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Abstract
Computational cost of training state-of-the-art
deep models in many learning problems is rapidly
increasing due to more sophisticated models and
larger datasets. A recent promising direction for
reducing training cost is dataset condensation that
aims to replace the original large training set with
a significantly smaller learned synthetic set while
preserving the original information. While train-
ing deep models on the small set of condensed im-
ages can be extremely fast, their synthesis remains
computationally expensive due to the complex
bi-level optimization and second-order derivative
computation. In this work, we propose a simple
yet effective method that synthesizes condensed
images by matching feature distributions of the
synthetic and original training images in many
sampled embedding spaces. Our method signifi-
cantly reduces the synthesis cost while achieving
comparable or better performance. Thanks to its
efficiency, we apply our method to more realistic
and larger datasets with sophisticated neural ar-
chitectures and obtain a significant performance
boost1. We also show promising practical benefits
of our method in continual learning and neural
architecture search.

1. Introduction
Computational cost for training a single state-of-the-art
model in various fields, including computer vision and nat-
ural language processing, doubles every 3.4 months in the
deep learning era due to larger models and datasets. The
pace is significantly faster than the Moore’s Law that the
hardware performance would roughly double every other
year (Amodei et al., 2018). While training a single model
can be expensive, designing new deep learning models or
applying them to new tasks certainly require substantially
more computations, as they involve to train multiple models
on the same dataset for many times to verify the design

1The implementation is available at https://github.
com/VICO-UoE/DatasetCondensation.

choices, such as loss functions, architectures and hyper-
parameters (Bergstra & Bengio, 2012; Elsken et al., 2019).
For instance, Ying et al. (2019) spend 100 TPU years of
computation time conducting an exhaustive neural architec-
ture search on CIFAR10 dataset (Krizhevsky et al., 2009),
while training the best-performing architectures take only
dozens of TPU minutes. Hence, there is a strong demand
for techniques that can reduce the computational cost for
training multiple models on the same dataset with mini-
mal performance drop. To this end, this paper focuses on
lowering the training cost by reducing the training set size.

The traditional solution to reduce the training set size is core-
set selection. Typically, coreset selection methods choose
samples that are important for training based on heuristic
criteria, for example, minimizing distance between coreset
and whole-dataset centers (Chen et al., 2010; Rebuffi et al.,
2017; Castro et al., 2018; Belouadah & Popescu, 2020),
maximizing the diversity of selected samples (Aljundi et al.,
2019), discovering cluster centers (Wolf, 2011; Sener &
Savarese, 2018), counting the mis-classification frequency
(Toneva et al., 2019) and choosing samples with the largest
negative implicit gradient (Borsos et al., 2020). Although
coreset selection methods can be very computationally effi-
cient, they have two major limitations. First most methods
incrementally and greedily select samples, which are short-
sighted. Second their efficiency is upper bounded by the
information in the selected samples in the original dataset.

An effective way of tackling the information bottleneck is
synthesizing informative samples rather than selecting from
given samples. A recent approach, dataset condensation (or
distillation) (Wang et al., 2018; Zhao et al., 2021) aims to
learn a small synthetic training set so that a model trained on
it can obtain comparable testing accuracy to that trained on
the original training set. Wang et al. (2018) pose the problem
in a learning-to-learn framework by formulating the network
parameters as a function of synthetic data and learning them
through the network parameters to minimize the training
loss over the original data. An important shortcoming of
this method is the expensive optimization procedure that
involves updating network weights for multiple steps for
each outer iteration and unrolling its recursive computation
graph. Zhao et al. (2021) propose to match the gradients
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embedding spaces 

synthetic data real data 

. . . 

Figure 1. Dataset Condensation with Distribution Matching. We
randomly sample real and synthetic data, and then embed them
with the randomly sampled deep neural networks. We learn the
synthetic data by minimizing the distribution discrepancy between
real and synthetic data in these sampled embedding spaces.

w.r.t. the network weights giving real and synthetic training
images that successfully avoids the expensive unrolling of
the computational graph. Another efficiency improvement is
a closed form optimizer by posing the classification task as
a ridge regression problem to simplify the inner-loop model
optimization (Bohdal et al., 2020; Nguyen et al., 2021a).
In spite of the recent progress, the dataset condensation
still requires solving the expensive bi-level optimization
which jeopardizes their goal of reducing training time due
to the expensive image synthesis process. For instance,
the state-of-the-art (Zhao & Bilen, 2021) requires 15 hours
of GPU time to learn 500 synthetic images on CIFAR10
which equals to the cost of training 6 deep networks on the
same dataset. In addition, these methods also require tuning
multiple hyper-parameters, e.g. the steps to update synthetic
set and network parameters respectively in each iteration,
that can be different for different settings such as sizes of
synthetic sets.

In this paper, we propose a novel training set synthesis tech-
nique that combines the advantages of previous coreset and
dataset condensation methods while avoiding their limita-
tions. Unlike the former and like the latter, our method
is not limited to individual samples from the original data
and can synthesize training images. Like the former and
unlike the latter, our method can very efficiently produce a
synthetic set and avoid expensive bi-level optimization. In
particular, we pose this task as a distribution matching prob-
lem such that the synthetic data are optimized to match the
original data distribution in a family of embedding spaces
by using the maximum mean discrepancy (MMD) (Gret-
ton et al., 2012) measurement (see Figure 1). Distance
between data distributions are commonly used as the cri-
terion for coreset selection (Chen et al., 2010; Wolf, 2011;
Wang & Ye, 2015; Sener & Savarese, 2018), however, it
has not been used to synthesize training data before. We
show that the family of embedding spaces can efficiently
be obtained by sampling randomly initialized deep neural
networks. Hence, our method is significantly faster (e.g.
45× in CIFAR10 when synthesizing 500 images) than the

state-of-the-art (Zhao & Bilen, 2021) and involves tuning
only one hyper-parameter (learning rate for synthetic im-
ages), while obtaining comparable or better results. Finally,
unlike other dataset condensation methods, our training can
be independently run for each class in parallel and its com-
putation load can be distributed. Thanks to its efficiency, we
are the first one to enable dataset condensation on larger set-
tings, i.e. synthesizing 1250 images per class for CIFAR10
(Krizhevsky et al., 2009), and larger dataset, i.e. TinyIma-
geNet (Le & Yang, 2015). We validate these benefits in two
downstream tasks by producing more data-efficient memory
for continual learning and generating more representative
proxy dataset for accelerating neural architecture search.

2. Methodology
2.1. Dataset Condensation Problem

The goal of dataset condensation is to condense the large-
scale training set T = {(x1, y1), . . . , (x|T |, y|T |)} with
|T | image and label pairs into a small synthetic set S =
{(s1, y1), . . . , (s|S|, y|S|)} with |S| synthetic image and la-
bel pairs so that models trained on each T and S obtain
comparable performance on unseen testing data:

Ex∼PD [`(φθT (x), y)] ' Ex∼PD [`(φθS (x), y)], (1)

where PD is the real data distribution, ` is the loss function
(i.e. cross-entropy loss), φ is a deep neural network param-
eterized by θ, and φθT and φθS are the networks that are
trained on T and S respectively.

Existing solutions. Previous works (Wang et al., 2018;
Sucholutsky & Schonlau, 2019; Such et al., 2020; Bohdal
et al., 2020; Nguyen et al., 2021a;b) formulate the dataset
condensation as a learning-to-learn problem, pose the net-
work parameters θS as a function of synthetic data S and
obtain a solution for S by minimizing the training loss LT
over the original data T :

S∗ = arg min
S

LT (θS(S))

subject to θS(S) = arg min
θ

LS(θ).
(2)

Recently the authors of (Zhao et al., 2021; Zhao & Bilen,
2021) show that a similar goal can be achieved by matching
gradients of the losses over the synthetic and real training
data respectively w.r.t. the network parameters θ, while
optimizing θ and the synthetic data S in an alternating way:

S∗ = arg min
S

Eθ0∼Pθ0

[ T−1∑
t=0

D(∇θLS(θt),∇θLT (θt))
]

subject to θt+1 ← opt-algθ(LS(θt), ςθ, ηθ),

(3)
2
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where Pθ0 is the distribution of parameter initialization, T is
the outer-loop iteration for updating synthetic data, ςθ is the
inner-loop iteration for updating network parameters, ηθ is
the parameter learning rate andD(·, ·) measures the gradient
matching error. Note that all the training algorithms (Wang
et al., 2018; Zhao et al., 2021; Zhao & Bilen, 2021) have
another loop of sampling θ0 over the bi-level optimization.

Dilemma. The learning problems in Equation (2) and
Equation (3) involve solving an expensive bi-level optimiza-
tion: first optimizing the model θS in Equation (2) or θt
in Equation (3) at the inner loop, then optimizing the syn-
thetic data S along with additional second-order derivative
computation at the outer loop. For example, training 50
images/class synthetic set S by using the method in (Zhao
et al., 2021) requires 500K epochs of updating network
parameters θt on S, in addition to the 50K updating of S.
Furthermore, Zhao et al. (2021) need to tune the hyper-
parameters of the outer and inner loop optimization (i.e.
how many steps to update S and θt) for different learning
settings, which requires cross-validating them and hence
multiplies the cost for training synthetic images.

2.2. Dataset Condensation with Distribution Matching

Our goal is to synthesize data that can accurately approx-
imate the distribution of the real training data in a similar
spirit to coreset techniques (e.g. (Welling, 2009; Sener &
Savarese, 2018)). However, to this end, we do not limit
our method to select a subset of the training samples but to
synthesize them as in (Wang et al., 2018; Zhao et al., 2021).
As the training images are typically very high dimensional,
estimating the real data distribution PD can be expensive
and inaccurate. Instead, we assume that each training image
x ∈ <d can be embedded into a lower dimensional space
by using a family of parametric functions ψϑ : <d → <d′

where d′ � d and ϑ is the parameter. In other words, each
embedding function ψ can be seen as providing a partial
interpretation of its input, while their combination provides
a complete one.

Now we can estimate the distance between the real and
synthetic data distribution with commonly used maximum
mean discrepancy (MMD) (Gretton et al., 2012):

sup
‖ψϑ‖H≤1

(E[ψϑ(T )]− E[ψϑ(S)]), (4)

whereH is reproducing kernel Hilbert space. As we do not
have access to ground-truth data distributions, we use the
empirical estimate of the MMD:

Eϑ∼Pϑ‖
1

|T |

|T |∑
i=1

ψϑ(xi)−
1

|S|

|S|∑
j=1

ψϑ(sj)‖2, (5)

where Pϑ is the distribution of network parameters.

Following (Zhao & Bilen, 2021), we also apply the differen-
tiable Siamese augmentation A(·, ω) to real and synthetic
data that implements the same randomly sampled augmen-
tation to the real and synthetic minibatch in training, where
ω ∼ Ω is the augmentation parameter such as the rota-
tion degree. Thus, the learned synthetic data can benefit
from semantic-preserving transformations (e.g. cropping)
and learn prior knowledge about spatial configuration of
samples while training deep neural networks with data aug-
mentation. Finally, we solve the following optimization
problem:

min
S

Eϑ∼Pϑ
ω∼Ω

‖ 1

|T |

|T |∑
i=1

ψϑ(A(xi, ω))−
1

|S|

|S|∑
j=1

ψϑ(A(sj , ω))‖2.

(6)

We learn the synthetic data S by minimizing the discrepancy
between two distributions in various embedding spaces by
sampling ϑ. Importantly Equation (6) can be efficiently
solved, as it requires only optimizing S but no model param-
eters and thus avoids expensive bi-level optimization. This
is in contrast to the existing formulations (see Equation (2)
and Equation (3)) that involve bi-level optimizations over
network parameters θ and the synthetic data S.

Note that, as we target image classification problems, we
minimize the discrepancy between the real and synthetic
samples of the same class only. We assume that each real
training sample is labelled and we also set a label to each
synthetic sample and keep it fixed during training.

2.3. Training Algorithm

We depict the mini-batch based training algorithm in Algo-
rithm 1. We train the synthetic data for K iterations. In each
iteration, we randomly sample the model ψϑ with parame-
ter ϑ ∼ Pϑ. Then, we sample a pair of real and synthetic
data batches (BTc ∼ T and BSc ∼ S) and augmentation
parameter ωc ∼ Ω for every class c. The mean discrepancy
between the augmented real and synthetic batches of every
class is calculated and then summed as loss L. The synthetic
data S is updated by minimizing L with stochastic gradient
descent and learning rate η.

2.4. Discussion

Randomly Initialized Networks. The family of embed-
ding functions ψϑ can be designed in different ways. Here
we use a deep neural network with different random ini-
tializations rather than sampling its parameters from a set
of pre-trained networks which is more computationally ex-
pensive to obtain. We also experimentally validate that our
random initialization strategy produces better or comparable
results with the more expensive strategy of using pre-trained
networks in Section 3. However, one may still question why
randomly initialized networks provide meaningful embed-

3
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Algorithm 1: Dataset condensation with distribution matching
Input: Training set T

1 Required: Randomly initialized set of synthetic samples S for C classes, deep neural network ψϑ parameterized with
ϑ, probability distribution over parameters Pϑ, differentiable augmentation Aω parameterized with ω, augmentation
parameter distribution Ω, training iterations K, learning rate η.

2 for k = 0, · · · ,K − 1 do
3 Sample ϑ ∼ Pϑ
4 Sample mini-batch pairs BTc ∼ T and BSc ∼ S and ωc ∼ Ω for every class c
5 Compute L =

∑C−1
c=0 ‖

1
|BT

c |
∑

(x,y)∈BT
c
ψϑ(Aωc

(x))− 1
|BS

c |
∑

(s,y)∈BS
c
ψϑ(Aωc

(s))‖2

6 Update S ← S − η∇SL
Output: S

dings for the real data distribution. Here we list two reasons
based on the observations from previous work. First ran-
domly initialized networks are reported to produce powerful
representations for multiple computer vision tasks (Saxe
et al., 2011; Cao et al., 2018; Amid et al., 2022). Second,
such random networks are showed to perform a distance-
preserving embedding of the data, i.e. smaller distances
between samples of same class and larger distances across
samples of different classes (Giryes et al., 2016).

Connection to Gradient Matching. While we compute
features through a deep neural network over the real and
synthetic image batches and then match the mean features,
Zhao et al. (2021) compute the gradients of network weights
over the two batches and then match mean gradients. We
find that, given a batch of data from the same class, the mean
gradient vector w.r.t. each output neuron in the last layer of a
network is equivalent to a weighted mean of features where
the weights are a function of classification probabilities
predicted by the network and proportional to the distance
between prediction and ground-truth. In other words, while
our method weighs each feature equally, Zhao et al. (2021)
assign larger weights to the samples whose predictions are
inaccurate. Note that these weights dynamically vary for
different networks and training iterations. We provide the
derivation in the appendix.

Generative Models. The standard image synthesizing
techniques, includes AutoEncoders (Kingma & Welling,
2013) and Generative Adversarial Networks (GANs) (Good-
fellow et al., 2014), aim to synthesize real-looking images,
while our goal is to generate data-efficient training sam-
ples. Regularizing the images to look real may limit the
data-efficiency. Previous work (Zhao et al., 2021) showed
that the images synthesized by conditional GAN (Mirza &
Osindero, 2014) are not better than the randomly selected
real images for training networks. We further provide the
comparison to the state-of-the-art VAE and GAN models in
the appendix. Although generative models can be trained
to produce data-efficient samples with suitable objectives,
e.g. (Wang et al., 2018; Zhao et al., 2021) and ours, it is not

trivial work to build it and achieve state-of-the-art results
(Such et al., 2020). We leave it as the future work.

3. Experiments
3.1. Experimental Settings

Datasets. We evaluate the classification performance of
deep networks that are trained on the synthetic images gen-
erated by our method. We conduct experiments on four
datasets including MNIST (LeCun et al., 1998), CIFAR10,
CIFAR100 (Krizhevsky et al., 2009) and TinyImageNet
(Le & Yang, 2015). MNIST consists of 60,000 training
and 10,000 testing 28× 28 gray-scale images of 10 classes.
CIFAR10 and CIFAR100 contain 50,000/10,000 32 × 32
training/testing images from 10 and 100 object categories
respectively. We also evaluate our method on TinyImageNet
that contains 100,000 training and 10,000 testing images
from 200 categories with a higher resolution 64× 64. This
dataset has not been studied by previous works and is signifi-
cantly more challenging than MNIST and CIFAR10/100 due
to its large number of classes and larger image resolution.

Experimental Settings. We first learn 1/10/50 image(s)
per class synthetic sets for all datasets by using the same
ConvNet architecture in (Zhao et al., 2021). Then, we
use the learned synthetic sets to train randomly initialized
ConvNets from scratch and evaluate them on real test data.
The default ConvNet includes three repeated convolutional
blocks, and each block involves a 128-kernel convolution
layer, instance normalization layer (Ulyanov et al., 2016),
ReLU activation function (Nair & Hinton, 2010) and aver-
age pooling. In each experiment, we learn one synthetic set
and use it to test 20 randomly initialized networks. We re-
peat each experiment for 5 times and report the mean testing
accuracy of the 100 trained networks. We also do cross-
architecture experiments in Section 3.3 where we learn the
synthetic set on one network architecture and use them to
train networks with different architectures.

4
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Hyper-parameters. Like the standard neural network
training, dataset condensation also involves tuning a set
of hyperparameters. Our method needs to tune only one
hyper-parameter, i.e. learning rate for the synthetic images,
for learning different sizes of synthetic sets, while exist-
ing methods (Wang et al., 2018; Zhao et al., 2021) have to
tune more hyper-parameters such as the steps to update syn-
thetic images and network parameters respectively. We use
a fixed learning rate 1 for optimizing synthetic images for all
1/10/50 images/class learning on all datasets. When learning
larger synthetic sets such as 100/200/500/1,000 images per
class, we use larger learning rate (i.e. 10) due to the rela-
tively smaller distribution matching loss. We train synthetic
images for 20,000 iterations on MNIST, CIFAR10/100 and
10,000 iterations on TinyImageNet respectively. The mini-
batch size for sampling real data is 256. We initialize the
synthetic images using randomly sampled real images with
corresponding labels. All synthetic images of a class are
used to compute the class mean. We use the same augmen-
tation strategy as (Zhao & Bilen, 2021).

3.2. Comparison to the State-of-the-art

Competitors. We compare our method to three standard
coreset selection methods, namely, Random Selection, Herd-
ing (Chen et al., 2010; Rebuffi et al., 2017; Castro et al.,
2018; Belouadah & Popescu, 2020) and Forgetting (Toneva
et al., 2019). Herding method greedily adds samples into
the coreset so that the mean vector is approaching the whole
dataset mean. Toneva et al. (2019) count how many times a
training sample is learned and then forgotten during network
training. The samples that are less forgetful can be dropped.
We also compare to four state-of-the-art training set synthe-
sis methods, namely, DD (Wang et al., 2018), LD (Bohdal
et al., 2020), DC (Zhao et al., 2021) and DSA (Zhao & Bilen,
2021). More comparison to (Such et al., 2020; Nguyen et al.,
2021a;b) can be found in the appendix.

Performance Comparison. Here we evaluate our
method on MNIST, CIFAR10 and CIFAR100 datasets and
report the results in Table 1. Among the coreset selection
methods, Herding performances the best in most settings.
Especially, when small synthetic sets are learned, Herding
method performs significantly better. For example, Herding
achieves 8.4% testing accuracy when learning 1 image/class
synthetic set on CIFAR100, while Random and Forgetting
obtains only 4.2% and 4.5% testing accuracies respectively.

Training set synthesis methods have clear superiority over
coreset selection methods, as the synthetic training data
are not limited to a set of real images. Best results are
obtained either by DSA or our method. While DSA pro-
duces more data-efficient samples with a small number of
synthetic samples (1/10 image(s) per class), our method out-
performs DSA at 50 images/class setting in CIFAR10 and

0        1        2        3        4         5        6        7        8        9      Plane   Car    Bird    Cat    Deer   Dog   Frog  Horse  Ship  Truck

Figure 2. Visualization of generated 10 images per class synthetic
sets of MNIST and CIFAR10 datasets.

CIFAR100. The possible reason is that the inner-loop model
optimization in DSA with limited number of steps is more
effective to fit the network parameters on smaller synthetic
data (see Equation (3)). In case of bigger learned synthetic
data, the solution obtained in the inner-loop becomes less
accurate as it can use only limited number of steps to keep
the algorithm scalable. In contrast, our method is robust to
increasing synthetic data size, can be efficiently optimized
significantly faster than DSA.

TinyImageNet Condensation. We also evaluate our
method on a bigger and more challenging dataset, Tiny-
ImageNet, due to higher image resolution and more diverse
classes. The prior training set synthesis techniques have not
been evaluated in this dataset. Unfortunately these methods
do not scale to TinyImageNet in terms of training time and
memory usage due to the complex nested loop optimization.
So we train only our model and report its performance for
learning three condensed sets (1/10/50 images/class syn-
thetic sets) in this dataset which in total takes around 27
hours on one Tesla V100 GPU. Different from other datasets,
we use ConvNet with 4 blocks for TinyImageNet to adjust
to the larger input size. Our method achieves 3.9%, 12.9%
and 24.1% testing accuracies when learning 1, 10 and 50
images/class synthetic sets for TinyImageNet and recov-
ers 60% classification performance of the baseline that is
trained on the whole original training set with only 10% of
data. Our method significantly outperforms the best coreset
selection method - Herding, which obtains 2.8%, 6.3% and
16.7% testing accuracies.

Visualization. The learned synthetic images of MNIST
and CIFAR10 are visualized in Figure 2. We find that the
synthetic MNIST images are clear and noise free, while the
number images synthesized by previous methods contain
obvious noise and some unnatural strokes. The synthetic
images of CIFAR10 dataset are also visually recognizable
and diverse. It is easy to distinguish the background and
foreground object.

Figure 3 depicts the feature distribution of the (50 im-
ages/class) synthetic sets learned by DC, DSA and our

5
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Img/Cls Ratio % Coreset Selection Training Set Synthesis Whole Dataset
Random Herding Forgetting DD† LD† DC DSA DM

MNIST
1 0.017 64.9±3.5 89.2±1.6 35.5±5.6 60.9±3.2 91.7±0.5 88.7±0.6 89.7±0.6

99.6±0.010 0.17 95.1±0.9 93.7±0.3 68.1±3.3 79.5±8.1 87.3±0.7 97.4±0.2 97.8±0.1 97.5±0.1
50 0.83 97.9±0.2 94.8±0.2 88.2±1.2 - 93.3±0.3 98.8±0.2 99.2±0.1 98.6±0.1

CIFAR10
1 0.02 14.4±2.0 21.5±1.2 13.5±1.2 - 25.7±0.7 28.3±0.5 28.8±0.7 26.0±0.8

84.8±0.110 0.2 26.0±1.2 31.6±0.7 23.3±1.0 36.8±1.2 38.3±0.4 44.9±0.5 52.1±0.5 48.9±0.6
50 1 43.4±1.0 40.4±0.6 23.3±1.1 - 42.5±0.4 53.9±0.5 60.6±0.5 63.0±0.4

CIFAR100
1 0.2 4.2±0.3 8.4±0.3 4.5±0.2 - 11.5±0.4 12.8±0.3 13.9±0.3 11.4±0.3

56.2±0.310 2 14.6±0.5 17.3±0.3 15.1±0.3 - - 25.2±0.3 32.3±0.3 29.7±0.3
50 10 30.0±0.4 33.7±0.5 30.5±0.3 - - - 42.8±0.4 43.6±0.4

TinyImageNet
1 0.2 1.4±0.1 2.8±0.2 1.6±0.1 - - - - 3.9±0.2

37.6±0.410 2 5.0±0.2 6.3±0.2 5.1±0.2 - - - - 12.9±0.4
50 10 15.0±0.4 16.7±0.3 15.0±0.3 - - - - 24.1±0.3

Table 1. Comparing to coreset selection and training set synthesis methods. We first learn the synthetic data and then evaluate them by
training neural networks from scratch and testing on real testing data. The testing accuracies (%) are reported. Img/Cls: image(s) per
class. Ratio (%): the ratio of condensed set size to the whole training set size. Note: DD† and LD† use different architectures i.e. LeNet
for MNIST and AlexNet for CIFAR10. The rest methods all use ConvNet.

InstanceNorm BatchNorm
DSA DM DSA DM

CIFAR10 60.6±0.5 63.0±0.4 59.9±0.8 65.2±0.4
CIFAR100 42.8±0.4 43.6±0.4 44.6±0.5 48.0±0.4

TinyImageNet - 24.1±0.3 - 28.2±0.5

Table 2. 50 images/class learning with Batch Normalization.

C\T ConvNet AlexNet VGG ResNet

DSA ConvNet 59.9±0.8 53.3±0.7 51.0±1.1 47.3±1.0

DM

ConvNet 65.2±0.4 61.3±0.6 59.9±0.8 57.0±0.9
AlexNet 60.5±0.4 59.8±0.6 58.9±0.4 54.6±0.7

VGG 54.2±0.6 52.6±1.0 52.8±1.1 49.1±1.0
ResNet 52.2±1.0 50.9±1.4 49.6±0.9 52.2±0.4

Table 3. Cross-architecture testing performance (%) on CIFAR10.
The 50 img/cls synthetic set is learned on one architecture (C), and
then tested on another architecture (T).

method (DM). We use a network trained on the whole train-
ing set to extract features and visualize the features with
T-SNE (Van der Maaten & Hinton, 2008). We find that the
synthetic images learned by DC and DSA cannot cover the
real image distribution. In contrast, our synthetic images
successfully cover the real image distribution. Furthermore,
fewer outlier synthetic samples are produced by our method.

Learning with Batch Normalization. Zhao et al. (2021)
showed that instance normalization (Ulyanov et al., 2016)
works better than batch normalization (BN) (Ioffe &
Szegedy, 2015) when learning small synthetic sets because
the synthetic data number is too small to calculate stable
running mean and standard deviation (std). When learning
with batch normalization, they first pre-set the BN mean and
std using many real training data and then freeze them for
synthetic data. Thus, the inaccurate mean and std will make
optimization difficult (Ioffe & Szegedy, 2015). In contrast,
we estimate running mean and std by inputting augmented
synthetic data from all classes. Hence, our method bene-
fits from the true mean and std of synthetic data. Table 2
show that using ConvNet with BN can further improve our
performance. Specifically, our method with BN achieves

65.2%, 48.0% and 28.2% testing accuracies when learning
50 images/class synthetic sets on CIFAR10, CIFAR100 and
TinyImageNet respectively, which means 2.2%, 4.4% and
4.1% improvements over our method with the default in-
stance normalization, and also outperforms DSA with BN
by 5.3% and 3.4% on CIFAR10 and CIFAR100 respectively.

Training Cost Comparison. Our method is significantly
more efficient than those bi-level optimization based meth-
ods. Without loss of generality, we compare the training
time of ours and DSA in the setting of learning 50 im-
ages/class synthetic data on CIFAR10. Figure 4 shows that
our method needs less than 20 minutes to reach the perfor-
mance of DSA trained for 15 hours, which means less than
2.2% training cost. Note that we run the two methods in the
same computation environment with one GTX 1080 GPU.

Learning Larger Synthetic Sets We show that our
method can also be used to learn larger synthetic sets, while
the bi-level optimization based methods typically requires
more training time and elaborate hyper-parameter tuning for
larger settings. Figure 5 compares our method to random
selection baseline in CIFAR10 in terms of absolute and rela-
tive performance w.r.t. whole dataset training performance.
Clearly our method outperforms random baseline at all op-
erating points which means that our synthetic set is more
data-efficient. The advantage of our method is remarkable
in challenging settings, i.e. settings with small data budgets.
Our method obtains 67.0±0.3%, 71.2±0.4%, 76.1±0.3%,
79.8±0.3% and 80.8±0.3% testing accuracies when learn-
ing 100, 200, 500, 1000 and 1250 images/class synthetic
sets on CIFAR10 dataset respectively, which means we
can recover 79%, 84%, 90%, 94% and 95% relative per-
formance using only 2%, 4%, 10%, 20% and 25% training
data compared to whole dataset training. We see that the
performance gap between the two methods narrows when
we learn larger synthetic set. This is somewhat expected, as
randomly selecting more samples will approach the whole
dataset training which can be considered as the upper-bound.
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DC DSA DM

Figure 3. Distributions of synthetic images learned by DC, DSA and DM. The red, green and blue points are the real images of first three
classes in CIFAR10. The stars are corresponding learned synthetic images.
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Figure 4. Training time comparison to DSA when learning 50
img/cls synthetic sets on CIFAR10.

As we initialize synthetic images from random real images,
the initial distribution discrepancy becomes tiny when the
synthetic set is large.

3.3. Cross-architecture Generalization

(Zhao et al., 2021; Zhao & Bilen, 2021) verified the cross-
architecture generalization ability of synthetic data in an
easy setting - learning 1 image/class for MNIST dataset.
In this paper, we implement a more challenging cross-
architecture experiment - learning 50 images/class for CI-
FAR10 dataset. In Table 3, the synthetic data are learned
with one architecture (denoted as C) and then be evalu-
ated on another architecture (denoted as T) by training a
model from scratch and testing on real testing data. We test
several sophisticated neural architectures namely ConvNet,
AlexNet (Krizhevsky et al., 2012), VGG-11 (Simonyan &
Zisserman, 2014) and ResNet-18 (He et al., 2016). Batch
Normalization is used in all architectures.

Table 3 shows that learning and evaluating synthetic set on
ConvNet achieves the best performance 65.2%. Comparing
with DSA, the synthetic data learned by our method with
ConvNet have better generalization performance than that
learned by DSA with the ConvNet. Specifically, our method
outperforms DSA by 8.0%, 8.9% and 9.7% when testing
with AlexNet, VGG and ResNet respectively. These results
indicate that the synthetic images learned with distribution
matching have better generalization performance on unseen
architectures than those learned with gradient matching.
The learning of synthetic set can be worse with more so-
phisticated architecture such as ResNet. It is reasonable that
the synthetic data fitted on sophisticated architecture will
contain some bias that doesn’t exist in other architectures,

Random 10-20 20-30 30-40 40-50 50-60 60-70 ≥70 All

1 26.0 26.2 25.9 26.1 26.7 26.8 27.3 26.5 26.4
10 48.9 48.7 48.1 50.7 51.1 49.9 48.6 48.2 50.7
50 63.0 62.7 62.1 62.8 63.0 61.9 60.6 60.0 62.5

Table 4. The performance of synthetic data learned on CIFAR10
dataset with different network distributions. All standard devia-
tions in this table are< 1. These networks are trained on the whole
training set and grouped based on the validation accuracy (%).

therefore cause worse cross-architecture generalization per-
formance. We also find that the evaluation of the same
synthetic set on more sophisticated architectures will be
worse. The reason may be that sophisticated architectures
are under-fitted using small synthetic set.

3.4. Ablation Study on Network Distribution

Here we study the effect of using different network distri-
butions while learning 1/10/50 image(s)/class synthetic sets
on CIFAR10 with ConvNet architecture. Besides sampling
randomly initialized network parameters, we also construct
a set of networks that are pre-trained on the original training
set. In particular, we train 1,000 ConvNets with different
random initializations on the whole original training set
and also store their intermediate states. We roughly divide
these networks into nine groups according to their validation
accuracies, sample networks from each group, learn the syn-
thetic data on them and use learned synthetic data to train
randomly initialized neural networks. Interestingly we see
in Table 4 that our method works well with all nine network
distributions and the performance variance is small. The vi-
sualization and analysis about synthetic images learned with
different network distributions are provided in the appendix.

3.5. Continual Learning

We also use our method to store more efficient training sam-
ples in the memory for relieving the catastrophic forgetting
problem in continual (incremental) learning (Rebuffi et al.,
2017). We set up the baseline based on GDumb (Prabhu
et al., 2020) which stores training samples in memory greed-
ily and keeps class-balance. The model is trained from
scratch on the latest memory only. Hence, the continual
learning performance completely depends on the quality
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Figure 5. Learning larger synthetic sets
on CIFAR10.
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Figure 6. 5-step class-incremental learn-
ing on CIFAR100.
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Figure 7. 10-step class-incremental learn-
ing on CIFAR100.

Random DSA DM Early-stopping Whole Dataset

Performance (%) 84.0 82.6 82.8 84.3 85.9
Correlation -0.04 0.68 0.76 0.11 1.00

Time cost (min) 142.6 142.6 142.6 142.6 3580.2
Storage (imgs) 500 500 500 5× 104 5× 104

Table 5. We implement neural architecture search on CIFAR10
dataset with the search space of 720 ConvNets.

of the memory construction. We compare our memory
construction method i.e. training set condensation to the
random selection that is used in (Prabhu et al., 2020), herd-
ing (Chen et al., 2010; Rebuffi et al., 2017; Castro et al.,
2018; Belouadah & Popescu, 2020) and DSA (Zhao & Bilen,
2021). We implement class-incremental learning on CI-
FAR100 dataset with an increasing memory budget of 20
images/class. We implement 5 and 10 step learning, in
which we randomly and evenly split the 100 classes into 5
and 10 learning steps i.e. 20 and 10 classes per step respec-
tively. The default ConvNet is used in this experiment.

As depicted in Figure 6 and Figure 7, we find that our
method GDumb + DM outperforms others in both two set-
tings, which means that our method can produce the best
condensed set as the memory. The final performances of
ours, DSA, herding and random are 34.4%, 31.7%, 28.2%
and 24.8% in 5-step learning and 34.6%, 30.5%, 27.4%
and 24.8% in 10-step learning. We find that ours and ran-
dom selection performances are not influenced by how the
classes are split namely how many new training classes
and images occur in each learning step, because both two
methods learn/generate the sets independently for each class.
However, DSA and herding methods perform worse when
the training class and image numbers become smaller in
every step. The reason is that DSA and herding needs to
learn/generate sets based on the model(s) trained on the
current training data, which is influenced by the data split.
More details can be found in the appendix.

3.6. Neural Architecture Search

The synthetic sets can also be used as a proxy set to acceler-
ate model evaluation in Neural Architecture Search (NAS)
(Elsken et al., 2019). Following (Zhao et al., 2021), we
implement NAS on CIFAR10 with the search space of 720
ConvNets varying in network depth, width, activation, nor-
malization and pooling layers. Please refer to (Zhao et al.,
2021) for more details. We train all architectures on the

learned 50 images/class synthetic set, i.e. 1% size of the
whole dataset, from scratch and then rank them based on the
accuracy on a small validation set. We compare to random,
DSA and early-stopping methods. The same size of real
images are selected as the proxy set in random. DSA means
that we use the synthetic set learned by DSA in the same
setting. In early-stopping, we use the whole training set to
train the model but with the same training iterations like
training on the proxy datasets. Therefore, all these meth-
ods have the same training time. We train models on the
proxy sets for 200 epochs and whole dataset for 100 epochs.
The best model is selected based on validation accuracies
obtained by different methods. The Spearman’s rank corre-
lation between performances of proxy-set and whole-dataset
training is computed for the top 5% architectures selected
by the proxy-set.

The NAS results are provided in Table 5. Although the
architecture selected by early-stopping achieves the best per-
formance (84.3%), its performance rank correlation (0.11)
is remarkably lower than DSA (0.68) and DM (0.76). In
addition, early-stopping needs to use the whole training set,
while other proxy-set methods need only 500 training sam-
ples. The performance rank correlation of Random (-0.04)
is too low to provide a reliable ranking for the architec-
tures. Our method (DM) achieves the highest performance
rank correlation (0.76), which means that our method can
produce reliable ranking for those candidate architectures
while using only around 1

25 training time of whole dataset
training. Although our method needs 72 min to obtain the
condensed set, it is negligible compared to whole-dataset
training (3580.2 min). More implementation details and
analysis can be found in the appendix.

4. Conclusion
In this paper, we propose an efficient training set synthesis
method based on distribution matching. The synthetic data
of different classes can be learned independently and in par-
allel. Thanks to its efficiency, we can apply our method to
more challenging dataset - TinyImageNet, and learn larger
and higher resolution synthetic sets. Our method is 45 times
faster than the state-of-the-art for learning 50 images/class
synthetic set on CIFAR10. We also empirically prove that
our method can produce more informative memory for con-
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tinual learning and better proxy set for speeding up model
evaluation in neural architecture search. Though remarkable
progress has been seen in this area since the pioneering work
(Wang et al., 2018) released in 2018, dataset condensation is
still in its early stage. We will extend dataset condensation
to more complex datasets and tasks in the future.
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A. Implementation details
A.1. Dataset Condensation

DSA Results. As (Zhao & Bilen, 2021) didn’t report 50 images/class learning performance on CIFAR100, we obtain the
result in Table 1 by running their released code and coarsely searching the hyper-parameters (outer and inner loop steps).
Then, we set both outer and inner loop to be 10 steps. The rest hyper-parameters are the default ones in their released
code. To obtain the DSA results with batch normalization in Table 2 and Table 3, we also run DSA code and set batch
normalization in ConvNet.

ResNet with Batch Normalization. We follow the modification of ResNet in (Zhao et al., 2021). They replace the
stride = 2 convolution layer with stride = 1 convolution layer followed by an average pooling layer in the ResNet
architecture that is used to learn the synthetic data. This modification enables smooth error back-propagation to the input
images. We directly use their released ResNet architecture.

A.2. Continual Learning

Data Augmentation. Prabhu et al. (Prabhu et al., 2020) use cutmix (Yun et al., 2019) augmentation strategy for training
models. Different from them, we follow (Zhao & Bilen, 2021) and use the default DSA augmentation strategy in order to be
consistent with other experiments in this paper.

DSA and Herding Training. Without loss of generality, we run DSA training algorithm on the new training classes and
images only in every learning step. It is not a easy work to take old model and memory into DSA training and achieve better
performance. The synthetic data learned with old model can also be biased to it, and thus perform worse. Similarly, we train
the embedding function (ConvNet) for herding method on the new training classes and images only.

A.3. Neural Architecture Search

We randomly select 10% training samples in CIFAR10 dataset as the validation set. The rest are the training set. The batch
size is 250, then one training epoch on the small (50 images/class) proxy sets includes 2 batches. The DSA augmentation
strategy is applied to all proxy-set methods and early-stopping. We train each model 5 times and report the mean accuracies.
We do NAS experiment on one Tesla v100 GPU.

We visualize the performance rank correlation between proxy-set and whole-dataset training in Figure F8. The top 5%
architectures are selected based on the validation accuracies of models trained on each proxy-set. Each point represents a
selected architecture. The horizontal and vertical axes are the testing accuracies of models trained on the proxy-set and
the whole dataset respectively. The figure shows that our method can produce better proxy set to obtain more reliable
performance ranking of candidate architectures.
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Figure F8. Performance rank correlation between proxy-set and whole-dataset training.

B. Comparison to Generative Models
In this section, we compare the data-efficiency of samples generated by our dataset condensation method to those generated
by traditional generative models, namely VAE and GAN. Specifically, we choose the state-of-the-art DC-VAE (Parmar et al.,
2021) and BigGAN (Brock et al., 2018). In addition, we also compare to a related generative model GMMN (Li et al.,
2015) which aims to learn an image generator that can map a uniform distribution to real image distribution. We train these

11



Dataset Condensation with Distribution Matching

generative models on CIFAR10 dataset. ConvNets are trained on these synthetic images and then evaluated on real testing
images. The results in Table T6 verify that our method outperforms them by large margins, indicating that our synthetic
images are more informative for training deep neural networks. The traditional generative methods, which aim to synthesize
photo-realistic images, do not guarantee to generate informative training samples.

Img/Cls GMMN VAE BigGAN DM

1 16.1±2.0 15.7±2.1 15.8±1.2 26.0±0.8
10 32.2±1.3 29.8±1.0 31.0±1.4 48.9±0.6
50 45.3±1.0 44.0±0.8 46.2±0.9 63.0±0.4

Table T6. Comparison to traditional generative models. The experiments are implemented with ConvNets on CIFAR10 dataset.

C. Comparison to GTN and KIP Methods
We notice the recent works Generative Teaching Networks (GTN) (Such et al., 2020) and Kernel Inducing Point (KIP)
(Nguyen et al., 2021a;b) on dataset condensation. Such et al. (2020) propose to learn a generative network that outputs
condensed training samples by minimizing the meta-loss on real data. They report the performance of 4,096 synthetic
images learned on MNIST which is comparable to our 50 images/class synthetic set (i.e. 500 images in total) performance.

Nguyen et al. (2021a;b) propose to replace the neural network optimization in the bi-level optimization (Wang et al., 2018)
with kernel ridge regression which has a closed-form solution. Zero Component Analysis (ZCA) (Krizhevsky et al., 2009) is
applied for pre-processing images. Although Nguyen et al. (2021b) report the results on 1024-width neural networks while
we train and test 128-width neural networks, our results still outperform theirs in some settings, for example 98.6± 0.1% v.s.
98.3± 0.1% when learning 50 images/class on MNIST and 29.7± 0.3% v.s. 28.3± 0.1% when learning 10 images/class
on CIFAR100. Note that they achieve those results by leveraging distributed computation environment and training for
thousands of GPU hours. In contrast, our method can learn synthetic sets with one GTX 1080 GPU in dozens of minutes,
which is significantly more efficient.

D. Extended Visualization and Analysis
We visualize the 10 images/class synthetic sets learned on CIFAR10 dataset with different network parameter distributions
in Figure F9. It is interesting that images learned with “poor” networks that have lower validation accuracies look blur.
We can find obvious checkerboard patterns in them. In contrast, images learned with “good” networks that have higher
validation accuracies look colorful. Some twisty patterns can be found in these images. Although synthetic images learned
with different network parameter distributions look quite different, they have similar generalization performance. We think
that these images are mainly different in terms of their background patterns but similar in semantics. It means that our
method can produce synthetic images with similar network optimization effects while significantly different visual effects.
Our method may have promising applications in protecting data privacy and federated learning (Lyu et al., 2020).

E. Connection to Gradient Matching
In this section, we show the connection between gradient matching (Zhao et al., 2021) and our method. Both (Zhao et al.,
2021) and our training algorithm sample real and synthetic image batches from one class in each iteration, which is denoted
as class y. We embed each training sample (xi, y) and obtain the feature ei using a neural network ψϑ followed a linear
classifier W = [w0, ...,wC−1], where wj is the weight vector connected to the jth output neuron and C is the number of
all classes. Note that the weight and its gradient vector are organized in the same way in (Zhao et al., 2021). We focus on
the weight and gradient of the linear classification layer (i.e. the last layer) of a network in this paper. The classification loss
Ji of each sample is denoted as

Ji =− log
exp (wT

y · ei)
Σk exp (wT

k · ei)
. (7)
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Figure F9. Synthetic images of CIFAR10 dataset learned with different network parameter distributions, i.e. networks with different
validation accuracies (%). Each row represents a class.

Then, we compute the partial derivative w.r.t. each weight vector,

gi,j =
∂Ji
∂wj

=


−ei +

exp (wT
y · ei)

Σk exp (wT
k · ei)

· ei, j = y

exp (wT
j · ei)

Σk exp (wT
k · ei)

· ei, j 6= y

(8)

This equation can be simplified using the predicted probability pi,j =
exp (wT

j ·ei)
Σk exp (wT

k ·ei)
that classifies sample xi into category

j:

gi,j =

{
(pi,y − 1) · ei, j = y

(pi,j − 0) · ei, j 6= y
(9)

Eq. 9 shows that the last-layer gradient vector gi,j is equivalent to a weighted feature vector ei and vice versa. The
weight is a function of classification probability. Generally speaking, the weight is large when the difference between
predicted probability pi,j and ground-truth one-hot label (1 or 0) is large.

As the real and synthetic samples in each training iteration are from the same class y, we can obtain the mean gradient over
a data batch by averaging the corresponding gradient components:

1

N
ΣNi gi,j =


1

N
ΣNi (pi,y − 1) · ei, j = y

1

N
ΣNi (pi,j − 0) · ei, j 6= y

(10)

N is the batch size. Thus, last-layer mean gradient is equivalent to the weighted mean feature, and the mean gradient
matching is equivalent to the matching of weighted mean feature.

Our method can learn synthetic images with randomly initialized networks. Given networks with random parameters, we
assume that the predicted probability is uniform over all categories, i.e. pi,j = 1

C . Then, the mean gradient is

1

N
ΣNi gi,j =


1− C
C
· 1

N
ΣNi ei, j = y

1

C
· 1

N
ΣNi ei, j 6= y

(11)

which is equivalent to the mean feature with a constant weight. Thus, with randomly initialized networks, the last-layer
mean gradient matching is equivalent to mean feature matching multiplied by a constant.
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