
 

 

 
 

 

Edinburgh Research Explorer 
 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Minkowski Functionals in Joint Galaxy Clustering & Weak
Lensing Analyses

Citation for published version:
Grewal, N, Zuntz, J, Tröster, T & Amon, A 2022, 'Minkowski Functionals in Joint Galaxy Clustering & Weak
Lensing Analyses', The Open Journal of Astrophysics, vol. 5, pp. 1-12.
https://doi.org/10.21105/astro.2206.03877

Digital Object Identifier (DOI):
10.21105/astro.2206.03877

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
The Open Journal of Astrophysics

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 19. Feb. 2023

https://doi.org/10.21105/astro.2206.03877
https://doi.org/10.21105/astro.2206.03877
https://www.research.ed.ac.uk/en/publications/80d4ae7d-ce23-46ba-8b84-1790bd89f138


MINKOWSKI FUNCTIONALS IN JOINT GALAXY CLUSTERING & WEAK LENSING ANALYSES

Nisha Grewal1∗, Joe Zuntz1, Tilman Tröster1, and Alexandra Amon2
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ABSTRACT

We investigate the inclusion of clustering maps in a weak lensing Minkowski functional (MF) analysis
of DES-like and LSST-like simulations to constrain cosmological parameters. The standard 3x2pt
approach to lensing and clustering data uses two-point correlations as its primary statistic; MFs,
morphological statistics describing the shape of matter fields, provide additional information for non-
Gaussian fields. Previous analyses have studied MFs of lensing convergence maps; in this project we
explore their simultaneous application to clustering maps. We employ a simplified linear galaxy bias
model, and using a lognormal curved sky measurement and Monte Carlo Markov Chain (MCMC)
sampling process for parameter inference, we find that MFs do not yield any information in the Ωm

– σ8 plane not already generated by a 3x2pt analysis. However, we expect that MFs should improve
constraining power when nonlinear baryonic and other small-scale effects are taken into account. As
with a 3x2pt analysis, we find a significant improvement to constraints when adding clustering data
to MF-only and MF+C` shear measurements, and strongly recommend future higher order statistics
be measured from both convergence and clustering maps.

1. INTRODUCTION

Statistics measured from gravitational lensing have
been effective in probing the growth of large-scale struc-
ture and the behaviour of gravity on cosmological scales.
Ongoing surveys like the Dark Energy Survey1 (DES;
Flaugher 2005), Hyper Supreme-Cam2 (HSC; Aihara
et al. 2017) survey, and Kilo-Degree Survey3 (KiDS; Kui-
jken et al. 2015) observe tens to hundreds of millions of
galaxies. Covering 5000 deg2, 1400 deg2, and 1500 deg2

respectively, these surveys construct detailed galaxy cat-
alogs (Gatti et al. 2021b; Giblin et al. 2021; Aihara et al.
2022) and high resolution weak lensing maps (e.g. Jeffrey
et al. 2021) and have extracted significant cosmological
information from their data (Heymans et al. 2021; Miy-
atake et al. 2021; Abbott et al. 2022).

Cosmic shear is independent of galaxy bias and sensi-
tive to the geometry and evolution of the Universe, mak-
ing it particularly informative in the study of large scale
structure (Hikage et al. 2019; Hamana et al. 2020; Asgari
et al. 2021; Amon et al. 2022; Secco et al. 2022a). Using
the ΛCDM model, which takes the assumption that the
Universe comprises baryonic matter, cold dark matter,
and dark energy, two-point statistics of weak lensing and
galaxy clustering have been used successfully to constrain
cosmological parameters that describe the model.

Measuring both convergence and clustering informa-
tion using two-point statistics, such as correlation func-
tions or the angular power spectra C`, has proven par-
ticularly effective, yielding high precision constraints on
cosmological parameters Ωm and σ8 (Heymans et al.
2021; Miyatake et al. 2021; Abbott et al. 2022).

The two-point measurements described above encode
all the information present in purely Gaussian random
fields. In the non-Gaussian fields generated by nonlin-
ear structure formation, however, other (higher-order)
statistics can contain additional information. One ex-
ample is peak statistics, which, when applied to weak
lensing maps, can break degeneracies between cosmolog-

∗ nisha.grewal@ed.ac.uk
1 https://www.darkenergysurvey.org/
2 https://www.naoj.org/Projects/HSC/
3 http://kids.strw.leidenuniv.nl/

ical parameters while remaining robust against system-
atic effects (e.g. Dietrich and Hartlap 2010; Kratochvil
et al. 2010; Liu et al. 2015; Kacprzak et al. 2016; Shan
et al. 2017; Martinet et al. 2018; Peel et al. 2018b; Ajani
et al. 2020; Zürcher et al. 2022). Other higher order
statistics of galaxy density, galaxy shear, and cosmic mi-
crowave background (CMB) lensing like three point cor-
relation functions and bi-spectra (e.g. Takada and Jain
2003; Vafaei et al. 2010; Semboloni et al. 2011; Petri
et al. 2013; Fu et al. 2014; Secco et al. 2022b) as well
as moments (e.g. Van Waerbeke et al. 2013; Petri et al.
2015; Vicinanza et al. 2016; Chang et al. 2018; Peel et al.
2018a; Vicinanza et al. 2018; Gatti et al. 2020; Gatti et al.
2021a) are able to achieve even higher precision.

Many statistics, including these, are measured from
maps generated from galaxy catalogues. Convergence
maps, which are projected measures of mass along the
line of sight, are derived from shear catalogues of source
galaxies. Clustering maps, which show the number den-
sity of galaxies, are built from lens galaxy position cata-
logues and are complementary tracers of cosmic structure
(Elvin-Poole et al. 2018). Clustering maps have a higher
signal to noise ratio, enabling more detailed results (Jef-
frey et al. 2021). However, clustering maps are only able
to probe the distribution of galaxies, so galaxy bias must
be modelled to relate this to the density of dark mat-
ter, which dominates the overall matter density (Abbott
et al. 2022).

The morphological descriptors Minkowski functionals
(MFs) are another higher-order statistic applicable in
this context (Minkowski 1903). MFs are unbiased func-
tional integrals over fields, have low variance, and have
been applied previously to non-Gaussian convergence
maps (Mecke et al. 1993; Kratochvil et al. 2012; Petri
et al. 2013; Parroni et al. 2020), CMB data (e.g. Schmalz-
ing and Gorski 1998, and references thereto), and 3D
density fields from spectroscopic data (Hikage et al. 2003;
Wiegand and Eisenstein 2017; Sullivan et al. 2019; Ap-
pleby et al. 2022). For a purely Gaussian field within
a ΛCDM model, MFs and C` contain the same infor-
mation for Ωm and σ8. Adding MFs to a single lensing
field analysis has been shown to greatly improve con-
straints on cosmological parameters, and their angular-
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scale dependence is particularly effective in separat-
ing primordial non-Gaussianities from gravity-induced
non-Gaussianities (Munshi et al. 2011; Shirasaki et al.
2012; Vicinanza et al. 2019). Because they are sensitive
to small-scale structure, MFs have strong constraining
power. They have the potential to have additional re-
silience to some systematic uncertainties (Zürcher et al.
2021). Multiple MFs at different smoothing scales probe
more information than a single set of MFs, and more an-
alytical treatments like Hermite polynomials (Appleby
et al. 2022) could extract more information as well.

In this paper, we investigate the effectiveness of the
application of the first three MFs to multi-field simula-
tions of both convergence and clustering maps, with a
focus on forecasting potential constraining power using
upcoming datasets. Future surveys will be even wider
and deeper than current surveys, have the capabilities
to build more informed weak lensing maps, and provide
even more cosmological information. The Legacy Survey
Space and Time (LSST) at the Vera C. Rubin Obser-
vatory4 (LSST Science Collaboration et al. 2009; LSST
Dark Energy Science Collaboration 2012) and the space
telescopes Euclid5 (Scaramella et al. 2021) and Nancy
Grace Roman6 (Spergel et al. 2015) will map nearly half
the sky, and so enable dramatically strong constraints
on the dark sector. The statistical approach we develop
here can eventually be applied to such datasets.

In Section 2 we cover the theory of MFs and power
spectra C`, in Section 3 we go over the process by which
we use an MCMC to generate cosmological parameter
posterior values, in Section 4 we show the constraints on
cosmological parameters from various scenarios, and we
conclude in Section 5.

2. FORMALISM/THEORY

2.1. Minkowski Functionals

Minkowski functionals are mathematical descriptors
of the topology of continuous fields (Minkowski 1903;
Zürcher et al. 2021). For 2D random fields, there are
three functionals, quantifying area, perimeter, and mean
curvature of an excursion set (the region of a field above
a given threshold; Parroni et al. 2020). The first three
MFs are defined as

V0(ν) =
1

A

∫
A

Θ(α(x)− ν)dφdθ, (1)

V1(ν) =
1

4A

∫
A

δ(α(x)− ν)
√
α2
φ + α2

θdφdθ, (2)

V2(ν) =
1

2πA

∫
A

δ(α(x)− ν)

(
2αφαθαφθ − α2

φαθθ − α2
θαφφ

α2
φ + α2

θ

)
dφdθ, (3)

where x is the location in the field, ν is a chosen thresh-
old, A is the total area of the map, φ and θ are polar

4 https://www.lsst.org/
5 https://www.euclid-ec.org/
6 https://roman.gsfc.nasa.gov/

coordinates, α(x) is the field value in two dimensions,
and αφ, αθ, αφθ, αθθ, and αφφ are derivatives of the
field (Minkowski 1903; Petri et al. 2013). In Eq. (1) the
Heaviside function Θ selects the field region above the
threshold, whose area is calculated; Eq. (2) employs the
Dirac delta function to select the perimeter of that region
whose heights are at the same level as the threshold; simi-
larly, Eq. (3) finds the curvature of the boundary, which
also describes the connectivity of the field (Minkowski
1903). Since the fields we use are not normalised to have
unit variance, the sensitivity of σ8 comes from the overall
amplitudes of V1 and V2.

Figure 1 and 2 illustrate the three MFs. The excursion
sets in Figure 1 give rise to the three MFs plotted as
a function of the threshold value in 2. If we visualize
the original 2D map as a topographic height map, the
excursion sets are the regions above a given altitude.

2.2. Power Spectra

We will compare the constraining power of MFs to the
standard 2D power spectrum C`. The angular power
spectrum Cxy` measures the scale-dependent structure of
two fields x, y, which in this case are either weak lensing
convergence or galaxy density. Assuming an isotropic
system,

〈axlm, ay∗l′m′〉 = δ``′δmm′Cxy` , (4)

where alm is the spherical harmonic transform of a field
(Kaplinghat et al. 2002). We project a 3D field X(~χ) via
a weighting function wx(χ) into the 2D field x (Bartel-
mann and Maturi 2016):

x(~θ) =

∫ χS

0

dχwx(χ)X(~θ, χ). (5)

Using Limber’s approximation in a flat Universe, we
can convert PXY , the 3D (cross-)power spectrum of X,Y ,
into the 2D angular power spectrum of x,y:

Cxy` =

∫ χS

0

dχ
wx(χ)wy(χ)

χ2
PXY

(
`+ 1

2

χ
, z(χ)

)
, (6)

where ` is the scalar multipole, χS is the comoving dis-
tance to the source plane, χ is the comoving angular di-
ameter distance, and w is a radial kernel function (Lim-
ber 1954; Bartelmann and Schneider 2001; Bartelmann
and Maturi 2016; Abbott et al. 2022). The kernel func-
tion for convergence is given by

wjκ(χ) =
3ΩmH

2
0

2

∫ χH

χ

dχ′njs(χ
′)

χ

a(χ)

χ′ − χ
χ′

, (7)

where Ωm is the present-day matter density parameter,
H0 is the Hubble parameter, χH is the comoving distance
to the horizon, n(χ) is the source galaxy number density
distribution, and a(χ) is the scale factor (Bartelmann
and Schneider 2001). For clustering, the kernel function
is simpler:

n(χ) = n(z(χ))
dz

dχ
(8)

(Elvin-Poole et al. 2018). We do not use cross-
correlations of maps in our simulations (see Section
3.1.1), so the statistical structure of our power spectrum
analysis does not fully replicate 3x2pt analysis.
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Fig. 1.— Excursion sets at 10 threshold values α of a simulated convergence map, where the regions under the threshold are marked in
white and above in black.
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Fig. 2.— Sample of the first three MFs V0, V1, and V2 calculated from a simulated weak lensing convergence map using fiducial Ωm and
σ8 values. Each black dot on the curve corresponds to an excursion set in Figure 1, and the three MFs on the y-axis describe the perimeter,
area, and curvature of the mass distribution (Petri et al. 2013).

For Gaussian random fields, such as those in the
nearly-homogeneous early Universe, C` contain all the
information present (Coil 2013). While they are still use-
ful for more general non-Gaussian late-time fields, they
do not fully describe the statistics of such systems.

3. METHODOLOGY

In this paper we introduce the application of MFs to
clustering maps. We compare the constraints on cos-
mological parameters from convergence maps, clustering
maps, and a combination of the two. To measure these
constraints, we explore the space of cosmological param-
eters with an MCMC process.

3.1. Simulations

In this work we generate curved sky lognormal sim-
ulations, which let us compute exact derivatives of the
field. The lognormal sky simulations are relatively quick
to evaluate and provide some degree of non-Gaussian sig-
nal. Our analysis has the flexibility to be measured from
more sophisticated nonlinear, non-Gaussian simulations

in the future.

3.1.1. Redshift

To build these simulated maps we first start from DES
Y6-like, LSST Y1-like, and LSST Y10-like tomographic
number densities based on those in Zhang et al. (2021),
which are shown in Figure 3 and Table 1. These n(z)
values are generated from an underlying true redshift
distribution of the form ntrue(z) ∝ z2 exp (z/z0)

a
, di-

vided into equal density tomographic bins and then con-
volved with a Gaussian error distribution with width
σ(z) = (1 + z)σz. Different values of the parameters a
and σz and the number of bins and total density are used
for our three different scenarios, DES Y6-like, LSST Y1-
like, and LSST Y10-like, using the values given in Table
1 of Zhang et al. (2021).

3.1.2. Map Simulation

Next we use the Dark Energy Science Collaboration’s
(DESC; Abolfathi et al. 2021) Core Cosmology Library
(CCL; Chisari et al. 2019) to predict theory values for
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Fig. 3.— nz redshift bins for DES Y6-like, LSST Y1-like, and LSST Y10-like (Hoyle et al. 2018; Zhang et al. 2021). Convergence
distributions are displayed on the left, and clustering distributions are on the right.

Bin 1 Bin 2 Bin 3 Bin 4 Bin 5 Bin 6 Bin 7 Bin 8 Bin 9 Bin 10

DES Y6-like 0.20-0.43 0.43-0.63 0.63-0.90 0.90-1.30
LSST Y1-like 0.20-0.43 0.43-0.63 0.63-0.90 0.90-1.30
LSST Y10-like 0.20-0.43 0.43-0.63 0.63-0.90 0.90-1.30

DES Y6-like 1.17 1.28 1.41 1.55 1.69
LSST Y1-like 1.17 1.28 1.41 1.55 1.69
LSST Y10-like 1.13 1.19 1.25 1.32 1.38 1.45 1.51 1.58 1.65 1.72

TABLE 1
Convergence map redshift bins in the top three rows and clustering map galaxy bias values in the bottom three rows (Hoyle et al. 2018;

Zhang et al. 2021).

the convergence and clustering power spectra C`. CCL
takes the redshift distributions n(z) and cosmological
parameters and computes C`, which we pass with the
n(z) to the Full-sky Lognormal Astro-fields Simulation
Kit (FLASK; Xavier et al. 2016) to simulate the conver-
gence and clustering maps. FLASK generates continuous
lognormal fields using spherical geometry (Xavier et al.
2016).
FLASK generates noisy clustering maps directly using

the noise level we supply, and we manually add noise
to the convergence maps it generates. In both cases we
used Gaussian noise levels corresponding to the number

densities in our scenarios. FLASK’s mock fields, as with
real fields, are more non-Gaussian for the clustering than
for the lensing, since they are integrated over a narrower
redshift kernel, and the code has specific corrections to
allow a sensible joint analysis in this intermediate non-
linear and non-Gaussian regime (Xavier et al. 2016).

We originally used more realistic Poisson noise in our
clustering maps, but this caused problems when trying
to fix the random seed (see below) in our simulations.
Changing the power spectra that FLASK takes as input
changes the cosmic variance and noise generated in the
system. But while with Gaussian noise the same number
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of random variates must be generated even as the mean
levels change, this is not the case for Poisson noise. This
means that for Poisson noise, a small change to input
power spectra no longer creates a small change to the
resulting maps, since the sequence of random noise values
changes significantly7.

3.1.3. Simulation Inputs

For this project, we use DES Y6-like, LSST Y1-like,
and LSST Y10-like scenarios to find constraints on cos-
mological parameters. The cosmological parameter in-
puts we vary in the FLASK simulation are Ωm (total mat-
ter), σ8 (amplitude of the matter power spectrum), Ωb

(baryonic matter), H0 (present-day rate of expansion of
the Universe), and ns (spectral index). We also vary lin-
ear galaxy bias values for the different lens bins. The
fiducial values can be seen in Table 2.

Parameter Fiducial Min Max

Ωm 0.3 0.1 0.6
σ8 0.8 0.3 1.2
Ωb 0.048 0.047 0.049
H0 0.7 0.5 0.9
ns 0.96 0.9 1.1

TABLE 2
Fiducial values of cosmological parameters with the minimum

and maximum values given to the MCMC generator.

To test the constraining power of adding clustering
maps to the model, we use three sets of tomographic
maps: convergence maps, clustering maps, and a combi-
nation of the two. Generating these simulations is slow,
so we optimised a model that was informative while (rel-
atively) efficient. We use Nside = 1024 for the resolution
parameter throughout, and follow Petri et al. (2013)’s
choices for Gaussian smoothing θG and MF threshold
countNbins, which can be seen in Table 3. While smooth-
ing of 1 arcminute may be the most informative level, this
is computationally taxing and essentially unsmoothed in
our fields, thus subject to more noise. Going to smaller
scales comes with other challenges, such as modelling un-
certainties due to nonlinear galaxy bias and baryon feed-
back. Instead we use 5 arcminutes as the fiducial value,
which is still informative at the Nside = 1024 level.

We replicate DES Y6-like, LSST Y1-like, and LSST
Y10-like scenarios in our simulations by applying the
corresponding redshift bins, galaxy bias values, and sky
fraction. The various scenarios are summarised in Ta-
ble 3, and sample simulated convergence and clustering
maps are shown in Figure 4. The “joint” case refers to
both lensing and clustering.

3.2. Observables

To test the constraining power of MFs, we compare
them to the standard C` analysis in cosmology. We com-
pare the constraining power of the following three estima-
tors: C`, MF, and the combination of C` and MF. We use
the NaMaster8 (Alonso et al. 2019) library to calculate

7 An alternative solution would be to fix the mean of the noise
field even as the signal changes.

8 https://github.com/LSSTDESC/NaMaster

Statistic Type

θG Nside Nbins mask nz bins MF/C` Map Type

5 1024 10 0.125 DES Y6-like C` Joint
5 1024 10 0.44 LSST Y1-like MF Joint
5 1024 10 1 LSST Y10-like C`+MF Joint

Map Type

θG Nside Nbins mask nz bins MF/C` lens/clust

5 1024 10 0.125 DES Y6-like Joint Lensing
5 1024 10 0.44 LSST Y1-like Joint Clustering
5 1024 10 1 LSST Y10-like Joint Joint

Smoothing

θG Nside Nbins mask nz bins MF/C` lens/clust

1 1024 10 0.44 LSST Y1-like Joint Joint
5 1024 10 0.44 LSST Y1-like Joint Joint
15 1024 10 0.44 LSST Y1-like Joint Joint

Survey

θG Nside Nbins mask nz bins MF/C` lens/clust

5 1024 10 0.125 DES Y6-like Joint Joint
5 1024 10 0.44 LSST Y1-like Joint Joint
5 1024 10 0.44 LSST Y10-like Joint Joint

TABLE 3
Scenarios considered in this paper: comparing statistic type, map

type, Gaussian smoothing θG at 1, 5, and 15 arcminutes; and
survey model: DES Y6-like, LSST Y1-like, and LSST Y10-like.
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Fig. 4.— Small 5x5 degree flat sky piece of the curved sky clus-
tering (left) and convergence (right) maps of redshift bin 4 at our
fiducial cosmology, using Nside = 1024 and 5 arcminutes of Gaus-
sian smoothing. The convergence map colourbar shows conver-
gence of each pixel, and the clustering map colourbar shows the
galaxy over-density.

the full-sky auto-correlation convergence and density an-
gular power spectra C` of the fields. We use a bandpower
window function with 50 multipoles per bandpower. The
maximum ` value we use is 3Nside

2 , which is 1536 for Nside

= 1024, which has a pixel size of 3.4 arcminutes. This
means information below 7 arcminutes in the maps is
smoothed out.

We give inputs for cosmological parameters, linear
galaxy biases, pixel count, fraction of sky, and the
amount of Gaussian smoothing applied to the map sim-
ulations.

We convert the integrals from Eq. (1), (2), and (3)
to the sums in Eq. (9), (10), and (11), calculating the
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values by taking a sum over the number of pixels N :

V0(νj) =
1

N

∑
i

Θ(α(xi)− ν), (9)

V1(νj) =
1

4N

∑
i

∆(α(xi)− ν)
√
α2
φ + α2

θ, (10)

V2(νj) =
1

2πN

∑
i

∆(α(xi)− ν)(
2αφαθαφθ − α2

φαθθ − α2
θαφφ

α2
φ + α2

θ

)
, (11)

where ∆ is 1 when α(xi) is between νj and νj+1 and 0
otherwise. The thresholds are evenly spaced from µ−3σ
to µ+3σ, where µ is the field value mean and σ is the field
value standard deviation. We use HEALPix9 to calculate
first and second derivatives of the fields using a series of
spherical harmonic transforms (Górski et al. 2005; Zonca
et al. 2019).

3.3. Likelihood

MFs C`

M
F

s
C
`

−1.0

−0.5

0.0

0.5

1.0

Fig. 5.— Correlation coefficient matrix of all observables for
LSST Y1-like lensing + clustering analysis: 300 MFs and 300 C`.
There is some correlation between the MFs and some between the
MFs and C`. The ticks represent the range of the observables for
the following statistics: V0 clustering, V0 lensing, V1 clustering, V1
lensing, V2 clustering, V2 lensing, C` clustering, C` lensing.

We follow a Bayesian procedure to measure our con-
straining power (Trotta 2017). To calculate likelihoods,
we measure our observables on a suite of sky map realisa-
tions made using DES Y6-like fiducial values for cosmo-
logical parameters and biases. Once we have measured
the C` and/or MFs on each clustering and/or conver-
gence map set, we calculate the likelihood at other cos-
mologies with a Gaussian likelihood.

L ∝ −0.5(~x− ~µ)tC−1(~x− ~µ), (12)

9 http://healpix.sourceforge.net

where ~µ represents mean observables over the suite of
fiducial realizations, and C−1 is the inverse covariance
matrix of the same suite. The simulated data point ~x
is evaluated at other non-fiducial values of the input pa-
rameters. The calculations of µ and C−1 vary a random
seed in map simulations and require a large number of
simulations at the fiducial cosmology. To find the co-
variance of the statistics, we look at the correlation of
the concatenation of the observables: MFs V0, V1, V2,
and/or the C`. The correlation matrix derived from this
covariance is shown in Figure 5.

The number of fiducial realisations must be greater
than or equal to the number of data points for the co-
variance matrix to be invertible. In our MF analysis,
the number of data points is found by multiplying the
number of thresholds used by three (the number of func-
tionals) and the number of tomographic bins used, and
the length of the C` is determined by the map resolution
and binning. If there are too few fiducial simulations, the
noise in the covariance overwhelms the signal and can
cause errors in the constraining power calculation (Petri
et al. 2013). One way to avoid this issue is to use more
realisations, but this rapidly becomes time-consuming.

To make the correction for the finite number of simu-
lations, we follow Petri et al. (2013) and make the An-
derson (2003) adjustment to the inverse:

〈Ĉ−1∗ 〉 =
N

N − p− 1
Σ−1, (13)

where Σ−1 is the sample inverse covariance matrix, Ĉ−1∗
is an estimator for the inverse covariance matrix, N is the
number of realisations minus one (since we find the mean
from the data), and p is the number of data points (An-
derson 2003; Hartlap et al. 2006). With Nside = 1024,
there are 300 observables from C` and MFs each, so we
have 600 data points total. We run the fiducial simula-
tion up to 4000 times for each scenario.

3.4. Sampling

We use an MCMC to evaluate posterior values of cos-
mological parameters based on the output of the Gaus-
sian log-likelihood function in Eq. (12). The cosmologi-
cal parameter priors can be seen in Table 2 and the bias
priors can be seen in Table 1. For this project we have
wrapped the emcee ensemble sampler (Foreman-Mackey
et al. 2013) via the cosmological parameter estimator
framework CosmoSIS (Zuntz et al. 2015) to run and par-
allelise the likelihood calculation. We use 40 walkers to
generate emcee chains with tens of thousands of samples.
As the sampler takes a given number of iterations to ex-
plore the parameter space before it settles onto a station-
ary distribution, we truncate the first several thousand
steps of the chains to eliminate the early ‘burn-in’ piece.

Since we are using a simulation to generate the maps
and hence observables at each step of our chain, we would
ideally marginalise over a large number of possible ran-
dom seeds for the chain to find the mean observables
for a given cosmology or else utilize a more sophisticated
simulation-based inference framework (see, e.g. Cranmer
et al. 2020). Instead, we use the same random seed for ev-
ery point in the chain, relying on the fact that with our
configuration choices, the FLASK simulated fields are a
smooth function of the cosmological parameters. Though
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this process generates a noisy estimate of the model for
a point in parameter space, it does yield a correct unnor-
malised likelihood, and the sampling acceptance criterion
is correct.

Our DES Y6-like model has four redshift bins of source
galaxies and five redshift bins of lens galaxies, LSST Y1-
like has five redshift bins of source galaxies and five red-
shift bins of lens galaxies, and LSST Y10-like has five red-
shift bins of source galaxies and ten redshift bins of lens
galaxies. We use only a simple linear model for galaxy
bias, with the fiducial bias values calculated using

bi =
1

D(zi)
, (14)

where D(zi) is the growth factor as a function of redshifts
at the fiducial cosmology.

3.5. Masking

Every survey comes with a sky mask, representing in-
complete survey sky coverage, regions blocked by bright
stars or other sources, and removals to keep systematic
effects out of galaxy maps (Abbott et al. 2022). By lim-
iting the available data, sky masks cause increased vari-
ance of fields and affect the estimated MFs values, since
MFs are topological descriptors (Shirasaki et al. 2013).
As such, MFs are only effective cosmological probes in
simulations if masking is taken into account.

In this paper we use a simple polar cap sky fraction
mask, in contrast to a more realistic analysis with com-
plex small-scale mask features. For speed, we mask pixels
after the simulations and derivatives are computed. How-
ever, taking derivatives of a field using harmonic trans-
forms is only possible with a complete (unmasked) field.
As such, in an analysis of real data, masked regions must
be smoothed and convolved with field values around the
mask. This must be carefully addressed in future analy-
ses of real data.

4. RESULTS

Figure 6 shows a comparison of constraints on cosmo-
logical parameters from three sets of convergence and
clustering statistics: MFs alone, C` alone, and a combi-
nation of MFs and C`. The C` contours are typical for
a 3x2pt analysis; MFs alone show the same degeneracy
direction at C` and show significant constraining power
with standard deviations displayed in Table 4. Adding
MFs to the 3x2pt analysis does not lead to significantly
tighter constraints than C` alone, with only a 15% de-
crease in S8 standard deviation, implying MFs and clus-
tering C` contain largely the same information. The pa-
rameters Ω8 and σ8 separately are relatively poorly con-
strained.

Figure 7 compares constraints for the MF and C` anal-
ysis of convergence, clustering, and a combination of the
two. As with standard 3x2pt analyses, adding clustering
data to convergence adds significant constraining power
to an MF plus C` analysis; the joint constraint is stronger
than the sum of its parts, pointing to internal degenera-
cies being broken. The decreased error for the combined
model can be compared with higher errors of the individ-
ual models in Table 4, demonstrating again the power of
including clustering maps in the simulation.

Figure 8 shows constraints from the full convergence
plus clustering, MF plus C` analysis for 1, 5, and 15 ar-
cminute Gaussian smoothing. The resulting uncertain-
ties are quantified in Table 4, and are not statistically
different. This is largely as expected for given our Nside

of 1024, which corresponds to 3.4 arcminute pixels, but
the noticeable decrease in the S8 constraint size for 15
arcminute smoothing may reflect the different trade-off
for smoothing in MF analyses where noise suppression
leads to better recovery of the excursion set boundary.
With the tomographic number density that we are us-
ing here the measurements are noisy even over relatively
large smoothing scales - we find the the noise contribu-
tion to the value dominates at all the three smoothing
scales. Since MFs are higher order statistics, it is not
possible to separate out the noise term, but the effect of
this noise is included in both the theory and observed
values in our MCMC, so does not matter too critically -
it is the variation of the noise after that subtraction that
affects the constraining power.

The trade-off between larger smoothing kernels to yield
lower noise and smaller ones to retain small-scale power
depends greatly on the details of the analysis and model.
Understanding this relationship between scale and MF
constraining power requires further study.

The constraints for the distributions of DES Y6-like,
LSST Y1-like, and LSST Y10-like scenarios are shown
in Table 4. As expected, surveys with more area, bins,
and/or depth have stronger constraints.

Errors

Analysis Type Ωm σ8 S8

Cl 0.0040 0.0049 0.0014
MF 0.0132 0.0155 0.0019
Cl+MF 0.0045 0.0052 0.0012

Map Type Ωm σ8 S8

Lensing 0.0090 0.0118 0.0029
Clustering 0.0101 0.0075 0.0147
Lensing+Clustering 0.0045 0.0052 0.0012

Smoothing (arcmin) Ωm σ8 S8

1 0.0038 0.0045 0.0012
5 0.0045 0.0052 0.0012
15 0.0034 0.0044 0.0009

Survey (sky fraction) Ωm σ8 S8

DES Y6-like (12.5%) 0.0053 0.0072 0.0017
LSST Y1-like (44%) 0.0045 0.0053 0.0012
LSST Y10-like (44%) 0.0006 0.0004 0.0006

TABLE 4
Errors on cosmological parameters for different scenarios.

5. CONCLUSION

In this paper we investigate the impact of including
clustering measurements in analyses of Minkowski func-
tionals combined with power spectra on cosmological
constraints. Using simulated convergence and cluster-
ing maps, we measure the constraining power of the two
statistics for DES Y6-like, LSST Y1-like, and LSST Y10-
like surveys. While MFs have been previously proven to
be useful in convergence map analyses, here we explore
their application to photometric clustering maps for the
first time. We compare analyses of varying measurement
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Fig. 6.— ΛCDM constraints for power spectra (blue), MFs (green), and joint analysis (pink) measured from convergence + clustering
maps using LSST Y1-like redshift bins. Contours show 68% and 95% confidence levels. The left plot shows constraints on Ωm and σ8, and
the right plot shows constraints on Ωm and S8. Adding MFs to the 3x2pt analysis does not lead to significantly tighter constraints than
C` alone, implying MFs and clustering C` contain largely the same information.
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Fig. 7.— ΛCDM constraints for joint MF and C` statistics measured from convergence (green), clustering (blue), convergence and
clustering (shaded in pink) maps using LSST Y1-like redshift bins. Contours show 68% and 95% confidence levels. The left plot shows
constraints on Ωm and σ8, and the right plot shows constraints on Ωm and S8. As with standard 3x2pt analyses, adding clustering data
to convergence adds significant constraining power to an MF plus C` analysis.

statistics, survey data properties, statistical power, and
smoothing levels and present constraints on Ωm, σ8, and
the better constrained S8.

The MF measurements have the same S8 degeneracy
direction as power spectrum measurements, so we focus
on this parameter when inspecting the impact of analysis
type, map type, and smoothing amount, as it is generally
more robust to analysis choices. We find that MFs probe
similar cosmological information to clustering measure-
ments in a 3x2pt analysis, and therefore the improve-
ment on cosmological constraints for Ωm, σ8, and S8 is
limited, at least in our simplified lognormal map simula-

tion. An important limitation to our analysis, our use of
only the auto-correlation C`, strengthens this conclusion,
since the constraining power of the full 3x2pt analysis is
even stronger than that presented here. Other limita-
tions of our analysis, such as our omission of photo-z
and shear-related nuisance parameters, are unlikely to
change this conclusion, since they affect both MF and
C`.

If there is value in including MFs in a 3x2pt analysis,
it will perhaps become apparent only when we under-
stand and incorporate small scale effects (i.e. baryons,
intrinsic alignments, boost factors, mass reconstruction
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Fig. 8.— ΛCDM constraints for joint MF and C` statistics measured from LSST Y1-like redshift bins convergence and clustering maps
for different Gaussian smoothing levels: 1 arcmin (blue), 5 arcmin (green), and 15 arcmin (pink). Contours show 68% and 95% confidence
levels. The left plot shows constraints on Ωm and σ8, and the right plot shows constraints on Ωm and S8. There is not a statistically
significant difference in constraining power between the smoothing levels.

on small scales, nonlinear galaxy bias) (e.g. Osato et al.
2021) combined with noise. That is, MFs are expected
to have more potential on such nonlinear scales.

Similar to the standard 3x2pt case, in the C`+MF
analysis we find that the addition of clustering measure-
ments has a significant improvement on the constraints.
For the LSST Y1-like case, we find an improvement of
over 50% for all three cosmological parameters. There-
fore, we recommend future higher order statistics be mea-
sured from both convergence and clustering maps.

In this project we use curved sky lognormal maps at
Gaussian smoothing scales used by Petri et al. (2013) in
convergence mapping, but the analysis has the flexibility
to be measured from more sophisticated nonlinear, non-
Gaussian data in the future. Our conclusions are signifi-
cantly dependent on the specific form the non-Gaussian
field takes, and so that the realism of the lognormal form
of the field matters a great deal. On the intermediate
scales that we use, previous research has shown that log-
normal fields are a good approximation to real lensing
fields Clerkin et al. (2016), so the general conclusions
drawn here should be reasonable for clustering fields too.

An MF analysis that included all possible smoothing
scales simultaneously would incorporate all the infor-
mation available in a C` measurement Schmalzing and
Gorski 1998, see e.g.. While such an analysis is not pos-
sible in practice, using a small number of different MF
smoothing scales at the same is feasible and could im-
prove the power of MFs.

The maps we use require high computational power,
but since the primary constraining power of MFs will
come at small scales, using full sky maps may not have
been necessary for forecasts. We emphasise, however,
that real measurements must consider curved sky effects.

As such, we make simplifications to the maps for com-
putational efficiency. To usefully apply these statistics
to real data one must take into account observing condi-
tions, complex masking, baryon effects, and correlations
between redshift bins. This is already true for current
surveys like DES, HSC, and KiDS, but will be of height-
ened importance for upcoming efforts like Rubin, Euclid,
and Roman. Masks present a particular challenge for
many higher order statistics like MFs, since they increase
the complexity of derivatives and other calculations.

This investigation motivates the use of MFs combined
with C` in future analyses of convergence and clustering.
Other potential applications for MFs include measuring
them from shear maps, instead of convergence maps, or
on combinations of fields. For practical data analysis, it
is also critical to speed up or avoid the slow likelihood
calculations used here, such as by using a faster imple-
mentation, an emulator, fitting function, neural network,
or use likelihood-free inference. Building on the MF anal-
ysis in this work will improve and inform the statistical
model used to constrain cosmological parameters when
applied to future data.
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J. P. Dietrich, J. Harnois-Déraps, T. Erben, et al. KiDS-450:
cosmological constraints from weak-lensing peak statistics - II:
Inference from shear peaks using N-body simulations. MNRAS,
474(1):712–730, February 2018. doi:10.1093/mnras/stx2793.

K. R. Mecke, T. Buchert, and H. Wagner. Robust morphological
measures for large-scale structure in the universe. 1993.
doi:10.48550/ARXIV.ASTRO-PH/9312028.

H. Minkowski. Mathematische Annalen, volume Volumen und
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