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ABSTRACT
We examine the cosmological constraining power from two cross-correlation probes between galaxy and CMB surveys: the
cross-correlation of lens galaxy density with CMB lensing convergence 〈𝛿𝑔^CMB〉, and source galaxy weak lensing shear with
CMB lensing convergence 〈𝛾^CMB〉. These two cross-correlation probes provide an independent cross-check of other large-scale
structure constraints and are insensitive to galaxy-only or CMB-only systematic effects. In addition, when combined with other
large-scale structure probes, the cross-correlations can break degeneracies in cosmological and nuisance parameters, improving
both the precision and robustness of the analysis. In this work, we study how the constraining power of 〈𝛿𝑔^CMB〉 + 〈𝛾^CMB〉
changes from Stage-III (ongoing) to Stage-IV (future) surveys. Given the flexibility in selecting the lens galaxy sample, we also
explore systematically the impact on cosmological constraints when we vary the redshift range and magnitude limit of the lens
galaxies using mock galaxy catalogs. We find that in our setup, the contribution to cosmological constraints from 〈𝛿𝑔^CMB〉
and 〈𝛾^CMB〉 are comparable in the Stage-III datasets; but in Stage-IV surveys, the noise in 〈𝛿𝑔^CMB〉 becomes subdominant
to cosmic variance, preventing 〈𝛿𝑔^CMB〉 to further improve the constraints. This implies that to maximize the cosmological
constraints from future 〈𝛿𝑔^CMB〉 + 〈𝛾^CMB〉 analyses, we should focus more on the requirements on 〈𝛾^CMB〉 instead of
〈𝛿𝑔^CMB〉. Furthermore, the selection of the lens sample should be optimized in terms of our ability to characterize its redshift
or galaxy bias instead of its number density.

Key words: gravitational lensing: weak, large-scale structure of Universe, surveys.

1 INTRODUCTION

The cross correlation between pairs of cosmological tracers has be-
come a powerful tool to constrain cosmology and probe new physics
(Schaan et al., 2017; Schmittfull & Seljak, 2018; Mishra-Sharma
et al., 2018; Abbott et al., 2019; Yu et al., 2021; Krolewski et al.,
2021; Fang et al., 2021; Chen et al., 2021). As different tracers probe
the same underlying large-scale structure while being sensitive to
different cosmological and astrophysical/observational nuisance pa-
rameters, their cross-correlation can lead to more robust and precise
constraints. One prominent example used in recent cosmological
analyses is to combine the cross-correlation between galaxy posi-
tions 𝛿𝑔 and galaxy lensing shear 𝛾 (a.k.a. galaxy-galaxy lensing)
with the auto-correlation of galaxy positions (a.k.a. galaxy cluster-
ing) and galaxy lensing (a.k.a. cosmic shear). The techniques and
modeling associated with combining these three sets of correlation
functions, commonly referred to as the 3×2pt probes, have matured
significantly over the past 5 years with the application on state-of-

the-art “Stage-III1” galaxy surveys such as the Dark Energy Survey
(DES, Flaugher, 2005) in DES Collaboration et al. (2021), and the
Kilo-Degree Survey (KiDS, de Jong et al., 2013) in Heymans et al.
(2020). A natural extension to the 3×2pt analysis is to include CMB
lensing in the same framework – in particular, adding two-point
functions that include CMB lensing convergence, ^CMB, as a third
class of tracers. The combination of 3×2pt with the galaxy density-
CMB lensing and the galaxy shear-CMB lensing cross correlations is
sometimes referred to as the 5×2pt probes, and further adding CMB
lensing auto-correlation becomes the 6×2pt probes (e.g. Abbott
et al., 2019; Omori et al., 2022).

In this paper we are particularly interested in using galaxy-CMB
cross-correlations for cosmological analyses alone independent of

1 The Stage-III and Stage-IV classification was introduced in the Dark Energy
Task Force report (Albrecht et al., 2006), where Stage-III refers to the ongoing
dark energy experiments that started in the 2010s and Stage-IV refers to those
that start in the 2020s.
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2 Z. Zhang, C. Chang et al.

3×2pt (i.e. the two probes in 5×2pt that are not in 3×2pt). We
are interested in studying these two probes alone for two reasons.
First, unlike galaxy-galaxy lensing, the CMB dataset is completely
independent from the galaxy tracers in terms of the data acquisition
and processing, making it immune to systematic effects that could
simultaneously contaminate galaxy position and shear measurements
(e.g. depth variation over the footprint). This then provides a robust
cross check to the 3×2pt results. Second, CMB lensing is sensitive
to the matter distribution over a wide kernel that peaks around a
redshift of 2, while typical galaxy lensing surveys have a sensitivity
that peaks at redshift around 1. The cross-correlation thus allows us
to measure the large-scale structure at a somewhat higher redshift
regime. These two features are particularly interesting given the mild
tension seen between ongoing galaxy lensing and CMB analyses,
where the galaxy measurements systematically prefer a lower amount
of structure compared to the primary CMB constraints (Heymans
et al., 2020; DES Collaboration et al., 2021). Recent analysis in
Chang et al. (2022) illustrates how these two probes are already
provide interesting constraints on the amount of structure in the
Universe.

With the upcoming, much more powerful datasets from Stage-IV
galaxy and CMB experiments such as the Vera C. Rubin Observa-
tory’s Legacy Survey of Space and Time2 (LSST), the ESA’s Euclid
mission3, the Roman Space Telescope4, the Simons Observatory5

(SO), and CMB Stage-46 (CMB-S4), we expect these galaxy-CMB
lensing cross-correlation probes will become increasingly important
in helping us understand systematic effects associated with indi-
vidual datasets (e.g. uncertainties in photometric redshift and shear
estimation, foreground cleaning). A more in-depth study is there-
fore warranted for the cross-correlation probes on their own. Here,
we are interested in studying systematically the constraining power
of the galaxy-CMB lensing cross-correlations as we transition from
Stage-III to Stage-IV surveys – how we bridge our intuition from
ongoing datasets to forecasts of the next generation data. Needless to
say, our study of the two cross-correlation probes will naturally have
implications for 5×2pt and 6×2pt analyses.

We perform simulated likelihood analyses to produce forecasts
for Stage-III and Stage-IV experiments in the near and far future.
We have chosen DES and Planck to represent immediately available
Stage-III datasets and LSST and SO to represent future Stage-IV data
combinations. However, our analysis is fairly general and could be
used to guide any Stage-III or Stage-IV analyses. We begin with a
“baseline” setup of four data combinations (DES×Planck, DES×SO,
LSST Y1×SO, LSST Y10×SO). The baseline cases assume galaxy
samples that are the same as that used in 3×2pt analyses, which
we draw inspiration from existing DES data and the LSST DESC
Science Requirements Document (SRD, The LSST Dark Energy
Science Collaboration et al., 2018). Next, we check whether the
baseline setup is robust by trying to reproduce characteristics of
the sample using a set of mock galaxy catalogs from LSST Dark
Energy Science Collaboration (DESC), CosmoDC2 (Korytov et al.,
2019; Kovacs et al., 2022), with more realistic galaxy properties and
measurement uncertainties. Once we have verified the baseline case
with CosmoDC2, we then study how deviations from the baseline lens
galaxy samples affect the constraints – we explore variations in the

2 https://www.lsst.org
3 https://www.euclid-ec.org
4 https://roman.gsfc.nasa.gov
5 https://simonsobservatory.org/
6 https://cmb-s4.org/

limiting magnitude and maximum redshift range. We only consider
magnitude-limited lens samples here as it allows us to systematically
study a range of sample variations, and our results could easily be
generalized/extrapolated to other more specific samples (see e.g.
Tanoglidis et al., 2020). Note that throughout this study, we follow
the SRD specification for the source galaxy sample and do not explore
the same level of variations as with the lens sample. This is because
there is generally less freedom in defining the source sample – current
surveys tend to use every source galaxy for which a good shear
measurement can be obtained (e.g. passing certain signal-to-noise
and size cuts). In addition to using the LSST DESC simulations, this
work also utilizes and facilitates the development of other DESC
software including a likelihood code (Firecrown)7, a covariance
code (TJPCov)8, and a measurement pipeline (TXPipe)9.

Several previous studies have looked into forecasting the Stage-
IV galaxy-CMB lensing cross-correlation. Schaan et al. (2017) per-
formed a forecast for a 6×2pt analysis for the final LSST and CMB-S4
dataset, highlighting the power of using the cross-correlation probes
to self-calibrate nuisance parameters. Schmittfull & Seljak (2018)
focused on using CMB-S4 lensing and LSST galaxy clustering to
predict constraints on 𝜎8 (𝑧) and 𝑓NL. SDSS and DESI spectroscopic
galaxy samples were also used for comparison. Chen et al. (2021)
looked at constraints on 𝑓NL and the sum of neutrino mass combin-
ing all galaxy-CMB lensing two-point functions between LSST and
CMB-S4. Mishra-Sharma et al. (2018) explored the final LSST 3×2pt
combined with either Planck or CMB-S4 to predict constraints on
neutrino mass. Yu et al. (2021) combined CMB-S4 lensing, LSST
galaxy clustering and DESI BAO to predict constraints on the dark
energy equation of state and neutrino mass. Finally, Euclid Col-
laboration et al. (2021) performed similar forecasts for the Euclid
mission. The main difference of our work is that we focus on the
two cross-correlation probes on their own (galaxy density×CMB
lensing and galaxy shear×CMB lensing) and attempt to ground the
forecasting work as much as possible to the Stage-III analysis that is
currently underway (DES Collaboration. et al., 2021). We incorpo-
rate many analysis choices based on Stage-III analyses, and study the
increment change between the end of Stage-III to the beginning of
Stage-IV to understand what factors contribute to qualitative changes
in the Stage-IV forecasts compared to Stage-III. Recent work from
Fang et al. (2021) explores similar questions, but focuses more on
the power of using the same source and lens sample in a full 6×2pt
analysis.

The outline of the paper is as follows. In Section 2 we describe the
formalism used to model the galaxy-CMB lensing cross-correlation,
for both the cosmological signal and the systematic effects, which is
used for both the simulated data vector and analytic covariance. In
Section 3 we describe the procedure we take to model the different
datasets both for galaxy and CMB surveys, including models of the
nuisance parameters extracted from mock galaxy catalogs. These data
characteristics will be relevant for constructing the analytic covari-
ance matrix. In Section 4 we describe several important components
in our analysis including the covariance matrix, the cosmological
inference software and the figure of merit we use to quantify the con-
straining power of each data combination. In Section 5 we present
our results of the projection for the cosmological constraints of the
galaxy-CMB lensing cross-correlation probes going from Stage-III to
Stage-IV datasets, first with the baseline galaxy samples in the LSST

7 https://github.com/LSSTDESC/firecrown
8 https://github.com/LSSTDESC/TJPCov
9 https://github.com/LSSTDESC/TXPipe
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DESC SRD, then with variations over the baseline. We summarize
our results in Section 6.

2 MODELING

In this section, we discuss relevant theoretical models for the
cross correlations, noise in the CMB lensing map, and astrophys-
ical/observational systematic effects. This section also lays the foun-
dation for generating analytic covariance in Section 4.1.

2.1 Galaxy-CMB lensing cross-correlation

In this work we focus on two cross-correlation probes between three
cosmic fields: galaxy density (𝛿𝑔), galaxy weak lensing shear (𝛾) and
CMB lensing convergence (^CMB). The two cross-correlations are:
galaxy density × CMB lensing convergence 〈𝛿𝑔^CMB〉 and galaxy
weak lensing shear × CMB lensing convergence 〈𝛾^CMB〉. In this
work we will model the observable in configuration space similar to
Baxter et al. (2019). Following standard convention, we will refer to
the galaxy density tracers as the lens galaxies and the galaxies used
to measure the weak lensing signal as the source galaxies.

To derive predictions for the cross-correlation function, we start
by writing down the cross power spectra in harmonic space for a
multipole ℓ. Using the Limber approximation, we have

𝐶𝛿𝑖𝑔^𝐶𝑀𝐵
(ℓ) =

∫
𝑑𝜒

𝑞𝑖
𝛿𝑔

(𝜒) 𝑞^CMB (𝜒)

𝜒2 𝑃NL

(
ℓ + 1/2

𝜒
, 𝑧(𝜒)

)
,

(1)
and

𝐶𝛾𝑖 ^𝐶𝑀𝐵
(ℓ) =

∫
𝑑𝜒

𝑞𝑖𝛾 (𝜒)𝑞^CMB (𝜒)
𝜒2 𝑃NL

(
ℓ + 1/2

𝜒
, 𝑧(𝜒)

)
, (2)

where 𝑖 labels the redshift bin (of either the lens or source galaxies),
𝜒 is the comoving distance along the line-of-sight and 𝑃NL (𝑘, 𝑧)
is the nonlinear matter power spectrum. We compute the nonlinear
power spectrum using the Boltzmann code CAMB10 (Lewis et al.,
2000; Howlett et al., 2012) with the Halofit extension to nonlinear
scales (Smith et al., 2003; Takahashi et al., 2012) and the Bird et al.
(2012) neutrino extension. For each of the tracers (𝛿𝑔, 𝛾 and ^CMB),
there is an associated weight (or “kernel”) 𝑞(𝜒) that encodes the sen-
sitivity of the tracer to structure along the line-of-sight. For sources
at comoving distance 𝜒, this weight is most sensitive approximately
halfway between the observer and the source, and is given by

𝑞𝑖𝛾 (𝜒) =
3Ω𝑚𝐻2

0
2𝑐2

𝜒

𝑎(𝜒)

∫ ∞

𝜒
𝑑𝜒′𝑛𝑖𝑠 (𝑧(𝜒′))

𝑑𝑧

𝑑𝜒′
𝜒′ − 𝜒

𝜒′
, (3)

where 𝑛𝑠 (𝑧) the normalized number density of the source galax-
ies as a function of redshift, 𝐻0 and Ω𝑚 are the Hubble constant
and matter density parameters, respectively. 𝑎(𝜒) is the scale factor
corresponding to comoving distance 𝜒. The CMB lensing weight is

𝑞^CMB (𝜒) =
3Ωm𝐻2

0
2𝑐2

𝜒

𝑎(𝜒)
𝜒∗ − 𝜒

𝜒∗
, (4)

where 𝜒∗ denotes the comoving distance to the surface of last scatter.
For galaxy density, the weight is

𝑞𝑖𝛿𝑔
(𝜒) = 𝑏𝑖𝑔 (𝜒)𝑛𝑖𝑔 (𝑧(𝜒))

𝑑𝑧

𝑑𝜒
, (5)

10 See camb.info.

where 𝑛𝑖𝑔 (𝑧) is the normalized number density of the lens galaxies in
the 𝑖th bin as a function of redshift. We will further simplify the bias
modeling such that the bias for each galaxy redshift bin is assumed
to be a constant, 𝑏𝑖𝑔. In reality, the linear bias model is known to
break down at small scales (Zehavi et al., 2005; Blanton et al., 2006;
Cresswell & Percival, 2009). Following previous work from Baxter
et al. (2019), we choose a set of scale cuts that mitigate the bias
caused by the poor assumption of linear bias on small scales (see
Section 4.1). We note that we have ignored lensing magnification in
our model, though if we follow the approach taken in e.g. Omori et al.
(2022), we do not expect it to change the cosmological constraints
significantly since there is no additional free parameters involved.

Since CMB experiments have finite-size beams, when generating
the ^CMB map this beam is deconvolved, exponentially increasing
noise at small scales. A small amount of smoothing is applied to the
map to suppress numerical instabilities in the covariance due to this
noise. We use a Gaussian smoothing with full width at half maximum
of \FWHM. In harmonic space, this corresponds to multiplication of
the maps by

𝐵(ℓ) = exp(−ℓ(ℓ + 1)/ℓ2
smooth), (6)

where ℓsmooth ≡
√

16 ln 2/\FWHM. Additionally, we filter out modes
in the ^CMB map with ℓ < ℓmin and ℓ > ℓmax, where the lower bound
is to avoid the potential contamination coming from the mean-field
calibration in the CMB lensing map and the upper limit is imposed
to remove potential biases due to foregrounds in the ^CMB map.

Converting the above expressions to configuration-space corre-
lation functions under the flat-sky approximation via a Legendre
transform yields

〈𝛾^CMB〉 =

∫
𝑑ℓ ℓ

2𝜋
𝐹 (ℓ)𝐽2 (ℓ\)𝐶𝛾^CMB (ℓ), (7)

〈𝛿𝑔^CMB〉 =

∫
𝑑ℓ ℓ

2𝜋
𝐹 (ℓ)𝐽0 (ℓ\)𝐶𝛿𝑔^CMB (ℓ), (8)

where 𝐽0/𝐽2 is the zeroth/second order Bessel function of the first
kind. The appearance of 𝐽2 in Eq. 7 is a consequence of our decision
to measure the correlation of ^CMB with tangential shear (similar to
Baxter et al., 2019). The function 𝐹 (ℓ) = 𝐵(ℓ)Θ(ℓ−ℓmin)Θ(ℓmax−ℓ),
where Θ(ℓ) is a step function, describes the filtering that is applied
to the ^CMB map.

2.2 Nuisance parameters

Our model includes the following nuisance parameters:

• Galaxy bias: As discussed above, we use a linear galaxy bias
that is assumed to be constant in a given lens redshift bin 𝑖 and across
angular scales. Or

𝑏𝑖𝑔 (𝜒, \) = 𝑏𝑖 . (9)

• Uncertainty in redshift distribution estimation: Following
a parametrization commonly used in galaxy surveys (e.g. Krause
et al., 2021), we assume the uncertainty in the redshift distribution
estimation can be modeled via a shift in the mean. Or

𝑛𝑖 (𝑧) → 𝑛𝑖 (𝑧 + Δ𝑖
𝑧), (10)

where 𝑖 represents the redshift bin. Note that the same model is used
for both the source and the lens samples but with different priors
depending on the sample.

• Uncertainty in shear estimation: Following a parametrization
commonly used in galaxy surveys (e.g. Krause et al., 2017), we
assume the uncertainty in the shear estimation can be modeled via a

MNRAS 000, 000–000 (0000)
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multiplicative factor that is constant in each source redshift bin 𝑖 and
scale-independent. Or

𝐶𝛾𝑖 ^CMB (ℓ) → (1 + 𝑚𝑖)𝐶𝛾𝑖 ^CMB (ℓ),

• Intrinsic alignment: Intrinsic alignment (IA) refers to the fact
that even in the absence of lensing, galaxies could have preferred
orientations depending on their environment and formation history
(see e.g. Blazek et al., 2019). We adopt a two-parameter Nonlinear
Linear Alignment model (NLA, Bridle & King, 2007) for IA, which
effectively carries out the following replacement.

𝑞𝛾i (𝜒) → 𝑞𝛾𝑖 (𝜒) − 𝐴(𝑧(𝜒))
𝑛𝑖s (𝑧(𝜒))

�̄�𝑖s

𝑑𝑧

𝑑𝜒
, (11)

where

𝐴(𝑧) = 𝐴0

(
1 + 𝑧

1 + 𝑧0

) [IA 0.0139Ωm
𝐺 (𝑧) , (12)

and where 𝐺 (𝑧) is the linear growth factor and 𝑧0 is the redshift pivot
point which is usually set to the mean redshift of the source sample.
Here we set it to 0.62 throughout, which is close to the mean redshift
for DES sources, though we check that our results do not change
when setting it to the actual mean redshift for each sample. The two
free parameters in this model are 𝐴0 and [IA.

3 MODELING THE DATASET

The goal of this study is to systematically explore how the cosmo-
logical constraints change for galaxy-CMB lensing cross-correlation
when different galaxy samples are used. We will focus on dataset
combinations that will become available in the near and far future.
In particular, on the galaxy survey side we explore three cases: the
final six-year dataset expected from the Dark Energy Survey (DES),
the first year data from the Rubin Observatory’s Legacy Survey of
Space and Time (LSST), and the final ten-year LSST data. On the
CMB side, we explore two cases: the legacy Planck dataset and the
final dataset expected from the Simon Observatory (SO). For con-
creteness, we will discuss four data combinations:

(i) DES × Planck: This scenario represents an analysis that could
be carried out in the near future with upcoming DES releases and
existing CMB data.

(ii) DES × SO: This scenario represents what could be achieved
as the new CMB datasets become available. Comparing with the
previous case also gives us information of what improving only the
CMB datasets will add.

(iii) LSST Y1×SO: This scenario represents what could be ex-
pected when LSST Y1 data is available. Comparing with the previ-
ous case also gives us information of what improving only the galaxy
datasets will add.

(iv) LSST Y10×SO: This final scenario represents the ultimate
galaxy-CMB lensing dataset we will be able to analyze in the coming
decade.

We note that these cases were chosen to best illustrate how the differ-
ent galaxy samples interact with the cosmological constraints. Not
all of them are particularly realistic in terms of time scale. For exam-
ple, SO data may not be available for the second and third scenarios,
but fixing the CMB dataset and varying the galaxy sample in the
last three cases allow us to more clearly understand the improvement
coming from the galaxy sample.

In practice, the different CMB datasets are modeled through dif-
ferent noise power spectra and filtering functions. On the other hand,

the different galaxy datasets, as well as the different galaxy samples
within the same dataset, correspond to different redshift distributions,
redshift errors, galaxy bias, shape noise and galaxy number density.
These data characteristics from both the CMB and galaxy datasets
are fed into both the data vectors and the covariance matrix. In what
follows, we briefly describe how we model the different datasets as
a whole for the CMB lensing maps (Section 3.1) and for the galaxy
samples (Section 3.2). Next we discuss in more detail how we use
mock galaxy catalogs to extract models for nuisance parameters and
𝑛(𝑧) for different galaxy samples (Section 3.3).

3.1 CMB lensing maps

We consider the Planck CMB lensing map described in Planck Col-
laboration et al. (2020) to represent the “current” wide-field CMB
lensing map that overlaps fully with DES and is therefore ideal for
cross-correlation studies. This map uses both temperature and po-
larization data from Planck and covers about 70% of the sky. The
noise power spectrum associated with the lensing map 11 is shown
in Figure 1. To model the CMB lensing signal and associated covari-
ance, we assume the map to be filtered similar to that done in Omori
et al. (2022), which involves ℓmin = 8, ℓmax = 3800 and a Gaussian
smoothing of FWHM=8 arcmin.

The Simons Observatory (SO) is a new CMB experiment being
built on Cerro Toco in Chile, due to begin observations by 2023.
SO will measure the temperature and polarization anisotropy of the
CMB in six frequency bands (27, 39, 93, 145, 225 and 280 GHz). The
survey will map ∼40% of the sky, overlapping with the majority of
the LSST footprint. For our forecast, we use their baseline projected
lensing noise power spectrum12. For modeling, we assume ℓmin = 30
and ℓmax = 3000 filtering following Ade et al. (2019)13. In addition,
the maps are smoothed by a Gaussian filter of FWHM=1 arcmin
(approximate size of the SO beam). The noise power spectra are
shown in Figure 1, labeled “SO”. For comparison, we also show two
other noise curves: a more optimistic scenario for SO labelled “SO-
goal” and one for CMB-S4. The results from this paper could easily
be extrapolated to these more lower noise datasets.

3.2 Galaxy samples

For galaxy samples, we specify the source and lens samples sepa-
rately. For both samples, we model the underlying redshift distribu-
tion via a parametrized model

𝑑𝑁

𝑑𝑧
∝ 𝑧2 exp[−(𝑧/𝑧0)𝛼], (13)

where the parameters (𝑧0, 𝛼), whose values can be found in Table 1,
are taken from the LSST DESC SRD and were derived from fitting
to the LSST mock galaxy catalog CatSim14 and checked with the
Deep2 spectroscopic survey (Newman et al., 2013). To form the to-
mographic bins, we apply top-hat window functions to the analytical
redshift distribution, then convolve with a Gaussian filter with width
𝜎𝑧 (referred to as the redshift error hereafter). We note that this

11 MV/nlkk.dat in COM_Lensing_4096_R3.00.tgz, taken from https:
//pla.esac.esa.int/#home
12 Taken from https://github.com/sriniraghunathan/ilc/blob/
master/results/lensing_noise_curves/sobaseline_lmin100_
lmax5000_lmaxtt3000.npy
13 We have checked that our results are not very sensitive to the exact choice
of ℓmin and ℓmax.
14 https://www.lsst.org/scientists/simulations/catsim
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Figure 1. Noise power spectrum for the CMB lensing maps used in this work.
The dashed vertical lines indicate the ℓmin and ℓmax cut applied to the CMB
convergence maps. This work uses Planck and SO. SO-goal and S4 curves
are used to illustrate more optimistic estimates.

is an approximate treatment that mimics the effect of tomographic
bins with photometric redshift. We explore more realistic redshift
distributions in the next section.

The lens sample is characterized by a given magnitude selection
and associated number density (𝑛𝑙) and galaxy bias (𝑏gal). We then
use one parameter to capture the uncertainty in the mean redshift
(𝜎𝑧𝑏 ). The source sample is characterized by its number density (𝑛𝑠)
and shape noise (𝜎𝑒). Shape noise refers to the intrinsic galaxy shapes
that do not contain cosmological signal. In weak lensing, the observed
galaxy shape is a combination of cosmological shear 𝛾 and shape
noise. Here the shape noise is characterized by the standard deviation
of the single-component ellipticity distribution 𝜎𝑒. We then use one
parameter to capture the uncertainty in the mean redshift (𝜎𝑧𝑏 ) and
the uncertainty in the shear calibration (𝜎m).

We describe below our approach to model these samples for the
baseline galaxy datasets.

3.2.1 DES

DES (The Dark Energy Survey Collaboration, 2005) covers 5,000
deg2 with five optical filter bands (𝑔𝑟𝑖𝑧𝑌 ). The imaging data is taken
with the 570-million pixel Dark Energy Camera (DECam; Flaugher
et al., 2015) at the 4m Blanco telescope at the Cerro Tololo Inter-
American Observatory, with a field of view of ∼ 2deg2. Data collec-
tion for the survey started in Fall of 2014 and ended early 2019. The
final dataset reaches a depth of 𝑖 ∼ 23.7 across the footprint.

Our model for the baseline DES galaxy sample and modeling
choices are largely informed by the existing DES Y3 analysis of
cross-correlation with the CMB lensing map from Planck and the
South Pole Telescope (SPT) (DES Collaboration. et al., 2021), but we
extrapolate to the final (six-year, or Y6) dataset whenever appropriate.
The full DES (Y6) dataset will nearly double the total exposure time
of the DES Y3 data and is expected to be slightly shallower than
LSST Y1, and with a factor of 3-4 smaller sky area. We assume 5
lens galaxy bins with number density similar to the sample developed
in Porredon et al. (2021). This sample uses a redshift-dependent
magnitude cut (𝑖 < 4𝑧mean + 18, where 𝑧mean is the mean redshift
in that bin), which was designed to select bright galaxies of roughly
the same number density across the redshift bins. This yields a total
lens galaxy number density about 1/arcmin2. The values for galaxy
bias, redshift error and bias in mean redshift used in this work are

chosen to be roughly similar to that used in the DES Y3 data. Here
we have assumed that the final DES analysis adopts the same lens
sample as DES Y3, though see Section 5.3 for an alternative choice.
For the source galaxy sample, we again mimic the sample in DES,
assuming 4 tomographic bins between 𝑧 = 0.2 and 1.3, with a shape
noise of 0.26 and number density ∼ 50% more compared to the DES
Y3 shear catalog (Gatti et al., 2020). The uncertainty in the shear
calibration is also informed by DES Y3 studies (MacCrann et al.,
2020). Due to the similar survey depth of DES and LSST Y1, we
assume the same underlying lens and source redshift distributions for
both, which we use the parametric form described in the next section
describing LSST.

We list in Table 1 the basic characteristics of the DES galaxy
samples we assume for our analysis. The redshift distributions for
the fiducial lens sample are shown in Figure 2. We note that unlike
the LSST data characteristics described in the next section, which
are projections, the DES numbers are informed by a mix of data that
was already taken, as well as conservative extrapolations.

3.2.2 LSST

LSST (Abell et al., 2009) is a Stage-IV optical ground-based galaxy
survey that is scheduled to begin commissioning late 2021 and start
its 10-year science survey in 2023. The survey will use six filter bands
(𝑢𝑔𝑟𝑖𝑧𝑌 ) to survey ∼ 18, 000 deg2 in the Southern hemisphere to a
depth of 𝑖 ∼ 26.8.

Our fiducial models of the LSST Y1 and Y10 data rely heavily on
the LSST DESC SRD. The SRD specifies the data to be delivered
and requirements to be met by DESC analyses, which include a
description of the galaxy samples used for DESC’s flagship 3×2pt
analysis. In particular, we use the “Gold” sample in the SRD to serve
as our fiducial sample for LSST and explore variations from the Gold
sample. In the SRD, the footprints for LSST Y1 and Y10 are 12,300
deg2 and 14,300 deg2 respectively. These areas exclude the region of
the LSST that is close to the Galactic plane and has high extinction.
For the lens sample, LSST Y1 specifies 5 tomographic bins between
𝑧 = 0.2 and 1.2, while LSST Y10 increases the number of bins to
10 with the same overall range. The lens selection adopts a simple
magnitude cut of 𝑖 < 24.1 (LSST Y1) and 𝑖 < 25.3 (LSST Y10),
reflecting the increased depth of the dataset. This yields a total galaxy
number density of 13.6/arcmin2 and 35.7/arcmin2 – we note that this
is significantly higher than the DES selection. The galaxy bias and
redshift error values are taken from SRD. For the source sample,
we use 5 tomographic bins with equal number of galaxies in each
bin. The shape noise and redshift error values are taken from SRD.
The uncertainty in the mean redshift for both the lens and source
galaxies, as well as the uncertainty in the shear calibration are set
to the requirements in SRD as opposed to an estimate. That is, the
value needed so that the dark energy constraints are not systematics-
limited. The main rationale is that we expect significant methodology
development in the area of redshift and shear calibration leading up
to LSST and it is challenging to forecast these values from first
principle.

We list in Table 1 the basic characteristics of the galaxy samples
we assume for our analysis. The redshift distributions for the fiducial
lens samples are shown in Figure 2. A few observations can be made:
First, as we already hinted, the lens galaxy sample is significantly
larger in LSST compared to DES. This is partially due to the fairly
optimistic selection used in the LSST DESC SRD – it is not entirely
clear from e.g. Porredon et al. (2021) that one would be able to
properly characterize the redshift distribution for a sample as faint as
𝑖 < 25.3. Second, the uncertainties on the mean of the photometric
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Figure 2. Lens (upper panels) and source (lower panels) sample redshift distributions for each tomographic bin in the baseline setup for DES (left), LSST Y1
(middle) and LSST Y10 (right). The y-axis shows the number density (arcmin−2) in a Δ𝑧 = 1 interval.

DES LSST Y1 LSST Y10
(5,000 deg2) (12,300 deg2) (14,300 deg2)

Lens sample
Redshift binning 0.2 < 𝑧 < 1.2 0.2 < 𝑧 < 1.2 0.2 < 𝑧 < 1.2

5 bins (Δ𝑧 = 0.2) 5 bins (Δ𝑧 = 0.2) 10 bins (Δ𝑧 = 0.1)
Limiting magnitude 𝑚lim 4𝑧mean + 18 24.1 25.3

Redshift distribution (𝑧0, 𝛼) (0.26, 0.94) (0.26, 0.94) (0.24,0.90)
Number density normalization �̂�𝑙 1.3/arcmin2 18/arcmin2 48/arcmin2

Number density 𝑛𝑙 1/arcmin2 13.6/arcmin2 35.7/arcmin2

Redshift error 𝜎𝑧 0.06(1 + 𝑧) 0.03(1 + 𝑧) 0.03(1 + 𝑧)
Uncertainty in mean redshift 𝜎𝑧𝑏

0.03(1 + 𝑧) 0.005(1 + 𝑧)∗ 0.003(1 + 𝑧)∗
Galaxy bias 𝑏gal 1.3/𝐺 (𝑧) 1.05/𝐺 (𝑧) 0.95/𝐺 (𝑧)

Minimum scale cut 10 arcmin 10 arcmin 10 arcmin
Source sample

Redshift binning 4 bins; 0.2 < 𝑧 < 1.3 5 bins 5 bins
equal galaxy number equal galaxy number equal galaxy number

Redshift distribution (𝑧0, 𝛼) (0.13, 0.78) (0.13, 0.78) (0.11, 0.68)
Number density 𝑛𝑠 9/arcmin2 10/arcmin2 27/arcmin2

Shape noise 𝜎𝑒 0.26 0.26 0.26
Redshift error 𝜎𝑧 0.1(1 + 𝑧) 0.05(1 + 𝑧) 0.05(1 + 𝑧)

Uncertainty in mean redshift 𝜎𝑧𝑏
0.01(1 + 𝑧) 0.002(1 + 𝑧)∗ 0.001(1 + 𝑧)∗

Uncertainty in shear calibration 𝜎m 0.01 0.013∗ 0.003∗
Minimum scale cut 5 arcmin 5 arcmin 5 arcmin

Table 1. DES, LSST Y1 and Y10 source and lens sample specifications in our baseline setup. These are based on a combination of existing DES Y3 data plus
extrapolations for DES Y6, and the LSST DESC SRD. The items with a superscript ∗ indicates these are SRD requirements. The magnitude selection is applied
on the 𝑖 band magnitude, or 𝑖 < 𝑚lim. The redshift distributions follow a parametrized model in Equation 13. For the lenses, we list both the number density
normalization �̂�𝑙 , which is the total number density if one were to integrate over the full redshift distribution ignoring the tomographic bins, and the actual
number density 𝑛𝑙 – the former is what is listed in the LSST SRD.

redshift 𝜎𝑧𝑏 changes by a factor of 5-6 (10) from DES to LSST
Y1 (Y10). These improvements could be considered fairly optimistic
especially for LSST Y1, and as we will discuss later, contributes
to some of the main findings of this work. Finally, for the source
galaxy sample, the assumption that there is no upper bound in the
redshift bins yields a very high redshift tail in the LSST sources that

is not entirely realistic – characterizing the last redshift bin could be
extremely challenging given the lack of any calibration data (either
spectroscopic samples or luminous red galaxies with well-known
redshifts), and it is especially unlikely that we will reach the level of
uncertainty requirements in Table 1 for these high-redshift sources.

MNRAS 000, 000–000 (0000)
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3.3 Modeling variant samples with CosmoDC2

In addition to the fiducial samples, we explore variations on the lens
samples in their limiting magnitude and redshift range – these two
are the primary characteristics that define the lens samples. We select
the variant samples in the following way:

• Limiting magnitude: for each dataset, we start with their re-
spective baseline limiting magnitude selection in Table 1, then we
increase and decrease the limiting magnitude by 0.5 and 1.

• Redshift range: for each dataset, we start with the baseline
binning scheme and add or remove bins so the maximum redshift
range increases or decreases by 0.2 and 0.4 (that is, for DES and LSST
Y1, we add/remove 1 or 2 bins, and for LSST Y10, we add/remove 2
or 4 bins).

To estimate the sample characteristics of the variant lens samples,
we appeal to mock galaxy catalogs. In particular, we use the LSST
DESC CosmoDC2 catalogs (Korytov et al., 2019; Kovacs et al., 2022).
CosmoDC2 is a mock galaxy catalog based on the Outers Rim N-body
simulation (Heitmann et al., 2019). It covers ∼ 400 deg2 area to the
redshift and depth much beyond that expected for LSST. Each galaxy
is assigned observable quantities from photometry to morphology
based on a number of semi-analytical models. The galaxies also
carry cosmological information from both their position on the sky
and ray-traced weak lensing properties. These observable quantities
allow us to generate well-defined samples similar to what is done
in observational data, while knowing exactly what the expected cos-
mological signal is. To derive the galaxy bias in Section 3.3.3 we
generate an octant-sized CMB lensing convergence map from the
Outer Rim particle lightcones. This makes use of the density shells
detailed in Korytov et al. (2019), alongside a Gaussian random field
at 𝑧 > 3, applying Wigner filtering using the Lenspix code of Lewis
(2011), and summing the contribution of the lens planes under the
Born approximation.

With CosmoDC2 we are then able to carry out different selections
on the lens sample and build models for how the redshift distribution,
galaxy number density, galaxy bias, redshift error, and uncertainty
on the mean redshift change. Below we describe our approach for
extracting the different model components from CosmoDC2. We note
that this work primarily focuses on the lens sample selection, thus we
will fix the source sample to be the same as the baseline case listed
in Table 1.

3.3.1 Redshift distribution

The redshift distribution of the lens galaxies (𝑛𝑔 (𝑧) in Equation 5)
is the true redshift distribution of galaxies in a given tomographic
bin. Operationally, the bins are often selected via noisy quantities
such as single-point photo-𝑧 estimates, and the 𝑛(𝑧) estimation is a
complicated multi-step procedure in ongoing galaxy survey analyses
(Myles et al., 2020; Cawthon et al., 2020). Here we assume the
estimation is perfect modulo an error in the mean of the 𝑛(𝑧), which
we will discuss in Section 3.3.4. The shape of the 𝑛(𝑧)’s extracted
from CosmoDC2 is more realistic than the baseline model since it
incorporates photometric errors. After applying any magnitude cuts,
we divide the lens galaxies into tomographic bins based on their
single-point photo-𝑧 estimate (photoz_mean in CosmoDC2), and then
use the distribution for the true redshift as 𝑛(𝑧). In the left panel of
Figure 3, we show an example of the lens 𝑛(𝑧) distributions from
CosmoDC2 in the LSST Y1 case compared to the analytic form in
the LSST DESC SRD. We note that when extracting the 𝑛(𝑧) from
the catalogs, we do not need the redshift error (𝜎𝑧) parameter in

Table 1 since the 𝑛(𝑧) derived above already includes the redshift
error captured by 𝜎𝑧 . In the right panel of Figure 3 we show an
example (using the 3rd bin in the left panel) of how 𝑛(𝑧) changes
when we vary the magnitude limit of the sample. As expected, with a
fainter magnitude limit, we have more galaxies in the sample, and the
shape of the 𝑛(𝑧) also changes, such that the tails of the distribution
extend to higher and lower redshifts.

3.3.2 Galaxy number density

The number densities of galaxies in each tomographic bin is primarily
used in the computation of the covariance matrix (see Section 4.1).
We can estimate it directly from CosmoDC2 by counting the number
of galaxies after applying the redshift and magnitude cuts described
in Table 1. We note that similar to Section 3.3.1, the redshift selection
is done on the single-point photo-𝑧 estimate photoz_mean instead
of true redshift.

3.3.3 Galaxy bias

The different lens galaxy samples will have different galaxy biases,
which is needed in our modeling of the data vector and the covari-
ance. We extract these galaxy bias values from direct measurements
on the CosmoDC2 catalog. For a given tomographic bin of a given
dataset, we measure the cross-correlation of the galaxy density and
the noiseless CMB lensing map in CosmoDC2, as well as its jackknife
covariance matrix using the software package treecorr15. Holding
all other cosmological parameters at the input values of theCosmoDC2
simulation, we fit for a linear galaxy bias at scales > 5Mpc/ℎ.

One caveat in the bias measurement from CosmoDC2 is that, due
to the simulation’s resolution limit, the galaxies with halo mass <

1011𝑀� were added to the catalogs without an association with dark
matter halos. These galaxies therefore are distributed randomly and
will have a galaxy bias of zero. They can be identified with halo_id<
0 and should be removed from the sample to obtain a correct bias. We
show in Appendix A, Figure A1 the fraction of galaxies ranging from
31% to 15% that are not correlated with dark matter in the LSST Y1
baseline case – we remove these galaxies when measuring the galaxy
bias. This effectively means we overestimate the galaxy bias slightly
especially in the low redshift bins. As we discuss in Appendix A, the
effect of this error on the resulting cosmological constraints is small.

The direct measurement of galaxy bias from CosmoDC2 is rather
noisy given the small area coverage. Thus, we follow the LSST
DESC SRD convention and assume that the linear galaxy bias takes
the form:

𝑏gal (𝑧) =
𝑏gal,0
𝐺 (𝑧) , (14)

where 𝑏gal,0 is a coefficient depending on the magnitude limit. For
each variant sample, we measure the galaxy density-CMB lensing
cross correlation for different redshift bins fit for 𝑏gal,0. Table 2 lists
the fitted 𝑏gal,0 values for each of the variant magnitude limit. For
the fiducial magnitude cut, the measured bias is fairly close to the
values given by LSST DESC SRD.

3.3.4 Uncertainty in mean redshift

It is not straightforward to estimate uncertainties in the mean redshift
in CosmoDC2 since the values depend on various external factors such

15 https://github.com/rmjarvis/TreeCorr
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Figure 3. Left panel: For LSST Y1, comparison between analytic 𝑛(𝑧) given
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baseline lens samples. Right panel: For the third bin in the left panel, how the
𝑛(𝑧) changes when we vary the limiting magnitude. The y-axis shows the
number density (arcmin−2) in a Δ𝑧 = 1 interval.

Δ𝑚lim −1.0 −0.5 0.0 +0.5 +1.0
DES
𝑏gal,0 – 1.16 1.16 1.09 1.04
Δ0 – 0.0297 0.03 0.0304 0.0303

LSST Y1
𝑏gal,0 1.07 1.02 1.01 0.95 0.91
Δ0 0.00464 0.00473 0.005 0.00516 0.00570

LSST Y10
𝑏gal,0 1.03 1.00 0.94 0.91 0.83
Δ0 0.00251 0.00260 0.003 0.00375 0.00456

Table 2. The coefficients for galaxy bias and uncertainty in mean redshift for
the variant DES, LSST Y1, and LSST Y10 lens samples when the limiting
magnitude changes by Δ𝑚lim. The approach for deriving these values is
described in Section 3.3.3, and Section 3.3.4. For the DES sample at Δ𝑚lim =

−1.0, the number of galaxies is too low in CosmoDC2 to reliably derive these
parameters.

as the number of spectra used for redshift calibration, the underlying
selection bias in the spectroscopic data, etc. As a result, we will make
the assumption that the uncertainty in mean redshift is proportional
to (1 + 𝑧), the same as the fiducial model in Table 2 assumes:

𝜎𝑧𝑏 = 𝜎𝑧𝑏,0 (1 + 𝑧), (15)

and converges to the values in Table 1 when applying the fiducial
selection. We use CosmoDC2 only to learn how 𝜎𝑧𝑏,0 scales with
different magnitude cuts.

To do this, for a given magnitude selection, we plot the distribution
of the difference between the point-estimate photo-𝑧 (photoz_mean)
and the true redshift in each tomographic bin. Assuming the distribu-
tion is Gaussian, we fit for its standard deviation Δ = 𝜎(𝑧𝑝 − 𝑧true).
We then fit the Δ values for the tomographic bins by a functional
form

Δ = Δ0 (1 + 𝑧mean), (16)

where 𝑧mean is the mean true redshift of each bin. Finally, the un-
certainty in mean redshift, 𝜎𝑧𝑏 , of this magnitude selection will be
defined by multiplying 𝜎𝑧𝑏 of the fiducial sample by the ratio of Δ0
of this sample and the fiducial sample. Or

𝜎𝑧𝑏 = 𝜎fid
𝑧,𝑏

Δ0

Δfid
0

, (17)

where 𝜎fid
𝑧𝑏

denotes the fiducial 𝜎𝑧𝑏 values listed in Table 1, Δ0

stands for the measured standard deviation between true-𝑧 and photo-
𝑧 (Equation 16), and Δfid

0 is Δ0 for the fiducial limiting magnitude.
This model, albeit simple, roughly captures the trend where fainter
galaxies are harder to calibrate and therefore have higher𝜎𝑧,𝑏 values.
Table 2 lists the Δ0 values for each of the variant magnitude limit.

4 ANALYSIS

Our primary analysis relies on a simulated likelihood analysis to
project the cosmological constraints when different galaxy lens sam-
ples are used. We describe below how results in previous sections
are combined to obtain the key ingredients for the forecast: the co-
variance matrix and scale cuts (Section 4.1) and the inference code
(Section 4.2). We also define in Section 4.2 the Figure of Merit
that we will be using in the next section to quantify the change in
cosmological constraints when different galaxy samples are used.

4.1 Covariance matrix and scale cuts

We use a simple Gaussian covariance matrix C for this work (Schnei-
der et al., 2002; Crocce et al., 2011) and have fixed the covariance at
the fiducial cosmology.

C[𝐶𝑖 𝑗

𝑋
(ℓ), 𝐶𝑖′ 𝑗′

𝑋 ′ (ℓ′))] = 𝛿ℓℓ′
𝐷𝑖𝑖′
𝑋
(ℓ)𝐷 𝑗 𝑗′

𝑋
(ℓ) + 𝐷

𝑖 𝑗′

𝑋
(ℓ)𝐷 𝑗𝑖′

𝑋
(ℓ)

(2ℓ + 1) 𝑓sky
(18)

where 𝑖, 𝑗 and 𝑖′, 𝑗 ′ denotes the redshift bin pairs associated with
the two considered power spectrum; 𝑋 is either 𝛾^CMB or 𝛿𝑔^CMB.
𝐷
𝑖 𝑗

𝑋
(ℓ) ≡ 𝐶

𝑖 𝑗

𝑋
(ℓ) + 𝑁

𝑖 𝑗

𝑋
(ℓ) is the sum of the signal 𝐶𝑖 𝑗

𝑋
and noise

power spectra 𝑁
𝑖 𝑗

𝑋
, 𝛿ℓℓ′ is the Kronecker delta function and 𝑓sky is

the fractional sky coverage. The noise power spectra are assumed
to be zero for cross-correlation. In practice, the covariance is non-
Gaussian and cosmology-dependent, though these should be second-
order effects at the level of this analysis since we are mainly interested
in relative qualitative changes between different Stage-III and Stage-
IV datasets (see also e.g. Barreira et al., 2018).

To convert Equation 18 into a real-space covariance we use the
software package TJPCov, which implements the approach in (Singh,
2021) and Skylens16.

C[b𝑖 𝑗
𝑋
(\), b𝑖

′ 𝑗′

𝑋 ′ (\ ′))] = HC[𝐶𝑖 𝑗

𝑋
(ℓ), 𝐶𝑖′ 𝑗′

𝑋 ′ (ℓ′))]H𝑇 , (19)

where b𝑋 ≡ 〈𝑋〉 in Equations 7 and 8, andH is the Hankel transform
operator described in Singh (2021).

When we calculate 2-point functions (for both producing theoreti-
cal data vectors and running chains), we use multipole moment ℓ up
to 6 × 104. Specifically, we take ℓ as integers between 2 and 49 and
concatenate with 200 points between 50 and 6 × 104 equally spaced
in the logarithmic space. In real space, our data vector contains 20
equally-spaced logarithmic angular bins between 2.5 and 250 arcmin.

For both the theoretical modeling and the covariance matrix, there
are modelling uncertainties on small scales, which are commonly
dealt with by removing the smallest angular bins from the likeli-
hood analysis. Determining scale cuts is a complicated optimization
exercise that involves all probes under consideration and their partic-
ular systematics (e.g. Krause et al., 2021). An optimal determination
of scale cuts is beyond the scope of this work. Instead, we fix the
scale cuts for all our analyses – using 10 arcmin for 〈𝛿𝑔^CMB〉 and
5 arcmin for 〈𝛾^CMB〉. These values are mainly motivated by the

16 https://github.com/sukhdeep2/Skylens_public
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Parameter Prior Fiducial value
Ω𝑐 𝑁 (0.2664, 0.2) 0.2664
Ω𝑏 𝑁 (0.0492, 0.006) 0.0492
𝜎8 𝑁 (0.831, 0.14) 0.831
ℎ0 𝑁 (0.6727, 0.063) 0.6727
𝑛𝑠 𝑁 (0.9645, 0.08) 0.9645
𝑤0 𝑁 (−1.0, 0.8) -1.0
𝑤𝑎 𝑁 (0.0, 2.0) 0.0
𝐴0 𝑈 (−5, 5) 0.0
[IA 𝑈 (−5, 5) 0.0
DES
𝑏𝑖 𝑈 (0.5, 3.0) 1.3/𝐺 (𝑧)
Lens 𝜎𝑧𝑏

𝑁 (0.0, 0.03(1 + 𝑧)) 0.0
Source 𝜎𝑧𝑏

𝑁 (0.0, 0.01(1 + 𝑧)) 0.0
𝜎m 𝑁 (0.0, 0.01) 0.0
LSST Y1
𝑏𝑖 𝑈 (0.5, 3.0) 1.05/𝐺 (𝑧)
Lens 𝜎𝑧𝑏

𝑁 (0.0, 0.005(1 + 𝑧)) 0.0
Source 𝜎𝑧𝑏

𝑁 (0.0, 0.002(1 + 𝑧)) 0.0
𝜎m 𝑁 (0.0, 0.013) 0.0
LSST Y10
𝑏𝑖 𝑈 (0.5, 3.0) 0.95/𝐺 (𝑧)
Lens 𝜎𝑧𝑏

𝑁 (0.0, 0.003(1 + 𝑧)) 0.0
Source 𝜎𝑧𝑏

𝑁 (0.0, 0.001(1 + 𝑧)) 0.0
𝜎m 𝑁 (0.0, 0.003) 0.0

Table 3. Parameter values and priors used for the forecasting in this work.
The first section lists the cosmological parameters, the second section lists
the nuisance parameters that are the same across all datasets. The last three
sections show the baseline nuisance parameters that vary between the three
datasets, which are also listed in Table 1. When we explore variations from the
baseline samples in Section 5.3, the 𝑏𝑖 and lens 𝜎𝑧𝑏

values will be different
from this table.

ongoing work studying cross-correlation between DES Y3 and SPT
(Omori et al., 2022). While in reality the optimal scale cuts may
considerably affect cosmological constraints if they are significantly
different from our assumption, we have checked our analysis using
a couple different scale cuts, and find our main conclusions do not
change qualitatively (see Appendix B.)

4.2 Cosmological inference and Figure of Merit

The core of this paper relies on forecasting cosmological constraints
from a set of 〈𝛿𝑔^CMB〉 + 〈𝛾^CMB〉 measurements given data spec-
ifications. We use the software package Firecrown to perform the
cosmological inference. Firecrown is the LSST DESC cosmology
inference code, and its development is ongoing. It relies on the Core
Cosmology Library (CCL, Chisari et al., 2019) for the theoretical
modeling of the data vector (including systematic effects), and the
sampling functionalities (including Fisher calculation and a number
of sampling methods) packaged in a standalone version of CosmoSIS
(Zuntz et al., 2015). We will use mostly use the Multinest sampler
(Feroz et al., 2009) to derive our constraints via Markov Chain Monte
Carlo (MCMC), but for a few cases where we require a large number
of chains and we are mainly interested in the relative trends (Sec-
tion 5.3 and Appendix B), we use the Fisher matrix instead. We show
in Appendix C that using the Fisher matrix forecast does not affect
the qualitative trends we are interested compared to a full MCMC
chain.

We forecast constraints primarily assuming a flat ΛCDM model.
But we also show the flat 𝑤CDM constraints in the baseline case,
where for 𝑤CDM we assume a redshift-dependent dark energy equa-
tion of state𝑤(𝑎) = 𝑤0+(1−𝑎)𝑤𝑎 (Albrecht et al., 2006). We choose

to focus on ΛCDM since the 〈𝛿𝑔^CMB〉 + 〈𝛾^CMB〉 combination is
not very constraining in 𝑤CDM and using ΛCDM more clearly il-
lustrates the change in constraining power in the different datasets
without being strongly affected by the priors of the parameters. But
we have also checked in the 𝑤CDM case that our main conclusions
hold. We use the fiducial parameter values and the priors to be the
same as the LSST DESC SRD. The fiducial and priors ranges of the
parameters are listed in Table 3.

We quantify the constraining power in each analysis setup by
calculating a Figure of Merit (FoM) defined as:

FoM =
1√︁

det[Cov(Ω𝑚, 𝜎8)]
, (20)

where Cov refers to the (parameter) covariance matrix between
Ω𝑚 and 𝜎8 (the normalization of the matter fluctuations 8ℎ−1𝑀𝑝𝑐

scales). This FoM can be intuitively understood as the inverse of the
approximate area under the posterior on that parameter sub-space.

5 COSMOLOGICAL CONSTRAINTS FROM
GALAXY-CMB LENSING CROSS-CORRELATION

In this section we present the main result of this study – projection of
cosmological constraints from cross-correlation between galaxy den-
sity/shear and CMB lensing. First in Section 5.1 we show the results
for the four dataset combinations introduced in Section 3 and discuss
the implication of these cross-correlations moving from Stage-III to
Stage-IV galaxy surveys. Next in Section 5.2 we show how our results
change when we use the CosmoDC2 mock galaxy catalog to extract
more realistic models for the datasets. Using CosmoDC2, we then ex-
plore in Section 5.3 how the constraints change when the lens galaxy
sample is varied in terms of the magnitude and redshift selection.

5.1 Baseline

For the four dataset combinations (DES×Planck, DES×SO, LSST
Y1×SO, and LSST Y10×SO), we show in Figure 4 the constraints
on the Ω𝑚-𝜎8 plane. These employ the baseline analytic model for
each dataset as described in Section 3. The analysis choices of the
cosmological inference follows Section 4.

Our main interest in this section is to study how the relative con-
straining power from 〈𝛿𝑔^CMB〉 and 〈𝛾^CMB〉 change between the
different data combinations. Figure 4 shows the Ω𝑚-𝜎8 constraints
for the four cases under ΛCDM and 𝑤CDM, as well as the 𝑤0-𝑤𝑎

constraints under 𝑤CDM. We observe that the constraining power
increases significantly between these Stage-III and Stage-IV datasets
as expected, and with overall weaker constraints in 𝑤CDM compared
to ΛCDM. The FoM is 640 (520) for DES×Planck, 1220 (740) for
DES×SO, 3710 (1370) for LSST Y1×SO, 12300 (1880) for LSST
Y10×SO under the ΛCDM (𝑤CDM) model. The gain in constraints
under 𝑤CDM is rather mild going from DES×SO to LSST Y10×SO
compared to ΛCDM, though a similar level of mild increase in con-
straints can be seen in the 𝑤0 − 𝑤𝑎 plane (right panel of Figure 5).

To further understand the evolution of these constraints, we show
in Figure 5 different analysis choices for the ΛCDM case. In each
panel, the “〈𝛿𝑔^CMB〉 + 〈𝛾^CMB〉 (flat prior)” contours are the same
as those in Figure 4, which we will refer to as the fiducial analysis.
We discuss the interpretation of each contour here:

• 〈𝜹𝒈𝜿CMB〉-only, fixed galaxy bias: Since galaxy bias 𝑏gal is
fully degenerate with 𝜎8, freeing 𝑏gal significantly decreases the con-
straining power in the Ω𝑚-𝜎8 plane. To get an idea of the constraints
coming from 〈𝛿𝑔^CMB〉 alone we therefore assume fixed galaxy bias.
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Figure 4. Left panel: Ω𝑚−𝜎8 constraints from 〈𝛿𝑔^CMB 〉 + 〈𝛾^CMB 〉 under ΛCDM, using the four baseline cases: DES×Planck, DES×SO, LSST Y1×SO, and
LSST Y10×SO.Middle panel: Ω𝑚 − 𝜎8 constraints with 𝑤CDM model. Right panel: 𝑤0 −𝑤𝑎 constraints with 𝑤CDM model. As we move from DES×Planck
to LSST Y10×SO, the constraining power increases significantly for both cosmological models. The contours here show the 1𝜎 constraints.
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Figure 5. Ω𝑚 − 𝜎8 constraints under ΛCDM, using the four baseline cases: DES×Planck (top left), DES×SO (top right), LSST Y1×SO (bottom left), and LSST
Y10×SO (bottom right). In each panel, there are five curves: 〈𝛿𝑔^CMB 〉-only with fixed galaxy bias (cyan), 〈𝛾^CMB 〉-only (yellow), 〈𝛿𝑔^CMB 〉 + 〈𝛾^CMB 〉
with flat priors on galaxy bias (green), 5% prior on galaxy bias (red) and fixed galaxy bias (blue). The legends 〈𝛿^ 〉 and 〈𝛾^ 〉 are shorthands for 〈𝛿𝑔^CMB 〉
and 〈𝛾^CMB 〉 respectively. The contours here show the 1𝜎 constraints. We note that the green curves are identical to those in the left panel of Figure 4.

• 〈𝜸𝜿CMB〉-only: Unlike 〈𝛿𝑔^CMB〉, this combination can con-
strain Ω𝑚 and 𝜎8 on its own, though there is a strong degeneracy
between these two parameters.

• 〈𝜹𝒈𝜿CMB〉 + 〈𝜸𝜿CMB〉, flat prior on galaxy bias (fiducial):
This represents a situation where we do not use any external infor-
mation about the galaxy bias and purely rely on the constraining

power of the 〈𝛿𝑔^CMB〉 + 〈𝛾^CMB〉 probes alone. Note that this is the
fiducial analysis choice, which assumes a flat prior on galaxy bias.

• 〈𝜹𝒈𝜿CMB〉 + 〈𝜸𝜿CMB〉, 5% Gaussian prior on galaxy bias:
This represents a more optimistic situation, where we have constraints
on galaxy bias from additional data. We have made the assumption
here that these priors are independent of 〈𝛿𝑔^CMB〉 + 〈𝛾^CMB〉,
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Figure 6. Top row: decomposition of the diagonal of 〈𝛿𝑔^CMB 〉 covariances. Bottom row: decomposition of the diagonal of 〈𝛾^CMB 〉 covariances. All the
covariances are computed using a bin centered around 𝑧 = 0.7. In the 〈𝛿𝑔^CMB 〉 covariance for DES×Planck, the signal-noise term dominates; with an improved
CMB noise, the signal-signal term dominates in the large scale, but on small scales, noise-noise, signal-noise, and signal signal terms contribute equally; moving
to LSST, the noise-noise term completely fades away in the 〈𝛿𝑔^CMB 〉 covariance, hence reducing shot noise will not further improve 〈𝛿𝑔^CMB 〉 constraining
power. For the 〈𝛾^CMB 〉 covariances, despite that the increasing number density reduces the contribution of the noise-noise term, it still dominates in the small
scales. Hence further reducing the shape noise will keep improving 〈𝛾^CMB 〉 constraining power.

though in some cases the 〈𝛿𝑔^CMB〉 + 〈𝛾^CMB〉 data vector can be
correlated with the dataset that derives the priors. One example is
galaxy bias constraints from a 3×2pt analysis (DES Collaboration
et al., 2021).

• 〈𝜹𝒈𝜿CMB〉 + 〈𝜸𝜿CMB〉, fixed galaxy bias: This represents the
situation where we have already obtained confident constraints of
galaxy bias from precedent analysis such as an HOD analysis (e.g.
Zacharegkas et al., 2021).

Comparing across the four panels of Figure 5, we see that relative
size and shape between the different contours change. First, com-
paring the yellow (〈𝛾^CMB〉) and the green (〈𝛿𝑔^CMB〉 + 〈𝛾^CMB〉,
flat prior) contours, we see changes in constraining power with un-
changed degeneracy direction in theΩ𝑚-𝜎8 plane. This improvement
comes from the improved constraint in the shear calibration parame-
ters. The addition of 〈𝛿𝑔^CMB〉 improves the FoM by 101% and 94%
for DES×Planck and DES×SO, but that improvement decreases to
57% once we move to LSST Y1 and further so for LSST Y10, being
25%. This could also be seen comparing the yellow (〈𝛾^CMB〉) and
cyan (〈𝛿𝑔^CMB〉, fixed bias) contours. It is clear that 〈𝛿𝑔^CMB〉 is
becoming less constraining in comparison with 〈𝛾^CMB〉 when using
the galaxy samples from LSST. Noticeably, the cyan contours do not
change much going from LSST Y1 to Y10.

This decrease in the overall contribution of 〈𝛿𝑔^CMB〉 can be ex-
plained by looking at the covariance matrix of these different datasets.
Figure 6 shows the diagonal of the covariance matrix for a single bin
in the 〈𝛿𝑔^CMB〉 and 〈𝛾^CMB〉 data vectors separately for the baseline
cases. The diagonal covariance matrix is decomposed into four terms
as we expand Equation 18: signal-signal (𝐶gal𝐶CMB), signal-noise
(𝐶gal𝑁CMB), noise-signal (𝑁gal𝐶CMB), noise-noise (𝑁gal𝑁CMB).

We observe that going from Stage-III to Stage-IV, the 〈𝛿𝑔^CMB〉
covariance is initially dominated by the signal-noise term in the
DES×Planck case, but as the CMB lensing map noise decreases, the
signal-signal term starts dominating — the covariance has reached
a cosmic variance “floor”. Meanwhile, since the noise-signal and
noise-noise terms are already subdominant in DES × 𝑃𝑙𝑎𝑛𝑐𝑘 case,
increasing galaxy counts will not help improving the constraining
power throughout the four cases. Notice that the limitation due to
cosmic variance can be somewhat reduced by using finer redshift
bins, but this will also introduce more redshift uncertainty and bias.
〈𝛿𝑔^CMB〉 contours from LSST Y1 to LSST Y10 show that doubling
the bins can only slightly improve the constraining power (amid the
reduced shot noise). We also note that even the DES×Planck combi-
nation is very close to being cosmic variance limited, which explains
some of the trends we see later in Section 5.3. The 〈𝛾^CMB〉 co-
variance, on the other hand, is noise-noise dominated for all cases.
Therefore, it is still possible to increase the constraining power by
adding more galaxies to the samples. In summary, the 〈𝛿𝑔^CMB〉
and 〈𝛾^CMB〉 trends can be explained by the observation that as we
add more galaxies, 〈𝛿𝑔^CMB〉 constraint will cease to improve be-
cause shot noise is already sub-dominant, but 〈𝛾^CMB〉 constraints
are likely to keep improving because of the noise-noise dominance
in its covariance.

In addition to the change in the covariance mentioned above, the
dominance of 〈𝛾^CMB〉 is also because the 〈𝛿𝑔^CMB〉 data vector
comes with a free (galaxy bias) parameter per redshift bin. One
could argue that for 〈𝛾^CMB〉, there is the equally unconstrained
IA parameters that would weaken its constraints. However, in most
analyses the number of free parameters for IA does not change as one
increases the number of redshift bins. Interestingly, this would also
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suggest that moving into Stage-IV experiments, assuming the data
characteristics and modeling described in this work, one does not gain
much by adding the 〈𝛿𝑔^CMB〉 correlation to the data vector – this
could be desirable given the complications of modeling small-scale
galaxy clustering signal.

Our conclusion is also supported by the signal-to-noise ratio be-
tween the 〈𝛿𝑔^CMB〉 and 〈𝛾^CMB〉 data vectors. For the four baseline
cases are, i.e. DES × Planck, DES × SO, LSST Y1 × SO, and LSST
Y10 × SO, the 〈𝛿𝑔^CMB〉, 〈𝛾^CMB〉, and 〈𝛿𝑔^CMB〉 + 〈𝛾^CMB〉
signal-to-noise ratios are (26, 21, 29), (41, 54, 62), (66, 123, 128),
and (73, 231, 233), respectively. We see that initially, the signal-to-
noise ratios for 〈𝛿𝑔^CMB〉 and 〈𝛾^CMB〉 are comparable – in fact, as
expected from existing work (Omori et al., 2022; Chang et al., 2022),
〈𝛿𝑔^CMB〉 has slightly higher signal-to-noise ratio than 〈𝛾^CMB〉.
However, as we move into future datasets, the signal-to-noise ratio of
〈𝛾^CMB〉 grows much faster than that of 〈𝛿𝑔^CMB〉. In LSST Y1 and
Y10 datasets, we can see that 〈𝛾^CMB〉 has already taken complete
dominance in the total signal-to-noise ratio and is much larger than
〈𝛿𝑔^CMB〉.

If we do adopt an IA model with significantly more free parameters
(e.g. Blazek et al., 2019, or to assume a different IA parameter per
redshift bin), the 〈𝛾^CMB〉 constraint will become weaker. However,
we may also expect that modeling for 〈𝛿𝑔^CMB〉 will complicate
over time with e.g. more complex galaxy bias models (e.g. Goldstein
et al., 2021) – in general, we do not expect LSST Y10 to use the
exact same modelling framework as presented here. Thus, it is not
straightforward to predict how the relative constraining power change
over time beyond the simple approach used here. If the 〈𝛾^CMB〉 con-
straints become weaker relative to 〈𝛿𝑔^CMB〉, this would delay the
time when 〈𝛾^CMB〉 becomes dominant, or even shift the balance be-
tween 〈𝛿𝑔^CMB〉 and 〈𝛾^CMB〉 altogether. Nevertheless, discussions
on cosmic variance above will still hold true.

Comparing the red and the blue ellipses with the green ones in
Figure 5 gives us a sense of the additional constraint that we could
gain if we have external information on the galaxy bias. We observe
two interesting trends: Firstly, the difference between the red and
blue contours become larger moving from DES to LSST. This is
expected because, at the LSST level, all parameters are more tightly
constrained, making the same difference (5%) between the galaxy
bias priors have a much more significant impact on the cosmological
constraints. In practice, it is likely that the priors will be tighter when
moving from DES to LSST (e.g. if the priors come from 3×2pt), which
will bring the red and blue contours closer. Secondly, it is interesting
to see that, although the 〈𝛿𝑔^CMB〉 with fixed galaxy bias (cyan)
contour becomes much larger than the 〈𝛾^CMB〉 (yellow) contour
towards the later stages, there is still nontrivial gain moving from
〈𝛾^CMB〉-only (yellow) to 〈𝛿𝑔^CMB〉 + 〈𝛾^CMB〉 fixed galaxy bias
(blue). This is somewhat counter-intuitive, but could be explained
by the fact that when fixing galaxy bias, 〈𝛿𝑔^CMB〉 effectively helps
〈𝛾^CMB〉 constrain both the IA parameters and the shear calibration
parameter, which in turn tightens the cosmological constraints.

5.2 Comparison of baseline SRD and CosmoDC2

Before exploring variations in the baseline samples with CosmoDC2,
we compare the characteristics of galaxy samples in SRD with those
constructed in CosmoDC2 using the same selection criteria. These
are not expected to be identical given that the CosmoDC2 catalogs
underwent a much more extensive validation process with a wider
range of datasets (Korytov et al., 2019; Kovacs et al., 2022). Fur-
thermore, with CosmoDC2 we are able to coherently model all the
galaxy properties at the same time – the catalog naturally contains

Dataset Bin DES LSST Y1 LSST Y10
fid | DC2 fid | DC2 fid | DC2

𝑏gal,0 1.30 | 1.16 1.05 | 0.98 0.95 | 0.91
𝑛𝑙 (arcmin−2) 1 0.17 | 0.14 2.4 | 2.8 2.6 | 1.0

2 0.24 | 0.10 3.2 | 3.3 3.5 | 3.2
3 0.23 | 0.15 3.2 | 2.7 4.1 | 4.4
4 0.20 | 0.32 3.6 | 4.3 4.3 | 3.0
5 0.15 | 0.25 2.1 | 2.3 4.3 | 4.3
6 – – 4.1 | 5.1
7 – – 3.8 | 6.4
8 – – 3.4 | 3.8
9 – – 3.0 | 3.0
10 – – 2.6 | 4.3

Table 4. Comparison of galaxy bias and number density as specified in
the baseline lens sample described in Table 3 (first number in each cell of
this table, under the columns labeled as “fid”) and as measured from the
CosmoDC2 mock galaxy catalog (second number in each cell of this table,
under the columns labeled as “DC2”).

the correlation between galaxy photometry, redshift, galaxy bias, and
nuisance parameters. Finally, the comparison of SRD and CosmoDC2
allows us to understand the sensitivity of these forecasting exercises
to the detailed assumptions of the galaxy samples.

As already seen in Figure 3, the 𝑛(𝑧) derived from CosmoDC2
peaks at higher redshift compared to that of SRD. Given that the
SRD model has mainly been checked with the Deep2 catalog, which
is a rather small dataset and does not cover the full redshift and
magnitude range of our baseline sample, we do not see this level
of difference to be surprising. The CosmoDC2 𝑛(𝑧)’s are also more
realistic in the sense that they are less Gaussian and contain outliers
far away from the bin center. Next, we compare the lens galaxy bias
and number counts in CosmoDC2 and the numbers corresponding to
Table 1. Our results are shown in Table 4. We find the values measured
from CosmoDC2 to be generally lower compared to the SRD values,
though the trend between the different datasets is similar. Finally, in
Table 4 we also list the lens number counts in each bin in both SRD
and CosmoDC2 – they on average agree at the 10% level, though the
highest disagreement is at 60%.

Taking the baseline galaxy sample from CosmoDC2, we can per-
form the same forecasting exercise as Section 5.1 and check whether
our results change qualitatively when using this more realistic sam-
ple. Since we are focused on the lens sample, we show in Figure 7
the 〈𝛿𝑔^CMB〉 constraints with fixed galaxy bias for the four datasets
using the SRD galaxy model and the CosmoDC2 galaxy model. We
find that despite the difference in the galaxy sample characterization,
which includes 𝑛(𝑧), number densities, and galaxy bias, the con-
straints agree extremely well. This serves as a good validation both
for the LSST DESC SRD and CosmoDC2: with the more realistic
galaxy sample characteristics, we arrive at similar conclusions as the
simple analytic model in the SRD; and that the galaxy sample con-
structed via CosmoDC2 agrees with analytical samples in SRD which
are based on previous observations.

5.3 Dependence on magnitude limit and redshift range

We now explore how the constraining power changes when we vary
the magnitude limit and redshift range of the lens sample from the
baseline. We use the procedure described in Section 3.3 to derive the
properties of the variant samples from CosmoDC2. The source sample
is kept fix as in Table 1. To present a clean picture of the trends in
the FoM, we use a Fisher forecast here instead of running chains.
We notice that 〈𝛿𝑔^CMB〉 + 〈𝛾^CMB〉 correlation has very loose
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Figure 7. Ω𝑚 − 𝜎8 constraints from 〈𝛿𝑔^CMB 〉 with ΛCDM model assuming the galaxy bias is fixed. The red (black) lines show the constraints assuming
CosmoDC2 (SRD) galaxy samples. We show results for the four baseline cases: DES×Planck, DES×SO, LSST Y1×SO, and LSST Y10×SO.

constraints on IA-parameter [IA, so we switch to a prior 𝑁 (0, 5) to
avoid possible numerical issues in the Fisher calculation.

Figure 8 shows the FoM for the four datasets in a 2D grid when
varying both the limiting magnitude and the maximum redshift (and
varying the galaxy bias and uncertainty on mean redshifts and their
priors according to the models described in Section 3.3). The FoMs
in each panel are normalized by the baseline case (the center cell of
the grid), with the relative difference of the baseline in the four panel
shown in the left panel of Figure 4. The colors thus show the relative
increase/decrease in the FoM from the fiducial case. The top row of
the DES panels are not calculated since the number density of the
CosmoDC2 catalog at those bright magnitude cuts become too sparse
to reliably calculate the nuisance parameters.

We observe several interesting trends. First, the general trend of
having larger FoM when increasing the number of galaxies (going
to fainter limiting magnitudes) and higher redshift is consistent with
expectation. Second, the improvements in FoM with magnitude cuts
are small, but there tends to be more increase in FoM as we move
from brighter to fainter magnitude cuts (moving vertically across the
plane) in the cases with DES samples, which can go up to 10%,
than those with LSST samples, with 2% at most. This is consistent
with what we found in Section 5.1, where the constraints provided
by the lens samples assumed for DES is close to but not yet cosmic
variance-limited, while those of LSST are firmly cosmic variance-
limited. Third, the effect of moving to higher redshift fades out from
DES lens sample to LSST Y1 lens sample, since 〈𝛾^CMB〉 constraints
gradually take dominance. But the effect of adding redshift bins
becomes more prominent again in LSST Y10 lens sample. This
is somehow expected because the source 𝑛(𝑧) extends to higher
redshifts (see Figure 2) and the redshift binning is finer. This means
that LSST Y10 has more constraining power and more information
can be extracted in the redshift direction. But overall, the change
in relative FoM is quite small for all cases in the figure, which
is roughly contained within ±20%. This means that the baseline
samples assumed in this work is not too far from being “optimal”.
One can improve the 〈𝛿𝑔^CMB〉 + 〈𝛾^CMB〉 constraints only slightly
by making adjustments to the sample.

Finally, extending from the previous point, we tried to increase the
redshift range even further to effectively simulate the cases where
special high-redshift samples are constructed (e.g. Krolewski et al.,
2021) to maximize the overlap with the CMB lensing kernel – we
remove the upper bound of the the highest redshift bin so the 𝑛(𝑧) still
has nontrivial contributions at 𝑧 ∼ 2. We would like to understand
if, studied under the same framework, these high-redshift samples
do indeed constrain cosmology more effectively. In Figure 9 we
show the case for LSST Y1×SO. We find that the high-redshift
lens bins do contribute significantly to 〈𝛿𝑔^CMB〉 (compare solid

and dashed cyan contours), but when combined with 〈𝛾^CMB〉 the
effect is not significant, again due to the fact that in these cases
〈𝛾^CMB〉 dominates the constraints. This also suggests for cases
where 〈𝛾^CMB〉 is not yet so dominant (i.e. DES), the addition of the
high-z sample could indeed add significant constraining power to the
〈𝛿𝑔^CMB〉 + 〈𝛾^CMB〉 combination.

5.4 Combination with other tracers

While 〈𝛿𝑔^CMB〉 + 〈𝛾^CMB〉 is worth studying on its own, it is also
useful when combined with other tracers e.g. 3×2pt. For example, as
Figure. 5 shows, if the 3×2pt can strongly constrain bias, 〈𝛿𝑔^CMB〉
could in principle become more constraining. We briefly discuss the
applicability of our conclusions under this context and directions for
future works.

The main conclusion that lens samples should be optimized in
terms of nuisance parameters instead of the shot noise is expected
to hold. A similar finding has been presented in Porredon et al.
(2021) under a different context. In that paper, the authors set out
to optimize the lens sample used for 〈𝛿𝑔𝛿𝑔〉 + 〈𝛿𝑔𝛾〉 using DES Y3
data. They found that the lens galaxy samples currently used by DES
(similar to the DES baseline sample used in this paper) are close to
reaching the cosmic variance limit. Notice that the sample used by
that work has limiting magnitude of 22.5. This conclusion will hold
with the LSST samples of higher limiting magnitude. Thus, together
with Porredon et al. (2021), our work suggests that going forward in
Stage-IV surveys, it is more important to select lens samples with
well-understood systematic properties (such as photometric redshift
and galaxy bias) than increasing the number counts.

The exact gain in cosmological constraints when adding
〈𝛿𝑔^CMB〉+ 〈𝛾^CMB〉 to the 3×2pt probes for future datasets depends
heavily on the assumptions in modeling choices and our assumptions
on the nuisance parameters. We will therefore leave it for future stud-
ies.

6 SUMMARY

In this work, we systematically studied how the constraining power
from 〈𝛿𝑔^CMB〉 (galaxy density × CMB lensing convergence) and
〈𝛾^CMB〉 (galaxy weak lensing shear × CMB lensing convergence)
changes as galaxy samples transition from Stage-III to Stage-IV ex-
periments. We investigated both the “baseline” cases that assume
the same galaxy samples as in 3 × 2 pt analysis in the LSST DESC
Science Requirement Document (SRD), as well as “variant samples”
with different redshift ranges and magnitude limits. We performed
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simulated likelihood analyses for each of the samples to forecast cos-
mological constraining power. The main advances of this work from
previous studies are:

• For our galaxy sample, we use a realistic mock galaxy catalog
CosmoDC2 to extract realistic redshift distributions, redshift uncer-
tainties, number densities, galaxy bias and the correlation between
them. This approach also serves as a cross-check on the models used
in the SRD.

• We systematically look at the progression of the cosmologi-
cal constraints from Stage-III, which we are currently analyzing, to
Stage-IV, where we typically make assumptions and extrapolations
(for LSST, the values are summarized in the SRD). This allows us

to identify factors that could lead to qualitative changes in the cross-
correlation constraints going from Stage-III to Stage-IV experiments.

For concreteness, we look at the cosmological constraints for
four data combinations: DES×Planck, DES×SO, LSST Y1×SO, and
LSST Y10×SO. Below are the main findings of our study:

• Moving from Stage-III (DES×Planck) to Stage-IV (LSST
Y10×SO), we expect a 20-fold and 3.5-fold increment in 〈𝛿𝑔^CMB〉+
〈𝛾^CMB〉 constraining power in the Ω𝑚-𝜎8 plane for ΛCDM and
𝑤CDM models respectively. Constraints from 〈𝛿𝑔^CMB〉 is rela-
tively constant among all baseline cases, while the improvement
mostly comes from 〈𝛾^CMB〉.

• The contributions of 〈𝛿𝑔^CMB〉 and 〈𝛾^CMB〉 are compara-
ble at the current stage, but as we approach to LSST Y10×SO,
the 〈𝛿𝑔^CMB〉 constraint gradually fades out (the improvements of
adding 〈𝛿𝑔^CMB〉 to 〈𝛾^CMB〉 decreases from 100% to 25%).

• The 〈𝛿𝑔^CMB〉 constraints are cosmic variance limited in Stage-
IV (and not far from being cosmic variance limited in Stage-III),
so further reducing shot noise in the lens galaxy sample will not
gain constraining power. This suggests that for the lens galaxies,
one should focus more on improving systematic uncertainties (e.g.
prior on galaxy bias or redshift uncertainties). On the other hand,
〈𝛾^CMB〉 constraints do not reach the cosmic variance limit even in
LSST Y10; thus further reducing shape noise (increasing number
density of source galaxies) can improve constraints. This is a similar
strategy suggested for 3×2pt analyses in previous work.

• The forecasted cosmological constraints using the data model
from SRD is consistent with that using a data model derived from
the mock galaxy catalog CosmoDC2. This strengthens the robustness
of the main conclusions of this work against detailed assumptions of
the galaxy samples.

• The above conclusions are applicable to a wide range of samples
as we checked the “variants” from CosmoDC2. We showed that similar
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behavior is expected for samples with different redshift ranges (even
without an upper bound) and magnitude limits.

• We point out that some of the findings above is driven by the
sharp increase in the expected lens galaxy number density as well as
the much smaller uncertainty in the photometric redshift estimates
assumed in the SRD. This perhaps motivates a deeper look at the
lens sample specification in the SRD.

We note that we have made several assumptions in this work:

• For the photo-z uncertainty and shear calibration uncertainty, we
adopted the “requirements” in the SRD instead of estimated values
based on methodologies expected for LSST.

• We have ignored foreground contamination to the CMB lensing
map from e.g. thermal Sunyaev–Zeldovich effect and cosmic infrared
background.

• We have assumed a simple, scale-independent model for galaxy
bias. In reality, the galaxy bias may differ significantly from a linear
model in the small scales. This would imply that a constant 10-
arcmin scale cut for 〈𝛿𝑔^CMB〉 is not entirely realistic. Nevertheless,
Appendix A and B show that our conclusion is robust against both
different biases and scale cuts.

• We have assumed a simple 2-parameter intrinsic alignment (IA)
model, which could be insufficient in describing the true IA. A more
generic model would weaken the constraining power of 〈𝛾^CMB〉 as
the IA parameters are fairly unconstrained. This would then change
the relative contribution of 〈𝛿𝑔^CMB〉 and 〈𝛾^CMB〉 in the combina-
tion.

• We assumed a 10 arcmin scale cut on 〈𝛿𝑔^CMB〉 and 5 arcmin on
〈𝛾^CMB〉, whereas in reality, determining scale cuts involves specific
systematic effects that go beyond the scope of this work. (Though
see Appendix B for a discussion of our assumption.)

• We use a cosmology-independent simple Gaussian covariance
matrix in this work. Non-Gaussianity, cosmology-dependence and
other complications to the covariance could affect our results slightly.

The 〈𝛿𝑔^CMB〉 + 〈𝛾^CMB〉 cross-correlation combination serves
as a powerful consistency test for galaxy-only or CMB-only analyses
that is relatively immune to systematic effects. This is particularly
valuable given some of the mild tensions seen in current galaxy and
CMB experiments. As such, we set out to perform a focused in-
depth study on the cross correlations on their own in this work. As
we transition from Stage-III to Stage-IV experiments in both galaxy
and CMB surveys, we find drastic improvements in the constraining
power of 〈𝛿𝑔^CMB〉 + 〈𝛾^CMB〉 with some unexpected trends. At the
same time, we highlight the importance to continuously revisit and
realign our forecasts with ongoing analyses in order to achieve the
most realistic picture of the future.
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APPENDIX A: COSMODC2 UNRESOLVED FAINT GALAXIES

As discussed in Section 3.3.3, CosmoDC2 contains a population of
faint galaxies that do not spatially correlate with dark matter halos,
and are therefore excluded when we measure galaxy bias for a given
sample. In Figure A1 we show for the LSST Y1 case, the number
of galaxies as a function of magnitude with and without requiring
the galaxy to be associated with a halo, for the 5 lens bins. We find
that at lower redshift, more galaxies in the sample do not have an
associated halo. In the baseline case, only the lowest redshift bin sees
a noticeable effect – about 31% of the galaxies do not have host halo.
When the magnitude cut increases, however, higher redshift bins are
also affected. In bin 3, about 15% of the galaxies do not have host
halo when we look at the faintest magnitude selection in our variant
samples.

First of all, we note that in general, the lower redshift bins should
contribute less to the cosmological constraining power as they do not
overlap significantly with the CMB lensing kernel. Second, the next
effect of excluding these galaxies that do not cluster is an effectively
smaller limiting magnitude and larger galaxy bias. However, accord-
ing to Nicola et al. (2020), with a change in limiting magnitude of
0.5 would result in a change in galaxy bias ∼ 3%. If we assume the
extreme case where the galaxy bias is uniformly overestimated by
3%, for LSST Y1, we find the FoM changes by 2%. This level of
difference should not affect our main conclusions of the paper.

APPENDIX B: SCALE CUTS

In this work, all cosmological analysis on 〈𝛿𝑔^CMB〉 and 〈𝛾^CMB〉
are performed assuming 10 and 5 arcmin scale cuts respectively.
However, in reality, scale cuts are determined by balancing the al-
lowed systematic uncertainties on small scales with the systematic
errors. In addition, forecasting the actual scale cuts for future data
is complicated by the fact that we do expect advances also in the
theoretical modeling, which could counteract the need for more con-
servative cuts as statistical uncertainties shrink. One example is when
we look at the scale cuts applied in the DES cosmic shear analysis –
going from Troxel et al. (2018) to Amon et al. (2021); Secco et al.
(2021), although the signal-to-noise increased by a factor of ∼

√
3,

the scale cuts remained largely the same due to the added model
complexity.

We test here how our main conclusions are affected by the partic-
ular choice of scale cuts in our baseline analysis. For the the scale
cuts on 〈𝛾^CMB〉, we repeat our fiducial analysis using 15 arcmin
instead of 5 arcmin. That is, holding the 〈𝛿𝑔^CMB〉 scale cut the same
as this work but making the 〈𝛾^CMB〉 scale cut significantly more
conservative. The motivation for this extreme scenario is that this
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Figure A1. Number of CosmoDC2 galaxies that are associated with halos (red, halo_id>0) compared to all the galaxies as a function of magnitude (mag_i).
The five panels show the five baseline lens bins for the LSST Y1 case. The 𝑦-axis shows the number of galaxies per unit of magnitude in units of one million.
The vertical solid lines indicated the baseline magnitude selection, while the two dashed lines show the range of variant samples we consider in terms of limiting
magnitude.

weakens the 〈𝛾^CMB〉 constraints, which is dominant in our baseline
setting. Figure B1 shows the Fisher forecast constraints with these
scale cut. For the scale cuts on 〈𝛿𝑔^CMB〉, we tested with 5 arcmin
and 15 arcmin. The motivation is that since our initial estimation
of 10 arcmin is roughly an average, the real scale cuts tend to be
larger for low redshift bins and smaller for high redshift bins. Fisher
forecasts with these scale cuts are shown in Figure B2.

We find that, as expected, the constraints strengthen with smaller
scale cuts and weaken with larger scale cuts. Nevertheless, in all
scenarios, we still see that the 〈𝛾^CMB〉 constraints gradually become
more dominant in the 〈𝛿𝑔^CMB〉+〈𝛾^CMB〉 combination as we move
from Stage-III to Stage-IV. The main difference between the different
scenarios is the exact point when 〈𝛾^CMB〉 takes dominance. In other
words, although we have made a fairly rough choice in the scale cuts
for this analysis, we expect all qualitative results in this work to hold,
and an error in this choice will mostly shift the point of time at which
〈𝛾^CMB〉 starts to completely dominate the 〈𝛿𝑔^CMB〉 + 〈𝛾^CMB〉
combination. Even with a very extreme case, we expect by LSST
Y10 the contribution from 〈𝛿𝑔^CMB〉 to 〈𝛿𝑔^CMB〉 + 〈𝛾^CMB〉 to be
extremely small.

APPENDIX C: FISHER VS. MCMC CHAIN

In a few occasions in this paper, such as Section 5.3 and Appendix B,
we used a Fisher forcast instead of running MCMC chains to estimate
cosmological constraints. To validate the prediction from Fisher, we
compare the Fisher constraints for the LSST Y1×SO case in Fig-
ure C1 with the equivalent MCMC chain constraints in the bottom-
left panel of Figure 5. We can see that despite that the Fisher contours
may differ in absolute size from chains, the relative constraints agree
with them. Therefore, we believe that Fisher forecasts can reliably
reflect the relative trends in constraining power.
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Figure B1. Fisher forecasts for 〈𝛿𝑔^CMB 〉, 〈𝛾^CMB 〉, and 〈𝛿𝑔^CMB 〉 + 〈𝛾^CMB 〉 (uniform prior). The solid lines are fiducial scale cuts, and the dashed lines
are 15 arcmin scale cut for 〈𝛾^CMB 〉.

0.2 0.3 0.4

Ωm

0.75

0.80

0.85

0.90

0.95

σ
8

DES × Planck

〈δκ〉 (fixed bias)

〈γκ〉
〈δκ〉+ 〈γκ〉 (flat prior)

0.2 0.3 0.4

Ωm

0.75

0.80

0.85

0.90

0.95

σ
8

DES × SO

〈δκ〉 (fixed bias)

〈γκ〉
〈δκ〉+ 〈γκ〉 (flat prior)

0.26 0.28 0.30 0.32 0.34 0.36

Ωm

0.78

0.80

0.82

0.84

0.86

0.88

σ
8

LSST Y1 × SO

〈δκ〉 (fixed bias)

〈γκ〉
〈δκ〉+ 〈γκ〉 (flat prior)

0.26 0.28 0.30 0.32 0.34 0.36

Ωm

0.78

0.80

0.82

0.84

0.86

0.88

σ
8

LSST Y10 × SO

〈δκ〉 (fixed bias)

〈γκ〉
〈δκ〉+ 〈γκ〉 (flat prior)

Figure B2. Fisher forecasts for 〈𝛿𝑔^CMB 〉, 〈𝛾^CMB 〉, and 〈𝛿𝑔^CMB 〉 + 〈𝛾^CMB 〉 (uniform prior) with different scale cuts. The 〈𝛾^CMB 〉 scale cut remains at
the fiducial 5 arcmin. The 〈𝛿𝑔^CMB 〉 scale cuts are 5 arcmin (dashed), the fiducial 10 arcmin (solid), and 15 arcmin (dashed-dot).
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Figure C1. This plot is the same as the bottom-left panel of Figure 5, but
compares Fisher matrix forecast with MCMC sampling. The dashed lines are
MCMC chains, while the solid lines are Fisher forecast.
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