
 

 

 
 

 

Edinburgh Research Explorer 
 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A New Residual Distribution Hydrodynamics Solver for
Astrophysical Simulations

Citation for published version:
Morton, B, Khochfar, S & Wu, Z 2023, 'A New Residual Distribution Hydrodynamics Solver for Astrophysical
Simulations', Monthly Notices of the Royal Astronomical Society , vol. 518, no. 3, pp. 4401-4421.
https://doi.org/10.1093/mnras/stac3427

Digital Object Identifier (DOI):
10.1093/mnras/stac3427

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Monthly Notices of the Royal Astronomical Society

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 19. Feb. 2023

https://doi.org/10.1093/mnras/stac3427
https://doi.org/10.1093/mnras/stac3427
https://www.research.ed.ac.uk/en/publications/287f17b2-7e00-4a75-a2e1-f952ecfb42d6


MNRAS 000, 1–21 (2021) Preprint 22 November 2022 Compiled using MNRAS LATEX style file v3.0

A New Residual Distribution Hydrodynamics Solver for
Astrophysical Simulations

B. Morton,1★ S. Khochfar,1 Z. Wu,1
1Institute for Astronomy, Royal Observatory, Edinburgh EH9 3HJ, UK

Accepted XXX. Received YYY; in original form ZZZ

ABSTRACT
Many astrophysical systems can only be accurately modelled when the behaviour of their
baryonic gas components is well understood. The residual distribution (RD) family of partial
differential equation (PDE) solvers produce approximate solutions to the corresponding fluid
equations.Wepresent a new implementation of theRDmethod. The solver efficiently calculates
the evolution of the fluid, with up to second order accuracy in both time and space, across an
unstructured triangulation, in both 2D and 3D. We implement a novel variable time stepping
routine, which applies a drifting mechanism to greatly improve the computational efficiency
of the method. We conduct extensive testing of the new implementation, demonstrating its
innate ability to resolve complex fluid structures, even at very low resolution. We can resolve
complex structures with as few as 3-5 resolution elements, demonstrated by Kelvin-Helmholtz
and Sedov blast tests. We also note that we find cold cloud destruction time scales consistent
with those predicted by a typical PPE solver, albeit the exact evolution shows small differences.
The code includes three residual calculation modes, the LDA, N and blended schemes, tailored
for scenarios from smooth flows (LDA), to extreme shocks (N), and both (blended). We
compare our RD solver results to state-of-the-art solvers used in other astrophysical codes,
demonstrating the competitiveness of the new approach, particularly at low resolution. This is
of particular interest in large scale astrophysical simulations, where important structures, such
as star forming gas clouds, are often resolved by small numbers of fluid elements.

Key words: methods: numerical – hydrodynamics

1 INTRODUCTION

The vast majority of the observed baryonic matter in the Universe
is in the form of baryonic gas. The behaviour of this gas can be
modelled by solving the Euler equations for an inviscid fluid, which
describe the conservation of mass, momentum and energy. These
equations must be solved as a set of simultaneous partial differential
equations (PDEs). For all but the simplest problems, this must be
done numerically. The Navier-Stokes equations, which include the
transformation between kinetic and internal energy via viscosity,
can also be used. However, the length scales over which this vis-
cosity acts are much smaller than the resolution elements of most
astrophysical simulations, allowing the simpler Euler equations to
be sufficient, in most cases. Whichever set is used, the equations
must be discretised in some manner. Typically this leads to a choice
between discretising the problem in space, tracing the fluid evolu-
tion using a set of static cells, and discretising the problem by mass
(Agertz et al. 2007). In the latter case, the gas is modelled as set of
massive particles. Astrophysical simulations have been performed
with a variety of both these approaches, broadly divided into Eule-

★ E-mail: morton@roe.ac.uk

rian grid based methods (Stone & Norman 1992; Stone et al. 2008;
Teyssier 2002; Bryan et al. 2014) and Lagrangian particle methods
(Lucy 1977; Gingold & Monaghan 1977; Springel 2005), along-
side more recent hybrid moving mesh approaches that combine the
Lagrangian nature of the particle methods with the advantages of
the Eulerian grids (Springel 2010; Hopkins 2015; Duffell 2016).
Solving for the evolution of this baryonic gas has been crucial in the
development of our understanding of many astrophysical scenarios,
from the onset of reionisation and the first galaxies (Feng et al. 2015;
Ma et al. 2018), to the evolution of star forming regions (Clark et al.
2005), proto-planetary disks (Kuffmeier et al. 2017), and so on.

Some of the most successful astrophysical simulation codes
solve the evolution of the baryonic gas using Eulerian grids. Thema-
jority of these divide the computational domain into a large number
of identical cube shaped cells forming a structured mesh. Modern
codes often take advantage of mesh refinement algorithms, allowing
for cells to be subdivided into multiple smaller cells based on some
criterion, typically gas density in astrophysical cases (Bryan et al.
2014). This process is known as adaptive mesh refinement (AMR)
(Berger & Oliger 1984; Bryan et al. 2014). The fluid state is traced
by these cells, with the evolution found by calculating the flux of
gas between finite volume cells. This flux is found by solving the
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2 B. Morton et al.

Riemann problem at the cell face (Fryxell et al. 2000; Stone et al.
2008). Riemann solvers innately break the problem down into a
set of one dimensional problems across cell faces, which inevitably
ignores the information of flows in orthogonal dimensions. This
is sometimes referred to as dimensional splitting. Flows can only
travel across faces, which in structured meshes can lead to prefer-
ential flow directions. These can produce numerical artifacts, such
as carbuncles, and can suppress flows in other directions. The ef-
fect can become more extreme as the resolution increases (see e.g.
Paardekooper 2017).

Since material cannot flow across the corner of cube cell,
corrections can be implemented to attempt to account for these
flows (LeVeque 2002). Over the years, an alternative strategy has
emerged, one in which dimensional splitting is not required. These
residual distribution (RD) solvers produce truly multi-dimensional
hydro-solvers that calculate the evolution of fluids, across some
mesh of simplex elements, by calculating the flow across elements
in all dimensions at once (Abgrall & Roe 2003; Abgrall 2006;
Deconinck & Ricchiuto 2007). The RD title encompasses a number
of different solver formulations.

RD schemes, and their precursors, were developed to solve
PDE problems across a host of scales and disciplines. The core ad-
vantage of these schemes is their avoidance of dimensional splitting.
They solve arbitrary sets of PDEs within domains with potentially
complex geometries, and utilising well established, rigorously de-
fined meshes such as the Delaunay triangulation. The current state-
of-the-art RD schemes include a number of important characteris-
tics, most notably, allowing for second order accuracy, in both time
and space, under certain circumstances (Ricchiuto & Abgrall 2010;
Paardekooper 2017). Third and fourth order temporal accuracy has
also been achieved (Ricchiuto & Abgrall 2010), but the increased
computational cost is not justified by the increased accuracy, for the
problems we will address here.

With the advent of these explicit, second order accurate for-
mulations, these methods have emerged as a possible improvement
over the traditional fluid methods used in astrophysical simulations.
They maintain the strong shock handling capabilities of the Eule-
rian finite volume methods, and the related Galerkin finite element
schemes (Stone et al. 2008; Skinner et al. 2019) (the residual can
be formulated analogously to either (Deconinck & Ricchiuto 2007;
Ricchiuto & Abgrall 2010)), while combining it with the unstruc-
tured and multi-dimensional nature of Lagrangian particle based
methods (Springel 2005; Agertz et al. 2007). Astrophysical sys-
tems, from large scale structure down to the inter-stellar medium
(ISM), contain both highly unstructured flows, and regions with
shocks, so combining strengths in resolving both these features is
highly desirable, and unlike traditional dimensional splitting Eule-
rian approaches, there is no additional calculation required when
operating on an unstructured mesh. Finally, second order accuracy
is achieved on a narrow stencil, requiring only three vertices , when
working in two dimensions, or four vertices in three dimensions.
The equivalent second order Riemann solver would require four
cells in each direction around a face (LeVeque 2002; Paardekooper
2017).

We present here a new implementation of an RD solver, built
around a static unstructuredDelaunaymesh, in both 2D and 3D. The
paper is structured as follows. In Section 2we describe the numerical
basis for the RD solver. This includes details of the residual calcula-
tion itself, the specifics of the different distributionmechanisms, and
our extension to 3D. The implementation is for a static mesh, but the
underlying method is naturally suited for future adaptation into such
a moving mesh scheme. Section 3 covers the rigorous triangulation

method used to build the underlying simplex mesh. In Section 4 we
detail our novel new variable time-stepping mechanism that allows
the residual to be recalculated at different rates in different parts of
the mesh, dependent on the local time-step requirement. Section 5
covers extensive testing of the solver implementation, with tests in
1D, 2D and 3D.

2 METHOD

In this section, we lay out the background and derivation of the
RD partial differential equation solver (Abgrall 2006; Deconinck &
Ricchiuto 2007; Ricchiuto & Abgrall 2010). We briefly introduce
the precursor to the method, the Roe solver (Roe 1981; Stone et al.
2008). The various choices available as part of the RD approach
will also be discussed, including the specific choices made for this
implementation.

2.1 Roe Solver and Residual Distribution in 1D

In order to understand the residual distribution family of methods, it
is useful to understand the work that came before their development.
The Roe Riemann solver (Roe 1981; Stone et al. 2008) is a one
dimensional predecessor of the residual distribution family. Roe lays
out an approach by which a non-linear system of partial differential
equations can be reformulated in a linear form. The method relies
on the fact that the solution, to any linear system of hyperbolic
partial differential equations (PDEs), can be written as the sum of
waves. These waves are the eigenvectors of the Jacobian matrix A
in the set of PDEs, with the wave speeds given by the eigenvalues
of this same matrix. This linearisation will be discussed later in
Section 2.3, but it should be noted that Roe’s linearisation for Euler
equations, with the appropriate equation of state, is an exact mean-
value linearisation, and so will not introduce any additional error
(Deconinck&Ricchiuto 2007). For a set of hyperbolic conservation
laws of the form
𝜕Q
𝜕𝑡

+ ∇ · F (Q) = 0, (1)

whereQ is the state, and F (Q) is a flux that is a function of the state.
In 1D, this is simply the flux F(Q) in the 𝑥-direction. It is possible to
reformulate this with the Jacobian A ≡ 𝜕F/𝜕Q. The original form
is a non-linear PDE, but with the substitution, it is now quasi-linear,
for a suitably chosen Jacobian A that is only linearly dependent on
the state. The quasi-linear form is
𝜕Q
𝜕𝑡

+ A
𝜕Q
𝜕𝑥

= 0. (2)

ThematrixA holds all the necessary information to find the solution,
as it contains the waves and wave speeds of the fundamental waves
of the problem. Roe uses an approximation of the Jacobian from the
linearised form at the boundary between two cells (Roe 1981), such
that the Jacobian represents the flux through the face between the
𝑖 − 1 and 𝑖 cell, giving us

Ā(Q𝑖−1 − Q𝑖) = F𝑖−1 − F𝑖 . (3)

The decomposition of the boundary Jacobian reformulates it as a
function of it eigenvalues and eigenvectors

Ā = R−1𝚲R, (4)

where R is the matrix constructed by using the eigenvectors of Ā
as columns, and Λ is the a diagonal matrix of the corresponding
eigenvalues. This decomposition is key to understanding the RD
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RD Hydro Solver 3

approach, as it breaks down the problem, in all dimensions, into a
set of characteristic waves.

The discontinuity at the face can therefore be written as the
sum of contributions from its characteristic waves (Roe 1981)

Q𝑖−1 − Q𝑖 =

𝑞∑︁
𝑝=1

𝛼𝑖−1/2, 𝑝e𝑖−1/2, 𝑝 , (5)

where 𝛼i−1/2 is the unknown wave strength of each wave. The
eigenvectors are denoted by e𝑖−1/2, where the 𝑝 denotes the 𝑝𝑡ℎ
eigenvector. Individual wave strengths are found by projecting the
original discontinuity onto the eigenvectors of the Jacobian

𝛼𝑖−1/2 = R−1
𝑖−1/2 (Q𝑖−1 − Q𝑖), (6)

where 𝑝 represents the element of Q, of which there are 𝑞. It is not
necessary to calculate the intermediate states explicitly, since all the
information that is required to get the solution to the problem is held
in the wave strengths.

The discretised update to the fluid state

Q𝑛+1
𝑖 = Q𝑛

𝑖 − Δ𝑡

Δ𝑥

𝑞∑︁
𝑝=1

(_𝑝)+𝛼𝑝e𝑝 , (7)

where (_𝑝)+ is the positive eigenvalue only. Negative eigenvalues
are replaced by zero, effectively upwinding the solution. The con-
struction of the Roe method centres around finding the suitable
approximation of the Jacobian matrix, in our case, for the inviscid
Euler equations. (Roe 1981).

The Roe method is essentially the 1D residual distribution
method, which can be seen by recasting the net flux at a given
boundary as the residual material that is left when the flow from
one side is combinedwithmaterial flow from the other. This residual
𝜙𝑇 is therefore defined as

𝜙𝑇 = F𝑖−1 − F𝑖 = Ā(Q𝑖−1 − Q𝑖). (8)

The residual is split between the cells either side of the boundary,
in such a way that the distribution still sums to the original total.
As with the Roe scheme, the split is achieved by using the posi-
tive and negative eigenvalues. Considering the matrix form of the
discontinuity, given in Equation (5), one can see how this residual
distribution comes about. The element residual is given by

𝜙𝑇 = Ā(Q𝑖−1 − Q𝑖) = R𝚲R−1 (Q𝑖−1 − Q𝑖) =
𝑞∑︁
𝑝=1

_𝑝𝛼𝑝e𝑝 . (9)

As mentioned above, these are distributed by selecting only positive
and negative eigenvalues respectively. Thus the residual distributed
to cell 𝑖 is given by

𝜙𝑖 = 𝜙
+
𝑖 = Ā+ (Q𝑖−1 − Q𝑖) = Ā+Ā−1𝜙. (10)

In this form, the solver can easily be extended to more dimensions.
To complete the formulation, the final form of the update to the state
in cell 𝑖 is given by the sum of residuals that are distributed to it
from its boundaries

Q𝑛+1
𝑖 = Q𝑛

𝑖 − Δ𝑡

Δ𝑥

(
𝜙+𝑖 + 𝜙−𝑖

)
, (11)

or in other words, the update comes from the summation of the
residuals sent from the boundaries.

2.2 Residual Distribution in 2D

Since the original formulation of this method, a significant amount
of work has gone in to extending it to higher dimensions (Deconinck

Figure 1. Element vertices and associated normals

et al. 1993; Paillere et al. 1995; Abgrall & Roe 2003; Abgrall &
Marpeau 2007; Ricchiuto&Abgrall 2010). In this section,we define
the generalised form of the residual, in dimensions greater than one.

2.2.1 Notation and Geometry

There are a number of important terms to define with respect to the
domain discretisation and geometry. The 2D space Ω is completely
divided into a set of triangular elements 𝑇 , with vertices (𝑖, 𝑗 ,
𝑘), labeled counterclockwise. The cells in the 1D case are now
equivalent to the nodes of the triangulation, with the triangular
elements taking the place of the cell boundaries. The inner normals
of the triangle edges are defined such that n𝑖 is the inner normal to
the edge between vertices 𝑗 and 𝑘 . This is shown in Figure 1. These
normals are

n𝑖 = (𝑦 𝑗 − 𝑦𝑘 )x̂ − (𝑥 𝑗 − 𝑥𝑘 )ŷ, (12)

where x̂ and ŷ are the 𝑥 and 𝑦 unit vectors respectively, with equiv-
alent forms for the other vertices. It is also important to define the
parameter |𝑆𝑖 |, representing the area of the dual cell of a vertex in
a unstructured triangulation, shown in Figure 2, given by

|𝑆𝑖 | =
∑︁

𝑇 |𝑖∈𝑇

1
3
|𝑇 |, (13)

for the dual cell of vertex 𝑖, summing over every triangle 𝑇 with
which 𝑖 is associated. |𝑇 | is the area of the triangle, given by

|𝑇 | = 1
2
|n𝑖 × n 𝑗 |, (14)

where 𝑖 and 𝑗 are any two vertices of 𝑇 . It is also important to
define the specifics of the problem that is being solved. The system
of partial differential equations depend on some set of continuous
variables. For such a continuous variable \ (𝑥, 𝑦, 𝑡), the equivalent
discrete approximation is referred to as \ℎ . The parameter ℎ repre-
sents the characteristic length scale of an element, typically taken
as the length of the longest edge.

MNRAS 000, 1–21 (2021)
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Figure 2.Dual cell (red shaded area) of a vertex in an unstructured triangular
mesh

2.2.2 Residual

For a set of PDEs with form as Equation (1), the linearised version
of the problem becomes
𝜕Q
𝜕𝑡

+ Ax
𝜕Q
𝜕𝑥

+ Ay
𝜕Q
𝜕𝑦

= 0. (15)

The Jacobian is now a set of matricesA = (A𝑥 , A𝑦), and as before
these can be decomposed in such a way as to describe the problem
as a set of characteristic waves. We will only describe the 2D case
here, but will expand on the extension to 3D in Section 2.4.

The element residual, in this context, is now defined as the
integral of the divergence of the numerical approximation of the flux
(Deconinck et al. 1993; Ricchiuto & Abgrall 2010). This follows
naturally from the 1D definition, but the integral is now over the
triangular element, rather that across the boundary between two
cells. This is given as

𝜙𝑇 (Qℎ) =
∫
𝑇
∇ · Fℎ (Qℎ)𝑑𝑥𝑑𝑦. (16)

The solution is found over a triangulation of the computational
domain, built around a set of vertices, where the solution is calcu-
lated (Ricchiuto & Abgrall 2010). The residual for each triangular
element is divided between its vertices, with the sum of these resid-
ual from all the triangles of which a given node is a vertex, is the
update to the state at the position of that node.

Defining the combination of the Jacobians as a single term
K𝑖 = (Ā𝑥𝑛𝑥,𝑖 +Ā𝑦𝑛𝑦,𝑖)/2, with the dependence on vertex 𝑖 coming
from the normal of the opposite edge. This simplifies the calculation
of the element residual to the sum of the product of matrix K𝑖 and
state Q𝑖

𝜙𝑇 =

3∑︁
𝑖=1

K𝑖Q𝑖 . (17)

A detailed summary of how this form is arrived at is given in
Appendix A1. The residual is therefore split between the vertices of
the triangular element, such that 𝜙𝑇 = 𝜙𝑖 + 𝜙 𝑗 + 𝜙𝑘 . The discrete
update to the state is found using the discretised form of the Taylor
expansion of the solution. The discrete update becomes

Q𝑛
𝑖 = Q𝑛+1

𝑖 − Δ𝑡

|𝑆𝑖 |
∑︁

𝑇 |𝑖∈𝑇
𝜙𝑖 (18)

where the summation is over all triangles for which node 𝑖 is a
vertex. The area |𝑆𝑖 | is the area associated with the updated vertex,
defined by assigning one third of the area of each connected triangle.
This area is also the area of the cell that is formed by the dual of the
triangulation.

Second order accuracy in time is achieved using an explicit
second order Runge-Kutta (RK2) time-stepping algorithm (Ricchi-
uto & Abgrall 2010). This approach makes use of an approximation
of the time derivative of the residual, through the total residual Φ.
For the time step 𝑛 to 𝑛 + 1, the first step is constructed using the
first order solver

Q∗
𝑖 = Q𝑛

𝑖 − Δ𝑡

|𝑆𝑖 |
∑︁

𝑇 |𝑖∈𝑇
𝜙𝑖 (19)

and the second step is found using the distribution of the total
residual with

Q𝑛+1
𝑖 = Q∗

𝑖 −
Δ𝑡

|𝑆𝑖 |
∑︁

𝑇 |𝑖∈𝑇
Φ𝑖 (20)

where the total residual is calculated based on both the initial and
intermediate element residuals, in the standardRK2 form (Ricchiuto
& Abgrall 2010). The new residual term Φ𝑖 , known as the total
residual, is given by

Φ𝑖 =

3∑︁
𝑗=1

𝑚𝑖 𝑗

Q∗
𝑖
− Q𝑛

𝑖

Δ𝑡
+ 1
2

(
𝜙𝑖 (Q∗

𝑖 ) + 𝜙𝑖 (Q
𝑛
𝑖 )

)
, (21)

and estimates changes to the residual caused by the fluid state chang-
ing over the time step. As before, more detail is given in Appendix
A2. This approach is effectively a predictor-corrector setup, with
the first order residual used as the predictor, and a correction ap-
plied that includes information about the time dependence of the
solution. The exact form of the mass matrix term 𝑚𝑖 𝑗 is addressed
in the following subsection.

These equations form the basis for the construction of a second
order RD solver. The new total residual is only dependent on the
initial state, the intermediate state, the time step, and the element
residual for both the initial and intermediate states. However, it
should be noted that second order accuracy is also dependent on the
precise choice of distribution scheme, which is discussed below.We
will demonstrate the second order accuracy numerically in Section
5.

2.2.3 Distribution

We now describe how the residual is broken up between the con-
stituent vertices of a given triangle, known as the distribution
scheme. When designing the distribution schemes, it is desirable
that the scheme exhibit certain properties. Typically these include
being conservative, and preserving linearity and positivity (De-
coninck et al. 1993; Ricchiuto & Abgrall 2010; Abgrall 2012). A
linearity preserving scheme will recover the exact solution for a
linear set of equations, and a positive scheme will be total variation
diminishing (TVD). For some set of initial conditions, a scheme
is positive if it does not introduce new maxima or minima to the
solution. It is impossible to construct a linear scheme that is both
positive and linearity preserving (Ricchiuto & Abgrall 2010), so
non-linear approaches must be formulated to achieve both desired
properties at once. This is essentially a statement of Godunov’s the-
orem: linear numerical schemes that are monotone can be at most
first-order accurate. To be clear, a linear scheme mentioned here is
one in which the solution can be expressed as a sum of the initial

MNRAS 000, 1–21 (2021)
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state, weighted by coefficients that do not depend on the state itself.
This is not the same as the problem itself being linear. We cover
three widely used schemes:

• LDA Scheme - Linear, low diffusion
• N Scheme - Linear, positive
• B Scheme - Non-linear, blending of the two other schemes

A relatively simple example is the low diffusion A (LDA) scheme
(Struĳs et al. 1991; Caraeni & Fuchs 2002; Deconinck & Ricchiuto
2007). It achieves second order accuracy in space (Struĳs et al.
1991), but sacrifices its total variation diminishing property. This
results in spurious oscillations in the presence of discontinuities,
such as shocks. It is constructed to have low numerical diffusion,
making it effective for resolving smooth flows. The nodal residual,
the part of the element residual sent to each vertex, is found using
(Csik et al. 2002)

𝜙𝐿𝐷𝐴
𝑖 = 𝛽𝑖𝜙

𝑇 =
K−
𝑖∑3

𝑖
K−
𝑖

𝜙𝑇 . (22)

To guarantee that this is conservative, it is only required that the dis-
tribution coefficients 𝛽𝑖 sum to unity, which ensures the distributed
residual sum to element residual.

Another widely used method is the N scheme, which is de-
signed to be positivity preserving, and does not experience the
oscillations around discontinuities. The scheme is only first order
accurate in space (Ricchiuto & Abgrall 2010), so has greater nu-
merical diffusion, compared to the LDA scheme. Such a scheme is
best suited to problems with shocks. In this case, the nodal residual
is given by (Struĳs et al. 1991)

𝜙𝑁𝑖 = K+
𝑖

©«Q𝑖 −
∑3

𝑗=1K−
𝑗
Q 𝑗∑3

𝑗=1K−
𝑗

ª®¬ . (23)

Both the above schemes are linear, and so cannot be both positivity
and linearity preserving. As mentioned above, this leads to schemes
that, in general, have either strong numerical diffusion, or weak
shock handling capabilities. A number of non-linear schemes have
been developed (Csik et al. 2002; Abgrall & Roe 2003; Dobes &
Deconinck 2008), which build on these two linear schemes by com-
bining them. The result preserves the advantages of each scheme,
and reduces the disadvantages, by introducing a blending coeffi-
cient that can be designed to detect when the conditions are best
suited to each method. A number of possible blendings have been
developed, but they are built around the same idea of constructing
the distribution around

𝜙𝐵𝑖 = Θ𝜙𝑁𝑖 + (𝐼 − Θ)𝜙𝐿𝐷𝐴
𝑖 (24)

where 𝐼 is the identitymatrix, andΘ is the diagonal blendingmatrix.
This matrix is constructed by setting

Θ𝑖𝑖 =
|𝜙𝑇

𝑖
|∑3

𝑗=1 |𝜙
𝑁
𝑗,𝑖
|
, (25)

where the sum is over every vertex of element 𝑇 , and the 𝑖 index
refers to the 𝑖𝑡ℎ equation of the system. In this way, the change in
each equation of the set is tested separately for the blending.

Different applications of this blendingmatrix put different con-
ditions on the matrix values. The Bmax and Bmin schemes (Csik
et al. 2002; Paardekooper 2017) simply replace every diagonal value
of the blending matrix with either the maximum or minimum value
of the blending matrix. Using Bmax will default towards the N
scheme, while Bmin defaults to LDA. The so called Bx (Abgrall

2006; Dobes & Deconinck 2008) scheme replaces the diagonal
values with ones calculated with a shock sensor. This sensor de-
tects when there are two colliding flows, where a shock will de-
velop. Where these flows are detected, the N scheme will be heavily
weighted. In all other conditions, the solution will use the LDA
scheme.

It is clear that the order of accuracy that can be achieved is not
only dependent on the residual calculation itself, but is also depen-
dent on the choice of distribution scheme. In particular, the schemes
that produce a blending of other distributions have a potentially in-
determinate accuracy. In these cases, and when we combine this
problem with the fact of the linearisation of the underlying equa-
tions described in following sub-section, the most practical way to
assess accuracy is to demonstrate the order through numerical tests,
which we show in Section 5.

2.3 Residual Distribution for the Euler Equations

As our implementation is aimed at eventually modelling the be-
haviour of baryonic gas, in an astrophysical context, we are specif-
ically solving the Euler equations, which model the behavior of
inviscid, compressible fluids. For this situation, the components of
the 2D PDEs are given by

Q =

©«
𝜌

𝜌𝑣𝑥
𝜌𝑣𝑦
𝜌𝐸

ª®®®¬ , F𝑥 (Q) =
©«

𝜌𝑣𝑥

𝜌𝑣2𝑥 + 𝑃
𝜌𝑣𝑥𝑣𝑦
𝜌𝑣𝑥𝐻

ª®®®¬ , F𝑦 (Q) =
©«

𝜌𝑣𝑦
𝜌𝑣𝑥𝑣𝑦

𝜌𝑣2𝑦 + 𝑃
𝜌𝑣𝑦𝐻

ª®®®¬ ,
(26)

where the pressure 𝑃 is defined by the chosen equation of state.
The other parameters have their usual physical meanings, 𝜌 is mass
density, and 𝑣𝑥 and 𝑣𝑦 are 𝑥 and 𝑦 velocities respectively. These
equations describe the conservation ofmass,momentumand energy.
We use the equation of state

𝑃 = 𝜌(𝛾 − 1)
(
𝐸 − v · v

2

)
. (27)

The other variables are defined as normal, where 𝜌 is mass density,
v = (𝑣𝑥 , 𝑣𝑦) are the velocity components, and 𝐸 is the specific
energy, with enthalpy 𝐻 given by

𝐻 = 𝐸 + 𝑃
𝜌
. (28)

The adiabatic speed of sound 𝑐𝑠 is defined as

𝑐𝑠 =

√︄
𝛾𝑃

𝜌
. (29)

By definition these equations assume the fluid has no viscosity. As
mentioned before, this assumption is applicable to many astrophys-
ical scenarios, where viscosity appears to be negligible. Equivalent
RD methods have been developed for the viscous Navier-Stokes
equations (Abgrall & Santis 2015).

2.3.1 Roe Parameters

For the Euler equations, Roe produces a parameter vector that
can suitably linearise the Euler equations (Roe 1981). For the
standard fluid variables given above, the Roe parameter vector is
Z = (√𝜌,√𝜌𝑣𝑥 ,

√
𝜌𝑣𝑦 ,

√
𝜌𝐻)𝑇 . The Eulerian flux vector has a

quadratic dependence on these variables, which means that the Ja-
cobian A is now linearly dependent on the state variables. For a
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detailed summary of how the Euler equations are linearised and
combined with the RD approach, see Appendix A3.

2.3.2 Time Step

To calculate the update using Equation (18), a mechanism to cal-
culate a suitable time step is required. As has been discussed pre-
viously, the time step choice is not arbitrary. The CFL condition,
that the numerical domain of dependence should enclose the physi-
cal domain of dependence, fundamentally limits the time steps that
will produce a physically accurate result. Such a condition can be
achieved (Ricchiuto & Abgrall 2010) by requiring that the time step
Δ𝑡 is limited by

Δ𝑡 ≤ min
𝑖∈T

2|𝑆𝑖 |∑
𝑇 |𝑖∈𝑇 𝑙

𝑇
max_

𝑇
max

, (30)

where 𝑙𝑇max is the longest edge of triangular element 𝑇 , and _𝑇max is
a measure of the maximum speed at which information can move
across the element. This is done by setting

_𝑇max = max
𝑗∈𝑇

( |v 𝑗 | + 𝑐 𝑗 ). (31)

This is the maximum of the combination of the fluid speed and
sound speed at the vertices of the triangle, which is equivalent to
the maximum signal speed in that element. Together, the product of
this length and signal speed, multiplied by a factor of a half, produce
an estimate of the area per time of an imaginary triangle swept out
by the material in this element. Summing up the contributions from
all the element associated with a vertex 𝑖, and dividing the actual
area associated with that vertex by this value, produces an estimate
of the time it will take a signal to propagate across the dual cell.
Keeping the time step below the minimum such value required by
any vertex in the mesh T produces a limit within which the CFL
condition will always be met. In practice, some fraction of this value
will be usually be used, as an additional guarantee that the condition
is not breached. This fraction typically varies between 0.1 and 0.5,
depending on the complexity of the problem.

2.3.3 Summary of Equations

In the previous sections, we cover the theoretical background to
the RD solvers development and extension. We also describe the
precise formulation required to construct an RD solver for the 2D
Euler equations. We now briefly summarise the most important
equations. The update to the fluid state Q𝑖 at vertex 𝑖 , from time
step 𝑛 to 𝑛 + 1, is given by

Q∗
𝑖 = Q𝑛

𝑖 − Δ𝑡

|𝑆𝑖 |
∑︁

𝑇 |𝑖∈𝑇
𝜙𝑖 , (32)

and

Q𝑛+1
𝑖 = Q∗

𝑖 −
Δ𝑡

|𝑆𝑖 |
∑︁

𝑇 |𝑖∈𝑇
Φ𝑖 , (33)

where the time step is given by Equation (30), and the dual area is

|𝑆𝑖 | =
∑︁

𝑇 |𝑖∈𝑇

1
3
|𝑇 |. (34)

The nodal residual is calculated from the element residual, based
on the chosen scheme, and the element residual

𝜙𝑇 =

3∑︁
𝑗=1

K𝑖Q̂𝑖 , (35)

where Q̂𝑖 is the linearised fluid state (see Appendix A3). The exact
form of K𝑖 can be found in the appendix of Paardekooper (2017).
The equivalent total residual is calculated using the element residual

Φ𝑇 =
∑︁
𝑗∈𝑇

𝑚𝑖 𝑗

Q∗
𝑗
− Q𝑛

𝑗

Δ𝑡
+ 1
2

(
𝜙𝑖 (Q∗) + 𝜙𝑖 (Q𝑛)

)
. (36)

The mass matrix form varies with the scheme, as does the distribu-
tion itself. The linearised state Q̂𝑖 is calculated with

Q̂𝑖 =

©«
2�̄�1𝑍1

�̄�2𝑍1 + �̄�1𝑍2
�̄�3𝑍1 + �̄�1𝑍3

1
𝛾

(
�̄�4𝑍1 + 𝛾1 �̄�2𝑍2 + 𝛾1 �̄�3𝑍3 + �̄�1𝑍4

)ª®®®¬ . (37)

Together these equations describe all the key variables and functions
needed to construct the 2D RD hydro-solver. Combining these with
the distribution schemes described above, one can produce a fully
functioning RD solver.

2.4 3D Extension

Some astrophysical systems can be effectively modelled using only
two dimensions, such as thin discs, where useful results can be found
without calculating flows in the third direction.However,manymore
systems, from the cosmic web down to giant molecular clouds, are
more accurately described by the full three dimensional flows. The
RD approach naturally extends to extra dimensions, as the basic
form is generalised to any number of dimensions (Paardekooper
2017). The set of PDEs is now simply the standard 3D form of
the Euler equations. For the sake of clarity, we will briefly cover
the fundamental changes to the underlying geometric and physical
definitions.

All summations over the three vertices of a triangular element
simply become summations over the four vertices of the 3D simplex,
a tetrahedron. Equivalently, the dual area associatedwith each vertex
is now a dual volume, and the normals associated with each vertex
are now the inward facing normals to the opposite face, rather than
opposite edge. All vector quantities have an additional 𝑧-component.
Most notably the key problem that must be solved is for the form of
the inflowmatrix 𝑲𝑖 , and the associated 𝑲−

𝑖
and 𝑲+

𝑖
. These matrices

contribute directly to the calculation of the element residual, given
in Equation (A23), and to the different distribution schemes. Their
definition depends on their Schur decomposition form. The exact
form of this decomposed version are given in Appendix B.

3 MESH

TheRD approach is built around an arbitrary set of static tracer posi-
tions r, or vertices, which require a set of simplices that fill the peri-
odic domain, without gaps, and without overlapping edges/faces. In
two dimensions, these simplices are triangles. A given distribution
of vertices can have a large number of possiblemeshes that fulfill the
above criteria, but many of these will have undesirable characteris-
tics. For our purposes, we require a triangulation that minimises the
existence of extremely elongated triangles. The more elongated the
triangles, the shorter the time-step required by Equation (30), and so
the more computationally expensive finding the solution becomes.
The triangulation itself should also be as computationally cheap as
possible to construct. While not currently included in the code, on
the fly re-triangulation of the domain, either to regularise the vertex
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Figure 3. Edge flip process. Moving edge 𝑖 𝑗 to 𝑙𝑘 changes the two non-
empty circumdisks of triangles 𝑖 𝑗𝑘 and 𝑖𝑙 𝑗 into two triangles (𝑖𝑙𝑘 and
𝑙 𝑗𝑘) with empty circumdisks. The two triangles on the left are therefore
non-Delaunay, while the two on the left satisfy the Delaunay condition.

distribution, or to refine the spatial resolution in areas of interest,
could be valuable additions to the code. Choosing an approach that
plans for these possibilities is therefore important.

Independent of the precise triangulation that is chosen, the
natural construction of the RD approach around an arbitrary set of
vertex positions is a core advantage of this method. Unstructured
meshes are particularly useful in capturing the highly unstructured
flows found in astrophysical scenarios, such as the turbulent and
clumpy interstellar medium. They avoid preferential flow direc-
tions, minimising the existence of spurious features. The natural
construction around these meshes is therefore a advantageous char-
acteristic.

3.1 Delaunay Mesh

In this work, the discretisation of the gas is built around a Delaunay
triangulation. This triangulation maximises the minimum opening
angle of the underlying triangles. There are a number of well docu-
mented methods of constructing the Delaunay triangulation. These
methods, and the corresponding numerical algorithms, have been
extensively tested, resulting in extensive, highly optimised, con-
struction libraries (Springel 2010; Cheng et al. 2016; Duffell 2016).
The Delaunay triangulation is defined by the Delaunay condition

Definition 1. (Delaunay condition) In the context of a finite point
set S, a Delaunay triangle is characterized by the empty circumdisk
property: no point in S lies in the interior of any triangle’s open
circumscribing disk in 2D, or circumscribing sphere in 3D.

The left hand side of Figure 3 shows an example of a circum-
disk for triangle 𝑖 𝑗 𝑘 as the thick red line. If all simplices within a
given triangulation satisfy the Delaunay condition, then the trian-
gulation is the Delaunay triangulation, which is unique for the vast
majority of vertex distributions (Cheng et al. 2016). The only major
exceptions are some ordered distributions, which typically have two
triangulations that satisfy a relaxed version of the condition, where
only the closed circumdisk must be empty. In practical terms, in
these scenarios, it is acceptable to simply pick either one of the
options.

An example of a non-empty circumdisk is shown on the left
hand side of Figure 3. The red circles show the circumdisks for
𝑖 𝑗 𝑘 and 𝑖𝑙 𝑗 , both of which enclose vertices that are not part of that
triangle. On the right hand side, we show two examples of triangles
with empty circumdisks. The circumdisks of triangles 𝑖𝑙𝑘 and 𝑙 𝑗 𝑘

do not contain any external vertices, and so these triangles satisfy the
Delaunay condition. The Delaunay triangulation will exist uniquely
for any set of points, except in a small set of scenarios where the
open circumdisk is not empty because of an additional vertex just on
the edge of the disk (Cheng et al. 2016). In these cases the Delaunay
condition can be relaxes to only require the closed circumdisk to be
empty.

There are several characteristics of the Delaunay triangulation
that make it appealing for fluid discretisation. The Delaunay con-
dition of requiring an empty circumdisk innately maximises the
minimum opening angle, and also minimizes the largest circum-
disk. This has the effect of minimizing distortion, but specifically
for cells with obtuse angles. Very large or very small angles may still
exist in an arbitrary point distribution, but will be minimised by this
setup. To further reduce distortion, methods for shifting the vertices
of the tessellation, without reducing the physical accuracy of the
simulation, have been proposed (Springel 2010). Such approaches
attempt to regularise the distribution of vertices.

3.1.1 Mesh Construction

Given some arbitrary distribution of vertices, a Delaunay triangula-
tion can be constructed by an number of different approaches. These
include: edge flipping, where the edges of an initial arbitrary trian-
gulation are flipped in turn, producing Delaunay triangles (process
shown in Figure 3); gift wrapping, where new Delaunay triangles
crystallise around a knownDelaunay triangulation; and incremental
insertion, where vertices are added one at a time, weighted to insert
vertices that are closest to current edges first.

In practice, the various construction mechanisms are used in
combination to produce the most efficient algorithm. A number of
extensive C/C++ libraries have been developed to produce periodic
Delaunay triangulations in both 2D and 3D. We have integrated
triangulation construction from the CGAL (https://www.cgal.org/)
library, due to its inclusion of 3D periodic triangulations. These
libraries efficiently construct a periodic Delaunay triangulation for
any distribution of vertices, and include handling of the rare vertex
sets with non-unique Delaunay triangulations. Any example of this
scenario is a Cartesian cubic grid of vertices. In these cases, the
CGAL functions systematically select one of the possible orien-
tations, avoiding locking up in infinite loops of edge flipping, for
example.

4 ADAPTIVE TIME-STEPPING

As discussed before, the time step is defined by the CFL condition,
requiring that the numerical domain of dependence encloses the
entire physical domain of dependence. In the standard formulation,
the time step at which the fluid state at every vertex is updated, is
dictated by the smallest time step required by any vertex in themesh.
In scenarios with regularised meshes, or with only small variations
in density and velocity across the grid, this implementation is not
particularly significant, as all vertices will require similar time steps.
However, scenarios with extreme density and velocity contrasts will
be computationally inefficient to run. If only a few cells require
a time step that is orders of magnitude shorter than the rest of
the mesh, then the residuals will be recalculated far more often
than is numerically required for many triangles. This problem is
encountered in all numerical methods for solving fluid dynamics
problems. There is always some limit on the time step at which
the cells or particles can be updated, and large variations in this
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Figure 4. The time step bin of the triangle Δ𝑡𝑇 is the minimum of the bins
assigned to the vertices of the triangle (Δ𝑡1,Δ𝑡2,Δ𝑡3).

number lead to inevitable inefficiencies. To combat this problem,
and produce methods that can utilise the available computational
power more efficiently, many numerical methods have introduced
mechanisms that allow different fluid elements to be updated with
different time steps.

Typically, these approaches divide elements into groups based
on their required time step, and then recalculate the evolution of
the state based on these time step bins. For simplicity we will only
discuss grid based approaches from here, but equivalent particle
methods are widely used. As discussed in detail in the introduction,
in a standard cell based approach (for either a structured static mesh,
or an unstructured or evenmovingmesh), the fluid state is updated by
calculating the flux of material through the faces of cells. A simple
way to implement a varied time step in such methods is outlined in
(Springel 2010). You first bin each cell by the required time step,
then to recalculate the flux through faces based on the smallest value
either side of that face. The fluid state is still updated at the smallest
time step of the whole mesh, but the flux is not recalculated for
every face at every small time step. The flux through faces whose
required time step is longer than this is simply kept the same, until
it is necessary to update it. Using old updates is known as drifting,
as the state continues on the same trajectory for multiple small time
steps.

To produce the equivalent effect with the RD solver, it is the
residual that is calculated at different steps for different triangles,
as this is the analogous calculation to the flux in the standard grid
approach. We have implemented a novel strategy to achieve this
outcome. The minimum time step for every vertex is calculated
using the limit described in the previous chapter. Each triangle
is then binned based on the smallest time step required by any
of its vertices. The time step bins have limits based on powers
of two times the overall minimum time step Δ𝑡min, such that the
smallest bin has limits Δ𝑡min < Δ𝑡req < 2Δ𝑡min, the next bin has
2Δ𝑡min < Δ𝑡req < 4Δ𝑡min, and so on. Now when the simulation is
evolved, residuals are only recalculated after the lower limit of their
time step bin has elapsed since last calculation. Every triangle is
checked, but only some have their residual recalculated, which are

referred to as active triangles. This saves significant computational
time by not recalculating residuals more frequently than required.
Over the course of the large time step, which is defined as the lower
limit of whichever is the largest time step bin, the following will
happen. Taking the simplest example of only two time step bins,
there will be two small time steps modelled for the one large time
step. At the beginning of the large time step, the residual of every
triangle is calculated, but one small time step later, only the triangles
in the smallest bin will recalculate their residual. Another small time
step later, we have completed a full top level time step, and so start
the process over. The passing of the update is described below. Once
the top level time step has been completed, the binning process is
repeated.

The update is passed based on the current residual of that tri-
angle, even if that residual has not been recently recalculated. The
updates from long time step bins can be said to drift the state of
the associated vertices because the changes continue along con-
stant trajectories, as if they are drifting in some direction, without
being deflected by additional forces, hence the approach’s label
as the DRIFT method. A 1D representation of the concept of this
method is shown in Figure 5. The red discs represent vertices that
are in the bottom level, shortest time step bin, while the blue discs
represent those in the top level bin (assuming a two bin system).
The spaces between each disc represents the element for which the
residual is calculated. Time increases in the 𝑦-direction, with each
row representing the vertices at a given time. The arrow represents
the passing of an update, based on the element’s residual, to each
associated vertex. Solid arrows show the distribution of residual
calculated that time step, while dashed arrows show the passing
of residual calculated at a previous time. For the first small time
step dt, the residual passed to each triangle is exactly the same as it
would be in the original system, but for the second small time step,
the residual from the left two elements are based on an old fluid
state. They have not been updated, as the fluid states at the vertices
of these elements do not require the short time steps.

We find that this approach provides a significant boost to per-
formance, but also that there is a loss of exact conservation. The
total mass and energy of the box change over time, while for the
basic universal time step method preserves conservation to machine
precision. The loss of conservation is caused by the peculiarities of
the residual method itself. In typical grid based methods, where the
change in the fluid state of a cell is calculated by estimating fluxes
through the surface of the cell, conservation is trivial to maintain for
most situations. Any material that flows from one cell is added to its
neighbour. Conservation is explicitly maintained across every cell
boundary. The residual method, however, does not maintain con-
servation across the equivalent structures: the triangular elements.
For a given element the net change in the states of all vertices,
produced by the residual, is not zero. It is zero in the special case
of a steady flow, when the element residual is also zero. Conserva-
tion is ensured between a vertex, and all of its neighbours, but only
once all residuals have been distributed. In the normal, global time
step, setup, this is perfectly adequate, as all residual are recalculated
every time step, and so consistent updates are present everywhere.

However, when we use the DRIFT approach, some updates are
based on outdated residuals. These updates assume vertex states
that no longer exist. In the standard flux approach, this is not a prob-
lem for conservation, because even if the current flux is not exactly
physically correct, it is the same incorrect value on either side of
the face. In the RD case, neighbouring triangles use residuals from
inconsistent states, effectively breaking the guarantee of conserva-

MNRAS 000, 1–21 (2021)



RD Hydro Solver 9

Figure 5. Stencil for the DRIFT adaptive showing distribution of residual
in 1D, with time increasing in the 𝑦-direction. Dots represent the vertices
where the fluid state is held, while the spaces between them in the 𝑥-direction
are the elements for which the residuals are calculated. Red vertices require
time steps of dt, and the blue dots 2dt. The arrows show where residuals are
distributed. The solid arrows represents residuals that have been recalculated
that turn, while the dashed line represents residuals that have not been
updated.

tion, which relies on neighbouring triangles calculating residuals
from the same states at the shared vertices.

In Figure 6, we show the evolution of total mass and energy in
the Kelvin-Helmholtz tests (see Section 5.2), which show the impact
of this potential loss of conservation. Each plot shows the difference
between the current total mass, or energy, and the initial value, as a
fraction of this initial value. From top to bottom, we show the results
for 𝑁 = 322, 642, and 1282, including lines for different numbers
of time-step bin, 𝑁bin = 1 (blue), 𝑁bin = 2 (orange), 𝑁bin = 4
(green), and 𝑁bin = 8 (red). The larger the number of time-step
bins, the greater the loss of conservation. This is to be expected, as
the larger the number of bins, the greater the number of vertices with
neighbours that are in different bins. The change in both mass and
energy does decrease with increased resolution, which is desired,
as the adaptive time-stepping regime is of most use with very large
problem sets. The key take-away from these plots is that even when
present the total error over many thousands of time-steps, as shown
in these plots, is still only at the fraction of a percent level, allowing
us to use the method with confidence.

5 TESTS

A wide range of standard hydrodynamics tests exist that allow us
to compare and quantify the abilities of numerical hydrodynamics
methods. We focus on a number of tests, which demonstrate the
multidimensional advantages of the residual distribution approach.
This includes tests run in one, two and three dimensions, and com-
parison of our numerical solution to both analytic solutions and
numerical solutions from other solvers used in current astrophysi-
cal simulations. All initial conditions for these tests are generated
by test cases within the code, with the specific setups for each tests
described below. The vertices, around which the Delaunay mesh is
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Figure 6. Variation in total mass (upper part of each panel) and energy
(lower part of each panel) using the DRIFT method, for 𝑁 = 322 (top
panel), 𝑁 = 642 (middle panel), and 𝑁 = 1282 (bottom panel). These show
the fractional change from the initial total mass and energy. The lines show
the results for different numbers of time step bins, where we have 𝑁bin = 1
(blue), 𝑁bin = 2 (orange), 𝑁bin = 4 green), and 𝑁bin = 8 (red).

generated, are distributed either randomly, or in a structured distri-
bution that will produce a mesh of uniform triangles. Whenever we
refer to a uniform mesh, we are referring to a set of vertices that are
created by taking vertices placed on a Cartesian grid, and offsetting
every second row by half the vertex separation distance. The chosen
distribution is specified for each test.

5.1 1D Test

We run a standard one dimensional test. This has a well defined
analytic solutions, so poses a good initial test of the solver’s ability
to capture both advection and shocks. It is run in pseudo 1D (i.e. they
are run on 2D meshes, but with no variation in one direction). By
doing this, we effectively also check for spurious flows/dissipation in
the extra dimension where, physically, nothing should be changing.
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5.1.1 Sod Shock Tube

Shocks are a common feature of many astrophysical systems, found
in cosmic filaments, gas falling into dark matter halos, the formation
of stars, and the supernovae at the end of stellar lifetimes. The Sod
shock tube (Sod 1978) sets up a simple 1D shock, with awell defined
solution to the evolution of the density, velocity, and pressure.

The initial conditions consist of two regions, each that fill half
of the box. The velocity is zero everywhere. The left hand side of
the tube has density 𝜌𝐿 = 1 and pressure 𝑝𝐿 = 1, with the right
hand side of the tube at 𝜌𝑅 = 0.125 and 𝑝𝑅 = 0.1. These are run
using 𝛾 = 5/3, and CFL coefficient of 0.4, meaning the time step is
two fifths of the value strictly required by the time step condition.
This test uses the uniform vertex distribution. Figure 7 shows the
results from both the first order LDA and N schemes, compared to
the exact solution for the Sod shock tube. We have also included
results from the 1D Roe solver. The LDA results are shown as dots,
with 𝑁 = 64 vertices in the 𝑥-direction in blue, and 𝑁 = 128 in red.
The N scheme results are represented by crosses, in green (𝑁 = 64)
and cyan (𝑁 = 128). The black solid lines give the exact solution,
while the dashed lines show the results for the first order Roe solver,
for 𝑁 = 64 and 𝑁 = 128 respectively. Below each panel, we show
the difference between the numerical and analytic solutions. The
results from the Roe solver closely match the results from the RD
solvers, as expected. The minimal differences are caused by the Roe
solver being applied to truly 1D grid, whereas the RD solvers are run
on a pseudo 1Dmesh, where there is no variation in the 𝑦-direction.
There is a small amount of numerical dissipation from material
flowing in the 𝑦-direction, even though the resultant variation in
that dimension is zero.

There is clear evidence of spurious oscillations at 𝑥 = 0.5 for
the LDA1 solver, as predicted, but it decreases with better spatial
resolution. The N scheme does not show these structures, as ex-
pected, but the profiles at the transitions between solution phases
do show smoothing. This is present in both LDA and N scheme
solvers, as well as in the Roe solver solution. The smoothing is im-
proved in all cases by the increase in resolution, and is caused by
the numerical diffusion inherent in the method. Further increasing
the resolution will improve the sharpness of these profiles.

5.2 2D Tests

The tests discussed so far demonstrate how well the RD solvers
recover solutions that are well known for 1D flows, where the exact
solution can be known. The key difference that this RD approach
has, when compared to the standard mesh based methods of most
approaches currently used in the field, is the trulymulti-dimensional
way in which the equations are solved. With the 2D tests discussed
in this section, it is possible to demonstrate the ability of this solver
to handle complex multi-dimensional flows.

5.2.1 Kelvin-Helmholtz Instability

Kelvin-Helmholtz instabilities form at the interface between shear
flows. These occur in terrestrial and astrophysical contexts, such
as between cloud layers in our atmosphere, or, at the other end of
the size scale, in jets from AGN. This test sets up such a scenario,
with two regions of gas moving alongside each other in opposite
directions. The periodic box of side length 𝐿𝑥 = 𝐿𝑦 = 1 has a central
region, with boundaries 0.25 < 𝑦 < 0.75, with density 𝜌0 = 2,
moving in the 𝑥-direction with velocity 𝑣𝑥0 = 1. The outer region is
moving with velocity 𝑣𝑥1 = −1, and has density 𝜌1 = 1. The vertex
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Figure 7. Sod shock tube for the first order LDA and N schemes (in pseudo
1D), and the Roe solver (in true 1D). 𝑁 = 64 and 𝑁 = 128 vertices in the
𝑥-direction. Dots show LDA results (blue for 𝑁 = 64 and red for 𝑁 = 128),
and crosses N scheme results (green 𝑁 = 64 and cyan 𝑁 = 128). Solid black
line is the exact solution. From top to bottom, major panels show density, 𝑥-
velocity and pressure, with the minor panels showing the difference between
the numerical and exact solutions 𝜙𝑋 = (𝑋num − 𝑋exe)/𝑋exe, for each
property, apart from those tht have significant regions where the analytic
solution is zero, where we show the difference Δ𝑋 = 𝑋num − 𝑋exe.

distribution is uniform. The difference in density is not important
for the instability itself, but is useful in observing the mixing of
the two flow. To generate the instability in a systematic way, a very
small transverse velocity is introduced, with sinusoidal variation
in the direction of the flow. The instability is expected to develop
into a spiral like structure, as the two flow mix at the boundary.
The main quantitative test of the results is to compare the growth of
transverse kinetic energy. This can only be done while the instability
remains linear. Other than that, qualitative comparisons are limited
to the sharpness of the boundary between density components, as a
measure again of numerical diffusion.

The density results of evolving this shear flow setup for the
various solvers are shown in Figure 8 for 𝑁 = 642, with LDA1 (top
left), LDA2 (bottom left), N1 (top right), and N2 (bottom right).
The expected structures form very clearly in the LDA cases, with the
winding structure recovered down to a few cells across. All KH plots
show results at 𝑡 = 2 unless otherwise stated. The N scheme results
show much less structure, with only the broad curling of the flow
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Figure 8. Kelvin-Helmholtz instability for the first (top row) and second
(bottom row) order LDA (left column) and N scheme (right column) solvers.
The color scale shows variation in density. All cases use 𝑁 = 642.

being recovered. This is caused by the numerical diffusion of the
scheme, which the second order formulation does not significantly
change. The LDA results can resolve the structure in the greatest
detail, and so are favourable for problems that involve complicated
flows, without any shocks. Running the same test with a blended
scheme largely reproduces the LDA results, as the blending favours
those residuals in these conditions.

The total kinetic transverse energy, found simply by summing
the 𝑦-direction kinetic energy of each vertex, should grow exponen-
tially (McNally et al. 2012). Figure 9, which plots the total transverse
kinetic energy 𝐾tot for different resolutions, shows this growth be-
tween 𝑡 ≈ 0.3 and 𝑡 ≈ 1.2. The exponential growth appears linear
in this log scale. Before this time, the kinetic energy is dominated
by the initial sinusoidal perturbation. After this point, the growth
becomes non-linear, as the initial turnover of the instability forms
the more complex spiral structures. This time is earlier for higher
resolutions, as finer structures are recovered.

Secondary instabilities can develop when using the sharp den-
sity discontinuity described above. These develop from the small
variation in the boundary, created by the positions of the vertices.
The variations create high frequency instability modes, which grow
in higher resolution cases. In the low resolution cases, the same
variations are present, but the higher numerical diffusion means
that they dissipate into the background flow. In the test cases shown
so far, the structured mesh has been used to make the boundary
between flows as clean as possible. A random distribution of ver-
tices would lead to a ragged edge, which has the potential to trigger
instabilities at shorter wavelength modes, as discussed above, which
make analysis of the results more difficult. A common technique to
avoid this problem, in both random vertex cases, and high resolu-
tion uniform distribution setups, is to smooth the boundary layer
with an exponential density and velocity profile (Robertson et al.
2010; Lecoanet et al. 2016). This ensures that the stimulated insta-
bility mode will dominate the evolution. The smoothed boundary is
achieved by defining two new functions, 𝑓 (\) and 𝑔(\). The first of
these has the form

𝑓 (\) = 𝑒−1/\ , (38)

where theta is limited to 0 ≤ \ ≤ 1. The second function is given

0.0 0.5 1.0 1.5 2.0
t

10 3

10 2

10 1

K t
ot

N = 322

N = 642

N = 962

N = 1282

N = 642 PPM
N = 1282 PPM

Figure 9. Total transverse kinetic energy for resolutions 𝑁 = 32 (blue),
𝑁 = 64 (orange), 𝑁 = 96 (green), and 𝑁 = 128 (red). LDA1 shown as
dashed lines, PPM as dotted lines. The growth converges with resolution,
and the non-linearity sets in earlier for higher resolution. The RD results are
consistent with the well established PPM solver from Enzo.

by

𝑔(\) = 𝑓 (\)
𝑓 (\) + 𝑓 (1 − \) . (39)

Together these are used to smooth the density and velocity bound-
ary between the sheer flows by setting the density and velocity
respectively as

𝜌(𝑦) = (𝜌0 − 𝜌1)𝑔
(
1
2
+ 4𝑦 − 1
4𝑑

)
𝑔

(
1
2
− 4𝑦 − 3
4𝑑

)
+ 𝜌1 (40)

and

𝑣𝑥 (𝑦) = 2𝑣𝑥0𝑔
(
1
2
+ 4𝑦 − 1
4𝑑

)
𝑔

(
1
2
− 4𝑦 − 3
4𝑑

)
− 𝑣𝑥0. (41)

The width of the boundary layer is dictated by 𝑑. All results shown
from here on use this smoothed front, with a width of 𝑑 = 0.1.

So far we have shown how well the different RD schemes
perform with the KH test. In Figure 10 we show a comparison to the
third order piece-wise parabolicmethod (PPM) used in Enzo (Bryan
et al. 2014). The left hand column shows results from the LDA1
solver using 𝑁 = 642 and 𝑁 = 1282 vertices. The right hand column
shows results from PPM. These runs were produced using identical
ICs. The PPM results are very similar to the our RD output. Both
produce the expected spiral structure, with the PPM showing a well
defined density contrast down to tighter turns of the spiral. This is
thanks to a slightly lower numerical diffusion when using PPM. The
total transverse kinetic energy, shown in Figure 9 with the orange
(𝑁 = 642) and red (𝑁 = 1282) dotted lines, grows equivalently to
the RD LDA1 results, with only small differences, but following the
same trend. As before, this transverse energy grows linearly in log
space as expected, until the growth breaks down and becomes non-
linear as the structure becomes more complex. The LDA1 growth
shows good agreement with the well established Enzo results.

The RD solver’s convergence with resolution is shown clearly
in Figure 11, where I show panels for 𝑁 = 322, 𝑁 = 642, 𝑁 = 962,
and 𝑁 = 1282 vertices, again using the smoothed initial conditions.
The results are consistent across the increasing resolutions, with
the instability developing in the same place in each case. Even in
the lowest resolution case, the spiral structure forms. The density
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Figure 10. KH instability from the smooth initial conditions, comparing
the LDA1 solver (left column), to the PPM solver (right column). Top row
shows results for 𝑁 = 642, bottom row for 𝑁 = 1282.

Figure 11. KH instability from smooth initial conditions, using LDA1, at
different resolutions. These are 𝑁 = 322 (top left), 𝑁 = 642 (top right),
𝑁 = 962 (bottom left), and 𝑁 = 1282 (bottom right). The higher mode
instabilities are completely gone, and the stripe structures are significantly
reduced.

contrast is present until the spiral is less than 3-5 vertices across,
when the structure diffuses into the background. The higher resolu-
tion cases can resolve more detail within the instability, but even at
low resolution the numerical solution retains a strong level of fine
structure.

5.2.2 Yee Isentropic Vortex

Here we test the solver with the isentropic vortex. The density,
velocity, and pressure profiles are chosen such that they are smooth,
and that they produce an analytically stable solution (Yee et al.
1999). For a vortex centred on (𝑥𝑐 , 𝑦𝑐), the velocity is given by

𝑣𝑥 = −Ω(𝑟) (𝑦 − 𝑦𝑐) and 𝑣𝑦 = Ω(𝑟) (𝑥 − 𝑥𝑐)), (42)

where the radius 𝑟 is defined relative to the vortex centre, and Ω is
the angular velocity profile

Ω(𝑟) = 𝛽

2𝜋
exp

(
1 − 𝑟2
2

)
(43)

with free parameter 𝛽. Taking pressure 𝑝∞ and density 𝜌∞ far from
the vortex centre, the temperature profile is

𝑇 (𝑟) = 𝑝∞
𝜌∞

− 𝛾 − 1
𝛾

𝛽2

8𝜋2
exp

(
1 − 𝑟2

)
. (44)

Based on this and normalisation constant 𝐾 , the density profile
becomes,

𝜌(𝑟) =
(
𝑇 (𝑟)
𝐾

) 1
𝛾−1

, (45)

and the pressure

𝑝(𝑟) = 𝐾𝜌(𝑟)𝛾 . (46)

We take 𝛽 = 5, and 𝑝∞ = 𝜌∞ = 𝐾 = 1, use a uniform distribution of
vertices, and run the setup to 𝑡 = 10. As the solution remains stable,
the most effective comparison is made by looking at the L1 error
function for the density, which, for a uniform vertex distribution, is
given by

𝐿1 =
1

𝑁side

∑︁
𝑖

|𝜌num,i − 𝜌ana,i |, (47)

where 𝜌num,𝑖 is the numerical density associated with vertex 𝑖,
𝜌ana,𝑖 is the analytic solution, which in this case is simply the initial
conditions, and 𝑁side is the number of vertices per side.

We show the L1 error function results for the LDA1 (blue),
N1 (green) and B1 (red) setups in Figure 12. This figure also in-
cludes the fitted function for each distribution, using here log(𝐿1) =
𝑎log(𝑁side) + 𝑏. The gradient of this fitted line in log space is the
scaling of 𝐿1 relative to the number of vertices per side 𝑁side. This
scaling is given in the legend for each setup separately. This figure
demonstrates that we can achieve second order accuracy in space
with the LDA setup, but that this accuracy is dependent on the choice
of distribution scheme. As expected, the N scheme is not second
order accurate, due to Godunov’s theorem. The blended scheme
shows an order of accuracy half way between to two schemes that
it blends together.

This test demonstrates that the RD solver can achieve second
order accuracy in space, but only for certain choices of distribution
scheme. With respect to the blended scheme used here, its order
being between the two schemes that it blends suggests that it is not
heavily favouring either. Since the problem is dominated by sim-
ple advection, with the structure remaining smooth throughout, it
would be better if the LDA scheme were more heavily favoured.
There is significant scope for implementing alternative blending
mechanisms, such as by taking the minimum or maximum blend-
ing coefficient value of any point in the mesh (Paardekooper 2017).
Other blending schemes, such as the Bx scheme (Dobes & De-
coninck 2008), blend more aggressively, heavily weighting the N
scheme in the presence of shocks by using a shock sensor based on
the pressure gradient. This will be explored in future work.

5.2.3 Sedov Blast

The Sedov blast (Sedov 1959) replicates an explosion in a zero pres-
sure environment. It reproduces conditions similar to the explosion
from a highly idealised supernova. This is achieved with a static,
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Figure 12. L1 error norm of density for the Yee isentropic vortex test,
showing points for the LDA1 (blue), N1 (green), and B1 (red) schemes.
Lines give the logarithmic fit, with the scaling relative to number of vertices
per side 𝑁side given in the legend. The LDA solver achieves second order
accuracy in space.

uniform density and pressure, background medium at all positions.
For this test case, we use a random distribution of vertices. The
explosion is triggered by injecting a large amount of energy into the
centre of the domain. In this case, we do this by setting the pressure
to an extreme value. Ideally the pressure would only be injected into
one vertex, to replicate a point explosion, but when this is done the
initial propagation of the explosion can only follow the connections
to the nearest vertices, leading to highly asymmetric wave. To avoid
this, a circular region is defined, within which the energy is injected.
The region is large enough that the outward flow is approximately
radial, but small enough that the analytic solution is still applicable.

The explosion is expected to create a spherically expanding
wave with a shock at the expansion front. The velocity at which
the front move is set by the density of the background medium and
the initial energy of the explosion, with the radius of the blast wave
given by

𝑟 (𝑡) = _
(
𝐸𝑡2

𝜌0

) 1
5
. (48)

Here we denote the total energy of the explosion by 𝐸 , and the
background density with 𝜌0. The coefficient _ depends on adiabatic
gas constant 𝛾, at _ ≈ 1.12 for the 𝛾 = 5/3 used here. Behind the
shock front is an exponential density profile, falling to close to zero
at the centre of the explosion.

In Figure 13, we show a comparison of the propagation of
the explosion for three spatial resolutions, 𝑁 = 642 (left column),
𝑁 = 1282 (middle column), and 𝑁 = 2562 (right column), for the
N1 solver. The results from the N2 scheme are effectively identical
in this comparison, so are not shown. The LDA1 and LDA2 schemes
do not produce stable results, due to their poor handling of strong
discontinuities. The blended schemes heavily favour the N scheme
in this test, and so produce results identical those shown for N1. The
structure of the blast wave is recovered at all resolutions, with the
dense wave sweeping up material as it moves radially outwards. As

Figure 13. Sedov blast density results with increasing resolution, 𝑁 = 642
(left), 𝑁 = 1282 (middle), and 𝑁 = 2562 (right), all at 𝑡 = 0.01.
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Figure 14. Radial density profiles, compared to the analytic prediction
(solid black line). Results are shown for the three resolutions, 𝑁 = 642
(blue), 𝑁 = 1282 (orange), and 𝑁 = 2562 (green), with solid lines showing
N1 results, and dotted lines showing PPM. The 3-5 resolution element limit,
found in the KH tests, correspond to 0.4-0.8, 0.2-0.4, and 0.1-0.2 length
units for these three resolutions.

resolution is increased, the basic structure does not change, but the
density profile does narrow. The narrower profile also shows a higher
peak density. This is shown in more detail in Figure 14. The key
result from this comparison, however, is the consistency between
resolutions. The blast wave is in essentially the same position at a
given time, though the extent of the profile differs.

As before, we show a direct comparison to the PPM solver.
Included in Figure 14, as dotted lines, are profiles for the PPM
solver, using 𝑁 = 1282 (orange) and 𝑁 = 2562 (green). These
show sharper profiles at the explosion front, including higher peak
values, consistent with the higher numerical diffusion present in the
N scheme.

5.2.4 Noh Problem

The Noh problem (Noh 1987; Paardekooper 2017) tests the ability
of a solver to model the conversion of kinetic energy into internal
energy. This is similar to the Sedov test, which features the conver-
sion of internal energy to kinetic energy in the injection of energy
through pressure. Once again, a random vertex distribution is used.
It consists of a uniform density box, where the initial velocity at
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every position points radially inwards towards the centre of the box.
The ideal initial conditions have zero pressure throughout the box.
We use a cube box of side length 𝑙 = 2, with initial density 𝜌0 = 1.
When the pressure is exactly zero, the 𝐾-matrix becomes singular,
and so cannot be inverted. Instead, we initialise the problem with a
negligible, but non-zero, pressure of 𝑃 = 10−6. The adiabatic gas
constant is taken to be 𝛾 = 5/3. With these initial conditions, the
cylindrically symmetric exact solution (Paardekooper 2017) is as
follows. At time 𝑡 after the start of the problem, the density at radius
𝑟 from the centre of the box is

𝜌(𝑟, 𝑡) =
{
16 if 𝑟 < 𝑡/3
1 + 𝑡/𝑟 if 𝑟 ≥ 𝑡/3

, (49)

the velocity magnitude is

|𝑣(𝑟, 𝑡) | =
{
0 if 𝑟 < 𝑡/3
1 if 𝑟 ≥ 𝑡/3

, (50)

and the pressure is

𝑃(𝑟, 𝑡) =
{
16/3 if 𝑟 < 𝑡/3
0 if 𝑟 ≥ 𝑡/3

. (51)

These equations describe the build up of a uniform density cylinder
in pressure equilibrium. The cylinder expands as material flows
towards the centre, with a shock at its surface. Material outside the
cylinder continues to flow inwards at its initial rate.

We show the difference in the density and pressure results with
increasing resolution, for the first order N scheme, in Figure 15,
with 𝑁 = 322, 𝑁 = 642, 𝑁 = 1282 vertices, at 𝑡 = 0.8. For this
test, we have chosen to also look at the solvers abilities at very low
resolution, hence including the 𝑁 = 322 case. We only show the
N1 solver here, because the LDA solver struggles with the extreme
conditions at the very centre of the box, when the shock first forms.
As before, the blending scheme strongly favour the N scheme in
this scenario. The N2 results are not significantly different for this
test. The blending scheme used here does not favour the N scheme
strongly enough to counteract the LDA schemes struggle with this
test. A difference blending with a stronger weighting mechanism,
such as the Bx scheme may perform better. This will be explored in
future work.

The density inside the shock increases with resolution, sug-
gesting this density is somehow dependent on the formation of the
shock at the centre of the box. At lower resolution, this initial radius
will be larger, since the elements are larger and the central shock
will form over a wider physical area. The shock front at the sur-
face sharpens with the increasing resolution. The shock is resolved
by approximately 3-5 mesh vertices, represented here by their dual
cells. There is some variation in density within the cylinder, par-
ticularly in the centre, where there is a small low density cavity.
This region gets smaller with increased resolution. This is likely
an artifact of the finite resolution. When the initial flow builds up
material in the innermost region, material can only flow in a small
number of directions, limited by the exact structure of the mesh.
The inward radial flow is therefore not well resolved, leading to this
less exact solution. The position of the shock is not well defined
when the circular shape is only resolved by a few vertices. The
pressure, on the other hand, is significantly more uniform across the
whole cylinder, demonstrating the expected pressure equilibrium.
The lower density and equal pressure show that the temperature in
the inner region must be higher. This heating phenomenon is known
as ‘wall heating’, and has been previously identified in a number
of Riemann-type hydro-solvers (Noh 1987; Rider 2000; Stone et al.
2008).

Figure 15. Density (top row) and pressure (bottom row) distributions from
the Noh problem at 𝑡 = 0.8𝑠, using the N1 solver, for resolutions using
𝑁 = 322 (left), 𝑁 = 642 (middle), and 𝑁 = 1282 (right) vertices.
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Figure 16.Radial profiles from the Noh problem, showing the density (top),
velocity magnitude (middle), and pressure (bottom). The blue dots show the
results for 𝑁 = 322, the orange show 𝑁 = 642, the green show 𝑁 = 1282,
and the red 𝑁 = 2562. The black line shows the exact solution. Below each
profile is the either the residual 𝜙 = (𝑋num − 𝑋exe)/𝑋exe, or the difference
Δ = (𝑋num −𝑋exe) , if the analytic solution includes significant regions with
zeros.
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5.2.5 Gresho Vortex

We can test the conservation of angularmomentumwithin the solver
by considering the Gresho vortex problem (Gresho & Sani 1987;
Liska &Wendroff 2003), which consists of a stable rotating region,
embedded in a uniform density box. The region is defined by setting
up a rotational velocity profile 𝑣𝜙 ,which varies with radius 𝑟, such
that

𝑣𝜙 (𝑟) =


5𝑟 for 0 ≤ 𝑟 < 0.2
2 − 5𝑟 for 0.2 ≤ 𝑟 < 0.4
0 for 𝑟 ≥ 0.4

, (52)

with a uniform background density of 𝜌 = 1. This rotation is stable
for an appropriate pressure profile (Liska & Wendroff 2003)

𝑃𝜙 (𝑟) =


5 + 25/2𝑟2 for 0 ≤ 𝑟 < 0.2
9 + 25/2𝑟2 − 20𝑟 + 4 ln(𝑟/0.2) for 0.2 ≤ 𝑟 < 0.4

3 + 4 ln 2 for 𝑟 ≥ 0.4
.

(53)

However, the finite resolution of any numerical scheme will intro-
duce small inaccuracies in this pressure, leading to a potential loss
of stability. In Figure 17, we show the azimuthal velocity at 𝑡 = 3, for
the LDA1 scheme, using 𝑁 = 402 vertices. Here we use a uniform
distribution of vertices. The black points represent the numerical
output, with the initial conditions given by the solid line. The RD
solver performs well, maintaining much of the sharp profile. In par-
ticular, we note the height of the peak in the rotational velocity, at
approximately 𝑣𝜙 = 0.9. The closer this is to the initial value of
unity, the better. The smoothing of the sharp peak in velocity is a
manifestation of the numerical diffusion discussed before.

Our results are competitive with those published for this test
from othermodern astrophysical codes, such as the results shown for
AREPO (Springel 2010), in both static and moving mesh modes,
for their zero bulk motion case. Our results are also competitive
with, ATHENA (Stone et al. 2008), the code compared to in the
AREPO paper, with ATHENA results shown for a 2D Roe solver
implementation. It is interesting to compare the performance against
our own directly therefore, due to the developmental link between
the methods. Taking the peak of the ATHENA Gresho velocity
profile as 𝑣𝜙 = 0.8 (see top right panel of Figure 28 of Springel
2010), we can directly compare the truly multi-dimensional RD
solver to a close dimensional-splitting equivalent. This comparison
is shown explicitly in Figure 17, where the results for the Roe solver
in ATHENA, and the moving mesh and static modes of AREPO, are
shown in green, blue and orange respectively. LDA1 performs well
in this test when compared to all three alternatives. The RD results
show as little as half the level of smoothing, possibly a consequence
of the truly multi-dimensional nature of the approach.

5.3 3D Tests

A key feature of this implementation is extension to full 3D,
something not found in current RD solvers used in astrophysics
(Paardekooper 2017). The truly multidimensional nature of the
solver is of even greater importance, in 3D, than in the 2D case.
Here we show results found using the 3D mode of the solver.

5.3.1 Blob Test

The blob test combines both Kevin-Helmholtz instabilities and
Rayleigh-Taylor instabilities by embedding a cold cloud within a
hot flow (Agertz et al. 2007). This test consists of a high density,
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Figure 17.Radial profile of the azimuthal velocity at 𝑡 = 3. The black points
show the LDA1 output, using 𝑁 = 402 vertices, with the initial conditions
shown as the solid line. The blue (AREPO moving mesh), orange (AREPO
static mesh), and green (ATHENA) points show results taken from Figure
28 of Springel (2010). The LDA1 results maintain a peak value closer to the
initial conditions.

static, spherical cloud 𝜌𝐻 , placed within a low density background
𝜌𝐿 which moves with a bulk velocity 𝑣0. In 2D this cloud is repre-
sented by a disk. The high density region is an order of magnitude
more dense than the background medium. The whole region is in
pressure equilibrium, with the low density wind much hotter than
the cold cloud. The background medium is given a supersonic ini-
tial velocity, with Mach numberM = 𝑣0/𝑐𝑠 , where 𝑐𝑠 is the sound
speed of the gas. Astrophysically, this corresponds to high density
clouds moving with relatively supersonic velocity through a lower
density background, such as a region of cold ISM close to a super-
nova. The vertices are distributed randomly.

The initial linear stages of the evolution of this set up can be
predicted with some degree of confidence (Agertz et al. 2007). The
collision of the supersonic flow with the static density front will
produce a bow shock upwind of the cloud, with a subsonic region
behind the front. The cloud itself will be accelerated by its interac-
tion with the flow. Kelvin-Helmholtz (KH) instabilities, discussed
in isolation in Section 5.2, build at the boundaries between shear
flows, such as the boundary between the cloud and the background
medium, where the radial vector is orthogonal to the flow. At the
same time, Rayleigh-Taylor (RT) instabilities evolvewhere the cloud
is pushed into the downwind low density medium (Chandrasekhar
1961). Together these instabilities lead to the breakup of the origi-
nal cloud. Tendrils of high density are pushed downwind, and the
original sphere is crushed by the incoming flow, and is eventually
destroyed. The lower limit of the time for this to happen is predicted
by the crushing time (Agertz et al. 2007)

𝑡cr =
2𝑟cl𝜒1/2

𝑣0
, (54)

where 𝑟 is the radius of the cloud, 𝜒 is the initial density contrast,
and 𝑣 is the relative velocity of the cloud and the background flow.
The crushing time comes from the time it takes for the wind to cross
the extent of the cloud, scaled by the ratio of cloud density to wind
density. A greater difference will result in a longer time to disrupt.
This can be used as a reasonable gauge of time scale for the cloud
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Figure 18. Blob test results for the N1 solver, with randomly distributed
vertices, from the 𝑁 = 323 (left column), 𝑁 = 643 (middle column), and
𝑁 = 1283 (right column) solver, at 𝑡 = 𝑡cr. Each row shows the slice through
the centre of the blob, with the X-Y plane in the top row, the X-Z plane in
the middle row, and Y-Z in the bottom row.

to be disrupted. The full physical evolution of the cloud is highly
non-linear, and so cannot be easily predicted.

We choose values of 𝜌cl = 100kg/m3, for the cloud, and
𝜌0 = 100kg/m3 for the background. The cloud extend 𝑟 = 1m
from its centre. The box dimensions are 10m× 10m× 10m, and the
initial velocity has Mach numberM = 1.5, which corresponds to
𝑣0 = 6.2m/s. We run a number of such setups, varying resolution
and solver type. We compare the predicted evolution to the results
from these runs.

In Figure 18, we show results for the density distribution, with
using the N1 solver, with 𝑁 = 323 (left column), 𝑁 = 643 (middle
column), and 𝑁 = 1283 (right column) vertices, at 𝑡 = 𝑡cr. As
with the Sedov results, each row shows a different plane, through
the centre of the cloud. From top to bottom, these are X-Y, X-Z
and Y-Z. Unlike the Sedov case, the evolution is not spherically
symmetric. The bottom row of panels show the head on view of
the cloud, showing the symmetry in the other dimensions. Even at
low resolution, we see the development of the bow wave, and some
disruption of the cloud itself. The edges of the cloud being shredded
by instabilities, and material from the cloud is accelerated by the
wind, as expected. We only show N1 results here, as the second
order and blended results are essentially identical.

As we increase the resolution first to 𝑁 = 643, and then to
𝑁 = 1283, we see a more finely structured bow shock. The head on
view (bottom row) shows this clearly. TheRT instabilities behind the
cloud are more clearly seen here as well, with the greater number of
resolution elements recovering the effect in more detail. The higher
resolution is also able to recover the low density regions behind the
bow wave with much greater detail. These resolutions were chosen
to test how well the solver can handle such cloud break ups at very
low resolution, as in many of the eventual simulation scenarios, the
analogous clouds are only resolved at similar or lower resolutions.

We also show the time evolution of the results. In Figure 19
we compare the evolution of the density distribution for 𝑁 = 323
(left column), 𝑁 = 643 (middle column), and 𝑁 = 1283 (right
column) blob tests. Time increases downwards, with the first row

Figure 19. Evolution of the cold gas cloud using the N1 solver, for 𝑁 = 323
(left column), 𝑁 = 643 (middle column), 𝑁 = 1283 (right column) vertices.
From top to bottom, each row is taken at time 𝑡 = 0, 𝑡 = 0.5𝑡cr, 𝑡 = 𝑡cr,
and 𝑡 = 1.5𝑡cr respectively. The bow wave builds as the hot flow collides
with the cloud, with wings extending to the edge of the box. The extent
of the disruption depends on the resolution, with the low resolution case
struggling to resist breakup and diffusion into the surroundings, while the
higher resolution cases survive longer.

showing the initial conditions at 𝑡 = 0, the second at 𝑡 = 0.5𝑡cr,
the third at 𝑡 = 𝑡cr, and the fourth at 𝑡 = 1.5𝑡cr. The progressive
build up of the bow wave is clear, as is the acceleration of the cloud
by the hot flow. The low resolution case shows a greater amount
of mixing, between the cloud and the background, by 𝑡 = 1.5𝑡cr,
while the higher resolution cloud retains some of its integrity. This
is likely a direct effect of the small number of resolution elements
that make up the 𝑁 = 323 cloud. Once again, it is clear we have
not converged with resolution. The fundamental evolution is present
across all cases, showing the solver performs well with these highly
multi-dimensional flows, even when only given a small number of
vertices with which to work.

The similarities, and differences, are emphasisedwhenwe look
at the mass of gas in the cloud. Figure 20 compares the evolution
of the cloud mass, in the RD solver results, to that from the PPM
solver (taken from Agertz et al. 2007), and at different resolutions.
From here we normalise by the characteristic growth time of the
Kelvin-Helmholtz instabilities 𝑡KH = 1.6𝑡cr, to allow direct com-
parison between the works.We follow the cloud definition in Agertz
et al. (2007), where mass is assigned to the cloud if the density at the
element position is 𝜌 > 0.64𝜌cl, and the temperature is𝑇 < 0.9𝑇ext,
where𝑇ext is the initial temperature of the backgroundmedium. The
cloud mass, in N1 case (solid lines), diminishes smoothly to zero,
with the shortest complete depletion time, in the lowest resolution
case, coming in at 𝑡 ∼ 1.6𝑡KH, while the highest resolution case
survives the longest, only reaching zero mass at 𝑡 ∼ 2.8𝑡KH. If we
take the somewhat arbitrary, but useful, point of cloud disruption
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Figure 20. Evolution of cloud mass using 𝑁 = 323 (red), 𝑁 = 643 (blue),
and 𝑁 = 1283 (orange), comparing the N1 (solid) solver to the PPM solver
(dotted). N1 clouds disperse more rapidly than those modelled using the
PPM solver, largely independent of resolution, but the final destruction time
is in better agreement.

as being when it has lost half its mass, this spread is significantly
reduced, ranging from 𝑡 ∼ 0.70𝑡KH to 𝑡 ∼ 0.86𝑡KH. This resolution
dependence is consistent with previous results (Agertz et al. 2007),
such as those shown for the Enzo PPM solver (dotted lines). How-
ever, the PPM clouds present different evolutionary paths, when
compared to our RD results. The 0.5 depletion times for 𝑁 = 643
and 𝑁 = 1283 cases are, respectively, 𝑡 ∼ 1.3𝑡KH and 𝑡 ∼ 1.4𝑡KH.
It is not completely clear why the RD cases have clouds that are
disrupted so much more quickly, or why we do not see the same
detailed evolution of the cloud structure. The different solvers agree
more closely on the final destruction time, with the PPM 𝑁 = 643
and 𝑁 = 1283 case reaching zero at 𝑡 ∼ 1.7𝑡KH and 𝑡 ∼ 2.8𝑡KH
respectively. The 𝑁 = 1283 case in particular show a very similar
final destruction.

The RD results do not show the same extent of lateral elon-
gation, instead largely retaining their spherical shape, except in the
𝑁 = 1283 case, where there is some evidence of this elongation,
but only at 𝑡 = 1.5𝑡cr. We also do not see the fragmentation of
the detached material. Instead material diffuses into a smooth wake
at all resolutions. This can likely be explained again by the high
numerical dissipation of the N scheme (and the blended scheme
for this problem, as it heavily favours the N scheme). In this con-
text, numerical dissipation causes the cloud to spread material as it
is forced back by the momentum transferred from the background
medium. This is partially borne out by the extended lifetime of at
the higher resolutions, but the increase is small. A more detailed
study on the cause for these differences will be presented as part of
a future study focused on blending schemes within the RD method.

This test is fundamentally different from the Sedov blast, in
that it is truly three dimensional. While the Sedov blast has flows
in all three cardinal directions, it remains spherically symmetric.
Therefore the 3D test is not significantly different from its 2D coun-
terpart. The blob test, on the other hand, contains both KH and RT
instabilities. A given mode of the KH instability can characterised
by only one wave number, and as the vortices form between the
shear flows, they rotate on a plane. In 2D, there is only one plane
in which they can form, but in 3D there is an additional degree

of freedom, complicating the growth of this instability. The RT in-
stabilities can form in either 2D or 3D, requiring up to two wave
numbers to characterise a given mode (Agertz et al. 2007). The
effect of these differences is that the disruption of the blob will
proceed in an inherently different manner in 3D, as opposed to 2D.
It is also a structurally complex evolution that is a strong test the
overall capabilities of a solver.

6 DISCUSSION AND CONCLUSIONS

In this paper, we introduce the fundamental concepts behind the
development of the residual distribution hydrodynamics solvers, in-
cluding the one dimensional equivalent, the Roe solver, and the
2D and 3D forms of the hydro solver. This solver is truly multi-
dimensional, as it requires no dimensional splitting, and contains a
whole family of methods that are all built around the same base:
calculating a residual over a triangular element, in a single calcu-
lation, and then distributing this to the vertices of the element, to
update the solution to the set of PDEs that are being solved. We
cover the various choices that can be made when designing a spe-
cific implementation of such a solver, which define the resultant
characteristics and abilities of the code. This includes the required
linearisation of the Euler fluid equations, first laid out by Roe. We
also introduce theDelaunay triangulation,with a brief description of
its definition, properties and construction. We discuss the extensive
testing we performed on the RD solver implementation, covering
one, two, and three dimensional test cases. These tests demonstrate
the strengths of the solver in recovering multi-dimensional flows,
while also handling shocks and other extreme situations well. The
RD implementation that we describe, and test, here, represents what
the solver can do without significant optimisation, or tailoring to a
given problem. It performs well when compared to current stat-of-
art solvers, and can resolve complex structures at low resolution. In
particular, it demonstrates a strong ability to maintain stability in
the Gresho test.

There is still significant scope to optimise the RD solvers to any
desired problem, with a straightforward framework for implement-
ing different distribution and blending schemes. The fact that it is
built around an unstructured mesh makes it the perfect candidate for
conversion into a moving-mesh scheme. It thus has great potential
for further improvement. While beyond the scope of this paper, we
do plan to extend our implementation to an arbitrary Lagrangian
Eulerian (ALE) form (Arpaia et al. 2015), where the underlying
mesh moves approximately with the physical flow of the fluid. Our
expectation is that this will significantly reduce numerical dissipa-
tion, and our preliminary work confirms this. We will publish this
ongoing work in a future paper. Overall, the RD solvers presented
in this implementation are well on their way to being powerful new
tools for running astrophysical simulations of a range of scenarios.
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APPENDIX A: SUMMARY OF RD DERIVATION

Here we summarise the derivation of the 2D form of the RD solver,
first for the first order form, and then for the second order. We also
cover the detail of how the Euler equations are transformed for use
with an RD solver.

A1 Residual distribution in 2D - 1st Order

Starting from Equation (15), the spatial differential part of the PDE
can be written in its discretised form as

𝜕Q
𝜕𝑥

=
1
2|𝑇 |

( 3∑︁
𝑖=1

Q𝑖n𝑖

)
· x̂, (A1)

where the sum is over the three vertices of the element, Q𝑖 is the
state at each vertex, and n𝑖 is the inward pointing normal to the edge
opposite the vertex 𝑖. The unit vector in the 𝑥-direction is x̂. This
amounts to finding the linear interpolation of the state in the element
from the state at the three vertices. These partial differentials are
now constant across the element. The Jacobian is a little harder to
define. Substituting in the above equation, the residual becomes

𝜙𝑇 =
1
2|𝑇 |

[( 3∑︁
𝑖=1

Q𝑖n𝑖

)
· x̂

∫
𝑇

A𝑥𝑑𝑥𝑑𝑦

+
( 3∑︁
𝑖=1

Q𝑖n𝑖

)
· ŷ

∫
𝑇

A𝑦𝑑𝑥𝑑𝑦

]
.

(A2)

Analogous to the Roe solver, it is possible to define an average
Jacobian. In the 1D case, this was the average at the boundary, and
in this 2D case it is the average over the element. This is therefore
defined as the integral of A𝑥 and A𝑦 over the area of the element,
divided by that area

Ā𝑥 =
1
|𝑇 |

∫
𝑇

A𝑥𝑑𝑥𝑑𝑦, (A3)

which leaves the residual as

𝜙𝑇 =
1
2

[( 3∑︁
𝑖=1

Q𝑖n𝑖

)
· x̂Ā𝑥 +

( 3∑︁
𝑖=1

Q𝑖n𝑖

)
· ŷĀ𝑦

]
. (A4)

The dot product of the normal with the unit vectors mean only
that component is included in each sum. Using this, combining the
summations, and bringing the Jacobian inside the sum gives

𝜙𝑇 =
1
2

3∑︁
𝑖=1

(
Q𝑖Ā𝑥𝑛𝑥,𝑖 + Q𝑖Ā𝑦𝑛𝑦,𝑖

)
. (A5)
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Finally, it is possible to combine the Jacobians into a single
term K𝑖 = (Ā𝑥𝑛𝑥,𝑖 + Ā𝑦𝑛𝑦,𝑖)/2, with the dependence on vertex 𝑖
coming from the normal of the opposite edge. This simplifies the
calculation of the element residual to the sum of the product of
matrix K𝑖 and state Q𝑖

𝜙𝑇 =

3∑︁
𝑖=1

K𝑖Q𝑖 . (A6)

Now all that remains is a method to calculate the discrete form of
the element Jacobian Ā. Since it has been required that the system
of equations is linear, then the Jacobian A𝑥 = 𝜕F/𝜕Q will vary
linearly. This means the element Jacobian can simply be computed
as the Jacobian as a function of the average state of vertices of that
element Ā𝑥 = A𝑥

(
Q̄

)
, where the average state is simply the mean

of vertex states.
The combining of the Jacobian into K𝑖 is the key step in

making this a truly multi-dimensional method. A similar method
that considers the 𝑥 and 𝑦 Jacobians separately would effectively be
splitting the problem by dimension.

A2 Residual distribution in 2D - 2nd Order

The first order RD methods were largely developed to treat steady
problems (i.e. ones where the solution converges on some steady
state) (Paillere et al. 1995; Hubbard & Baines 1997; Dobes & De-
coninck 2008). For these methods, having only first order accuracy
in time is acceptable, but for problems with significant time varia-
tion, it is important to achieve second order accuracy in time. The
order in time refers to the highest order of term included in the ap-
proximation of the solution. The solution can be written as a Taylor
expansion

Q(𝑥, 𝑡 + Δ𝑡) = Q(𝑥, 𝑡) + Δ𝑡
𝜕Q
𝜕𝑡

+ 1
2
Δ𝑡2

𝜕2Q
𝜕𝑡2

+ O(Δ𝑡3). (A7)

A method is first order in time if it only uses the term linearly
dependent on Δ𝑡. The second order schemes include the terms de-
pendent on Δ𝑡2. A number of systems that achieve this have been
developed (Abgrall & Roe 2003; Palma et al. 2005; Rossiello et al.
2009; Ricchiuto & Abgrall 2010). This work includes extending
the schemes described above to allow for second order temporal
accuracy, and perform extensive studies of the various properties of
the new system. Below we will summarise the extension to second
order temporal accuracy, as well as the potential options that have
been developed to implement this extension.

When dealing with a time dependent problem, there is clearly
going to be a time dependence in the residual itself. In the first
order formulation, the element residual was defined as the integral
of the divergence of the flux over the element. To include the time
dependence in the residual, it is necessary to define a new residual,
the total residual Φ𝑇 , which is the integral over the whole set of
equations

Φ𝑇 (Qℎ) =
∫
𝑇

[
𝜕Qℎ

𝜕𝑡
+ ∇ · Fℎ (Qℎ)

]
𝑑𝑥𝑑𝑦

=

∫
𝑇

𝜕Qℎ

𝜕𝑡
𝑑𝑥𝑑𝑦 + 𝜙𝑇 (Qℎ).

(A8)

This residual now contains a way to take into account the change
in the state over the time step. There is some inconsistency in the
notation and naming conventions within the residual distribution
field, but here we will use the above naming scheme, where the ele-
ment residual 𝜙𝑇 is the area integral of the divergence, and the total

residual Φ𝑇 is the integral of the whole equation. The integral over
the time derivative simply becomes the mean of the time derivatives
of the solution at each node of the element multiplied by the area

Φ𝑇 =

3∑︁
𝑗=1

|𝑇 |
3
𝑑Q 𝑗

𝑑𝑡
+ 𝜙𝑇 . (A9)

This still contains the time derivative of the state, which is simply
taken as the absolute change in the state at vertex 𝑗 for time step
ΔQ/Δ𝑡. The distribution of this new residual requires a way to
distribute the time dependent part. This is achieved by applying a
mass matrixm (Caraeni & Fuchs 2002; Palma et al. 2005; Ricchiuto
& Abgrall 2010), which sets a fraction of the contribution from the
temporal part of the total residual to be sent to each vertex. This is
used to find the nodal total residual with

Φ𝑇
𝑖 =

3∑︁
𝑗=1

𝑚𝑖 𝑗

𝑑Q 𝑗

𝑑𝑡
+ 𝜙𝑇𝑖 . (A10)

There are a number of choices for themassmatrix that offer different
dissipative properties (Ricchiuto & Abgrall 2010). We utilise the
simplest of these, which is found by replacing the element residual
in the first order method with the total residual (Caraeni & Fuchs
2002). If we take the LDA scheme, the mass matrix then simply
becomes

𝑚𝐹1
𝑖 𝑗 =

|𝑇 |
3
𝛽 𝑗 , (A11)

where 𝛽 𝑗 is the LDA distribution matrix for the 𝑗 𝑡ℎ vertex of that
element. This splits the total residual in exactly the same way as the
first order LDA scheme, with the addition of the temporal part to
the distributed residual.

The RD method can now be recast as as the distribution of this
new total residual. To achieve the second order accuracy in time,
a Runge-Kutta time stepping scheme is applied. These methods
function by constructing an intermediate state, and then finding
the final state, for a given time step, as function of the original
and intermediate states. Second (RK2), third (RK3), and fourth
(RK4) order Runge-Kutta methods have been developed for the
RD approach, but the additional computational costs of the RK3
and RK4 methods do not show a significant improvement in the
accuracy of the numerical results (Ricchiuto & Abgrall 2010). We
have only considered the RK2 approach here.

For theRDproblem, for the time step 𝑛 to 𝑛+1, the intermediate
state is constructed using the first order solver

Q∗
𝑖 = Q𝑛

𝑖 − Δ𝑡

|𝑆𝑖 |
∑︁

𝑇 |𝑖∈𝑇
𝜙𝑖 (A12)

and the final state is found using the distribution of the total residual
with

Q𝑛+1
𝑖 = Q∗

𝑖 −
Δ𝑡

|𝑆𝑖 |
∑︁

𝑇 |𝑖∈𝑇
Φ𝑖 (A13)

where the total residual is calculated based on both the initial and
intermediate element residuals, in the standardRK2 form (Ricchiuto
& Abgrall 2010). The second sub-step update becomes

Q𝑛+1
𝑖 = Q∗

𝑖 −
Δ𝑡

|𝑆𝑖 |
∑︁

𝑇 |𝑖∈𝑇

©«
3∑︁
𝑗=1

𝑚𝑖 𝑗

Q∗
𝑖
− Q𝑛

𝑖

Δ𝑡

+1
2

(
𝜙𝑖 (Q∗

𝑖 ) + 𝜙𝑖 (Q
𝑛
𝑖 )

) )
.

(A14)

This provides all the information needed to construct a second order
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RD solver. the new total residual is only dependent on the initial
state, the intermediate state, the time step, and the element residual
for both the initial and intermediate states. As such there is no need
to define specific second order forms for the different distribution
schemes.

A3 Residual Distribution for the Euler Equations

Herewe describe the intricacies of transforming the Euler equations,
in this case in 2D, into the appropriate form for solving by with an
RD approach. This will primarily cover the linearization of the
equations through the use of the Roe parameter vector (Roe 1981).

The RD method is only applicable to linear sets of PDEs. The
Euler equations are non-linear, as the Flux term is dependent on the
state vector. The equations must be recast in a quasi-linear form. In
order to produce the desired linearisation, a new parameter vector
is defined, such that the Jacobian is only linearly dependent on the
unknown of the PDE. The Roe parameter vector Z is suitable for
this purpose, defined for the two dimensional case as

Z =

©«
√
𝜌√
𝜌𝑣𝑥√
𝜌𝑣𝑦√
𝜌𝐻

ª®®®¬ . (A15)

Starting with the original inviscid 2D Euler equations, this is con-
verted into a PDE of Z by introducing the partial derivatives with
respect to the new vector, 𝜕Q/𝜕Z and 𝜕F 𝑗/𝜕Z, using the chain
rule. The Euler equations now appear as

𝜕Q
𝜕Z

𝜕Z
𝜕𝑡

+
2∑︁
𝑗=1

𝜕F 𝑗

𝜕Z
𝜕Z
𝜕𝑥 𝑗

= 0. (A16)

The state vector can be rewritten in terms of the new parameter
vector as

Q =

©«
𝑍21
𝑍1𝑍2
𝑍1𝑍3

𝑍1𝑍4
𝛾 + 𝛾−1

2𝛾 (𝑍22 + 𝑍
2
3 )

ª®®®®¬
, (A17)

with the flux vectors as

F𝑥 =

©«
𝑍1𝑍2

𝛾−1
𝛾 𝑍1𝑍4 + 𝛾+1

2𝛾 𝑍
2
2 −

𝛾−1
2𝛾 𝑍

2
3

𝑍2𝑍3
𝑍2𝑍4

ª®®®®¬
, (A18)

and

F𝑦 =

©«
𝑍1𝑍3
𝑍2𝑍3

𝛾−1
𝛾 𝑍1𝑍4 + 𝛾+1

2𝛾 𝑍
2
3 −

𝛾−1
2𝛾 𝑍

2
2

𝑍3𝑍4

ª®®®®¬
. (A19)

From these forms, it is clear that the state and flux vectors depend
quadratically on the Roe vector. The partial derivatives of these
vectors, with respect to the Roe parameter vector, are therefore
linearly dependent on the new parameters. This means that Z can
be used to linearise the Euler equations using the form given in
equation (A16).

With the Roe parameter vector, the Jacobian in Equation (A16)
satisfies the requirements given in Section 2.1 for the Roe solver.
The Jacobian in this case is the derivative of the flux with respect

to Z. The Jacobian at the boundary Ā, or in the element in the 2D
case, is simply the Jacobian of the mean state of the vertices

Ā𝑥 = A𝑥 (Z̄) = A𝑥

(
Z1 + Z2 + Z3

3

)
. (A20)

The element residual for this set of PDEs is now definedwith respect
to the new unknown Z, such that Equation (A5) is equivalent to

𝜙𝑇 =
1
2

3∑︁
𝑖=1

Z𝑖
𝜕

𝜕Z
F (Z̄𝑖) · n𝑖 . (A21)

However, in this formulation, the residual will calculate the update
to the Roe parameter vector, rather than fluid state vectorQ. In order
to make use of this Roe parameter vector to update the fluid state,
the fluid state must be reintroduced into the residual

𝜙𝑇 =
1
2

3∑︁
𝑖=1

Z𝑖
𝜕

𝜕Z
F (Z̄) 𝜕

𝜕Q
Z(Z̄) · n𝑖

𝜕

𝜕Z
Q(Z̄). (A22)

These two equations are equivalent, but the second form allows us
to write the residual for the original Euler equations, but calculated
as a function of the mean state Z̄, rather than the fluid state. The
residual is therefore given by

𝜙𝑇 =

3∑︁
𝑗=1

K𝑖 (Z̄)Q̂𝑖 (Z̄), (A23)

which is directly comparable to the generic discrete form of the
element residual from Equation (17). The variables K𝑖 and Q̂𝑖 of
this specific discrete form are

Q̂𝑖 (Z̄) =
𝜕

𝜕Z
Q(Z̄)Z𝑖 =

©«
2�̄�1𝑍1

�̄�2𝑍1 + �̄�1𝑍2
�̄�3𝑍1 + �̄�1𝑍3

1
𝛾

(
�̄�4𝑍1 + 𝛾1 �̄�2𝑍2 + 𝛾1 �̄�3𝑍3 + �̄�1𝑍4

)ª®®®¬ ,
(A24)

and

K𝑖 (Z̄) =
1
2
𝜕

𝜕Z
F (Z̄) 𝜕

𝜕Q
Z(Z̄) · n𝑖

=
1
2
𝜕

𝜕Q
F (Z̄) · n𝑖

=
1
2
A(Z̄) · n𝑖 .

(A25)

This K𝑖 matrix is sometimes referred to as the inflow matrix, as it
can be used to encode the nature of the flow at each vertex since
it projects the Jacobian onto the normal of the face opposite that
vertex. The K𝑖 matrix is now defined as the average of Jacobian
matrices of the original form of the Euler equations, projected onto
the edge normals of the element, where

A(Z̄) =
(
Ā𝑥 (Z̄), Ā𝑦 (Z̄)

)
=

(
𝜕

𝜕Q
F𝑥 (Z̄),

𝜕

𝜕Q
F𝑦 (Z̄)

)
. (A26)

It is important to note that the Jacobian is being calculated for the
average Roe parameter, which produces a subtly different result to
using the average fluid state. The introduction of Q̂𝑖 , which has the
same units as the fluid state but clearly differs from it in detail,
and the fact that the Jacobian is evaluated at the average Roe state,
together encode the effect of the linearisation.

To summarise, the RD method is only applicable to linear
sets of PDEs, so a suitable linearisation of the Euler equations is
required. Roe produced such a linearisation, initially for the Roe
solver, but it is usable in this context as well. To calculate the
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residual for use in the update of the fluid state, the 𝐾 matrix is based
on the Jacobians evaluated at the average Roe parameter for the
spatial element. This is combined with a variable that is analogous
to the state variable, but definedwith the chosen linearisation. These
produce a consistent definition of the residual for that can be used to
update the fluid state, without losing the effects of the linearisation
and invalidating the scheme. The exact form of the decomposed 𝑲𝑖

is given in the appendices of Paardekooper (2017).

APPENDIX B: 3D K-MATRIX

The 3D K-matrix, at vertex 𝑖, is defined similarly to the 2D case
(Paardekooper 2017), where 𝐾𝑖 = (𝐴𝑥𝑛𝑥 + 𝐴𝑦𝑛𝑦 + 𝐴𝑧𝑛𝑧)/3, where
𝒏𝑖 = (𝑛𝑥 , 𝑛𝑦 , 𝑛𝑧) is the unit normal of the face opposite vertex 𝑖,
and 𝐴 = (𝐴𝑥 , 𝐴𝑦 , 𝐴𝑧) are the triangle Jacobians in each dimension.
However, the form found by finding the arithmetic mean of the
Jacobian projections onto the respective normals does not allow for
the construction of the corresponding 𝐾− and 𝐾+ matrices. These
require selections by negative/positive eigenvalues respectively. The
desired form is found by decomposing the initial form of the K-
matrix into its Schur decomposition form, with K𝑖 = R−1𝚲R,
where 𝚲 is a diagonal matrix, with the eigenvalues as the diagonal
elements. This is the matrix product of 𝚲, which is the diagonal
matrix composed of the eigenvalues ofK𝑖 , and the right handmatrix
R, made up of columns consisting of the eigenvectors of the K-
matrix. The end result is a form that can be used to calculate the
inflow matrix 𝑲𝑖 , or its negative or positive counterparts, given as

𝐾11 =
𝛼𝑐

𝑐
_123 −

Ω

𝑐
_12 + _3,

𝐾12 = −𝛾1𝑣𝑥𝑐
𝑐

_123 +
𝑛𝑥

𝑐
_12,

𝐾13 = −
𝛾1𝑣𝑦𝑐
𝑐

_123 +
𝑛𝑦

𝑐
_12,

𝐾14 = −𝛾1𝑣𝑧𝑐
𝑐

_123 +
𝑛𝑧

𝑐
_12,

𝐾15 =
𝛾1
𝑐2
_123,

𝐾21 = (𝛼𝑐𝑣𝑥𝑐 −Ω𝑛𝑥)_123 + (𝛼𝑐𝑛𝑥 − 𝑣𝑥𝑐Ω)_12,

𝐾22 = (𝑛2𝑥 − 𝛾1𝑣2𝑥𝑐)_123 − 𝛾2𝑣𝑥𝑐𝑛𝑥_12 + _3,
𝐾23 = (𝑛𝑥𝑛𝑦 − 𝛾1𝑣𝑥𝑐𝑣𝑦𝑐)_123 + (𝑣𝑥𝑐𝑛𝑦 − 𝛾1𝑣𝑦𝑐𝑛𝑥)_12,
𝐾24 = (𝑛𝑥𝑛𝑧 − 𝛾1𝑣𝑥𝑐𝑣𝑧𝑐)_123 + (𝑣𝑥𝑐𝑛𝑧 − 𝛾1𝑣𝑧𝑐𝑛𝑥)_12,

𝐾25 =
𝛾1𝑣𝑥𝑐
𝑐

_123 +
𝛾1𝑛𝑥
𝑐

_12,

𝐾31 = (𝛼𝑐𝑣𝑦𝑐 −Ω𝑛𝑦)_123 + (𝛼𝑐𝑛𝑦 − 𝑣𝑦𝑐Ω)_12,
𝐾32 = (𝑛𝑥𝑛𝑦 − 𝛾1𝑣𝑥𝑐𝑣𝑦𝑐)_123 + (𝑣𝑦𝑐𝑛𝑥 − 𝛾1𝑣𝑥𝑐𝑛𝑦)_12,

𝐾33 = (𝑛2𝑦 − 𝛾1𝑣2𝑦𝑐)_123 − 𝛾2𝑣𝑦𝑐𝑛𝑦_12 + _3,
𝐾34 = (𝑛𝑦𝑛𝑧 − 𝛾1𝑣𝑦𝑐𝑣𝑧𝑐)_123 + (𝑣𝑦𝑐𝑛𝑧 − 𝛾1𝑣𝑧𝑐𝑛𝑦)_12,

𝐾35 =
𝛾1𝑣𝑦𝑐
𝑐

_123 +
𝛾1𝑛𝑦
𝑐

_12,

𝐾41 = (𝛼𝑐𝑣𝑧𝑐 −Ω𝑛𝑧)_123 + (𝛼𝑐𝑛𝑧 − 𝑣𝑧𝑐Ω)_12,
𝐾42 = (𝑛𝑥𝑛𝑧 − 𝛾1𝑣𝑥𝑐𝑣𝑧𝑐)_123 + (𝑣𝑧𝑐𝑛𝑥 − 𝛾1𝑣𝑥𝑐𝑛𝑧)_12,
𝐾43 = (𝑛𝑦𝑛𝑧 − 𝛾1𝑣𝑦𝑐𝑣𝑧𝑐)_123 + (𝑣𝑧𝑐𝑛𝑦 − 𝛾1𝑣𝑦𝑐𝑛𝑧)_12,

𝐾44 = (𝑛2𝑧 − 𝛾1𝑣2𝑧𝑐)_123 − 𝛾2𝑣𝑧𝑐𝑛𝑧_12 + _3,

𝐾45 =
𝛾1𝑣𝑧𝑐
𝑐

_123 +
𝛾1𝑛𝑧
𝑐

_12,

𝐾51 = (𝛼𝑐𝐻𝑐 −Ω2)_123 +Ω(𝛼𝑐 − 𝐻𝑐)_12,
𝐾52 = (Ω𝑛𝑥 − 𝑣𝑥 − 𝛼𝑐𝑣𝑥𝑐)_123 + (𝐻𝑐𝑛𝑥 − 𝛾1𝑣𝑥𝑐Ω)_12,
𝐾53 = (Ω𝑛𝑦 − 𝑣𝑦 − 𝛼𝑐𝑣𝑦𝑐)_123 + (𝐻𝑐𝑛𝑦 − 𝛾1𝑣𝑦𝑐Ω)_12,
𝐾54 = (Ω𝑛𝑧 − 𝑣𝑧 − 𝛼𝑐𝑣𝑧𝑐)_123 + (𝐻𝑐𝑛𝑧 − 𝛾1𝑣𝑧𝑐Ω)_12,

𝐾55 =
𝛾1𝐻𝑐

𝑐
_123 +

𝛾1Ω

𝑐
_12 + _3,

where 𝑋𝑐 ≡ 𝑋/𝑐. The new _ terms have the same meaning as in
the 2D case, with _123 = (_1 +_2 − 2_3)/2 and _12 = (_1 −_2)/2.
Similarly to the 2D form, the eigenvalues used here are _1 = Ω + 𝑐,
_1 = Ω − 𝑐, and _3 = _4 = _5 = Ω. The new variables are
𝛼 = 𝛾1 (𝑣2𝑥 + 𝑣2𝑦 + 𝑣2𝑧)/2 and Ω = 𝑣𝑥𝑛𝑥 + 𝑣𝑦𝑛𝑦 + 𝑣𝑧𝑛𝑧 . To find the
corresponding K+

𝑖
and K−

𝑖
, one simply uses only the positive _+ or

negative _− eigenvalues, where

_+𝑖 = max(0, _𝑖) and _−𝑖 = min(0, _𝑖). (B1)

Together this matrix form, and the associated eigenvalues, entirely
describe the inflow matrix, allowing us to implement the 3D form
of the RD hydro solver.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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