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A super-ensemble approach to map land cover types with high resolution 
over data-sparse African savanna landscapes 
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A B S T R A C T   

Accurate and timely land cover products are critical inputs for landscape planning, and provide key information 
for biodiversity conservation and food security. However, poor mapping quality and low resolution are 
considerable issues in existing land cover maps over the African savanna, where land use is complex and 
changing rapidly, and necessary ground-truth data are sparse and hard to obtain. To overcome this problem, to 
make optimal use of existing maps, and to minimize manual training data collection, we developed a three-stage 
ensemble method to make land cover maps. In the first stage, we extracted the consensus of multiple existing 
land cover products to generate fragmented pixel-wise training labels. In the second stage, we translated pixel- 
wise training labels to image-wise labels using Random Forest (RF) as a “gap-filling model”, with temporal 
features extracted from Sentinel-1 time series, raw bands, and vegetation indices derived from PlanetScope 
basemaps. These image-wise labels were scored and edited by humans and the quality information was used in 
the next stage. For stage three, we trained a U-Net network based upon these image-wise labels, using Sentinel-1 
time series and raw bands of PlanetScope basemaps as image features. Using the information on label quality, a 
quality-weighted loss function was used in the network to reduce the impact of noise in the training labels. Using 
Northern Tanzania as a case study, the results demonstrate that ensembles of existing land cover maps provide a 
useful source of data for developing improved land cover maps over hard-to-classify, data-sparse landscapes. The 
Random Forest “gap-filling model” had an overall accuracy of 80.26% on our independent test dataset with 7 
classes. The final U-Net model had an overall accuracy of 83.57%. This approach can be readily applied to other 
regions and extents (e.g., regional, global) and other data sources (e.g., Sentinel-2).   

1. Introduction 

Timely and accurate land cover maps covering large extents are 
critical for many environmental applications, such as natural resources 
management, biodiversity conservation, and food security assessment 
(Anderson et al., 2017; Jin et al., 2019; Leite-Filho et al., 2021; Pettorelli 
et al., 2016; Song et al., 2018). However, current land cover maps are 
often inadequate for agricultural and ecological applications due to their 
limited spatial and temporal coverage and low accuracy (Gómez et al., 
2016), particularly over data-sparse regions, such as Africa savanna. In 
the past two decades, satellite imagery with high spatial and temporal 
resolution has steadily opened new avenues for timely mapping of land 
cover over large areas (Cheng et al., 2020; Tong et al., 2020). Mean
while, rapid improvements in machine learning techniques have led to 

dramatic gains in the accuracy of land cover classification (Campos- 
Taberner et al., 2020). Nevertheless, despite these gains, land cover 
mapping is still a major challenge in Africa’s complex savanna land
scapes with varying degrees of vegetation cover in space and time 
(Solbrig, 1996). One possible reason is the technical challenge of sepa
rating the woody and herbaceous components (Whitley et al., 2017). For 
these areas, the available global land cover products (Buchhorn et al., 
2020a, 2020b; Congalton et al., 2017; Xu et al., 2019) that have high 
error rates when applied at regional scales, and perform poorly in 
savanna environments. Furthermore, existing savanna monitoring 
studies generally use coarse to medium resolution imagery that do not 
effectively represent fine grained components, such as nonforest trees 
(Abdi et al., 2022) and fields in smallholder agricultural systems (Jin 
et al., 2019; Kerner et al., 2020). 
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This latter problem of image resolution is being increasingly over
come by the mission of new satellites. Since late 2017, PlanetScope 
sensors started to supply near-daily satellite imagery with 3.7 m spatial 
resolution, which increases the possibility of obtaining clear observa
tions during the rainy season (Planet Team, 2017; Roy et al., 2021). One 
of the higher-level derived products from this daily imagery are surface 
reflectance basemaps, which provide monthly to biannual composites of 
daily imagery in an analysis-ready format, substantially reducing the 
amount of pre-processing work (Estes et al., 2022) that must be under
taken to develop cloud-free mosaics. The recent Norway International 
Climate and Forests Initiative Imagery Program (NICFI) makes base
maps collected over tropical regions free to the public for sustainability- 
focused, non-commercial research (Norway’s International Climate and 
Forest Initiative (NICFI), 2020), which is a game-changer for tropical 
land cover and land use monitoring. The availability of Sentinel-1 im
agery also improves savanna monitoring because it is not affected by 
cloud cover (Torres et al., 2012) that frequently obstructs optical sensors 
over much of the tropical savanna biome (Roy et al., 2021). Given the 
recent release of the NICFI dataset, there are still relatively few studies 
that have applied these data for large area land cover mapping, partic
ularly in combination with Sentinel-1 data (Vizzari, 2022). Existing 
applications of NICFI basemaps typically help visual image interpreta
tion (Pascual et al., 2022; Rienow et al., 2022; Sugimoto et al., 2022) or 
evaluate the effectiveness of this dataset for delineating land cover 
(Aquino et al., 2022; Awuah and Aplin, 2021; Vizzari, 2022) within 
relatively small areas (<100,000 km2), although efforts at larger sub- 
national (e.g. cropland mapping, Rufin et al., 2022) to continental ex
tents are beginning to emerge (e.g. tree cover mapping; Reiner et al., 
2022). 

Alongside the newly available sources of high-frequency, high-res
olution satellite imagery, there have been corresponding increases in the 
computational power needed to process large datasets, while advances 
in deep learning (DL) models have led to dramatic improvements in land 
cover mapping. The models based on the fully convolutional network 
(FCN) are among the most widely used deep learning architectures for 
land cover mapping (Chamorro Martinez et al., 2021; Solórzano et al., 
2021; Volpi and Tuia, 2016) because they can achieve pixel-wise seg
mentation (Long et al., 2015). 

A key obstacle to the wider adoption of these models for land cover 
mapping is the need to collect large, task-specific training and reference 
datasets. Despite recent investments in developing global ground truth 
datasets, which include observations within tropical savannas (Burke 
and Lobell, 2017; Laso Bayas et al., 2017; Schmitt et al., 2019), as well as 
new strategies to extend training samples (e.g., transfer learning and 
data augmentation; Shorten and Khoshgoftaar, 2019; Torrey and 
Shavlik, 2010), the available data are typically insufficient for training 
deep learning models over large areas. Since collecting labelled training 
data is time and labor-intensive, a more efficient labeling strategy is 
needed to meet the need for timely high-resolution land use/land cover 
products in these data-sparse but highly dynamic landscapes. 

To overcome the challenge of developing the large label datasets that 
are needed to train deep learning models that can improve the ability to 
map savannas environments, our study had two primary objectives. The 
first was to develop a more automated and objective approach for 
generating labels that minimized the amount of manual effort. The 
second was to design a modeling approach that can account for and 
minimize the impact of label error (following Elmes et al., 2020). 

To satisfy the first objective, we developed a technique for creating 
synthetic labels, in which several existing land cover products (Buch
horn et al., 2020a, 2020b; Congalton et al., 2017; Xu et al., 2019) were 
combined into a consensus land cover map, providing an initial set of 
labels that were more reliable than any of the individual inputs 
(following the rationale of Fritz et al., 2011), but provided only partial 
coverage of the study region (areas lacking consensus were excluded). 
To fill the missing data in the resulting synthetic labels, we trained a 
Random Forest (RF; Breiman, 2001) model to fill the gaps in selected 

tiles, with predictors based on temporal features extracted from 
Sentinel-1 time series, as well as the raw bands of the PlanetScope 
basemaps and additional derived vegetation indices. We then visually 
assessed and manually edited the resulting gap-filled labels, producing a 
final set of fully labelled tiles, along with a quantitative measure of label 
quality. To meet the second objective, we used the resulting tiles to train 
a U-Net land cover model using a label quality-weighted loss function to 
minimize the impacts of label error. 

We then applied this model to map the complex savanna landscapes 
of a 243,416 km2 region in Northern Tanzania, in the process demon
strating an efficient, semi-automated approach for training a model 
capable of generating improved, high resolution land cover data in hard- 
to-map, data sparse environment. 

2. Materials and methods 

2.1. Study area 

We applied our proposed method to northern Tanzania (Fig. 1). This 
region is ecologically complex, comprising more than 4 ecozones, where 
the climatic conditions, soil moisture, and farming systems are different 
(Fig. 1) (Sebastian, 2009). Remote-sensing-based mapping of savanna in 
East Africa is challenging because savanna is a heterogeneous landscape 
(Solbrig, 1996) with varying degrees of vegetation cover and spectral 
similarities among land cover types (Tsalyuk et al., 2017; Zhang et al., 
2019). These characteristics make this area an ideal case study, as its 
complex land cover provides an important baseline for our method, and 
the environmental context means that there is an urgent need for ac
curate land cover maps. 

2.2. Datasets 

2.2.1. Satellite imagery 
In this study, we queried 543 quads of PlanetScope Tropical 

Fig. 1. The ecozones of the study area overlaid by the PlanetScope basemap 
tiling grid. 
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Normalized Analytic Biannual basemap from 2017 to 2018, which are 
provided by NICFI program. We collected imagery covering two seasons 
in each quad: December 2017–May 2018 (season 1), and June 
2018–November 2018 (season 2). Having the spectral signature from 
multiple seasons helps to differentiate land cover types (Estes et al., 
2022). To incorporate temporal features, we also used harmonic 
regression coefficients of Sentinel-1 time series (2017-10-01–2018-09- 
30). Harmonic regression coefficients summarize critical temporal fea
tures, enhancing the ability to differentiate land cover types based on 
seasonal information contained in the series (Moody and Johnson, 
2001), while significantly reducing the number of raw images used. The 
coefficients were fitted on level-1 Ground Range Detected (GRD) 
Interferometric Wide Swath (IW) images acquired with dual polariza
tion (VV + VH). Taking tile 1227–1002 as an example, Fig. 2 shows two 
seasonal NICFI basemaps, harmonic coefficients of Sentinel-1 dB in VV 
and VH polarization, and the spectral and temporal signature of land 
cover samples. The complete details of the images and image pre
processing can be found in Text S1 and S2 of the supplementary 
material. 

2.2.2. Pixel-level land cover (LC) reference labels 
We developed an independent validation (n = 1286) dataset to 

evaluate the quality of land cover products used in our study (Section 

2.2.3), and to assess the performance of the land cover model. Two 10 m 
× 10m squares in each quad within the study area were randomly 
selected, and hand-labeled by visual interpretation based on several 
virtual globe basemaps (e.g. Bing or Google Maps), satellite imagery in 
this study (Section 2.2.1), prior knowledge, and web searches of local 
landscape pictures. Despite the small size of the squares, they occa
sionally contained more than one class. In these cases, we shifted the 
squares so that they covered a single class. 

2.2.3. Land cover (LC) products 
To initialize the training dataset for our land cover mapping models 

(see Section 2.3), we prepared an ensemble of existing land cover 
products, which we turned into consensus labels. After pre-assessment 
(see Text S3), we selected 4 products to use (Table 1): Copernicus 

Fig. 2. Seasonal NICFI basemap in false-color, harmonic coefficients (RGB: Slope, cos
(

2πt
dyr

)
, Intercept) of Sentinel-1 dB in VV and VH polarization, spectral signature, 

and temporal signature of land cover samples in an example tile (1227–1002). 

Table 1 
Land cover products used and their accuracies over the study region.  

Product name Product type Year Resolution Overall accuracy 

CGLS_LC100m Land cover 2018 100 m  67.70 % 
FROM-GLC 2017v1 Land cover 2017 30 m  60.13 % 
GFSAD30 Crop mask 2015 30 m  82.93 % 
TanSIS Crop mask 2018 250 m  82.39 %  
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global land cover map (CGLS_LC) (Buchhorn et al., 2020b), Finer Res
olution Observation and Monitoring – Global Land Cover (FROM-GLC) 
(Gong et al., 2019), Global Food Security-support Analysis Data 
(GFSAD) cropland extent of Africa (Congalton et al., 2017), and a 
cropland layer produced by the Tanzania Soil Information Service 
(TanSIS) (Walsh et al., 2018). CGLS_LC has 23 classes according to UN- 
FAO’s Land Cover Classification System (LCCS). FROM-GLC includes 10 
main land cover classes. GFSAD and TanSIS are cropland masks, 
although GFSAD has an extra water class. Even though each product was 
separately validated, the quality of these products in our study area is 
unclear. We, therefore, used the independent validation dataset (Section 
2.2.2) to evaluate their accuracies, which are listed in Table 1 (complete 
details of the assessment are in Table S2). Besides gridded LC products, 
OpenStreetMap (OSM) vector layers also were used as ancillary datasets 
in both generating consensus labels and land cover classification. 

2.3. Modeling approach 

The land cover mapping approach we developed has three main parts 
(Fig. 3). In the first part, we created an ensemble map from the selected 
land cover products (Section 2.2.3) as land cover reference labels. In the 
second part, we trained a pixel-based Random Forest model, selected a 
group of tiles, and used the model to fill the gaps between labelled 
fragments obtained in part 1 in these tiles, in order to make complete 
image-wise labels. A deep learning network was then trained using these 
gap-filled labels in the third part. 

2.3.1. Part 1: Ensemble multiple land cover (LC) products 
Several previous studies have demonstrated the effectiveness of 

deriving training labels from existing land cover products (Ren et al., 
2022; Yang and Huang, 2021; Zhang et al., 2021). We made consensus 
land cover labels from assembled land cover products (Table 1). These 
land cover products were made in different years based on varied fea
tures, therefore identifying where these products agree helps to increase 
confidence in the accuracy of the underlying land cover classification 
(Fritz et al., 2010; Pérez-Hoyos et al., 2020), while also providing in
formation on how stable and how difficult a landscape is to classify. We 
assume that pixels where all maps agree represent stable landscapes, 
while the pixels in which maps disagree are either areas undergoing 
rapid changes (e.g., fallows) or those that are hard to distinguish from 
other cover types (e.g., degraded savannas versus croplands). 

To create the ensembles, we aggregated the land cover types into 8 
common classes that could be extracted from the different taxonomies of 
these land cover products, which were cropland, forest/dense tree, 
shrubland, grassland, water, wetland, built-up, and bareland (which in 
this region are typically degraded savannas) (Doggart et al., 2020). The 

selected land cover products were either multi-class land cover products 
or binary cropland layers. Multi-class land cover maps were first 
reclassified into the same classes (Table S1), combined, and then the 
consensus areas were extracted from these layers. Because cropland is a 
difficult class to predict and thus was assigned poor quality consensus 
labels, a different strategy was applied to the cropland class. GFSAD30 
and TanSIS were combined together to mask out cropland areas to make 
consensus labels of other classes. GFSAD30 was then used singly as the 
cropland label at this stage due to its higher spatial resolution and 
classification accuracy. 

The resulting consensus labels still contained significant noise 
because the input maps were derived from low to moderate spatial 
resolution imagery (Table 1). These errors were mainly concentrated 
along the boundaries of different cover types, such as roads, rivers, and 
built-up regions. To reduce the impact of boundary uncertainties, we 
used buffered OSM layers, including roads, rivers, and buildings, to 
mask out such areas. This process resulted in a set of consensus land 
cover labels that were highly fragmented (Fig. 4A) and were thus not 
optimal for training fully convolutional neural networks, for which 
image-based training labels are optimal for providing the model with 
spatial context. 

2.3.2. Part 2: Creating gap-filled land cover labels 
To convert the fragmented consensus labels into image-wise labels 

(Fig. 4B) suitable for training a U-Net, we trained a pixel-based Random 
Forest (Breiman, 2001) model using a random sample of consensus LC 
labels. As the moderate-resolution land cover maps miss many small 
inland waterbodies and have low location precision in settlements, we 
removed waterbodies and built-up areas from the consensus labels and 
instead sampled labels for these two classes from the OSM layers. We did 
not explicitly model wetlands, because they constitute a very rare class 
without unique features in our study area. To develop the model, we 
analyzed variable importance and selected the best hyper-parameters 
(see details in Fig. S4). The model was trained using the 4 bands of 
semi-annual NICFI basemaps, and the harmonic regression coefficients 
extracted from both polarizations of the Sentinel-1 time series (see 
Section 2.2.1). Additional features included the normalized difference 
vegetation index (NDVI), soil-adjusted vegetation index (SAVI), two- 
band enhanced vegetation index (EVI), and atmospherically resistant 
vegetation index (ARVI) (Huete, 1988; Jiang et al., 2008; Jin et al., 
2019; Kaufman and Tanre, 1992; Tucker, 1979) calculated from each 
basemap pair. To minimize the computation costs of training the neural 
network, we split the original quad size of 4096 × 4096 pixels into 8 × 8 
sub tiles of 512 × 512 pixels (Fig. 4). After training the gap-filling model, 
4 sub tiles within each quad were randomly selected to generate pre
dicted labels, with 3 labels reserved for training the neural network, and 
one reserved for validation. 

The resulting gap-filled land cover labels were imperfect (see 
Fig. 4B), therefore in a second step, we manually checked and edited 
labels where needed. Final label quality was assessed against two di
mensions: the correctness of the label after editing and the difficulty of 
the tile to be classified. The correctness of the label was assessed based 
on visual interpretation of the underlying land cover in the basemap 
imagery, while the difficulty of labeling was graded based on how many 
edits were made to the predicted label tile, with more edits indicating 
increasing difficulty. Both measures were graded from low (1) to high 
(5). We refer to the resulting scored and edited labels as human refined 
labels (Fig. 4C), which, along with their quality information, were used 
to train the neural network. 

2.3.3. Part 3: Land cover classification with U-Net 
We applied a widely used deep learning architecture, U-Net (Text S4 

and Fig. S2), to train the image-based land cover model. Compared to 
more complex architectures (e.g., Deeplab), U-Net requires fewer 
training samples and achieves good performance with a substantially 
lower computational cost (Ronneberger et al., 2015). Thus, U-Net is a 

Fig. 3. The workflow of the proposed approach (OSM stands for 
OpenStreetMap). 
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popular method for land cover classification, particularly when training 
examples are limited (Rakhlin et al., 2018). 

Optimization algorithms play an important role in training a deep 
neural network (Sun, 2020). A good optimizer enables the network to 
obtain the optimal weight matrix efficiently. In this study, we selected a 
recently proposed combined optimization method (AdaBound) that 
works like adaptive methods at the early stage of training to get fast 
training speeds, then smoothly transforms to Stochastic Gradient 
Descent (SGD) at the end to attain good overall generalization and 
model performance (Luo et al., 2019). 

The learning rate for gradient descent is also critical in neural 
network training that impacts the model’s ability to converge on a so
lution (Bengio, 2012). In this paper, we applied a combined learning rate 
scheduler that included multiple constant and cyclical learning rates 
(Smith, 2017) for all experiments. 

In a convolutional neural network, data augmentations, such as scale 
and rotation, are effective strategies to increase the variance of training 
data and improve the generalizability of the network (Perez and Wang, 
2017; Shorten and Khoshgoftaar, 2019). At training time, we randomly 
flipped the original images horizontally or vertically. Diverse imaging 
conditions of CubeSats lead to photographic variations in scale and 
changes of illumination in PlanetScope imagery (Houborg and McCabe, 
2018). These variations effectively mimic the brightness shift that is 
typically used for data augmentation; therefore, we did not implement 
this particular augmentation strategy. We did not employ rotations or 
stretching because they may alter image-level labels or break the spatial 

symmetry. 
To reduce the impact of class imbalance and noisy labels, we 

weighted loss by class frequency as well as the quality of labels in each 
training image (Eq. (1)). The dimensions of the input for the loss func
tion were (B,C,H,W), where B is the number of images in each mini- 
batch, C is the number of classes, H is the height of the image, and W 
is the width of the image. N is the overall number of pixels, which equals 
B× H× W. 

loss(x, y) =
∑B

b=1lb × wcb × wdb
∑N

n=1wyn • 1{yn ∕= indexignore}
(1) 

lb is the sum of class-balanced cross entropy loss per pixel in an 
image, then: 

lb =
∑H

h=1

∑W

w=1
− wyhw log

exp(xhw,yhw )
∑C

c=1exp(xhw,c)
• 1{yhw ∕= indexignore} (2) 

where x is the input, y is the target, w is the class-balanced weight, wc 

is the normalized weight of label correctness, and wd is the normalized 
weight of label difficulty. 

The original measure of label correctness c ranges from 1 (least 
correct) to 5 (most correct), which are then normalized to weights (0–1) 
using a logistic function wc = 1

1+e− k(c− cm ), where k is the growth rate and cm 

is the c value of the midpoint. In wc, we only changed k and used the 
constant value 2.5 for cm, which is the median of original correctness 
values. The original value for labeling difficulty d ranges from 1 to 5 

Fig. 4. Sub-tiling system and different types of label examples (A are the weak ensemble labels, B are the gap-filled labels produced by a Random Forests model, C are 
the human refined labels, and S1 and S2 are false-color composites of PlanetScope NICFI basemaps in season 1 and season 2). 
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(least to most difficult), which are rescaled to a user defined range [1, 
smax] as weights using equation wd =

(smax − 1)×(d− dmin)
(dmax − dmin)

+ 1. The rescaling 
functions are flexible to be designed in any forms (e.g., linear) based on 
different modeling demands. We picked these functions based on their 
regularization ability and the quality condition of the labels in this 
project. 

The correctness weight reduces the contribution of images with poor 
label quality to the calculation of the loss function, thereby decreasing 
the risk that the network learns incorrect information from noisy labels. 
In contrast to correctness weights, the role of difficulty weights is to 
force the model to pay more attention to images that are hard to classify, 
which helps improve the generalizability of the model to other areas or 
time intervals. However, difficulty weights that are too high may cause 
the network to overfit on difficult labels, therefore we recommend 
smaller values of smax, generally from 1 to 1.2. An analysis of weight 
parameters of quality-weighted and class-balanced loss was given in 
Text S6 of supplementary materials. In our study, when growth rate k of 
the logistic function used to calculate the correctness weight (wc) is set 
to 1.5, the best performance (AA = 0.880 ± 0.002) was achieved 
(Fig. S3). The values of smax, used to calculate the difficulty weight (wd), 
from 1 to 1.1 were reasonable choices for this study (Text S6 and 
Fig. S3). 

2.4. Accuracy assessment 

To assess the LC products and modeling results, we used the true 
negative rate (TNR, also called specificity), negative predictive value 
(NPV), user’s accuracy (UA, also called consumer’s accuracy, precision, 
or positive predictive value), producer’s accuracy (PA, also called recall, 
true positive rate or sensitivity), balanced accuracy (BA), and the F1 
score (Barsi et al., 2018; Brodersen et al., 2010; Elmes et al., 2020; 
Olofsson et al., 2014). For U-Net training, we also used intersection over 
union (IoU) and the average (mIoU). The calculation details for these 
metrics are provided in Text S5 of supplementary materials. 

3. Results 

3.1. Land cover label gap-filling 

The Random Forests label gap-filling model (number of trees: 1000, 
number of independent variables: 28, mtry: 11) was trained with 1.24 ×

106 samples randomly selected from the ensembled land cover products 
(roughly 48 % of the area). Twenty percent of the samples were used for 
hyper-parameter tuning with a grid search and model validation 
(Table 2). The independent reference dataset (Section 2.2.2) was used to 
assess model performance (Table 2). 

The model selection process showed that radar backscatter (Fig. S4) 
was an important feature for land cover classification, with variables 
representing harmonic regression coefficients describing one intra- 
annual seasonal cycle being much more influential in distinguishing 
land cover types than those characterizing two seasonal cycles, while the 

coefficient of cos
(

2πt
dyr

)
was more important than sin

(
2πt
dyr

)
, which is also 

evident in Fig. 2. Optical images captured in the growing season were 
more influential than those from the off-season (Fig. 2), while among the 
spectral features, NIR and vegetation indices contributed more than the 
visible bands. The trained Random Forest had an overall accuracy of 
80.26 % and an average F1 of 76.85 %, but with substantial performance 
differences across different land cover types (Table 2 and Fig. S5). 

The resulting gap-filled models produced a set of 2,572 image-wise 
labels that were generated purely by machine intelligence, which were 
then improved using human supervision. Each label was manually 
checked and refined as needed, requiring an average of 0.8 min per label 
and a total estimated effort of 34 h (see Table S3 in the supplementary 
material for further details on effort). Many (39 %) labels had good 
quality and did not need editing, and thus had high correctness and low 
difficulty scores (Fig. 5). In all, 61 % of the labels were edited, with the 
majority of these (85 %) needing only minor editing (difficulty score of 
1–2), while the remaining 15 % needed moderate to extensive editing 
(difficulties of 3–5). A small quantity (6 %) of labels had correctness 
scores lower than five because these were too complex to be edited. The 
resulting human-refined, image-wise labels and their quality informa
tion were used to train the U-Net land cover segmentation model. 

3.2. Land cover classification with U-Net 

To train the model, we used original spectral bands of two seasonal 

NICFI images and intercept, slope, and coefficient of cos
(

2πt
dyr

)
of Sentinel- 

1 time series as input channels of U-Net, which were selected based on 
their variable importance values for Random Forests (Section 3.1 and 

Table 2 
The evaluation of the random forest gap-filling model.  

Class Validation 
PA 

Independent test (overall accuracy: 80.26 %) 

TNR NPV UA PA BA F1 score 

Cropland  84.24 %  88.17 %  96.21 %  80.05 %  93.18 %  90.67 %  86.12 % 
Forest/Dense tree  95.04 %  98.23 %  98.56 %  64.23 %  69.02 %  83.62 %  66.54 % 
Grassland  87.52 %  93.30 %  94.99 %  69.06 %  75.26 %  84.28 %  72.03 % 
Shrubland  86.06 %  94.47 %  85.62 %  88.28 %  72.43 %  83.45 %  79.57 % 
Water  96.74 %  99.57 %  99.93 %  89.14 %  98.01 %  98.79 %  93.36 % 
Built-up  73.62 %  99.46 %  98.77 %  83.70 %  69.06 %  84.26 %  75.68 % 
Bareland  96.78 %  99.82 %  99.35 %  81.13 %  53.75 %  76.79 %  64.66 % 
Average  88.57 %  96.14 %  96.21 %  79.37 %  75.82 %  85.98 %  76.85 %  

Fig. 5. Distribution of human refined label quality.  
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Fig. S4). Other inputs were not used in order to minimize computational 
demand. For the learning rate scheduler, we selected values that ranged 
from 0.001 in earlier epochs to 0.0001 in the final epochs (Fig. 6A). The 
selected validation sub tiles (Section 2.3.2 and Fig. 4) were used for 
model tuning and model validation, and the independent reference 
dataset (Section 2.2.2) was also used for final model testing (Table 3). 
The computational environments are described in Text S4 in the sup
plementary material. 

The model training curves (Fig. 6) showed that the U-Net model 
achieved relatively high accuracy for almost every class after just a few 
epochs (10–25), with gradual improvement thereafter with fluctuations 
in the curve becoming more stable in later epochs. The mIoU curve re
veals that the model was less effective in achieving shape accuracy than 
overall accuracy, given the slower rate of improvement and significant 
fluctuations. The learning curves for the cropland and built-up classes 
showed a characteristic pattern of rapid but steady growth until reach
ing a plateau, with high values for each class achieved on the indepen
dent accuracy assessment (92–97 %, Table 3) test. In contrast, the 
training curves for the forest/dense tree and bareland classes rapidly 
jumped to a plateau, with larger fluctuations evident in the forest class. 

This likely reflects the same tendency to over-fit these two classes 
that were evident in the Random Forest gap-filling model (Section 3.1). 
The same behavior is also evident in the learning curve for water, but in 
this case, the model is able to effectively generalize for this class (98–99 
% accuracy; Table 3) because of its relatively unique and globally 
consistent spectral characteristics. Grassland and shrubland had 
learning curve progressions similar to those of the cropland and built-up 
classes, but with substantial fluctuations. These two types were more 
confusing for the network, given their spectral similarity with each other 
and with croplands. 

The U-Net model achieved an overall accuracy of 83.57 % and an 
average F1 of 81.66 % on our independent test dataset. The average 
balanced accuracy across classes was 91.77 % (range 84.89–98.53 %), 
with average producer’s accuracy (PA) of 86.57 % (range 76.29–98.01 
%) and average user’s accuracy (UA) of 78.32 % (range 50.26–98.17 %). 
Forest/dense trees had a high commission error (UA = 50.26 %) and 
were often classified in places that were in fact shrublands (Fig. 7), while 
also having a high commission error (UA = 87.07 %) as it was often 
confused with grassland (Fig. 7). Besides forests/dense trees, grassland 
and shrubland were the two hardest classes for U-Net to learn, partic
ularly shrubland, which has diverse features that are easily confused 
with croplands, forests, and grasslands (Fig. 7). 

Besides the land cover map, U-Net also produced a map of classifi
cation confidence (Fig. 8) with values ranging from 18 to 99 to provide a 
reference for downstream studies such as yield estimation or land cover 
change analysis, following recommendations by Elmes et al (2020). The 
classification confidence is the pixel-wise maximum value of class 
probabilities produced by softmax after U-Net (Fig. S2). Over the whole 
study area, the cropland, forest/dense trees, grassland, shrubland, and 
bareland classes had fairly similar average confidence scores (80–84 %; 
Table 3), while water had the highest mean score (94.89 %; Table 3) and 
built-up the lowest (70.11 %; Table 3). It is noteworthy that there was 
some noise in the predicted water class due to dark objects in the orig
inal images, such as shadows. 

3.3. Final land cover map 

After completing the final land cover classification, we added the 
wetland class by rasterizing the OSM layer (Fig. 9A). Because the 
wetland class was not calculated by U-Net, we did not assign this class 

Fig. 6. Evolution of the learning rate (A), loss function (B), mean IOU (C), accuracy of each class (D1-D7), and average accuracy (D8)) on the validation dataset 
during model training. 
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any confidence value (Fig. 8). Reasonably, the U-Net model has higher 
confidence over homogeneous areas, such as water bodies, grassland in 
the north, and shrubland in the southeast (Fig. 8). The model has low 
confidence over the northwest area (Fig. 8), where it is a complex 
mixture of cultivated crops, tree crops, built-up, and native vegetation. 
Similar performance was attained over the foothills and hillside of 
Mount Kilimanjaro, where people are growing cultivated crops and 
coffee mixing with native vegetation. 

In northern Tanzania, the predominant land cover types are crop
land, shrubland, and grassland (Fig. 9B & 9C). The error-adjusted area 
estimate (Olofsson et al., 2014) with a 95 % confidence interval of the 
cropland is 86755 ± 1438.3 km2; shrubland is 83940.3 ± 1985.6 km2 

and grassland is 43811.4 ± 1734.7 km2. Most of the cropland is 
distributed in the Central plateau agro-ecological zone, with plains and 
arable lands (Figs. 1 & 9A). The southern part of this zone is less culti
vated and is largely covered by shrubs. Shrubland are found primarily in 
the Eastern plateau zone with a moist climate, where the land is mainly 
uncultivated because it is falls within protected areas. Grasslands pre
dominate in the Northern riftzone and volcanic highlands, where the 
Serengeti National Park, Ngorongoro Conservation Area, and Arusha 
National Park are located. 

Comparisons of our land cover maps within different agro-ecological 
zones with the two existing multi-class land cover products used to make 
consensus labels show that our predictions inherited the advantages and 
mitigated the errors contained within the original land cover products. 
For example, Fig. 10a shows that our model reduced the substantial 
omission error in built-up areas and shrubland in the other two products 
while maintaining the broad distribution of croplands, and Fig. 10b 
shows that our updated map more effectively captures forests and 
croplands. Fig. 10c shows that CGLS_LC overestimated cropland while 
FROM-GLC overestimated shrubs, and our prediction reduced these is
sues significantly. Similarly, in Fig. 10d, CGLS_LC underestimated 
cropland and our prediction detected cropland as effectively as FROM- 
GLC. Owing to the high resolution of satellite imagery, our predictions 
reveal more landscape details and delineate more precise object 
boundaries. For instance, the dense tree cover within riverine forests is 
clearly delineated (Fig. 10c), as well as scattered residential areas 
(Fig. 10a). 

4. Discussion 

Our results demonstrate an effective and operationalizable approach 
for mapping land cover in data sparse areas, which is capable of pro
ducing greatly improved land cover data in hard to map tropical sa
vannas, where up-to-date and accurate land change information is 
critical given the rapid pace of change (Bullock et al., 2021) and the 
relative inaccuracy and infrequent production of existing land cover 
products. The resulting map has noticeable improvements in land cover 
type differentiation relative to existing land cover products, particularly 
in cropland and grassland. These gains are in part attributable to the 
integration of high-resolution PlanetScope NICFI basemaps, which 
significantly enhances object boundary delineation, and improves 

Table 3 
Validation, independent test accuracy and prediction confidence of U-Net model.  

Class Validation 
PA1 

Independent test (overall accuracy: 83.57 %) Prediction confidence 
(95 % interval) 

TNR NPV UA PA BA F1 score 

Cropland 85.20 ± 0.78 %  96.34 %  95.84 %  92.75 %  91.80 %  94.07 %  92.27 % 81.27 ± 15.10 % 
Forest/Dense tree 97.47 ± 1.14 %  96.50 %  98.89 %  50.26 %  76.47 %  86.49 %  60.65 % 83.95 ± 17.48 % 
Grassland 83.03 ± 1.02 %  94.02 %  95.61 %  72.25 %  78.29 %  86.16 %  75.15 % 82.82 ± 17.12 % 
Shrubland 80.91 ± 1.47 %  93.48 %  87.27 %  87.07 %  76.29 %  84.89 %  81.32 % 82.56 ± 16.68 % 
Water 97.73 ± 0.20 %  99.05 %  99.93 %  78.80 %  98.01 %  98.53 %  87.36 % 94.89 ± 12.18 % 
Built-up 88.51 ± 0.35 %  99.93 %  99.86 %  98.17 %  96.41 %  98.17 %  97.29 % 70.11 ± 18.41 % 
Bareland 96.22 ± 0.19 %  99.44 %  99.84 %  68.93 %  88.75 %  94.09 %  77.60 % 79.93 ± 18.62 % 
Average 89.87 ± 0.10 %  96.97 %  96.75 %  78.32 %  86.57 %  91.77 %  81.66 % 82.43 ± 16.53 % 

1Average PA of last 10 epochs. 

Fig. 7. Confusion matrix heatmap of the independent test of U-Net classifica
tion model. 

Fig. 8. The confidence map of land cover classification by U-Net.  
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Fig. 9. Predicted land cover (A), error-adjusted area estimates (B), and proportion of each land cover type (C) with 95% confidence interval over the study area (*The 
estimated area of wetland is directly calculated by the rasterized OSM layer without error adjustment). 

Fig. 10. Seasonal NICFI images, prediction in this study, and the CGLS_LC100m and FROM-GLC 2017v1 product of four example tiles (a and b are in Central plateau 
agro-ecological zone, c is in Northern Riftzone and Volcanic highlands zone, and d is in Eastern plateau zone). 
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detection of minor land cover types (e.g., residential) and the descrip
tion of landscape patches. The Sentinel-1 time series provides a cloud- 
free temporal signature of landscape features, which can overcome the 
spectral limitations of optical satellite imagery (e.g., PlanetScope) and 
increase the ability to distinguish different land cover types (Jacob et al., 
2020). 

A key feature of our approach that enables its operationalization is its 
ability to generate a large number of labels without intensive human 
effort, which it does by leveraging existing land cover datasets. Even 
though these data individually have substantial problems and often 
perform poorly in our study area (Table S2), particularly because they 
are developed over regional to global extents (Buchhorn et al., 2020b; 
Congalton et al., 2017; Gong et al., 2019; Walsh et al., 2018), using the 
consensus of these products can provide a useful starting point for col
lecting a large number of training samples that can be synthetically 
improved through an easily implemented machine learning approach. 
As a widely used algorithm, Random Forest performs well for land cover 
classification (Sheykhmousa et al., 2020; Talukdar et al., 2020), has 
interpretable structure, and provides additional variable importance 
information that can be used to inform further modeling efforts. It can be 
trained using both point- and image-based training samples, which 
makes the model easy to rapidly develop and apply. However, the al
gorithm cannot learn from the spatial patterns of features or their re
lationships (Breiman, 2001; Chan and Paelinckx, 2008), thus it is 
necessary to carefully select additional supplementary features that can 
improve model performance. Neural network architectures, such as U- 
Net, which can learn from contextual patterns in imagery to improve 
object boundary delineation (Iglovikov et al., 2017; Rakhlin et al., 
2018), and thereby overcome one of Random Forest’s major limitations. 
However, this improved performance comes at the expense of collecting 
larger volumes of training data, consisting of chips that are fully labelled 
to provide the model with the necessary spatial context. Even though 
strategies such as weak supervision (Wang et al., 2020) have been 
proposed to reduce labelling effort by using fragmented labels, the lack 
of precise localization information can lead to the failure of small size 
objects, particularly across complex fragmented landscapes. Using two 
models together as we have done here plays to each model’s strengths 
while helping to overcome the major challenge of limited training data. 

There, nevertheless, is still room for improvement in both approach 
and datasets. In our study, we simply resampled S1 SAR imagery to align 
with PlanetScope NICFI basemaps in order to make full use of the high 
resolution and reduce the risk of adding more uncertainties due to extra 
processing. In fact, multiple methods better than resampling exist to deal 
with imagery with different scales. The time intervals for semi-annual 
NICFI basemaps are not customized regionally, which may not match 
with local seasonality. In this study, we selected NICFI scenes (2017-12- 
01–2018-05-30 and 2018-06-01–2018-11-30) covering dates that 
generally align with the agriculture year (2017-10-01–2018-09-30). 
Because PlanetScope basemaps were mosaiced every-six months, we 
assumed a two-month shift would not cause any significant issues in 
dynamic landscapes. This deficiency, however, can limit the mapping 
ability that relies on temporal signatures in spectra (e.g., mapping crop 
types). 

In the Sub-Saharan African landscape, fallow is a common and crit
ical land-use type, but it is usually not a target class in coarse level land 
cover studies. The fallow is often interpreted as farmland due to its 
regular shape and close location to active farmland. However, it has 
more similar spectral and temporal features to grassland or bareland 
(Tong et al., 2020). This could be a significant reason for 
misclassification. 

5. Conclusion 

We provided an operational workflow for rapid land cover mapping 
that can be applied to heterogeneous landscapes without good ground 
truth references. The proposed workflow ensembles not only multiple LC 

products but also artificial and human intelligence to increase classifi
cation reliability. We then demonstrated its capacity to map a complex 
tropical savanna landscape in Northern Tanzania. The resultant land 
cover map can be used in investigating agricultural expansion and 
development, analyzing deforestation or sustainability of protected 
areas, and many other ecological applications. 

Additionally, we provided a high-resolution land cover dataset with 
label quality information at large scales across the savanna landscape. It 
well presents features, structures, and distribution of major land cover 
categories in our study area. Therefore, they can be used to train 
different types of land cover models, and more importantly to investi
gate how to improve land cover mapping with noisy labels that are 
inevitable in the real world. The pre-trained U-Net network upon this 
dataset can directly be used to map land cover if the landscape condition 
is similar and input datasets are available. It can also be fine-tuned and 
transferred to other cases or years. 

The land-cover dataset and land cover map produced in our study are 
accessible under https://osf.io/4qj36/. Code of workflow and of pre- 
processing satellite image for this article can be found on GitHub at 
https://github.com/LLeiSong/hrlcm and https://github.com/LLei 
Song/sentinelPot. 
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Chamorro Martinez, J.A., Cué La Rosa, L.E., Feitosa, R.Q., Sanches, I.D., Happ, P.N., 
2021. Fully convolutional recurrent networks for multidate crop recognition from 
multitemporal image sequences. ISPRS J. Photogramm. Remote Sens. 171, 188–201. 
https://doi.org/10.1016/j.isprsjprs.2020.11.007. 

Chan, J.-C.-W., Paelinckx, D., 2008. Evaluation of Random Forest and Adaboost tree- 
based ensemble classification and spectral band selection for ecotope mapping using 
airborne hyperspectral imagery. Remote Sens. Environ. 112, 2999–3011. https:// 
doi.org/10.1016/j.rse.2008.02.011. 

Cheng, Y., Vrieling, A., Fava, F., Meroni, M., Marshall, M., Gachoki, S., 2020. Phenology 
of short vegetation cycles in a Kenyan rangeland from PlanetScope and Sentinel-2. 
Remote Sens. Environ. 248, 112004 https://doi.org/10.1016/j.rse.2020.112004. 

Congalton, R., Yadav, K., McDonnell, K., Poehnelt, J., Stevens, B., Gumma, M., 
Teluguntla, P., Thenkabail, P., 2017. Global Food Security-support Analysis Data 
(GFSAD) Cropland Extent 2015 Validation 30 m V001. 

Doggart, N., Morgan-Brown, T., Lyimo, E., Mbilinyi, B., Meshack, C.K., Sallu, S.M., 
Spracklen, D.V., 2020. Agriculture is the main driver of deforestation in Tanzania. 
Environ. Res. Lett. 15, 034028 https://doi.org/10.1088/1748-9326/ab6b35. 

Elmes, A., Alemohammad, H., Avery, R., Caylor, K., Eastman, J., Fishgold, L., Friedl, M., 
Jain, M., Kohli, D., Laso Bayas, J., Lunga, D., McCarty, J., Pontius, R., Reinmann, A., 
Rogan, J., Song, L., Stoynova, H., Ye, S., Yi, Z.-F., Estes, L., 2020. Accounting for 
training data error in machine learning applied to Earth observations. Remote Sens. 
12, 1034. https://doi.org/10.3390/rs12061034. 

Estes, L.D., Ye, S., Song, L., Luo, B., Eastman, J.R., Meng, Z., Zhang, Q., McRitchie, D., 
Debats, S.R., Muhando, J., Amukoa, A.H., Kaloo, B.W., Makuru, J., Mbatia, B.K., 
Muasa, I.M., Mucha, J., Mugami, A.M., Mugami, J.M., Muinde, F.W., Mwawaza, F. 
M., Ochieng, J., Oduol, C.J., Oduor, P., Wanjiku, T., Wanyoike, J.G., Avery, R.B., 
Caylor, K.K., 2022. High resolution, annual maps of field boundaries for smallholder- 
dominated croplands at national scales. Front. Artif. Intell. 4, 744863 https://doi. 
org/10.3389/frai.2021.744863. 

Fritz, S., See, L., Rembold, F., 2010. Comparison of global and regional land cover maps 
with statistical information for the agricultural domain in Africa. Int. J. Remote Sens. 
31, 2237–2256. https://doi.org/10.1080/01431160902946598. 

Fritz, S., You, L., Bun, A., See, L., McCallum, I., Schill, C., Perger, C., Liu, J., Hansen, M., 
Obersteiner, M., 2011. Cropland for sub-Saharan Africa: a synergistic approach using 
five land cover data sets. Geophys. Res. Lett. 38. 
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Pascual, A., Tupinambá-Simões, F., de Conto, T., 2022. Using multi-temporal tree 
inventory data in eucalypt forestry to benchmark global high-resolution canopy 
height models. A showcase in Mato Grosso, Brazil. Ecol. Inform. 70, 101748. doi: 
10.1016/j.ecoinf.2022.101748. 

Perez, L., Wang, J., 2017. The effectiveness of data augmentation in image classification 
using deep learning. ArXiv Prepr. ArXiv171204621.  
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