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Abstract

For isolated utterances, speech synthesis quality has improved
immensely thanks to the use of sequence-to-sequence models.
However, these models are generally trained on read speech and
fail to generalise to unseen speaking styles. Recently, more re-
search is focused on the synthesis of expressive and conversa-
tional speech. Conversational speech contains many prosodic
phenomena that are not present in read speech. We would like to
learn these prosodic patterns from data, but unfortunately, many
large conversational corpora are unsuitable for speech synthesis
due to low audio quality. We investigate whether a data mixing
strategy can improve conversational prosody for a target voice
based on monologue data from audiobooks by adding real con-
versational data from podcasts. We filter the podcast data to
create a set of 26k question and answer pairs. We evaluate
two FastPitch models: one trained on 20 hours of monologue
speech from a single speaker, and another trained on 5 hours
of monologue speech from that speaker plus 15 hours of ques-
tions and answers spoken by nearly 15k speakers. Results from
three listening tests show that the second model generates more
preferred question prosody.

Index Terms: conversational speech synthesis, speech synthe-
sis, expressive speech synthesis

1. Introduction

End-to-end speech synthesis models have led to significant
quality improvements for isolated read speech utterances. But
these models don’t generalise well to unseen material [1] such
as when training on read speech and synthesising conversa-
tional speech [2]. Spontaneous conversational speech exhibits
prosodic characteristics that distinguish it from read speech [3],
e.g. syllabic reduction, decreased prosodic range [4] and dif-
fering stress placement [5]. Further, conversational turns are
highly context-dependent, exhibiting changes in emotion and
intent, topic/focus structure, and subtle prosodic changes due to
phenomena such as (dis)entrainment. These are features that are
usually absent in read data. Due to this, synthetic voices used
in dialogue systems trained on read speech do not sound con-
versational and struggle with certain prosodic contours found
in conversation, e.g. different question types. To generate more
natural conversational speech we need to look to new sources
of data containing these phenomena [2].

In order to generate more conversationally-appropriate
speech, different methods have been proposed. For example, by
recording conversational data from chatbot scripts [6]. Though
this approach should lead to an increase in prosodic coverage
and conversational style, the speech is not truly spontaneous be-
cause it is still read speech spoken by a single speaker [2]. Tran-
scriptions of spontaneous data read aloud differ significantly
from actual spontaneous data [7] in stress placement, number
of pauses, etc [5]. Further, [6] recorded isolated conversational

utterances, thus losing prosodic phenomena which arise from
interaction with another speaker, and other important contextual
information coming from prior turns. Because of this, these data
are not suitable for training context-aware models [7]. To over-
come this [7] used a more natural yet still controlled approach,
recording 45 conversations between two female speakers with
semi-scripted interactive scenarios. The speakers were allowed
to deviate from the script, permitting phenomena such as false
starts. The conversations were then manually transcribed and
used to train a context-aware speech synthesis model.

The approaches mentioned above involve recording new
data; this is time-consuming and expensive. In contrast, [2]
looked to podcasts as a source of truly spontaneous speech.
They compared synthetic speech generated from models trained
on read speech, lab-recorded spontaneous speech, and found
spontaneous speech (from one speaker in a two-person podcast
series) of which the last was judged to be more acceptable for
casual conversations and spontaneous monologues.

The work in [2] shows the potential of podcasts as a source
of truly spontaneous speech. However, in common with all the
other approaches described so far, it still involved using a new
speaker. This means that the resulting synthetic voices have
different speaker identities; real use cases may demand a sin-
gle speaker identity for both read and conversational speaking
styles. So, we follow [2] by using podcast data but, in contrast,
we use this naturally-produced spontaneous speech to enrich the
prosodic repertoire of a target speaker based on read speech.

Spontaneous speech is inherently heterogeneous due to the
wide range of contexts and functions in which it is used [3].
This is major obstacle to doing research, which we mitigate by
narrowing our focus to the question-answer adjacency pair [8].
We chose this particular pair due to its ubiquity in speech syn-
thesis applications such as dialogue systems. Further, because
our ultimate research goal beyond this paper is to synthesise
context-dependent speech, we chose question-answers due to
their use in eliciting different prosodic renditions of the same
text, e.g. [9]. Finally, though it is only a subset of conversation,
the prosodic realisation of both questions and answers is highly
dependent on the interactional context in which they are found,
so they are a good test case before tackling the wider properties
of conversation in general.

The goal of the current work is to:

create a corpus of question-answer pairs from found two-
party spontaneous podcast data.

e create a multi-speaker model using read monologue data
combined with the above data.

evaluate whether adding spontaneous data improves
prosody of questions and answers.



2. Data

2.1. Spontaneous Speech Data

The Spotify 100,000 Podcast dataset [10] contains 2 TB of
data from a selection of 100k podcasts which have been au-
tomatically transcribed, punctuated and speaker diarised using
Google Cloud Services. The recordings contain some overlap-
ping speech, background music, and laughter and the automatic
transcriptions contain errors in word recognition and diarisa-
tion. Filled pauses and hesitations such as uhm are not tran-
scribed. Since we do not have the resources to manually correct
or even to quantify the above errors, we applied several stages
of filtering to discard suspect data.

2.1.1. Data Filtering

We split the data into subsets according to the number of
speakers detected by speaker diarisation and retained only pod-
casts containing exactly two speakers, to obtain ~74k pod-
casts. Based on punctuation and diarisation we split the tran-
scripts into utterances. Errors in diarisation or punctuation led
to some such utterances being attributed to two speakers. We re-
tained only utterances attributed to a single speaker and whose
transcript was a complete sentence (according to the automatic
punctuation).

To extract question and answer pairs, we located utterances
which ended in a question mark, though this might exclude
questions without typical question syntax, e.g. declarative ques-
tions. To extract the answer we simply took the following turn
if attributed to the other speaker. The speech corresponding to
the extracted question-answer pairs forms our corpus. This re-
sulted in 123,943 question-answer pairs. We removed question-
answer pairs containing symbols or numbers to avoid text nor-
malisation issues, as well as recordings under 500 ms or over
15 s in duration. The resulting set at this stage contains 92,478
question-answer pairs.

2.1.2. Audio Filtering

To ensure that each question and its answer were actually spo-
ken by different speakers (recall that the provided diarisation
is imperfect), we extracted speaker embeddings using Speech
Brain [11] ECAPA-TDNN [12] for both and performed speaker
verification. We removed pairs for which the model deemed
the speakers were the same. The audio data is single channel
and therefore does not offer the possibility to separate speakers
by channel. So we used Pyannote audio [13] to detect overlap-
ping speech and removed pairs in which any overlap was found.
We also used a laughter detector [14] and removed any pairs
in which laughter was found. The final set comprises 26,876
question-answer pairs amounting to ~ 18 hours of questions and
~20 hours of answers.

2.2. Read Speech Data

Our target speaker dataset is LJ Speech which consists of 13,100
utterances from audiobooks read by a female speaker of Amer-
ican English.

3. Method

Our method involves training speech synthesis models on a
combination of spontaneous and read speech.

3.1. Data Selection

For the current work, we randomly selected an even number
of hours of questions and answers from the question-answer
dataset (henceforth simply ‘spontaneous speech’) described in
the previous section. All selected utterances had a duration for
1s to 10s and a podcast country label of UK, US, Canada or
general English. For a baseline read speech model we randomly
selected 20 hours of data from LJ Speech in which maximum
utterance duration is 10's (henceforth ‘read speech’).

In early experiments, we compared models trained on data
comprising 0%, 25%, 50%, or 75% spontaneous speech with
100%, 75%, 50%, or 25% read speech respectively. Informal
listening showed that the model trained with 75% spontaneous
speech + 25% read speech did not suffer significantly in qual-
ity compared to the using 100% read speech, and that larger
prosodic improvements were observed than with the 25%+75%
or 50%+50% models. Table 1 summarises the data used in sub-
sequent experiments.

Table 1: Approximate training data for each model

read spontaneous speech
model speech  questions  answers total
baseline | 20 hours 20 hours
datamix | Shours 7.5hours 7.5hours 20 hours
3.2. Model

We used FastPitch 1.1 [15] which is a multi-speaker non-
autoregressive model with a transformer encoder-decoder ar-
chitecture. It employs three variance adapters which predict
values for Fp, intensity and duration. We trained two mod-
els. The first model is the baseline trained only on read speech
(from LJ Speech). For consistency, baseline was trained us-
ing a speaker embedding table of the same size as in our sec-
ond model, with only one entry being used. Our second model,
datamix, combines read speech (from LJ Speech) and sponta-
neous speech (selected from Spotify podcasts using the proce-
dure in Section 2) in the ratio specified in Table 1. The speaker
embedding table has 14849 entries: 1 for the single LJ Speech
speaker and the remainder for the speakers in the spontaneous
speech data; all speaker codes are used during training. We
trained each model for 1k epochs with a batch size of 20 on 3
GPUs.

3.3. Evaluation

We hypothesised that datamix would generate more natural-
and conversational-sounding speech. This was tested in two
preference tests using identical stimuli and differing only in the
instructions to listeners. In the first test, listeners were presented
with 100 pairs of stimuli (each pair comprising the output of
datamix and baseline for the same text) and asked Which of
the following sounds the most conversational? Stimulus order
was randomised within and across pairs, differently for each
listener. In a post-test questionnaire we asked them what they
understood by the term ‘conversational’. The second listening
test was identical, except that it asked a new set of participants
Which of the following do you prefer?

To gauge the overall quality of both models we also per-
formed a Mean Opinion Score (MOS) test which presented an-
other new set of listeners with 50 synthesised questions and



50 synthesised answers (counterbalanced across two listener
groups so that no participant heard the same text spoken by both
systems). Participants were asked to rate each stimulus on a
scale labelled /-bad, 2-poor, 3—fair, 4—good and 5—excellent.

3.3.1. Stimuli

We started from 100 questions and 100 answers randomly
selected from the question-answer dataset and not used for
model training. Based only on the natural speech and its auto-
matic transcription, we manually removed utterances contain-
ing fewer than 2 words, more than 15 words, profanity, con-
troversial topics, gross grammatical errors, nonsensical content,
false starts, or acronyms (to avoid text normalisation errors).
From the remaining utterances, we randomly selected 50 ques-
tions and 50 answers for use in all listening tests.

3.3.2. Listeners

We recruited ~30 listeners for each of the 3 listening tests
through Prolific' who were US residents, native English speak-
ers with no reported hearing impairments, and balanced for sex.
Listeners were removed if they did not complete the test, did
not use headphones or had issues playing the audio samples.
No listener was permitted to participate more than once.

3.3.3. Statistical Analysis

We used mixed-effects regression models to account for lack of
independence in the data due to repeated measures for listeners
and stimuli. These sources of variance have been found to be
quite significant in speech synthesis evaluation studies and pose
problems in evaluating TTS output [16]. For the analysis of
preference test results we use a binomial mixed-effects model
using the logit-link function with random intercepts for listener
and stimulus to account for variance between listeners and stim-
uli. We used the Ime4 package [17]. In this model, we used no
predictors and are therefore testing whether the intercept coef-
ficient is different from the null hypothesis, which is that both
models have an equal probability of being chosen. This form
of testing is roughly equivalent to the exact binomial test, but
now we are able to account for random variation due to listeners
and stimuli. For the MOS analysis, we used a cumulative link
mixed-model (CLMM) using the ordinal package [18]. These
models have been shown to be more suitable for analysis of rat-
ings, as they account for the ordinal nature of the response, and
have already been used in Natural Language Generation eval-
uation [19]. Again, the inclusion of random intercepts allows
us to account for variance caused by listeners and stimuli, e.g.
listeners using different levels of the ordinal scale. Equations
for each model are given in the next section.

4. Results

4.1. Preference Tests

31 listeners completed the first preference test, which asked
Which of the following sounds more conversational?. We re-
moved 1 listener for not using headphones, 1 for having issues
with a number of audio files and 1 for completing the test in
less time than the total duration of the audio. This left 28 listen-
ers. For both preference tests we used a binomial mixed-effects

"https://www.prolific.co
2Stimuli and statistical analysis are found here: https://
johannahom.github.io/Interspeech-Samples/

model with the logit function using the following formula which
tests whether the distribution of model preferences differs from
chance:

choice ~ 1 + (1|listener) + (1l]stimulus)

Results are summarised in figure 1. We found a significant in-
tercept for questions (8=0.47 (0.61 prob), CI=(0.56,0.67), p <
0.01) which means that datamix was chosen significantly more
times than baseline. For answers, we found no significant dif-
ference between datamix and baseline (5=-0.17 (0.46 prob),
CI=(0.41,0.51), p=0.09).
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Figure 1: Results for ‘Which sounds the most conversational?’

The second preference simply asked Which of the following do
you prefer? and 32 listeners took part, of which 1 was removed
for not using headphones, and 1 for having issues playing some
audio files. The results are summarised in figure 2. Again
datamix was chosen significantly more times over baseline for
questions (8=0.44 (0.61 prob), CI=(0.54,0.67), p < 0.01), but
not for answers (8=-0.21 (prob=0.45), CI=(0.39,0.50), p=0.06).
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Figure 2: Results for ‘Which of the following do you prefer?’

4.2. MOS Test

A total of 62 listeners (30 and 32 per listener group) completed
this test, of which 2 were removed for failing to use headphones.
The mean MOS for baseline when synthesising answers was
M=3.19 SD=1.21 and for questions M=2.83 SD=1.20. For
datamix, the mean MOS for answers was M=3.07 SD=1.24
and for questions M=3.12 SD=1.22. The MOS results are sum-
marised in figures 3 and 4.

8 Datamix [ [ [
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Figure 3: MOS results for questions.

To test whether the models were rated significantly differ-
ently, we fitted an ordinal mixed-effects model predicting the
effect of each model and sentence type on the log
odds of receiving a particular MOS. We specified a random ef-
fects structure to account for repeated measures of both stim-
ulus and listener which accounts for random variation of both,
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Figure 4: MOS results for answers

i.e. some listeners will use the scale differently and some stim-
uli will show random variation, and a random slope for listeners
to account for baseline preference of one model over another.
We used the following formula:

MOS score ~ model x sentence type +
(model|listener) + (1l|stimulus)

To test the significance of the fixed effect, we compared mod-
els using a log-likelihood test between models with and without
each factor of interest. We found that there was no main ef-
fect of model (8=-0.25, SE=0.25, G*(1)=0.82, p=0.37) or of
sentence type (8=-0.74, SE=0.25, G*(1)=3.15, p=0.08).
This means that, taken independently, there is no significant dif-
ference between ratings of questions and answers, or between
the models. We did however find a significant interaction be-
tween model and sentence type using log-likelihood ra-
tio test between the full CLMM and the CLMM without an in-
teraction factor (3=0.83, SE=0.35, G*(1)=5.47, p=0.02). To
examine this interaction we calculated the predicted probability
of each MOS rating per model and sentence type (see 5). As
we can see, questions in baseline have a higher probability than
answers of being scored as a 1 or a 2, and consequently a lower
probability of getting a higher rating. As in the preference tests,
this shows us that datamix performs better for questions, but
performs roughly equally well for answers.

Predicted Probability of MOS Score

1 2 3

40% 3 3
30% {
20% {
Z10%
E ow ! 2
5} Baseline Datamix  Baseline Datamix  Baseline Datamix
-9
g 4 9
,_g) 40%
Dg:) 30% { Sentence Type
Answer
20% } - Question
10% E

0%

Model

Figure 5: CLMM predicted probabilities of MOS scores for
models and sentence types.

5. Discussion

The preference test results show that enriching training data
with spontaneous speech (in this case from multiple speakers)
leads to an increase in listener preference and ratings. The dif-
ference between datamix and baseline is significant when syn-
thesising questions. There may be a trend towards a lower pref-
erence for datamix answers, but this is not significant. The
MOS test paints a similar picture: questions were rated sig-
nificantly higher for datamix; for answers, both models per-
formed similarly. Comparing the results of the Which sounds

the most conversational? preference test with those of Which
do you prefer?, we conclude that listeners did not find our mod-
els significantly more conversational as the results of both pref-
erence tests are quite similar. This is probably due to the multi-
speaker set-up which has learned specific prosodic features for
each speaker and thus still uses more prosodic information from
the read data than the spontaneous data. A possible improve-
ment to our approach might be to remove speaker conditioning
from the variance adapters of FastPitch thus allowing them to
be speaker independent. This prosodic information could then
be shared across speakers, similar to [1] who pre-trained the
duration variance adapter using ASR data.

Next to adapting how the spontaneous data is incorporated
during model training, our future work will also focus on data
development. Improvement can likely be achieved using more
data filtering and selection techniques e.g. matching speaker
gender to our target speaker and by adding more information
about emotion or pragmatic intent of the questions and an-
swers to condition the variance adapters during training. To
achieve this our future work aims to further filter the corpus of
question-answer pairs using clustering of audio and textual fea-
tures. Choosing speakers with more similar characteristics to
our model speaker may also improve the quality of the model.

As mentioned, our ultimate goal is to synthesise more ap-
propriate questions and answers based on prior context. When
dealing with spontaneous data we are likely to have richer
and more contextually-dependent prosodic realisations in both
questions and answers. There is likely significant variation in
question prosody depending on dialogue function, for example
whether a question is asking for clarification or opening a new
topic [20]. In this study we used questions taken out of their
context and trained a context-unaware model, which might re-
vert to generating an average prosodic representation of ques-
tions, losing the variation in the data. It is therefore likely that
using context will lead to an increase in quality of question
intonation as we include information to account for different
prosodic realisations. This work is therefore a stepping stone to
future work tackling these issues.

6. Conclusions

We have shown that enhancing training data with speech from
real spontaneous conversations leads to improvements in the
prosody of synthetic speech for a target speaker for whom we
only have read speech. The introduction of speech from sev-
eral thousand speakers did not lead to a reduction in quality for
the target speaker, and did improve listener ratings of question
prosody. We acknowledge that there other methods we could
use to inject this prosodic knowledge into the model, for ex-
ample pre-training the FastPitch variance adapters. Though our
ultimate goal is to use this data for context-aware question and
answer generation, here we have already shown that a simple
use of this data leads to improvements in prosody. We will con-
duct further analysis on the output of datamix to investigate
where it fails for answer prosody, and why questions are rated
more highly. Future work will also focus on selecting cleaner
speech samples from our question-answer dataset, and use con-
text to predict the prosodic realisation of questions and answers.
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