of dependency in the data generating process, when

window size around 25% to 35% of the total data length, the statistical power remains

at a higher level. The results in Appendix C.2 for ARMA(1,1) also demonstrate that

the optimal window size is around 25% to 35% of the total data length. However,

when the ARMA(1,1) coefficients are ρ = 0.7 and θ = −0.3, all of the methods are not

effective. This is because, under strong dependency, the error process approximation

using AR sieve approach does not have a concise AR model to be presented. While,

another case, when ρ = 0.2 and θ = 0.1, it has a concise AR model approximation so

that all the p-value combination methods are effective.

Our proposed window size choice is consistent with Shi et al. [41]’s minimum fixed

window size suggestion, 24% of the total data length. In the next section, we set the

window size to be 25 and 30 and explore how all the methods are affected by the

strength and direction of the dependencies on the rolling window.

4.3 The Effect of Strength and Direction of De-

pendencies on the Rolling Window Analysis

As mentioned in Chapter 3, the estimated correlation and the theoretical covariance

matrices of tests are calculated using the estimated AR coefficients from the estimated
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AR(p̂). Therefore, the strength of theoretical correlation of tests can be influenced

by the data generating procedure. We investigate this relationship with errors ut

generated from our AR (1) models.

Figures 4.9 and 4.10 exhibit the size, the power and the size adjusted power com-

parisons with window size 25 and 30 respectively. The X-axis for each subfigure is

the AR(1) coefficients ρ of the error process, from −0.8 to 0.8 by 0.2. The Y-axis

represents the power for the left top two subfigures, the size adjusted power for the

right top two subfigures and the size for the bottom subfigure.
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Figure 4.9: This figure shows the size, power and size adjusted power
comparisons for the six methods with fixed window size 25. Referring the
simulation setting, Case 1 is µt = 0.5 { t

T ≤ 1
3} and µt = 0 { t

T > 1
3}; Case 2

is µt = 1 { t
T ≤ 1

3} and µt = 0 { t
T > 1

3}

43



Figure 4.10: This figure shows the size, power and size adjusted power
comparisons for the six methods with fixed window size 30. Referring the
simulation setting, Case 1 is µt = 0.5 { t

T ≤ 1
3} and µt = 0 { t

T > 1
3}; Case 2

is µt = 1 { t
T ≤ 1

3} and µt = 0 { t
T > 1

3}

From Figure 4.9 and 4.10, it seems that the size and the power are significantly

influenced by the direction and strength of dependency represented in ρ. When ρ is
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positive and large, we lose the control of the size, the power and the size adjusted

power. BH, HMP and MinpBt have inflated sizes and low power, resulting from the

inaccurate original p-values from the AR sieve approximation. The distribution of

original p-values has already been discussed in Section 4.1. GATES, MinP and OB

are affected by the estimated correlation and covariance matrices of tests based on

the estimated AR coefficients from the AR(p̂) model.

However, when ρ is negative, the size can be controlled and the power and the size

adjusted power are robust. In general, negative correlation generally leads to esti-

mators with smaller variance [13]. This is because when negatively correlated, the

time series data tend to oscillate back and forth across the mean, the estimated mean

tends to be more accurate.

4.4 The Effect of p-value Combination Methods in

Rolling Window Analysis

We compare the six methods by investigating the size, the power and the size-adjusted

power. The size-adjusted power is the power adjusted by the µt = 0 Case. We

investigate all the methods with errors ut generated from our AR (1) models.

We compare the methods with a fixed window size 25. In AppendixD, we also present
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the methods comparisons with window size 30.

Figure 4.11: This figure shows the rejection rate comparisons for the six
methods with fixed window size 25 and six AR(1) coefficients: −0.6, −0.2
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Figure 4.12: This figure shows the rejection rate comparisons for the six
methods with fixed window size 25 and six AR(1) coefficients: 0, 0.2
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Figure 4.13: This figure shows the rejection rate comparisons for the six
methods with fixed window size 25 and six AR(1) coefficients: 0.6, 0.8

Figures 4.11 – 4.13 exhibit the method comparisons. In general, the power tends

to decrease as the absolute value of ρ increases. In particular, when ρ < 0, the

power is better than the power generated with positive correlation. In addition, as
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µ increases, the power is inclined to increases, except for one case-relatively strong

negative correlation in original data. When the AR coefficient ρ is −0.6, the raw and

adjusted rejection rates decrease as µt increases from 0.5 to 1. This is because when

µ = 1, the original p-value are not ideally near the peak in histogram, which has

been discussed in Section 4.1. and give figure name... decreasing power may be due

p-values, but not necessarily due to the p-value combination methods. It seems that

AR sieve approximation might be problematic under the alternative when the strong

negative correlation exists. When generating data with negative AR(1) coefficients,

the rejection rates increase slowly when µ is from 0.5 to 1 but sharply when when µ

is from 0 to 0.5. In contrast, when generating data with positive AR(1) coefficients,

it has opposite behaviors that rejection rates increase sharply when µ is from 0.5 to

1.

Comparing the methods, as we expected, BH is the most conservative and has the

lowest raw and size-adjusted powers for all settings under considerations. The per-

formance of BH gets worse, compared to other methods, as dependence gets stronger

in either direction. GATES is less conservative compared to BH but not providing

enough power when dependence are strong in the data generating process. HMP

controls the size best among all methods at the nominal level 5% at the expense of

sacrificing the power. OB has a slightly stronger rejection strength than other meth-

ods when the data generating process using positively strong coefficients. MinP and

MinpBt are more powerful compared to other methods. MinP can control size and
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has the highest power in most cases.

In general, we recommend methods based on MinP, which has already been used much

in literature. However, it might be cumbersome to compute the estimated covariance

matrix for test statistics. In particular, MinpBt is has accurate size an high powe,

but takes longer time to run and may be complicated to construct it. If the research

focuses strong dependency and more concerned about size than the power, then we

recommend HMP. HMP also has the advantage of simpler computations, serving as

an attractive alternative to practitioners. GATES is not ideally to be used in practice

since GATES needs the six-order polynomials, which might be difficult to be obtained.
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Chapter 5

Conclusion and Discussion

We study the multiple testing correction methods in GWAS and adapt them to the

time series rolling window analysis. The dependency structure, in GWAS, can be

obtained from an external source, which does not exist in time series. We propose to

approximate the unknown time series data structure to an autoregressive (AR) model

by adopting the idea of AR sieve. The AR sieve idea was used for two purposes. One is

to obtain better p-values, and the other is to approximate the dependence structure

among the test statistics from rolling windows. The AR sieve idea works well in

general, producing well-behaving p-values both under the null and the alternative.

When the true data cannot be approximated by a simple AR model, the AR sieve

method is not as effective but is still competitive to its competitor based on the

heteroskedasticity and autocorrelation consistent estimators.
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Based on our simulations, we suggest using 25% to 30% of the total length of time

series as the window size. This choice is consistent with Shi et al. [41]’s minimum

fixed rolling window size suggestion. With a fixed window size, we analyze how the

strength and direction of dependencies influence the size, the power and the size

adjust power. For negative AR coefficients in the data generating process, the time

series data tends to oscillate back and forth across the mean, then the estimated mean

is more accurate. However, when the AR coefficients are positively strong, we need

to be cautious. The methods we adopted from GWAS can be applied to the rolling

window setting but use with caution. We recommend to use MinP if the correlation

structure is easy to be obtained, to implement HMP if the research focuses on the

strong dependency and concerned about the size more than power, and to adopt

MinpBt if program running time is not important.

There are lots of work need to be discussed in the future work. First is the data

structure approximation problem. In this article, we assume the error is the AR

process but the assumption constraints other non AR distribution processes. From the

simulation, AR sieve approach seems hard to provide good p-values before combing

them when the strong dependency exists in data. This problem also need more

future work to be addressed Another one is computing the theoretical covariance and

correlation matrices of the test statistics. Since our test is simple, the matrix is not

difficult to calculate. Other complex test statistics might be difficult to building up

the theoretical matrices of test statistics.
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[7] Bühlmann, P. (1997). Sieve bootstrap for time series. Bernoulli , 123–148.
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Appendix A

Sixth Order Polynomial Fitting
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Figure A.1: This figure shows the sixth order polynomial for Avgp and
Avgz where Avgp is the response variable. The blue line the fitting line and
the coefficient of determination R2 = 0.9901
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Appendix B

p-value Distributions

B.1 Data Generated Under the Null on the Error

Process AR(1)
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Figure B.1: This figure shows when window size is 10, the p-values behav-
iors, under the null, for each AR(1) coefficient individually in the subfigures
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Figure B.2: This figure shows when window size is 45, the p-values behav-
iors, under the null, for each AR(1) coefficient individually in the subfigures
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Figure B.3: This figure shows when window size is 60, the p-values behav-
iors, under the null, for each AR(1) coefficient individually in the subfigures
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B.2 Data Generated Under the Alternative Case

1 on the Error Process AR(1)

Figure B.4: This figure shows when window size is 10, the p-values behav-
iors, under the alternative µt = 0.5 { t

T ≤ 1
3} and µt = 0 { t

T > 1
3}, for each

AR(1) coefficient individually in the subfigures
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Figure B.5: This figure shows when window size is 45, the p-values behav-
iors, under the alternative µt = 0.5 { t

T ≤ 1
3} and µt = 0 { t

T > 1
3}, for each

AR(1) coefficient individually in the subfigures
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Figure B.6: This figure shows when window size is 60, the p-values behav-
iors, under the alternative µt = 0.5 { t

T ≤ 1
3} and µt = 0 { t

T > 1
3}, for each

AR(1) coefficient individually in the subfigures
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B.3 Data Generated Under the Alternative Case

2 on the Error Process AR(1)

Figure B.7: This figure shows when window size is 10, the p-values behav-
iors, under the alternative µt = 1 { t

T ≤ 1
3} and µt = 0 { t

T > 1
3}, for each

AR(1) coefficient individually in the subfigures
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Figure B.8: This figure shows when window size is 45, the p-values behav-
iors, under the alternative µt = 1 { t

T ≤ 1
3} and µt = 0 { t

T > 1
3}, for each

AR(1) coefficient individually in the subfigures
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Figure B.9: This figure shows when window size is 60, the p-values behav-
iors, under the alternative µt = 1 { t

T ≤ 1
3} and µt = 0 { t

T > 1
3}, for each

AR(1) coefficient individually in the subfigures
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B.4 Data Generated Under the Null on the Error

Process ARMA(1,1)

Figure B.10: This figure shows that the p-values behaviors when the error
process ARMA(1,1) with ρ = 0.7 and θ = −0.3, window size ranges from 10
to 60 by 5, under the null
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Figure B.11: This figure shows that the p-values behaviors when the error
process ARMA(1,1) with ρ = 0.2 and θ = 0.1, window size ranges from 10
to 60 by 5, under the null
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B.5 Data Generated Under the Null on the Error

Process AR(1) Using HAC Estimation

Figure B.12: This figure shows using HAC estimation when window size
is 10, the p-values behaviors, under the null, for each AR(1) coefficient indi-
vidually in the subfigures
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Figure B.13: This figure shows using HAC estimation when window size
is 25, the p-values behaviors, under the null, for each AR(1) coefficient indi-
vidually in the subfigures
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Figure B.14: This figure shows using HAC estimation when window size
is 45, the p-values behaviors, under the null, for each AR(1) coefficient indi-
vidually in the subfigures
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Figure B.15: This figure shows using HAC estimation when window size
is 60, the p-values behaviors, under the null, for each AR(1) coefficient indi-
vidually in the subfigures
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Appendix C

Supplementary Simulation Results

in 4.2

C.1 Data Generated on the Error Process AR(1)
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Figure C.1: This figure shows the power and the size adjusted power
comparisons for the six methods when ARMA(1, 1) coefficient ρ is 0.7 and
θ is −0.3. Referring the simulation setting, case 1 is µt = 0.5 { t

T ≤ 1
3} and

µt = 0 { t
T > 1

3}; case 2 is µt = 1 { t
T ≤ 1

3} and µt = 0 { t
T > 1

3}
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Figure C.2: This figure shows the power and the size adjusted power
comparisons for the six methods when ARMA(1, 1) coefficient ρ is 0.2 and
θ is 0.1. Referring the simulation setting, case 1 is µt = 0.5 { t

T ≤ 1
3} and

µt = 0 { t
T > 1

3}; case 2 is µt = 1 { t
T ≤ 1

3} and µt = 0 { t
T > 1

3}
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Figure C.3: This figure shows the size comparison for the six methods
when ARMA(1,1) coefficients are (0.7,−0.3) and (0.2, 0.1).
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Figure C.4: This figure shows the power and the size adjusted power
comparisons for the six methods when AR(1) coefficient ρ is −0.8. Referring
the simulation setting, case 1 is µt = 0.5 { t

T ≤ 1
3} and µt = 0 { t

T > 1
3}; case

2 is µt = 1 { t
T ≤ 1

3} and µt = 0 { t
T > 1

3}
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Figure C.5: This figure shows the power and the size adjusted power
comparisons for the six methods when AR(1) coefficient ρ is −0.6. Referring
the simulation setting, case 1 is µt = 0.5 { t

T ≤ 1
3} and µt = 0 { t

T > 1
3}; case

2 is µt = 1 { t
T ≤ 1

3} and µt = 0 { t
T > 1

3}
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Figure C.6: This figure shows the power and the size adjusted power
comparisons for the six methods when AR(1) coefficient ρ is −0.4. Referring
the simulation setting, case 1 is µt = 0.5 { t

T ≤ 1
3} and µt = 0 { t

T > 1
3}; case

2 is µt = 1 { t
T ≤ 1

3} and µt = 0 { t
T > 1

3}
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Figure C.7: This figure shows the power and the size adjusted power
comparisons for the six methods when AR(1) coefficient ρ is 0.2. Referring
the simulation setting, case 1 is µt = 0.5 { t

T ≤ 1
3} and µt = 0 { t

T > 1
3}; case

2 is µt = 1 { t
T ≤ 1

3} and µt = 0 { t
T > 1

3}
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Figure C.8: This figure shows the power and the size adjusted power
comparisons for the six methods when AR(1) coefficient ρ is 0.8. Referring
the simulation setting, case 1 is µt = 0.5 { t

T ≤ 1
3} and µt = 0 { t

T > 1
3}; case

2 is µt = 1 { t
T ≤ 1

3} and µt = 0 { t
T > 1

3}
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Figure C.9: This figure shows the size comparison for the six methods
when AR(1) coefficient ρ is −0.8, −0.6 and −0.4.
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Figure C.10: This figure shows the size comparison for the six methods
when AR(1) coefficient ρ is 0.2 and 0.8.

C.2 Data Generated on the Error Process

ARMA(1,1)
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Figure C.11: This figure shows the power and the size adjusted power
comparisons for the six methods when ARMA(1, 1) coefficient ρ is 0.7 and
θ is −0.3. Referring the simulation setting, case 1 is µt = 0.5 { t

T ≤ 1
3} and

µt = 0 { t
T > 1

3}; case 2 is µt = 1 { t
T ≤ 1

3} and µt = 0 { t
T > 1

3}
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Figure C.12: This figure shows the power and the size adjusted power
comparisons for the six methods when ARMA(1, 1) coefficient ρ is 0.2 and
θ is 0.1. Referring the simulation setting, case 1 is µt = 0.5 { t

T ≤ 1
3} and

µt = 0 { t
T > 1

3}; case 2 is µt = 1 { t
T ≤ 1

3} and µt = 0 { t
T > 1

3}
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Figure C.13: This figure shows the size comparison for the six methods
when ARMA(1,1) coefficients are (0.7,−0.3) and (0.2, 0.1).
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Appendix D

Supplementary Simulation Results

in 4.4
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Figure D.1: This figure shows the rejection rate comparisons for the six
methods with fixed window size 30 and six AR(1) coefficients: −0.6, −0.2
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Figure D.2: This figure shows the rejection rate comparisons for the six
methods with fixed window size 30 and six AR(1) coefficients: 0, 0.2
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Figure D.3: This figure shows the rejection rate comparisons for the six
methods with fixed window size 30 and six AR(1) coefficients: 0.6, 0.8
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