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Robust Market Equilibria under Uncertain Cost

Christian Biefel, Frauke Liers, Jan Rolfes,

Lars Schewe, Gregor Zöttl

Abstract. This work studies equilibrium problems under uncertainty where
firms maximize their profits in a robust way when selling their output. Ro-
bust optimization plays an increasingly important role when best guaranteed
objective values are to be determined, independently of the specific distribu-
tional assumptions regarding uncertainty. In particular, solutions are to be
determined that are feasible regardless of how the uncertainty manifests itself
within some predefined uncertainty set. Our mathematical analysis adopts
the robust optimization perspective in the context of equilibrium problems.
First, we present structural insights for a single-stage, nonadjustable robust
setting. We then go one step further and study the more complex two-stage
or adjustable case where a part of the variables can adjust to the realization
of the uncertainty. We compare equilibrium outcomes with the corresponding
centralized robust optimization problem where the sum of all profits are
maximized. As we find, the market equilibrium for the perfectly competitive
firms differs from the solution of the robust central planner, which is in
stark contrast to classical results regarding the efficiency of market equilibria
with perfectly competitive firms. For the different scenarios considered, we
furthermore are able to determine the resulting price of anarchy. In the case
of non-adjustable robustness, for fixed demand in every time step the price
of anarchy is bounded whereas it is unbounded if the buyers are modeled
by elastic demand functions. For the two-stage adjustable setting, we show
how to compute subsidies for the firms that lead to robust welfare optimal

equilibria.

Keywords. Robustness and sensitivity analysis; Equilibrium Problems; Ro-
bust Optimization; Adjustable Robustness

Corresponding author. Christian Biefel - christian.biefel@fau.de

1. Introduction

Equilibrium problems arise whenever several agents which interact in a common
context maximize their own objectives. An equilibrium then corresponds to a ’sta-
ble’ situation in which no agent has an incentive to deviate from his or her optimum
strategy, given the strategies of all other agents. Such tasks appear in wide contexts,
for example in market interactions, in transportation, and the like. Many insights
have already been obtained for the case of deterministic and risk neutral settings.
In many situations however, uncertainty and risk play an essential role for the opti-
mization problems of the different agents and the resulting equilibria. Indeed, when
neglecting the influence of uncertainty, solutions may differ considerably, and so it
is advisable to hedge against them.

Recently, the explicit consideration of uncertainties in equilibrium problems
has obtained increased attention. Most of those contributions model the un-
certainties from a stochastic optimization perspective. Stochastic optimiza-
tion (Birge and Louveaux [2011]) protects against uncertainties with a certain prob-
ability and in expectation. A prominent approach, for example, consists in the
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introduction of risk functions which allows to take into account risk aversion (for
the seminal work compare Artzner et al. [1999]).

A stochastic optimization approach naturally assumes that information on the
underlying probability distributions is available. In many settings, however, such
knowledge may not be available, or, in safety-critical situations, protection in a
probabilistic sense may not be enough. Furthermore, the resulting problems are
not necessarily algorithmically tractable. In such situations, a different modelling
approach is appropriate that has its foundations in robust optimization.

In robust optimization (Ben-Tal et al. [2009]), the task is to ensure feasibility
of a solution regardless of how uncertainties manifest themselves within predefined
uncertainty sets. Among all such robust feasible solutions, a robust optimum is de-
termined that yields best guaranteed objective values. A main challenge in this very
active research area consists in modelling or reformulating the robust counterpart
problem in a way that leads to algorithmical tractability. Another topic of research
studies how conservative the robust solutions are, i.e., the cost of robust protection
when compared to the unprotected case in which uncertainties are ignored.

In the present article, we thus present structural insights into equilibrium prob-
lems where firms in a market context maximize their profits in a robust way when
selling their output. Firms optimize their investment and production decisions for
several periods of time facing uncertain production costs. We first analyze the
single-stage or non-adjustable robust setting, where the firms’ production decisions
are determined by the original output decision for all periods of time and for all
realizations of cost uncertainty. We then go one step further and study the more
complex two-stage or adjustable case where firms first observe the realizations of
uncertainty and can then adjust their production choices that are bounded by the
originally made investments. The adjustable case is typically less conservative than
the one-stage problem. We derive analytical results and compare equilibrium out-
comes with the corresponding robust central planner solution where the worst case
sum of all profits is maximized. For our analysis we consider the case of perfectly
competitive firms which act as price takers. We establish existence of the resulting
robust equilibrium problems and characterize them.

As we find, the market equilibrium for the perfectly competitive firms differs
from the solution of the robust central planner, which is in stark contrast to classical
results regarding the efficiency of market equilibria with perfectly competitive firms,
compare e.g. Joskow and Tirole [2007] or Zöttl [2010]. For the different scenarios
considered we furthermore are able to determine the resulting price of anarchy
(PoA), see e.g. Koutsoupias and Papadimitriou [1999] or Dubey [1986] for seminal
contributions. In the case of non-adjustable robustness, for fixed demand in every
time step the price of anarchy is bounded whereas it is unbounded if the buyers
are modeled by elastic demand functions. In the case of adjustable robustness, we
derive an approach to compute subsidies for the firms that lead to welfare optimal
equilibria in the robust market. As a direct application of our results we consider a
setting where the market participants aim to optimize their respective values at risk,
instead of their worst-case production costs. Here, the values at risk of the market
participants determine the uncertainty set for our robust problem. We summarize
our findings in Table 1.

Next, we add on the brief overview of the related literature. For the case of
deterministic or risk-neutral optimization, our framework has already been well
studied in the context of the so called peak–load pricing literature, compare e.g.
Murphy and Smeers [2005], Joskow and Tirole [2007], or Zöttl [2010].
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More recently, a large strand of contributions has developed which considers
stochastic equilibrium problems. Ehrenmann and Smeers [2011] for example char-
acterize market equilibria in the case of risk averse firms in an adjustable peak-load-
pricing framework. Ralph and Smeers [2015] include the possibility of tradable risk,
which allows to reconcile risk neutral and risk averse behavior of firms. Along sim-
ilar lines, results are obtained by Philpott et al. [2016]. Moreover, Schiro et al.
[2016] provides general existence results of competitive equilibrium under risk aver-
sion. Pang et al. [2017] analyze the case of strategically behaved firms. Finally,
Gérard et al. [2018] show for the case of perfectly competitive firms that market
equilibria for risk averse agents are not unique.

As argued above, we protect against uncertainties in a robust manner. This
work thus contributes to the recent strand of literature which seeks to explicitly
introduce robust optimization in the context of equilibrium problems. Equilibrium
problems where players address uncertainties from a robustness perspective play
an increasingly important role in the literature. For a seminal contribution in this
context consider e.g. Aghassi and Bertsimas [2006]. Several recent articles consider
different robust equilibrium problems under incomplete information, compare e.g.
Dey and Zaman [2020], or Fanzeres et al. [2019] for robust bidding in auctions. The
article Wang et al. [2012] considers a robust optimization model for a market similar
to ours in continuous time, but does not include investment decisions.

Another area of research considers robust linear complementarity problems, short
LCPs, which are suited to describe strictly robust equilbrium problems. In this con-
text consider the seminal contributions by Wu et al. [2011] and Xie and Shanbhag
[2016], and more recently Krebs and Schmidt [2020], or Krebs et al. [2021] which in-
troduce a less conservative nonadjustable robust approach to LCPs. In Biefel et al.
[2022], the authors consider uncertain linear complementarity under the assump-
tion of affinely adjustable robustness and derive characterizations for conditions
under which a solution exists and is unique. However, the results apply to gen-
eral LCPs and do not answer questions on the market equilibria considered in the
present work, for example the comparison of an equilibrium to the central planner
optimum.

Finally, in recent contributions, Kramer et al. [2018] and Çelebi et al. [2021] con-
sider robust investment and production decisions of firms in the context of electricity
markets. In the setup considered, uncertainty affects only those parts of the mar-
ket environment which affect all firms symmetrically (i.e. in their context common
market demand is subject to uncertainties). The latter allows to obtain the equiv-
alence of competitive market equilibrium and the corresponding system optimal
benchmark. Moreover, Çelebi et al. [2021] focus on the single level-nonadjustable
case, whereas we consider the (usually complex but typically less conservative) ad-
justable setting. In the context of our setup uncertainties are affecting firms in an
asymmetric way (i.e. each firm’s production cost). This breaks the equivalence of
equilibrium and the corresponding system optimum, as we show, however.

The outline of this work is as follows. In Section 2, we introduce the nominal
peak load pricing model. In Section 3, we relate the optimum robust objective
function value of robust linear optimization problems with polyhedral uncertainty
set to the similar problem but with box uncertainty sets. The results are necessary
for determining the price of anarchy in later sections. In Section 4, we explain
the robust peak load pricing model and use the results from Section 3 to quantify
the relation between the robust central planner solution and the robust market
outcome, i.e., we quantify the price of anarchy. The results are given for fixed as
well as for elastic demand, see Section 5, and for the non-adjustable as well as for
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Table 1. Overview of the theoretical results (PoA: Price of Anar-
chy, CP: Central Planner)

Strict robustness Adjustable robustness

Fixed demand PoA bounded: Strict and adjustable CP have

Section 4 Theorem 4.2 equal objective value: Theorem 4.6

Examples showing PoA> 1

Elastic demand PoA unbounded: Strict and adjustable CP have

Section 5 Theorem 5.1 equal objective value: Theorem 5.2

Examples showing PoA> 1

Subsidies for optimal equilibrium: Theorem 5.5

the adjustable problem. In Section 6, we apply the results to coherent and non-
coherent risk measures, particularly to the value at risk and point out relations to
data driven coherent risk measures. We end with conclusions in section 7.

2. Nominal Peak Load Pricing

Following standard electricity market models, we consider a market taking place
in T time periods, where T = {1, ..., T }. We assume perfect competition, i.e. all
players are price takers.

On the production side of the market, there are different producers i ∈ N =
{1, ..., N}. In order to be able to produce the considered good (for example elec-
tricity), a producer i needs to build capacity yi ≥ 0, where for each newly installed
capacity unit, investment costs cinv

i need to be paid. In each time period t ∈ T ,
the producers decide on their production xi,t that may not exceed their respective
capacities. The producers have to pay their variable costs cvar

i , but receive for each
produced unit some exogenously given market price πt. The goal of each producer
is to maximize his or her profit. Hence, the optimization problem of producer i

reads

max
xi,yi≥0

∑

t∈T

((πt − cvar
i )xi,t) − cinv

i yi (1a)

s.t. xi,t ≤ yi, t ∈ T . (1b)

We address two different cases for the demand side of the market. First, in
Section 4, we consider the case of fixed demand. Here, in each time period t ∈ T
a fixed demand dt is given. An equilibrium (π, x, y) is a set of prices, production
choices and investments such that the optimality conditions of all players and the
market clearing conditions

dt =
∑

i∈N

xi,t, t ∈ T (2)

are fulfilled. In the following, we denote the total production in time period t by
x̄t, i.e. x̄t =

∑

i∈N xi,t.
The problem consisting of the optimality conditions of the producer problems

(1) together with the market clearing condition (2) is equivalent to the system of
necessary and sufficient optimality conditions, in this case the Karush–Kuhn–Tucker
(KKT) conditions, of a linear program. This problem is called welfare optimization
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problem or central planner problem under fixed demand and reads

max
x,y≥0

−
∑

i∈N

(cinv
i yi + (

∑

t∈T

cvar
i xi,t)) (3a)

s.t. xi,t ≤ yi, i ∈ N , t ∈ T , (3b)
∑

i∈N

xi,t = dt, t ∈ T . (3c)

This optimization problem minimizes the total cost in the market, i.e., it determines
the system optimum that a centralized planning process would follow. We thus call
it the central planner problem. It yields an approach to determine market clearing
prizes as follows. The optimal dual variables of (3c) are exactly the prizes πt that
lead to a market clearing equilibrium. Further, we note that (3) always has an
optimal solution. Indeed, it is equivalent to a linear minimization problem that is
bounded from below by zero for which thus an optimum solution is attained.

Second, in Section 5, we consider the case of elastic demand instead of fixed
demand. Here, an elastic demand function pt : R → R is given in each time period.
We assume pt to be strictly decreasing for every t ∈ T . Note that this is one
of the fundamental assumptions for most microeconomic frameworks, compare e.g.
Mas-Colell et al. [1995a]. With this, in each time period t ∈ T , the demand side
solves the problem

max
dt≥0

∫ dt

0
pt(s)ds − πtdt (4)

The optimality conditions of the producers (1) and the consumers (4), together
with the market clearing conditions (2) are equivalent to the KKT conditions of
the welfare optimization problem under elastic demand

max
x,y≥0

∑

t∈T

∫ x̄t

0
pt(s)ds −

∑

i∈N

(cinv
i yi + (

∑

t∈T

cvar
i xi,t)) (5a)

s.t. xi,t ≤ yi, i ∈ N , t ∈ T . (5b)

Since the elastic demand function is strictly decreasing, the objective function in
(5) is concave. Thus, there exists an optimal solution and the KKT conditions of
(5) are necessary and sufficient optimality conditions . This implies that optimal
solution (x∗, y∗) of (5) can be extended to a market equilibrium by defining prices
as πt = pt(

∑

i x∗
i,t) for all t ∈ T .

In more detail, a set of prices, investments and production choices (π, y, x) is a
market equilibrium if and only if (y, x) is an optimal solution of (5). The market
clearing prices are then given by πt = pt(x̄) for all t ∈ T . The vector x̄, i.e. the total
production in every time period, is unique. For more details, we refer to Crew et al.
[1995] or Chapter 5 in Schewe and Schmidt [2019].

Notation. For the remainder of the paper, we define some notation. We denote
the unit vectors by ei and the vector of all ones by e (dimension clear from context).
We use the notation [n] = {1, ..., n}. For a convex and compact set C ⊂ R

n
≥0 we

define the parameter

τ(C) := max
x∈Rn,τ∈R

τ (6a)

s.t. τ ≤ xi, i ∈ [n], (6b)

x ∈ C. (6c)

Thus, τ(C) is the largest number such that there is an x ∈ C with minimal entry
equal to τ(C).
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3. Robust Linear Optimization

Our results on the different robust market models are based on auxiliary results
from robust linear optimization. To the best of our knowledge, these results are
new. The results of this section are also used to introduce the terminology for
robust problems.

Let A ∈ R
m×n, B ∈ R

m×k, b ∈ R
m and let X = {(x, y) ∈ R

n+k
≥0 : Ax + By ≥ b}.

For cost vectors c ∈ R
n
≥0 and d ∈ R

k
≥0 we consider the linear program

min
(x,y)∈X

cT x + dT y. (7)

Let us assume that the cost vector c is linearly affected by uncertainty that is
modeled as c(u) = c + Λu for some diagonal matrix Λ = diag(λ) ∈ R

n×n
≥0 . We

assume that the uncertainty parameter u lies in an arbitrary polyhedral uncertainty
set of the form

U = {u ∈ R
n
≥0 : P u ≤ r} ⊆ [0, 1]n,

with a suitably defined matrix P and vector r of appropriate dimension. Addition-
ally, we assume that the projection of U onto any axis Rei is [0, 1].

In robust optimization, one seeks to find a solution that attains the minimal
guaranteed objective value among all possible realizations of the uncertainty. Such
a so called robust optimum solution solves the robust counterpart of (7) which
reads

valR := min
(x,y)∈X

cT x + dT y + max
u∈U

(Λu)T x. (8)

Instead of computing an optimal robust solution by solving (8), one could also
approximate the robust counterpart by replacing the uncertainty set with the box
B = Λ[0, 1]n. We obtain the problem

valB̃ := min
(x,y)∈X

(c + λ)T x + dT y. (9)

For an optimal solution of (9), (x∗, y∗), we define the objective value for the worst-
case realization of the uncertainty

valB := cT x∗ + dT y∗ + max
u∈U

(Λu)T x∗.

We note that valB depends on the choice of x∗. However, we always have
valR ≤ valB ≤ valB̃.

We are interested in the quality of this approximation, i.e. the gap between
valB and valR. In the following theorem we obtain a bound on this gap which will
be used in the following section to compare robust market equilibria with central
planner solutions.

Theorem 3.1. The inequality

valB ≤
1

τ(U)
valR

holds.

Proof. First, we note that 0 < τ(U) ≤ 1, where the strict inequality is due to
convexity of the uncertainty set U ⊆ [0, 1]n and the assumption that the projectios
of U onto any axis Rei is [0, 1]. Dualizing the inner maximization problem that
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determines the worst-case uncertainty realization in (8), yields the linear program

valR = min
x,y,z

cT x + dT y + rT z (10a)

s.t. Ax + By ≥ b, (10b)

P T r ≥ Λx, (10c)

x, y, z ≥ 0. (10d)

Its dual problem reads

valR = max
θ,u≥0

bT θ (11a)

s.t. AT θ ≤ c + Λu, (11b)

BT θ ≤ d, (11c)

P u ≤ r. (11d)

On the other hand, the dual problem of (9) is given by

valB̃ = max
θ≥0

bT θ (12a)

s.t. AT θ ≤ c + λ, (12b)

BT θ ≤ d. (12c)

Let θ∗ be an optimal solution of (12) and let (u∗, τ(U)) be an optimal solution of
(6) for C = U . Then,

AT (τ(U)θ∗) ≤ τ(U)(c + λ) ≤ c + τ(U)λ ≤ c + Λu∗

and

BT (τ(U)θ∗) ≤ τ(U)d ≤ d.

Thus, (τ(U)θ∗ , u∗) is feasible for (11). Hence,

valR ≥ bT (τ(U)θ∗) = τ(U)bT θ∗ = τ(U)valB̃ ≥ τ(U)valB.

�

Remark 3.2. Since any convex body that lies in the [0, 1]n box can be approxi-
mated with a polytope arbitrarily well, this inequality also holds true for closed and
convex but non-polyhedral uncertainty sets. In detail, let (u∗, τ(U)) be an optimal
solution of (6) for C = U . Let U in = conv{0, u∗} ⊂ U and let Uout ⊂ [0, 1]n be a
polyhedral outer approximation of U with u∗ ∈ Uout. By replacing U with U in in
the computation of valR and with Uout in the computation of valB, one can conduct
the above proof in a similar fashion.

In addition to comparing market equilibria with central planner solutions, we will
also compare different robust optimization techniques applied to the central planner.
A, in general, less conservative model for robust optimization is the adjustable
robustness where some of the variables are so called wait-and-see variables that
may be chosen after the uncertainty is revealed. In our case, we assume that x may
be chosen after the uncertainty u is revealed. The adjustable robust counterpart of
the uncertain problem then can be stated as

valAR := min
y≥0

max
u∈U

min
x≥0

(c + Λu)T x + dT y (13a)

s.t. Ax + By ≥ b (13b)

In (8) and (13), only the objective functions are uncertain. Thus, Theorem 14.2.4
in Ben-Tal et al. [2009] directly yields the following
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Theorem 3.3. Let X be a convex polytope. The equality

valR = valAR

holds.

Therefore, in our case adjustable robustness does not reduce the price of robust-
ness of the robust solution under the mild assumption that X is compact. In words,
this result says that it makes no difference whether first one has to choose x and y

anticipating the worst case realization of the uncertainty, or whether one is allowed
to adapt the decisions x after the uncertainty manifests itself. In particular, the
second approach does not improve the robust solution values. We slightly extend
this result so that we will be able to apply it in Section 5. To this end, we let
g : Rn → R be a convex and deterministic function, which we add to the objective
function of the uncertain problem (7). The robust counterpart then reads

cvalR := min
(x,y)≥0

g(x) + cT x + dT y + max
u∈U

(Λu)T x

s.t. Ax + By ≥ b

and the adjustable robust counterpart is given by

cvalAR := min
y≥0

max
u∈U

min
x≥0

g(x) + (c + Λu)T x + dT y

s.t. Ax + By ≥ b

For this setting we now obtain an analogous result to Theorem 3.3.

Theorem 3.4. Let X be a convex polytope. The equality

cvalR = cvalAR

holds.

Proof. We adapt the proof of Theorem 14.2.4 in Ben-Tal et al. [2009] to our setting
with nonlinear objective function. It is clear, that cvalR ≥ cvalAR holds.

It remains to show that cvalR ≤ cvalAR holds as well. Without loss of generality
we may assume that all variables are adjustable in the adjustable robust solution,
i.e. the dimension k of y is zero. With this, we have X = {x ∈ R

n
≥0 : Ax ≥ b} and

cvalR = min{t : ∃x ∈ X : ∀u ∈ U : c(u)T x + g(x) − t ≤ 0},

cvalAR = min{t : ∀u ∈ U : ∃x ∈ X : c(u)T x + g(x) − t ≤ 0}.

We assume for contradiction that cvalR > cvalAR.
There exists t̄ ∈ R such that cvalR > t̄ > cvalAR. Then, for every x ∈ X there

exists an uncertainty realization ux ∈ U such that c(ux)T x + g(x) − t̄ > 0. Hence,
for every x ∈ X there exists an εx > 0 and a neighbourhood Ux ⊂ R

n such that

∀z ∈ Ux : c(ux)T z + g(z) − t̄ ≥ εx. (14)

Since X is assumed to be compact, we know that there exist finitely many points

x1, ..., xN ∈ X such that X ⊆
⋃N

j=1 Uxj . We set ε = minj∈[N ] εxj , uj = uxj and
define the functions

fj(x) := c(uj)T x + g(x) − t̄.

Since g is convex, fj, j ∈ [N ], are convex as well and from (14) we obtain that

max
j∈[N ]

fj(x) ≥ ε > 0 for all x ∈ X .
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From Proposition 2.18 in Tuy [1998] it follows that there exist λj ≥ 0,
∑

j∈[N ] λj = 1

such that

f(x) :=
∑

j∈[N ]

λjfj(x) ≥ ε > 0 for all x ∈ X . (15)

On the other hand, let û :=
∑

j∈[N ] λjuj ∈ U . Since t̄ > cvalAR, there exists an

x̂ ∈ X such that

c(û)T x̂ + g(x̂) − t̄ ≤ 0.

However, since c(u) is affine in u, we have c(û)T x̂ + g(x̂) − t̄ =
∑

j∈[N ] λjfj(x̄) and

thus f(x̂) =
∑

j∈[N ] λjfj(x̂) ≤ 0, contradicting (15).

�

In this section, we gathered some theoretical results on robust optimization.
These results will be used in order to prove statements on different robust market
models in the remainder of this paper.

4. Robust Peak Load Pricing with Fixed Demand

In the peak load pricing model, different input parameters may be uncertain, for
example uncertainties in the demand. In the following, however, we consider the
variable costs of the producers to be uncertain.

As a standard assumption in robust optimization, we consider the uncertainty
set U ⊆ [0, 1]N×T to be a convex polytope. The uncertain variable costs are then
defined by cvar

i,t (u) = cvar
i +aiui,t with nominal values cvar

i , the uncertainty parameter
u ∈ U , and some scaling factors ai ≥ 0 for all i ∈ N . In order to ease the exposition,
we assume that the nominal values cvar

i and the worst case values cvar
i +ai are feasible

realizations of the uncertainty set. Therefore, without loss of generality, we require
0 ∈ U and that the projections of U on any coordinate axis is [0, 1], i.e. for every
i ∈ N , t ∈ T there exists a u ∈ U such that ui,t = 1. Furthermore, we assume
that U is independent of the time period such that it can be written as a Cartesian
product of the form U =

∏

t∈T U ′ for some U ′ ⊆ [0, 1]N .
We start by discussing the strict robustness and the extension to adjustable

robustness for fixed demand in this section.

4.1. Single Stage. In the classical strict robust approach, all variables are here-
and-now decisions that have to be made before the uncertainty realizes. Hence, in
the corresponding robust market problem, all producers produce according to their
respective worst case variable costs. Thus, a robust producer solves the problem

max
xi,yi≥0

∑

t∈T

((πt − (cvar
i + ai))xi,t) − cinv

i yi (16a)

s.t. xi,t ≤ yi, t ∈ T . (16b)

Such a market with strict robust producers is equivalent to a nominal market with
changed variable costs ĉvar

i,t := cvar
i,t + ai for all i ∈ N and t ∈ T . As described

in Section 2, we compute the equilibrium of this market problem by solving the
equivalent optimization reformulation

min
x,y≥0

∑

i∈N

(cinv
i yi + (

∑

t∈T

(cvar
i + ai,t)xi,t)) (17a)

s.t. xi,t ≤ yi, i ∈ N , t ∈ T , (17b)
∑

i∈N

xi,t = dt, t ∈ T , (17c)
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where the optimal dual variables of (17c) are exactly the market clearing prices for
(16). Analogously to the nominal case, (17) has an optimal solution. Let (x∗, y∗) be
such an optimal solution of (17), and therefore the capacity and production choices
in an equilibrium of the market with robust producers. We define the worst case
total cost of this equilibrium by

ER := max
u∈U

∑

i∈N

(cinv
i y∗

i + (
∑

t∈T

(cvar
i + aiui,t)x

∗
i,t)).

In the uncertain market, each player independently deals with his or her worst
case scenario. However, it is also of interest to compare the result with that of the
robust central planner problem. The solutions may differ when taking into account
possible correlation between the uncertainties. The robust central planner or robust
total cost minimization problem reads

CR := min
x,y≥0

max
u∈U

∑

i∈N

(cinv
i yi + (

∑

t∈T

(cvar
i + aiui,t)xi,t)) (18a)

s.t. xi,t ≤ yi, i ∈ N , t ∈ T , (18b)
∑

i∈N

xi,t = dt, t ∈ T . (18c)

We now discuss the differences between the market with robust producers and
the robust central planner problem. In the special case that the all-ones vector e

is contained in U , for example if the uncertainty set is a box, all prices can attain
their worst case value at the same time, and the robust solution needs to protect
in particular against this realization of uncertainties. Thus, in this case (18) is
equivalent to (17) and we obtain the following equality.

Theorem 4.1. If e ∈ U , then ER = CR.

However, the uncorrelated situation seems quite unnatural in practical situations.
Thus, typically one has the situation in which the objective value CR of the robust
central planner problem (18) is smaller than the worst case total cost in the market
with robust producers ER. It is of interest to quantify this difference. It will turn
out in the following that the difference only depends on the size and structure of
the chosen uncertainty set U .

Theorem 4.2. The inequalities

CR ≤ ER ≤
1

τ(U)
CR

hold. In particular, this bound is sharp in the sense that for any δ > 0 there exist
instances such that

ER ≥
1 − δ

τ(U)
CR.

Proof. Since every feasible solution of (17) is feasible for (18), it directly follows
CR ≤ ER as the objective functions of CR and ER coincide for fixed (x, y). The
second inequalitiy, ER ≤ 1

τ(U)CR, directly follows from Theorem 3.1.

We now present an instance proving the third inequality for arbitrary δ ∈ (0, 1). To
this end, let T = 1 and d = d1 = 1. Omitting the index t, we define cinv

i = 0 for all
i ∈ N , cvar

1 (u) = (1 − δ)u1, and cvar
i (u) = ui for all i ∈ N \ {1}. Let the polyhedral

uncertainty set U be given by

U = {u ∈ R
n
≥0 : P u ≤ r}

with P ∈ R
m×N and r ∈ R

m. Since 0 ∈ U , w.l.o.g. we may rescale P and assume
r ∈ {0, 1}m. In the game with robust producers, the unique equilibrium is given by
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π = 1 − δ and y1 = x1 = 1. Thus, the total cost of this equilibirum is ER = 1 − δ

in the worst case.
In the following, we establish an upper bound for CR: Inserting the parameters,

we obtain

CR = min
x≥0

max
u∈U

(1 − δ)u1x1 +

N
∑

i=2

uixi

s.t.
∑

i∈N

xi = 1.

Dualizing the inner maximization problem

max
u∈U

(1 − δ)u1x1 +

N
∑

i=2

uixi

yields

min
z≥0

∑

i∈[m]

rizi

s.t. (P T z)1 ≥ (1 − δ)x1

(P T z)i ≥ xi, i = 2, ..., N.

Thus, it holds that

CR = min
x,z≥0

∑

i∈[m]

rizi (19a)

s.t. (P T z)1 ≥ (1 − δ)x1 (19b)

(P T z)i ≥ xi, i = 2, ..., N, (19c)
∑

i∈N

xi = 1. (19d)

We now construct a feasible solution (x̃, z̃) for (19). Let (ũ, τ(U)) ∈ R
N+1 be an

optimal basic solution of (6) for C = U which can be written as

τ(U) = max
u≥0,τ

τ (20a)

s.t. τ − ui ≤ 0, i ∈ N (20b)

P u ≤ r. (20c)

Let, w.l.o.g., ũi = τ(U) for i ∈ [k] and ũi > τ(U) for i ∈ N \ [k]. Thus, the first k

constraints in (20b) are tight. Furthermore, as there are at least N + 1 constraints
of (20) tight in the optimal basic solution (ũ, τ(U)), there is a subset J ⊂ [m] of
rows of P with |J | ≥ 1 such that PJ,·ũ = rJ .
As (ũ, τ(U)) is optimal, the target vector eN+1 is a conical combination of the tight
constraints in (ũ, τ(U)), i.e.

eN+1 =
∑

i∈[k]

µi(eN+1 − ei) +

[

(PJ,·)
T

0 · · · 0

]

λ

with λ ∈ R
|J|
≥0 and µ ∈ R

k
≥0.

It follows that x̃ := (PJ,·)
T λ ≥ 0 and especially x̃i = 0 for all i ∈ N \ [k]. Ad-

ditionally, we observe
∑

i∈[k] µi = 1 and thus we also have
∑

i∈N x̃i = 1. We

obtain

λT rJ = λT PJ,·ũ = x̃T ũ =
∑

i∈N

x̃iũi =
∑

i∈[k]

x̃iũi =
∑

i∈[k]

x̃iτ(U) = τ(U).
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We define the vector z̃ ∈ R
m
≥0 by z̃i := λi for i ∈ J and z̃i := 0 for i ∈ [m] \ J . Since

x̃ = (PJ,·)
T λ = P T z̃, (x̃, z̃) is feasible for (19).

Thus, CR ≤
∑

i∈[m] riz̃i =
∑

i∈J riz̃i = λT rJ = τ(U) and we obtain

ER

CR

≥
1 − δ

τ(U)
,

concluding the proof. �

Remark 4.3. In the literature, this factor between the market and the central
planner is often referred to as price of anarchy. Therefore, the result of the above
theorem yields an explicit quantification of the price of anarchy in our robust single-
stage market model, given by 1

τ(U) . Thus, this price can be controlled by appropriate

choice of the uncertainty set against which protection is sought.

Remark 4.4. We see that the factor between the robust market and the robust
central planner depends on the parameter τ(U). We want to further discuss this
parameter. Clearly, if e ∈ U , we have τ(U) = 1. Furthermore, from the definition
of U as Cartesian product of U ′ for every time step, we have τ(U) = τ(U ′). Also,
from the assumptions on U ′ and U we obtain that τ(U) = τ(U ′) ≥ 1

N
. Thus, an

upper bound for the gap in Theorem 4.2 is N .

In the example showing tightness in the proof of Theorem 4.2, we set the nominal
values of the cost vectors to zero. However, in relevant applications the relative
deviations are usually bounded by some factor. We model this by introducing a
parameter ρ > 0 and assume ai,t ≤ ρci for all i ∈ N . The previous theorem can be
seen as the limiting case for ρ → ∞.

Theorem 4.5. Let U be a compact and convex uncertainty set fulfilling the assump-
tions. Consider the set of restricted instances for which ai,t ≤ ρci for all i ∈ N
with some parameter ρ > 0. Then,

ER ≤
1 + ρ

1 + ρτ(U)
CR.

Again, for every uncertainty set U there are instances for which this bound is sharp.

Proof sketch. Due to the similarity with the proof of Theorem 4.2, we aim at brevity
here. The bound is shown by adapting the proof of Theorem 3.1. In addition, we
use the assumption that λi ≤ ρci for all i ∈ [n].

For showing that the bound is sharp, we construct the following instance for
arbitrary δ ∈ (0, 1). Let T = 1 (we omit the index t) and d = 1. We define cinv

i = 0
for all i ∈ N , cvar

1 (u) = 1 + ρ(1 − δ)u1, and cvar
i (u) = 1 + ρui for all i ∈ N \ {1}.

Analogously to the proof of Theorem 4.2, we now can show that

ER

CR

≥
1 + ρ(1 − δ)

1 + ρτ(U)

on this instance. �

The previous theorems show that a robust hedging against uncertainties in the
variable costs leads to a gap between the optimal robust central planner and the
worst case total cost in an equilibrium with robust producers. This upper bound
on this gap depends on the one hand on the relative size of the deviations from the
nominal costs and on the other hand on the geometry of the uncertainty set given
by τ(U). In Section 5.1, where we assume elastic instead of fixed demand, we will
see that this gap is not bounded anymore.
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4.2. Two-Stage. In this section we analyze the more sophisticated approach of
adjustable robustness. While the investment decision still has to be made before the
uncertainty realizes, the allocation of the production is chosen after the uncertainty
realizes. For many market situation this is a relatively natural setup, where long run
capacity decisions have to be made here-and-now before the uncertainty manifests
itself but short run decisions can be taken once uncertainty has unravelled to large
extent. The corresponding adjustable robust central planner problem can be stated
as follows.

CAR := min
y≥0

max
u∈U

min
x≥0

∑

i∈N

(cinv
i yi + (

∑

t∈T

(cvar
i + aiui,t)xi,t)) (21a)

s.t. xi,t ≤ yi, i ∈ N , t ∈ T , (21b)
∑

i∈N

xi,t = dt, t ∈ T . (21c)

As expected from Section 3, this additional freedom of waiting with decisions until
the realization of the uncertainty does not improve the objective value compared to
the strict robust central planner. Theorem 3.3 is directly applicable to these robust
central planner problems and yields the following.

Theorem 4.6. The optimal objective value of the robust central planner and the
adjustable robust central planner are equal, i.e.

CR = CAR.

Next, we move to the adjustable robust market problem where the producers act
as players who take robust decisions within an adjustable framework. We assume
that the producers know exogenously given price functions πt(u) before they invest.
Hence, every adjustable robust player solves the problem

max
yi≥0

min
u∈U

max
xi≥0

∑

t∈T

((πt(u) − cvar
i (u))xi,t) − cinv

i yi (22a)

s.t. xi,t ≤ yi, t ∈ T . (22b)

A triple (π(·), y, x(·)) is an equilibrium of this adjustable robust market, if it
satisfies the optimality conditions of all adjustable robust producers (22) and the
market clearing condition (2). In the nominal case, prices supporting an equilibrium
are given by the dual variables of the market clearing condition of the central
planner problem. However, it is not obvious how to compute equilibrium supporting
price functions in this adjustable robust setting. The following examples show
that the optimal dual variables of the market clearing conditions in the various
robust central planner formulations do not necessarily give us market clearing price
functions.

Example 4.7. Consider a market with two time periods and N = 2 producers
which have costs of

cinv
1 = cinv

2 = 1, cvar
i,t = 1 + ui,t, for i = 1, 2, t = 1, 2.

We assume an uncertainty set given by U = {u ∈ R
2×2
≥0 : u1,t + u2,t ≤ 1, t = 1, 2}

and demands of d1 = 1 and d2 = 2. The optimal dual variables of the market
clearing conditions (17c) are π1 = 2 and π2 = 3. If we use these prices in the
market with adjustable robust producers (22), and force y1 + y2 = 2 in order to
fulfill market clearing in the second time period, the producers produce more than
the demand in the first time period if u1,1 < 1 and u2,1 < 1.
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Example 4.8. Consider a market in one time period with fixed demand d = 2.
There are N = 2 producers which have costs of

cinv
1 = cinv

2 = 1, cvar
1 = u1, cvar

1 = u2

with the uncerainty set U = {u ∈ R
2
≥0 : u1 + u2 ≤ 1}. In the problem of robust

central planner (18), we can replace this uncertainty set by its vertices {u1 =
(1, 0), u2 = (0, 1), u3 = (0, 0)} and obtain the following equivalent reformulation of
the robust central planner (18):

CR = min
x,y,τ≥0

τ + y1 + y2 (23a)

s.t. τ ≥ xi, i = 1, 2, (23b)

xi ≤ yi, i = 1, 2, (23c)

x1 + x2 = 2. (23d)

The optimal dual variable of (23d) is given by π = 3
2 . However, for this market

price, no producer will invest in the adjustable robust market, as in the worst case
the sum of investment and variable cost of each producer is 2. Next, we consider
the adjustable robust central planner.

For the same instance, the adjustable robust central planner (21) can be equiva-
lently reformulated to

CAR = min
x,y,τ≥0

τ + y1 + y2 (24a)

s.t. τ ≥ x1(u1), (24b)

τ ≥ x2(u2), (24c)

xi(u
j) ≤ yi, i = 1, 2, j = 1, 2, 3, (24d)

x1(uj) + x2(uj) = 2, j = 1, 2, 3. (24e)

The optimal dual variables of (24e) are π(u1) = π(u2) = 0.75 and π(u3) = 0. Choos-
ing these dual variables as prices for the market with adjustable robust producers,
the producers would not invest in any capacity as the prices are too low to cover
the investment costs.

These examples show that the optimal dual variables of the market clearing
conditions of the equivalent reformulation of the (strict) robust market (17), the
robust central planner (18), and the adjustable robust central planner (21) do not
support equilibria in the market with adjustable robust producers in general. We
conclude from this that we need to find a more sophisticated alternative computing
prices in the adjustable robust market. We will be able to resolve this problem in
Section 5.2 for the more interesting setting where demands are not fixed but given
via an elastic demand function.

5. Robust Peak Load Pricing with Elastic Demand

In this section, we discuss strict robustness as well as adjustable robustness for
the peak load model with uncertain variable costs where demand is elastic. Whereas
the case of fixed, unelastic demand is typically easier to be treated technically, as
seen in the previous section, most standard market models indeed rely on the
assumption of elastic demand which formally results from the utility maximization
of customers. For a formal treatment and the microeconomic foundation of demand
functions see e.g. Mas-Colell et al. [1995b].

We make the same assumptions on the uncertainty set U as in Section 4.
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5.1. Single Stage. As in the case of fixed demand, we first consider the strict
robust approach. Again, all decisions have to be made before the realizations of
the uncertainty are revealed. We assume, that in the market only the producers
take care of the uncertainty, the demand side is unchanged to the nominal case.
Therefore, for exogenously given market prices πt, each producer solves the same
problem as in the case of fixed demand, i.e. the problem

max
xi,yi≥0

∑

t∈T

((πt − (cvar
i + ai))xi,t) − cinv

i yi

s.t. xi,t ≤ yi, t ∈ T

maximizing their own profit in the worst case. As in the case of fixed demand,
this market with strict robust producers is equivalent to a nominal market with
modified variable costs ci,t := cvar

i,t + ai. We can compute the market prices that
lead to an equilibrium by solving the equivalent optimization reformulation

max
x,y≥0

∑

t∈T

∫ x̄t

0
pt(s)ds −

∑

i∈N

(cinv
i yi + (

∑

t∈T

(cvar
i + ai,t)xi,t)) (25a)

s.t. xi,t ≤ yi, i ∈ N , t ∈ T . (25b)

For an optimal solution (x∗, y∗) of (25), which exists due to the same reasons as in
the nominal case, we define

E′
R := min

u∈U

∑

t∈T

∫ x̄∗

t

0
pt(s)ds −

∑

i∈N

(cinv
i y∗

i + (
∑

t∈T

(cvar
i + aiui,t)x

∗
i,t)).

On the other hand, the robust central planner problem is given by

C′
R := max

x,y≥0
min
u∈U

∑

t∈T

∫ x̄t

0
pt(s)ds −

∑

i∈N

(cinv
i yi + (

∑

t∈T

(cvar
i + aiui,t)xi,t)) (26a)

s.t. xi,t ≤ yi, i ∈ N , t ∈ T . (26b)

It is clear, that C′
R ≥ E′

R holds. In the case of fixed demand, the welfare is just the
negative total cost. We have shown that the ratio of ER to CR is bounded by some
parameter which can be computed directly from the uncertainty set U . However,
in this section the welfare W ′

R is complemented by a nonlinear term reflecting the
produced amount. As shown next, this leads to the unboundedness of the ratio,
even in the case of affine demand function.

Theorem 5.1. For any η > 0 there exist instances such that C′
R > ηE′

R

Proof. We construct an example with the desired property. Let N = 2 and T = 1.
Furthermore, let cinv

1 = cinv
2 = 0 and cvar

1 = u1 and cvar
2 = u2 + ε with 0 < ε ≪ 1.

The uncertainty set is given by U = {u ∈ R
2
≥0 : u1 + u2 ≤ 1}.

We consider an affine demand function p(s) = α − s. In the market with robust
producers, only producer 1 produces as he is slightly cheaper in the worst case.
Therefore, (25) reads

max
x≥0

∫ x1+x2

0
(α − s)ds − x1 − (1 + ε)x2

= max
x1≥0

∫ x1

0
(α − s)ds − x1 = max

x1≥0
(α − 1)x1 −

1

2
x2

1.

For α > 1, the maximum is attained at x1 = α − 1. Thus,

E′
R = (α − 1)2 −

1

2
(α − 1)2 =

(α − 1)2

2
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for α > 1 and E′
R = 0 for α ≤ 1. However, the optimal robust welfare is computed

by

C′
R = max

x≥0
min
u∈U

∫ x1+x2

0
(α − s)ds − x1u1 − x2u2,

where we omit the neglectable factor ε. Due to the symmetry of U , the optimal
solution is attained for x1 = x2. Hence,

C′
R = max

d≥0

∫ d

0
(α − s)ds −

1

2
d = max

d≥0
(α −

1

2
)d −

1

2
d2.

For α > 0.5, the maximum is attained at d = α − 0.5 and therefore we obtain

C′
R =

(α − 1
2 )2

2

for α > 0.5 and C′
R = 0 for α ≤ 0.5. Thus, for α > 1 we have

C′
R

E′
R

=
(α − 1

2 )2

(α − 1)2
.

For α ∈ (0.5, 1], there is no production in the market, but in the optimal robust
welfare solution there is still some small symmetrical production. Hence, in this
interval the ratio is infinity. For α ≤ 0.5, there is no production in both settings. �

5.2. Two-Stage. Again, we discuss the more sophisticated approach of adjustable
robustness. The adjustable robust central planner under elastic demand can be
stated analogously as in the corresponding section on fixed demand by

C′
AR := max

y≥0
min
u∈U

max
x≥0

∑

t∈T

∫ x̄t

0
pt(s)ds −

∑

i∈N

(cinv
i yi + (

∑

t∈T

(cvar
i + aiui,t)xi,t))

(27a)

s.t. xi,t ≤ yi, i ∈ N , t ∈ T . (27b)

As in the case of fixed demand, Theorem 3.4 directly yields the following state-
ment.

Theorem 5.2. The optimal Robust Welfare and the optimal Adjustable Robust
Welfare are equal, i.e.

C′
R = C′

AR.

In the adjustable robust market, we assume, that the producers know exoge-
nously given price functions πt(u) before they invest. Hence, every adjustable
robust player solves the problem

max
yi≥0

min
u∈U

max
xi≥0

∑

t∈T

((πt(u) − cvar
i (u))xi,t) − cinv

i yi (28a)

s.t. xi,t ≤ yi, t ∈ T . (28b)

A triple (π(·), y, x(·)) is an equilibrium of this adjustable robust market, if it sat-
isfies the optimality conditions of all adjustable robust producers (28) and of the
consumer (4). We first show that in general there is a gap between the welfare of
an equilibrium and the optimum of the adjustable robust central planner by the
following example.

Example 5.3. Consider an instance with only one timestep, i.e. T = 1, and two
producers, i.e. N = 2, and an elastic demand function given by p(s) = 5 − s. We
define investment costs cinv

i = 1
5 and nominal variable costs cvar

i = 0 for i = 1, 2,

uncertainty set U = conv{(0, 0), (1, 0), (0, 1), (3
4 , 3

4 )} and a1 = a2 = 4. Again, as in
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Example 4.8, it suffices to consider the four extreme points of the scaled polytope,
namely u0 = (0, 0), u1 = (4, 0), u2 = (0, 4), and u3 = (3, 3).

For the solution of the adjustable robust central planner (27), the worst case
scenario is u3 and the optimality condition reads 5 − (y∗

1 + y∗
2) − 3 − 1

5 = 0 which
yields optimal capacities y∗

1 = y∗
2 = 0.9. The optimal solutions and objective values

for these capacities are given by

u0 u1 u2 u3

optimal objective value 7.02 3.74 3.74 1.62
optimal production x∗ (0.9, 0.9) (0.1, 0.9) (0.9, 0.1) (0.9, 0.9)

Thus, the adjustable robust central planner has a worst case objective value of
C′

AR = 1.62.
There are no market prices π∗(·) that would extend the central planner solution

to an equilibrium of the market with adjustable robust producers. However, for this
simple example we can compute an equilibrium by hand. In fact, an equilibrium is
given by (π′, y′, x′) with

π′ = 4.2,

y′ = (0.4, 0.4),

x′ = (0.4, 0.4),

which can be verified by simple calculations. In case of scenario u3, the welfare of
this solution is given by

2 · 0.4 + 2 · 0.4 −
1

2
· 0.82 − 0.2 · 0.8 = 0.92,

which is smaller than C′
AR = 1.62.

The question now is, how to compute equilibrium supporting price functions in
general. In the case of fixed demand, we showed in different examples that the
usual approach, using the dual variables of the central planner, does not work.
Similar examples can be constructed for this case of elastic demand by replacing
the fixed demands in Example 4.7 and Example 4.8 by suitable elastic demand
functions.

We postpone this discussion to future research and instead discuss an approach
to induce a welfare optimal equilibrium. For this, we consider the idea of subsidizing
the producers for their investment. In detail, additionally to the market prices πt(·),
each player i ∈ N receives a subsidy payment ηi for building capacity. Therefore,
each player solves the problem

max
yi≥0

min
u∈U

max
xi≥0

∑

t∈T

((πt(u) − cvar
i (u))xi,t) − (cinv

i − ηi)yi (29a)

s.t. xi,t ≤ yi, t ∈ T . (29b)

We now show how to compute market prices and subsidies supporting an equi-
librium equal to the solution of the robust central planner problem (26). For this,
we follow an idea from O’Neill et al. [2005] for markets with integer variables. Let
u ∈ U be arbitrary but fixed and let y∗ be the optimal capacities in the strict robust
central planner problem (26). We consider the problem

max
x,y≥0

∑

t∈T

∫ x̄t

0
pt(s)ds −

∑

i∈N

(cinv
i yi +

∑

t∈T

cvar
i,t (u)xi,t) (30a)

s.t. xi,t ≤ yi, i ∈ N , t ∈ T , (30b)

yi = y∗
i , i ∈ N . (30c)
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The KKT-conditions of this problem are given by

pt(x̄t) − cvar
i,t (u) − µi,t + φi,t = 0, i ∈ N , t ∈ T , (31a)

−cinv
i +

∑

t

µi,t + χi + ηi = 0, i ∈ N , (31b)

xi,t − yi ≤ 0, i ∈ N , t ∈ T , (31c)

yi − y∗
i = 0, i ∈ N , (31d)

µi,t(xi,t − yi) = 0, i ∈ N , t ∈ T , (31e)

φi,txi,t = 0, i ∈ N , t ∈ T , (31f)

χiyi = 0, i ∈ N , t ∈ T , (31g)

x, y, µ, φ, χ ≥ 0. (31h)

We define the price functions by π∗
t (u) = pt(x̄

∗
t (u)), where x∗(u) is the optimal

solution to (30) for the respective u. For every i ∈ N we compute the subsidy
payment by

η∗
i = max

x,y,µ,φ,χ,η
ηi (32a)

s.t. ∃u ∈ U : (x, y, µ, φ, χ, η) solve (31) (32b)

Lemma 5.4. Let x∗(u) be the optimal solution of (30) for given u ∈ U . Then, for
every producer i with y∗

i > 0,

η∗
i = cinv

i + max
u∈U







∑

t∈Ti,u

(cvar

i,t (u) − pt(x̄
∗
t (u)))







(33)

with Ti,u(x∗) = {t ∈ T : x∗
i,t(u) > 0}.

Proof. From (31b) and (31g) we have ηi = cinv
i −

∑

t µi,t. Condition (31a) gives us

µi,t = pt(x̄t) − cvar
i,t (u) + φi,t, i ∈ N , t ∈ T .

Thus, (32) is equivalent to

cinv
i − min

u,x,y,µ,φ,χ,η

∑

t∈T

(

pt(x̄t) − cvar
i,t (u) + φi,t

)

s.t. (x, y, µ, φ, χ, η) solve (31)

u ∈ U .

�

Theorem 5.5. An equilibrium of the market with adjustable robust producers (29)
and consumer (4) is given by (π∗(·), η∗, y∗, x∗(·)).

Proof. We prove that (π∗(·), η∗, y∗, x∗(·)) is an equilibrium by showing that no
producer j has an incentive to deviate from y∗

j or x∗
j (·).

First, we show that given π∗(·), η∗, and y∗, a producer j with y∗
j > 0 would not

produce differently than x∗
j . Let u be arbitrary but fixed and let t ∈ T . From (31a),

(31e), (31f), and the nonnegativity of x∗, y∗, µ∗, and φ∗ we obtain

x∗
j,t =











y∗
j if pt(x̄

∗
t ) − cvar

j,t (u) > 0,

0 if pt(x̄
∗
t ) − cvar

j,t (u) < 0,

arb. ∈ [0, y∗
j ] if pt(x̄

∗
t ) − cvar

j,t (u) = 0.

(34)

Since π∗
t (u) = pt(x̄

∗
t ), this implies

(π∗
t (u) − cvar

j,t (u))x′
j,t ≤ (π∗

t (u) − cvar
j,t (u))x∗

j,t
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for any 0 ≤ x′
j ≤ y∗

j with x′
j,t(u) 6= x∗

j,t(u). Thus, by deviating from x∗
j , producer

j’s profit cannot be increased.

Next, we show that the worst case profit of every producer is zero. Clearly, this
holds true for all producers with zero capacity. Let i be a producer with y∗

i > 0.
Their objective value in scenario u ∈ U , which we denote by P ∗

i (u), is given by

P ∗
i (u) =

∑

t∈T

(

(π∗
t (u) − cvar

i (u))x∗
i,t

)

− (cinv
i − η∗

i )y∗
i

From (34) it follows that x∗
i,t is either 0 or y∗

i or it does not influence the objective

value. Thus, with Ti,u = {t ∈ T : pt(x̄
∗
t ) > cvar

j,t (u)}, we have

P ∗
i (u) =

∑

t∈Ti,u

((π∗
t (u) − cvar

i (u))y∗
i ) − (cinv

i − η∗
i )y∗

i

Thus, for the worst case profit we have

min
u∈U

P ∗
i (u) = min

u∈U







∑

t∈Ti,u

((π∗
t (u) − cvar

i (u))y∗
i )







− (cinv
i − η∗

i )y∗
i .

Inserting (33) from Lemma 5.4 for η∗
i now yields

min
u∈U

P ∗
i (u) = 0.

Finally, we consider the case in which a producer j deviates from y∗
j . First, let

umin
j ∈ arg minu∈U P ∗

j (u). Now assume that producer j invests in capacity y′
j 6= y∗

j .

The profit of producer j in umin
j is given by

P ′
j(umin

j ) = max
0≤xj≤y′

j

{
∑

t∈T

((πt(u
min
j ) − cvar

j (umin
j ))xj,t)} − (cinv

j − η∗
j )y′

j

=
∑

t∈Ti,u

(

(π∗
t (umin

j ) − cvar
j (umin

j ))y′
j

)

− (cinv
j − η∗

j )y′
j

Inserting (33) from Lemma 5.4 for η∗
j yields P ′

j(umin
j ) ≤ 0. Since P ′

j(umin
j ) is an

upper bound for the worst case profit of producer j, this means that deviating from
y∗

j does not increase the worst case profit of producer j. �

This proof concludes the section on robust peak load pricing. We showed how to
compute equilibria in a market with strict robust producers and proved the possible
existence of a gap to the corresponding robust central planner solutions. In the
adjustable robust setting, we showed that the adjustable robust central planner
cannot improve on the strict robust central planner. Finally, this last theorem
showed how to offer an incentive via subsidies such that the equilibrium in the
market with adjustable robust producers is equal to the robust central planner
solution.

6. Consequences for optimizing Risk measures

Different approaches are known in optimization under uncertainty. Robust opti-
mization is well-suited in cases where one has little knowledge about the shape and
structure of the uncertainties and additionally the market participants are very risk
averse. In cases where full information about the underlying uncertainties is avail-
able, e.g. if the probability distribution F of the uncertain variables ui,t ∈ U are
known, and if the stochastic problem is algorithmically tractably, we could replace
the robust optimization approach in (17) and (18) by a stochastic optimization
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problem. For (17) with the expectation instead of the worst-case realization in the
objective, this would read

min
x,y≥0

∑

i∈N

(cinv
i yi + (

∑

t∈T

(cvar
i + ai,tE(ui,t))xi,t)) (35)

s.t. xi,t ≤ yi, i ∈ N , t ∈ T ,
∑

i∈N

xi,t = dt, t ∈ T .

Here, the expectation essentially plays the role of a risk measure for which pro-
tection is sought by the (not very risk-averse) market participants. Still, there
is a close connection to robust optimization. Indeed, it has been shown in e.g.
Bertsimas and Brown [2009], that robust optimization can be used to analyze prob-
lems involving risk measures. With the techniques presented below, we can also
exploit limited information on the (generally unknown) probability distribution
F : RN

≥0 → [0, 1] of nonnegative random variables ui is available. The additional
information on F is going to inform the shape of the underlying uncertainty set U
against which the producers and the central planner seek to protect themselves.

To capture the risk aversity of the market participants we rely on a concept
that is widely considered in the economic literature – the value at risk (VaR). The
value at risk at the confidence level 1 − α is the (1 − α)-quantile of a loss function
U ∈ R, i.e. a random variable U that measures the loss of a market participant.
Suppose that this loss function is distributed by FU , then the value at risk at
a confidence level of 1 − 0.05 is VaR0.95(U) = F −1

U (0.95). In the following lines
we omit U and solely consider the (potentially unknown) distribution F . It is
worth noting that information on the value at risk can be achieved without full
knowledge on F . In particular, in El Ghaoui et al. [2003] the authors consider
uncertain distributions and compute their worst-case value at risk without deriving
the underlying distribution.

Here, we suppose that the value at risk is known and the central planner seeks to
protect against this risk measure instead of e.g. the expected value considered in
(35). As we deal with multivariate uncertainties we extend the above definition to a
multivariate value at risk (MVaR) defined by Prékopa (Prékopa [1990] for discrete
probability distributions, Prékopa [2012] for continuous distributions):

MVaR1−α := {u ∈ R
N : F (u) = 1 − α}.

Since our random variables are nonnegative, a natural definition of the global un-
certainty set U is

U := {u ∈ R
N
≥0 : F (u) ≤ 1 − α}.

As a probability distribution, F is monotonously increasing. Hence, on the one hand
it is quasiconvex implying the convexity of its sublevel set {u ∈ R

N : F (u) ≤ 1−α}
and consequently the convexity of U . On the other hand the monotonicity restricts
the ui from above and implies compactness of U . Moreover, we can ensure that
its projections on the unit vectors ei form the interval [0, 1] by rescaling U to

diag(VaR1
1−α, . . . , VaRN

1−α)−1U and thus have established the necessary conditions
needed to directly apply the theory above for a predefined uncertainty set U = {u ∈
R

N
≥0 : u ≤ MVaR1−α}.
The following paragraphs illustrate this at the example of the robust peak load

pricing with fixed demand from Section 4. Here, we let the random part of the
variable costs u be distributed according to the distribution F . Hence, the ui are
distributed with respect to the marginal distributions Fi and the producers aim to
optimize the worst case uncertainty in Ui = {ui ∈ R≥0 : Fi(ui) ≤ 1 − α}, which we
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will denote (in slight abuse of notation) as the marginal value at risk VaRi
1−α. We

obtain the following variant of (16):

max
xi,yi≥0

∑

t∈T

((πt − (cvar
i + VaRi

1−α))xi,t) − cinv
i yi (36a)

s.t. xi,t ≤ yi, t ∈ T . (36b)

Observe that the rescaled U satisfies our necessary assumptions and setting ai =
VaRi

1−α negates the rescaling effect on the definitions of the worst case total cost

ER = max
u∈U

∑

i∈N

(cinv
i y∗

i + (
∑

t∈T

(cvar
i + ui,t)x

∗
i,t))

of a market equilibrium (x∗, y∗) in (17) and the corresponding robust central planner
problem

CR = min
x,y≥0

max
u∈U

∑

i∈N

(cinv
i yi + (

∑

t∈T

(cvar
i + ui,t)xi,t)) (37a)

s.t. xi,t ≤ yi, i ∈ N , t ∈ T , (37b)
∑

i∈N

xi,t = dt, t ∈ T . (37c)

Thus, we obtain the following corollary of Theorem 4.2:

Corollary 6.1. Let U = {u ∈ R
N
≥0 : u ≤ MVaR1−α}. Then the following inequali-

ties are satisfied

CR ≤ ER ≤
1

τ(diag(VaR1
1−α, . . . , VaRN

1−α)−1U)
CR.

We note that although the scaling matrix (diag(VaR1
1−α, . . . , VaRN

1−α)−1 and
MVaR1−α share the same underlying distribution it is not trivial to simplify the
above result by exploiting this relationship. We further add that similar corollaries
can also be obtained for the other results in Sections 4 and 5.

One major criticism of the value at risk is that it is, although widely used,
not a coherent risk measure, i.e. it lacks the desirable properties derived by
Artzner Artzner et al. [1999]. However, for nonnegative random variables also
coherent risk measures can partly be included in our theory as they are related
to (distributionally) robust optimization through the following statement (see
Bertsimas and Thiele [2014] or Theorem 3.1.1 in Brown [2006]):

A risk measure µ : X → R is coherent if and only if there exists a family of
probability measures Q such that

µ(X) = sup
q∈Q

Eq(X) for every random variable X ∈ X ,

where Eq denotes the expected value with respect to the probability distribution
q. Thus, suppose the producers aim to optimize their respective risk measures
µi : R≥0 → R acting on the i-th component of the random vector u ∈ [0, 1]N ,
whereas the central planner aims to optimize a risk measure µ : RN

≥0 → R acting
on the whole random vector u. It is natural to assume that the choice of the risk
measures and its underlying set Q is data driven from a set of past realizations of
uncertainty A = {û1, . . . , ûK}. Similarly, as we have done for the value at risk, our
goal for the remainder of this section is to follow the arguments in Brown [2006] to
link the peak load pricing with respect to the risk measures µ to our results from
Sections 4 and 5 by determining a convenient uncertainty set U .

For a fair comparison we assume that both, the central planner and the producer
evaluate their risk based on the same set of probability distributions Q that is sup-
ported solely on A (see Assumption 3.2.1 in Brown [2006] or Bertsimas and Thiele
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[2014]). In addition we assume û1 = 0. Hence, instead of (16), the producers aim
to optimize

max
xi,yi≥0

∑

t∈T

((πt − (cvar
i + µi(ui)))xi,t) − cinv

i yi (38a)

s.t. xi,t ≤ yi, t ∈ T , (38b)

which according to Theorem 3.2.1 in Brown [2006] is equivalent to

max
xi,yi≥0

min
ui∈Ui

∑

t∈T

((πt − (cvar
i + ui))xi,t) − cinv

i yi (39a)

s.t. xi,t ≤ yi, t ∈ T , (39b)

where, since û1 = 0, the considered Ui are intervals that satisfy

Ui = conv





K
∑

j=1

qj û
j
i : q ∈ Q



 =



0, max
q∈Q

K
∑

j=1

qj û
j
i





⊆ conv({û1
i , . . . , ûK

i }) =

[

0, max
j=1,...,K

û
j
i

]

.

Moreover, if we denote mi := maxq∈Q
∑K

j=1 qj û
j
i , we can apply the same rescaling

trick as we did for the value at risk and obtain an uncertainty set

U = diag(
1

m1
, . . . ,

1

mN

)conv





K
∑

j=1

qj ûj : q ∈ Q





that satisfies the necessary conditions at the beginning of Section 4, i.e., it is a
polytope and its projection on any coordinate axis is [0, 1]. Thus, we obtain the
following similar corollary of Theorem 4.2:

Corollary 6.2. Given a set of probability distributions Q and the uncertainty set

U = conv
(

∑K
j=1 qj ûj : q ∈ Q

)

, then the following inequalities are satisfied

CR ≤ ER ≤
1

τ(diag( 1
m1

, . . . , 1
mN

)U)
CR.

Again, similar corollaries can also be derived for the other results in Sections 4
and 5 as the key to these applications is simply to construct a valid uncertainty
set U . Although a further investigation into the connections of risk measures to
our uncertainty sets appears to be very promising, it exceeds the scope of the
present article and is thus postponed to future research. To summarize, after hav-
ing obtained structural insights for both single-stage and two-stage robust market
problems under uncertain cost together with the corresponding implications for the
value at risk, the subsequent section concludes this work with a brief summary of
the results obtained here.

7. Conclusion

In the present article, we considered equilibrium problems where firms in a mar-
ket context maximize their profits in a robust way when selling their output. Our
analysis brings the robust optimization perspective into the context of equilibrium
problems. In our setup we first considered the single-stage or non-adjustable robust
setting where firms can sell their output. We then went one step further and stud-
ied the more complex adjustable case where a part of the variables are wait-and-see
decisions. We compared equilibrium outcomes with the corresponding centralized
robust optimization problem where the sum of all profits is maximized.



ROBUST MARKET EQUILIBRIA UNDER UNCERTAIN COST 23

We established existence of the resulting robust equilibrium problems and also
determined the solution of the corresponding robust central planner. We showed
that the market equilibrium for the perfectly competitive firms differs from the
solution of the centralized optimization problem. For the different scenarios con-
sidered we furthermore are able to determine the resulting price of anarchy. In the
case of non-adjustable robustness, for fixed demand in every time step the price
of anarchy is bounded. It is unbounded if market demands for the different time
periods are modelled to be elastic. As a direct application of the results we consid-
ered settings where the market participants aim to optimize their respective risk
measures, instead of their worst-case production costs. The risk measures of the
market participants then determine the uncertainty set for our robust problem. We
could show that all our results can be directly applied to these settings. In sum,
our analysis thus provides first important insights on bringing robust optimization
approaches in the context of market equilibrium problems.
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