
978-1-4244-4620-9/09/$25.00 c©2009 IEEE

A Distributed Camera System for Multi-Resolution

Surveillance

Nicola Bellotto∗, Eric Sommerlade∗, Ben Benfold∗, Charles Bibby∗, Ian Reid∗,
Daniel Roth†, Carles Fernández‡, Luc Van Gool† and Jordi Gonzàlez‡

∗Active Vision Laboratory, University of Oxford, United Kingdom

http://www.robots.ox.ac.uk/ActiveVision
†Computer Vision Laboratory, ETH Zurich, Switzerland

Email: {droth,vangool}@vision.ee.ethz.ch
‡Computer Vision Centre, Bellaterra, Spain

Email: {perno,poal}@cvc.uab.es

Abstract—We describe an architecture for a multi-camera,
multi-resolution surveillance system. The aim is to support a set
of distributed static and pan-tilt-zoom (PTZ) cameras and visual
tracking algorithms, together with a central supervisor unit. Each
camera (and possibly pan-tilt device) has a dedicated process
and processor. Asynchronous interprocess communications and
archiving of data are achieved in a simple and effective way via
a central repository, implemented using an SQL database.

Visual tracking data from static views are stored dynamically
into tables in the database via client calls to the SQL server.
A supervisor process running on the SQL server determines if
active zoom cameras should be dispatched to observe a particular
target, and this message is effected via writing demands into
another database table.

We show results from a real implementation of the system
comprising one static camera overviewing the environment under
consideration and a PTZ camera operating under closed-loop
velocity control, which uses a fast and robust level-set-based
region tracker. Experiments demonstrate the effectiveness of
our approach and its feasibility to multi-camera systems for
intelligent surveillance.

I. INTRODUCTION

We are motivated by the desire to develop cognitive visual

systems. In the context of surveillance, the theme of this paper,

by cognitive we mean a system which can not only track

targets, but identify them, and explain what is taking place,

especially taking account of any possible causal relationships.

This paper describes a system which we hope will support

work towards this goal. Here, we are primarily concerned with

the low-level data acquisition processes, how these processes

communicate, and also how any solution to these problems

could be used in the context of top-down processing. To this

end we describe an architecture for a multi-camera, multi-

resolution surveillance system. The proposed solutions and,

in particular, the use of a central SQL database provide a

reference application for the asynchronous communication

between visual processes, as well as an efficient way to store

large amounts of information for possible reasoning engines.

The system comprises a set of distributed static and PTZ

cameras and visual tracking algorithms, together with a central

supervisor unit. Each camera (and possibly pan-tilt device) has

a dedicated process and processor. Asynchronous interprocess

communications and archiving of data are achieved in a simple

and effective way via a central repository, implemented using

an SQL database. Visual tracking data from static views are

stored dynamically into tables in the database via client calls

to the SQL server. A supervisor process running on the SQL

server determines if active zoom cameras should be dispatched

to observe a particular target, and this message is effected via

writing demands into another database table.

We show initial results from a real implementation of the

system comprising a static and a PTZ camera, although the

system can be easily extended to include more devices thanks

to the modularity of our approach. The static camera runs

a figure/ground segmentation-based tracker, while the PTZ

camera operates under closed-loop velocity control using a

fast and robust level-set-based region tracker. The goal of the

system, as regulated by a supervisor process, is to keep track

of all targets in a scene using the overview camera, and to

acquire high-resolution, stabilised images of the faces of all

agents in the scene using zoom cameras in closed loop tracking

mode.

The remainder of the paper is organised as follows: in the

next section we review related work primarily considering

other systems which involve active cameras. In section III

we describe the overall system architecture, and specific

implementation details for each of the modules are considered

in section IV. We show preliminary results from an actual

implementation of the system in section V, and conclude with

a summary of our current and future research directions.

II. RELATED WORK

There has been a significant body of research published

on distributed multi-camera surveillance systems in recent

years. Since in this work we are concerned with a system that

supports active cameras – i.e. cameras which can zoom, pan

and tilt – the following review concentrates on other systems

employing similar devices.

By far the most common means to use active cameras is

in the context of a master–slave–configuration, in which a

set of dedicated, static supervisor cameras makes wide area

observations and coordinates control of the active sensing

parts [1], [2], [3]. A disadvantage of supervisor cameras is the

need for a mapping of image contents to the active camera,

which has to be obtained from restricted camera placements,

movements or temporally extended observations [4], [5], [6].

Methods exist which obtain an explicit calibration from

target movements [7], [8], or a mapping of world, or gaze

coordinates to gaze parameters of the slave. For this, [6] and

[2] use a single moving target, whereas [5] uses long term

observations. These efforts can be circumvented by restricted

camera placements [3], [4]. In contrast, systems without super-

visor cameras have to rely on heuristics to observe the scene

[9], [10].

Most of the systems above do not require the integration of

data from multiple sources into a common coordinate system.

In particular, positional data obtained by the active camera is

usually not fed back into the system, except for high resolution

image data obtained [6], [3], [1]. Similar to [2], [1], our system

is also fully calibrated, since we aim at integration of data from

all participating sensors in a single world coordinate system.

This strategy is akin to [2], but with higher degree of flexibility.

Whereas the active vision part uses a local controller strategy

close to their ”µSaccade”, the resulting data in our system is

fed back to the database. This includes higher layers for more

abstract reasoning, not only on the trajectory and visibility of

the single target under scrutiny.

For data exchange in multi camera systems, two common

aspects of system design – efficiency and modularity – need

to be balanced. The modularity aspect becomes inescapable

once the system is distributed among different machines.

Since active vision systems need shorter response times,

they often make use of less standardised methods, such as

sockets [11], or restrain themselves to multi-threaded appli-

cations on single machines [1], [4], [3]. A solution could be

XML [12] because of the human-readability and versatility of

this format. Unfortunately, the XML standard trades efficiency

for flexibility, thus it is seldom the first choice for active vision

systems. A promising alternative is modularisation based on

agents presented in [13], but the actual implementation of the

communication is unfortunately not touched.

A multi camera surveillance system that also proposes a

database for communication is presented in [14]. The authors

present a multi-camera surveillance system with over twenty

video cameras in a realistic, long-term setting. Real-time video

analysis (tracking and event detection) results are stored on-

line in a central database. The database supports parallel

inserts as well as queries to the data. However, no information

is given about the latency of the whole system.

III. SYSTEM ARCHITECTURE

Our aim is to develop a system comprising distributed

static and active cameras (with more or less overlapping fields

of view), supporting asynchronous real-time operations to

enhance the detection and tracking of targets. Our architecture

is based on a central supervising unit which communicates

with a set of semi-autonomous visual tracking processes.

Fig. 1. System architecture.

Ultimately our objective for this supervisor process is to

assimilate tracking results from various cameras, deal with

assignments of cameras to targets, and to implement a layer

between low-level primarily data-driven processes, and higher-

level processes concerned with scene interpretation and repre-

sentation and learning of ontologies, etc.

In the present work, however, we are concerned only

with the supervisor, the data-driven, low-level processes, and

the means of communication. Interprocess communications

are mediated by the supervisor, and effected using an SQL

database. The database provides a natural means by which

messages can be passed between processes, in an architecture

independent fashion, simply by writing to and reading from

database tables/records, without the need to implement a

potentially complex asynchronous communications protocol.

It further provides an automatic means to archive data.

A schematic of the system is shown in Fig. 1. In summary,

the key components of our architecture are the following ones:

• Tracker with static camera (TSC), provided with a wide-

angle lens;

• Tracker with active camera (TAC), comprising a firewire

camera with integrated zoom lens (SONY DFW-VL500

and IMAGINGSOURCE DFK 21BF04-Z2) and a Di-

rected Perception DTU-D46 pan-tilt unit;

• Supervisor tracker module (SVT) dealing with data inte-

gration, command dispatch and high-level reasoning;

• SQL database shared by the above three components;

the present implementation comprises 4 tables: one for

observations/estimations generated by the trackers, one

for high-level commands sent by the SVT, another one

for stabilized images produced by the TAC, and finally

one to store calibration information for all the trackers.

Each tracker acts as an independent node with its own

processing unit connected to the systems via TCP/IP and

communicating by means of SQL queries. The SVT runs on

a linux-based machine with a MySQL server. All the units

are synchronized using the standard Network Time Protocol

(NTP).

The basic scheme of communication among the trackers,

the database, and the supervisor module is illustrated in Fig. 2

and described next.

1) First, in an offline and one-off procedure, both cameras

are calibrated (section IV-B) with the calibration data

stored in the common repository.

2) The TSC starts retrieving information about the positions

of the tracked targets, in form of regions of interest

(ROI). The position of each target and its ROI is stored

for each time step into an Observation Table.

3) The supervising module continuously reads the new

information stored in the Observation Table. Using the

calibration data and an assumption that the face ap-

pears near the top of the bounding box, the module

computes an approximate set of world coordinates for

the face/head of the target. These data are then stored

together with the ID of the target in the same table.

4) The TAC tracker receives the commands from the SVT

through the Command Table and reads the relative

information being stored into the Observation Table,

thus obtaining an approximated configuration of pan, tilt,

zoom parameters, so that the initial position of the face

can be predicted to initialize the tracking. Stabilized face

images of the target, independently tracked by the TAC,

are finally stored in the Image Table.

IV. IMPLEMENTATION

A. Passive Visual Sensing

The static camera of our system is used for real-time human

detection on wide-angle image sequences. Two different solu-

tions have been implemented, one using a segmentation-based

algorithm by Roth et al. [15] for an initial prototype of the

system, and another one based on the Lehigh Omnidirectional

Tracking System (LOTS) [16], which is part instead of a fixed

installation covering a large public area. As explained next, the

use of two different solutions depends mainly on the particular

location and orientation of the static camera, but it shows also

that the system architecture can easily adapt to different kind

of cameras and tracking algorithms.

The first implementation consists in a multi-object tracker

that performs a per-pixel classification, assigning every pixel to

one of the different objects being tracked, including the static

Fig. 2. Steps of the communication protocol between the TSC and the TAC
to get stabilized images of the target detected by the TSC.

Fig. 3. People detection using LOTS background subtraction. The centroid
of each red cluster, corresponding to a human target, is marked with a cross.

background. The classification is based on the probability that

a given pixel belongs to one of the objects given its specific

color and position. These object probabilities are determined

on the basis of two components. First, the observed pixel val-

ues are compared to learned appearance models of the objects,

in order to yield an indication of how similar observed colors

are to these models. The appearance models use Gaussian

mixtures in RGB color space with a single Gaussian per-pixel

for the background and multiple Gaussians for the foreground

models, and are learned and updated continuously. To handle

occlusions, the lack of image depth information is partially

compensated by assuming a horizontal and upright camera

orientation, as well as a planar floor. The reader should refer

to [15] for further information.

To detect people in the large atrium shown in Fig. 3 instead,

we use an implementation of the LOTS algorithm as described

in [17]. This is based on a background subtraction technique

that uses two gray-scale images (of the background) and two

per-pixel thresholds. The latter treat each pixel differently,

allowing the detector to be robust to localized noise in low-

size image regions, and evolve according to a pixel label

provided by a light version of the traditional connected com-

ponent analysis. Small adjacent regions detected by LOTS

are clustered together, and their centroid calculated to give

the target position. The background subtraction well suits our

current installation of the static camera because the targets,

being observed from the top, do not overlap in this case (see

Fig. 3). Details of the original LOTS algorithm can be found

in [16].

B. Calibration

To enable the supervisor to provide demands for the active

camera based on measurements from the static camera, both

were calibrated in a common world coordinate frame. The

intrinsic and extrinsic parameters of the static camera were

determined in standard fashion using multiple images of

planar checkerboard pattern, and yields among other things

the position of a world ground-plane (z = 0).
Since the active camera is used for fixated closed-loop

tracking, there is no need for accurate intrinsic calibration

(though focal-length does play a role as a closed-loop gain in

the system). The active camera is calibrated to the world frame

via a series of fixations of known 3D points. The mapping from

these points, or visual rays, to the joint-angles of the pan-tilt

unit is given succinctly by a 3D-2D projectivity, where the

assumption that the centre of rotation of the device is close to

the optical centre of the camera enables us to treat the active

camera as a “projective pointing device” [18].

At each time step the TSC tracker provides the image

coordinates and the bounding box of each detected target.

Using the assumption that the targets are in contact with the

ground-plane, and the face is a fixed distance above the ground

(in this work 1.7m), the 3D coordinates of the target face/head

are computed by the supervisor module and stored in the

Observation Table.

The accuracy of the extrinsic calibration has an effect on

the relative success of what amounts to hand over from the

static camera to the active camera. However once the active

camera is tracking under closed-loop control, it can continue

to do so independently of the static camera view.

C. Active Visual Tracking

The active tracker module periodically polls the database

to determine if there is a new demand from the supervisor.

If a new demand is present, the pan-tilt unit is immediately

commanded to the appropriate angle, and the zoom level of

the camera set to a value such that, based on the estimated

depth of the target, the face will occupy a fixed fraction of the

field of view.

A face detection module, based on the OpenCV imple-

mentation of the Viola-Jones boosted face detection algorithm

[19] locates the face in the image when the pan-tilt demand

is satisfied and is used to initialise a region-based tracker.

The latter uses a level-set to simultaneously track the image

position, rotation and scale of the target while segmenting it

from the background [20]. This tracker is fast (run-time of

20-30ms) and robust, and provides a smooth demand to a

local velocity control regime. The controller runs at the same

rate as the visual processing and employs a piece-wise linear

proportional control signal as used in [21].

Zoom control on the active camera is slow, and subject to

significant latencies. The scale of the target, as computed by

the level-set tracker, is used to control the zoom to keep the

face to a fixed size, chosen heuristically as a balance between

high-resolution and the ability of the PTZ device to keep the

target in the field of view.

D. System Supervision

The supervisor module is responsible for the data integration

, command dispatch and high-level reasoning of the system.

As anticipated in Fig. 1, this can be thought as a hierarchical

structure of semi-independent processes where the high-level

reasoning part supervises the other two using bi-directional

communication, via SQL queries, for information retrieval and

control.

The main purpose of the data integration process is to collect

sensor observations from one or more cameras and generate

proper trajectories of the current targets, which can be used for

high-level reasoning and for the active cameras. In the current

system, this is implemented as a multi-target tracker based on

Kalman filter and Nearest Neighbour data association using

a constant-velocity model [22], [23]. The multi-target tracker

reads from the Observation Table the 2D world coordinates of

the targets provided by the static camera, and then writes the

relative estimates (2D positions and velocity) into the same

table. In this way, it is possible to identify the trajectory of a

target, as a sequence of estimates with a unique ID, from the

anonymous detections provided by the static camera.

The command dispatch process is responsible for the correct

interpretation and delivery of the high-level commands. These

are sent to the destination cameras through the Command

Table, as explained in IV-E, in some cases together also with

additional arguments (e.g. the ID of a target to follow).

Finally, the high-level reasoning plays the double role of

high-level reasoning process and controller. At the moment,

this is achieved partly using a rule-based approach, and partly

with a real-time implementation of an inference engine based

on fuzzy metric-temporal logic [24]. The high-level reasoner

selects the best TAC to use for tracking a person according

to the his/her location and orientation, in order to increase the

chances of capturing high-resolution images of faces.

E. Data Exchange via SQL Tables

Each component of the system (TSC, TAC and SVT) sends

the local observation/estimation to the Observation Table. The

structure of this table has been defined thus to simplify the

communication between tracker clients and supervisor, and

includes records containing the following 23 fields:

timestamp, source id, target id (identification)

top, left, bottom, right (2D bounding box)

Σ11, Σ12, Σ22 (2D uncertainty)

x, y, z (3D coordinates)

Σxx, Σxy , Σxz , Σyy , Σyz , Σzz (3D uncertainty)

vx, vy , vz (3D velocities)

data (general purpose)

Basically, the first three fields contain the time of the current

information, the ID of the source device (camera) and that

one of the target being followed. The 2D bounding box of

the target, with respect to the current camera’s frame, is then

recorded together with the upper triangular entries of the

relative (symmetric) covariance matrix. The following fields

contain the 3D position of the target, its velocity and its

covariance matrix (upper triangular entries). This information

depends on the extrinsic parameters of the camera and, there-

fore, on the pan/tilt orientation in case of active camera. The

last field is left for the possible transmission of additional data.

Commands are sent by the supervisor module to the TAC

through the Command Table, the structure of which is defined

as follows:

timestamp, destination id, command id (identification)

data (arguments)

The destination TAC of the command is specified in the

“destination id” field. Commands are read by the TAC period-

ically polling the table. At the moment, the list of implemented

commands includes the following 8 ones (but this can be easily

extended):

1) CAPTURE_CALIBRATION_IMAGE – capture image

for calibration setup

2) RELOAD_CALIBRATION_DATA – load calibration set-

tings from database

3) GO_TO_LOCATION – point camera towards a desired

3D point

4) FOLLOW_TARGET – point camera towards a target in

the Observation Table

5) TRACK_TARGET – point camera towards a target and

instantiate a local tracker

6) STOP_TRACKING – stop current target tracking

7) STOP_MOTION – stop every activity

8) SET_DEFAULT_OBSERVATION_VOLUME – set de-

fault view while idle

Finally, the face images captured by TAC while tracking are

stored in the Image Table in records defined as follows:

timestamp, source id, target id (identification)

data, format (image)

where “data” contains the binary image and “format” specifies

the whether it is MONO, RGB, etc.

V. RESULTS

Several experiments have been run on an initial prototype

of system, shown in Fig. 4(a), and on the final installation

covering a large atrium of our department, as illustrated in

Fig. 4(b). The first one includes a static camera, mounted on

the ceiling, and an active camera on a tripod. The second

comprises a static camera in the middle of the atrium and two

active cameras on the north and south sides.

A. System Latency

To begin, we consider the performance of the MySQL

database and demonstrate the fact that this represents not only

a means to archive tracking data, but also an effective way to

implement interprocess data exchange in a timely manner.

Table I and II show transaction timings for 4000 data entries

and retrievals with MySQL running on a Dual-core Intel

processor under Linux. They illustrate in particular the latency

introduced by the database, remotely accessed via TCP/IP,

from the moment the TSC inserts an observation until the TAC

receives the relative command (steps 2, 3 and 4 in Fig. 1). The

first table shows the transaction timings in the simplest case,

when only the TSC and one TAC are used, while the second

(a) (b)

Fig. 4. (a) System setup for the initial prototype (active camera on the bottom right) and (b) for the final installation in a large atrium (static camera on the
top, active on the bottom).

One TAC Min Max Mean SD

TSC → TAC 1.7 59.9 3.7 3.2

TABLE I
TIMINGS IN MS FOR 4000 DATA ENTRIES-RETRIEVALS WITH ONE TAC.

Two TACs Min Max Mean SD

TSC → TAC1 1.5 53.4 3.2 1.6

TSC → TAC2 1.8 52.1 3.6 1.5

TABLE II
TIMINGS IN MS FOR 4000 DATA ENTRIES-RETRIEVALS WITH TWO TACS.

refers to the case with two TACs simultaneously accepting

commands.

These results are significant because they demonstrate that

the round-trip time for a message from the TSC to the

TAC is sufficiently small as to be negligible compared to

typical camera framerates, even when the database contains

millions of entries (in this case, more than 60 million for the

Observation Table and 18 million for the Command Table). As

shown by our experiments, indeed, the delay is in average one

order of magnitude less than the 30 Hz of a standard camera.

B. Data Archiving

SQL provides an effective tool to monitor human activities

and record large amounts of interesting data to be later ana-

lyzed. In this case, we were focusing on the typical trajectories

followed by people when crossing the surveilled atrium.

A trajectory is simply a sequence of 2D coordinates labelled

with the ID of the relative person. Fig. 5 shows a series of 179

trajectories, recorded during an experiment 4 hours long and

extracted from almost 60000 labelled coordinates, which were

generated by the SVT using panoramic observations from the

TSC.

This is just an example of the potential benefits provided

by the proposed architecture. Many other details are available

for each coordinate in the database (i.e. timestamp, velocity,

etc.), from which lots of information can be extracted.

C. Multi-Resolution Surveillance

Fig. 6 shows a series of stills from an extended sequence of

operation in which the supervisor initially instructs the active

camera to track one of the targets and maintain his face at

the same size (first two frames, t = 20s and t = 25s).
Note the stable view of the face in spite of motion blur in

the background induced by the camera motion. After tracking

and recording stabilised images of the first person’s face for

a period of time, the supervisor decides to switch attention to

a second more recently acquired target. After the demand is

sent to the camera, this moves to the new target, acquires it

and finally tracks it in closed-loop control (last two frames,

t = 42s and t = 43s).
An example of target acquisition and tracking at long

distances is shown in Fig. 7. In the first two frames, the white

box outlines the latest target position as received from the

database. Note the motion blur in the first frame – Fig. 7(a),

induced by higher velocity demands for initial centering of

the target. When the target is roughly centered, the camera

follows at lower speeds, at the same time zoom is adjusted to

maximise the area occupied by the target. Once the target is

detected – Fig. 7(b), the active tracker is initialised and zoom

increased to maximum – Fig. 7(c)-7(f). Finally, the maximum

zoom is reached, and the target face is kept and tracked at high

resolution. The target’s positional uncertainty obtained from

the database has to be overestimated to take into account the

errors due to calibration and odometry delay of the pan/tilt

head and camera.

Fig. 5. Trajectories of people walking in the atrium (grid 1× 1 m2) during a 4 hour period. Every trajectory has a start- and an end-point, marked with a
cross and a circle respectively.

(a) t = 20s – target acquired (b) t = 25s – follow target (c) t = 42s – pan (d) t = 45s – new target acquired

Fig. 6. Stills from an extended sequence of multi-resolution tracking, where the active camera is switching from one target to another, as demanded by the
supervisor tracker.

VI. CONCLUSIONS

We have presented an architecture for a distributed camera

system and described implementation details for a real system

comprising a static camera and two active cameras. While

there is little novelty in the algorithms used, we argue that

there is value in the architectural decisions we have made,

most notably the use of a central SQL database used as both

an archival repository, and a means to communicate between

loosely connected visual processes.

There remains much to do to prove the scalability of the

architecture, both in terms of numbers of cameras, and in

terms of robust operation over extended periods. Presently

the supervision module is rule-based, and the assignment of

cameras to tasks is made in a completely rigid manner, once

and forever. This is not imposed by the architecture, and we

are in the process of implementing the technique of [10] which

provides a means to regulate zoom as a balance between

possible target lock, and obtaining high resolution images of

the target.

ACKNOWLEDGMENT

This work was supported by the EU FP6 grant number IST-
027110 for the HERMES project – http://www.hermes-project.eu.

REFERENCES

[1] A. Hampapur, S. Pankanti, A. Senior, Y.-L. Tian, L. Brown, and R. Bolle,
“Face cataloger: Multi-scale imaging for relating identity to location,”
in Proc. of the IEEE Conf. on Advanced Video and Signal Based

Surveillance, Washington, DC, USA, 2003, pp. 13–20.

[2] P. Peixoto, J. Batista, and H. Araujo, “A surveillance system combining
peripheral and foveated motion tracking,” Pattern Recognition, 1998.

Proc.. Fourteenth Int. Conf. on, vol. 1, pp. 574–577 vol.1, Aug 1998.

[3] J. H. Elder, S. J. Prince, Y. Hou, M. Sizintsev, and E. Olevskiy, “Pre-
attentive and attentive detection of humans in wide-field scenes,” Int. J.

Comput. Vision, vol. 72, no. 1, pp. 47–66, 2007.

[4] F. Bashir and F. Porikli, “Collaborative tracking of objects in EPTZ
cameras,” in Visual Communications and Image Processing 2007, C. W.
Chen, D. Schonfeld, and J. Luo, Eds., vol. 6508. SPIE, 2007.

[5] U. M. Erdem and S. Sclaroff, “Look there! predicting where to look for
motion in an active camera network,” in IEEE Conf. on Advanced Video

and Signal Based Surveillance, 2005, pp. 105–110.

[6] F. Z. Qureshi and D. Terzopoulos, “Surveillance in virtual reality:
System design and multi-camera control,” in IEEE Conf. on Computer

Vision and Pattern Recognition, 2007, pp. 1–8.

[7] T. Chen, A. Del Bimbo, F. Pernici, and G. Serra, “Accurate self-
calibration of two cameras by observations of a moving person on a
ground plane,” in Proc. of IEEE Int. Conf. on Advanced Video and

Signal Based Surveillance, 2007, pp. 129–134.

[8] N. Krahnstoever and P. Mendon ca, “Autocalibration from tracks of
walking people,” in British Machine Vision Conf. (Vol. I), 2006, pp.
107–116.

[9] J. Davis, A. Morison, and D. Woods, “An adaptive focus-of-attention
model for video surveillance and monitoring,” Machine Vision and

Applications, vol. 18, no. 1, pp. 41–64, 2007.

[10] E. Sommerlade and I. Reid, “Information theoretic active scene ex-

(a) Frame 25 – pan (b) Frame 46 – detection (c) Frame 47 – acquisition

(d) Frame 67 – zoom in (e) Frame 83 – zoom in (f) Frame 115 – max zoom

Fig. 7. Multi-resolution tracking over long distances. Zoom factors are changed from 1 to 2.5 in frame 25, 4.5 in frames 46 and 47, up to 10 in frame 115.
Note the stabilised closeup image in the upper right corner once the target is acquired, and which is stored in the database. To speed up initial acquisition of
the target, the active tracker is not always run until full convergence (see face boundary in 47). This can result in subsequent rotation of the closeup image.

ploration,” in Proc. IEEE Computer Vision and Pattern Recognition

(CVPR), 2008, pp. 1–7.
[11] L. Marchesotti, L. Marcenaro, and C. Regazzoni, “Dual camera system

for face detection in unconstrained environments,” in Int. Conf. on Image

Processing (ICIP), vol. 1, 2003, pp. 681–684.
[12] D. Thirde, M. Borg, J. Ferryman, F. Fusier, V. Valentin, F. Bremond, and

M. Thonnat, “A real-time scene understanding system for airport apron
monitoring,” in IEEE Int. Conf. on Computer Vision Systems (ICVS),
2006, p. 26.

[13] P. Remagnino, A. I. Shihab, and G. A. Jones, “Distributed intelligence
for multi-camera visual surveillance,” Pattern Recognition, vol. 37, no. 4,
pp. 675–689, 2004.

[14] A. Girgensohn, D. Kimber, J. Vaughan, T. Yang, F. Shipman, T. Turner,
E. Rieffel, L. Wilcox, F. Chen, and T. Dunnigan, “Dots: support
for effective video surveillance,” in Proc. of the 15th Int. Conf. on

Multimedia, 2007, pp. 423–432.
[15] D. Roth, E. Koller-Meier, and L. V. Gool, “Multi-object tracking driven

event detection for evaluation,” in AREA workshop @ ACM Multimedia,
October 2008, in press.

[16] T. Boult, R. Micheals, X. Gao, and M. Eckmann, “Into the woods: visual
surveillance of noncooperative and camouflaged targets in complex
outdoor settings,” Proceedings of the IEEE, vol. 89, no. 10, pp. 1382–
1402, 2001.

[17] D. Hall, J. Nascimento, P. Ribeiro, E. Andrade, P. Moreno, S. Pesnel,
T. List, R. Emonet, R. B. Fisher, J. S. Victor, and J. L. Crowley,
“Comparison of target detection algorithms using adaptive background
models,” in Proc. of the 14th Int. Conf. on Computer Communications

and Networks, 2005, pp. 113–120.
[18] A. J. Davison, I. D. Reid, and D. W. Murray, “The active camera as a

projective pointing device,” in Proc. of the 6th British Conf. on Machine

vision (Vol. 2), 1995, pp. 453–462.
[19] P. Viola and M. J. Jones, “Rapid object detection using a boosted cascade

of simple features.” in IEEE Conf. on Computer Vision and Pattern

Recognition, Kauai, HI, USA, 2001, pp. 511–518.
[20] C. Bibby and I. Reid, “Robust real-time visual tracking using pixel-wise

posteriors,” in Proc. of the 10th European Conf. on Computer Vision

(ECCV), 2008, pp. 831–844.
[21] ——, “Visual tracking at sea,” in Proc. of the IEEE Int. Conf. on

Robotics and Automation (ICRA), April 2005, pp. 1841–1846.
[22] N. Bellotto and H. Hu, “People Tracking with a Mobile Robot: a

Comparison of Kalman and Particle Filters,” in Proc. of the 13th IASTED
Int. Conf. on Robotics and Applications, 2007, pp. 388–393.

[23] Y. Bar-Shalom and X. R. Li, Multitarget-Multisensor Tracking: Princi-

ples and Techniques. Y. Bar-Shalom, 1995.
[24] H.-H. Nagel, “Steps toward a cognitive vision system,” AI Magazine,

vol. 25, no. 2, pp. 31–50, 2004.

