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Abstract 

In modelling the behavior of thick-walled metal shells under compressive loads, the use of J2 flow 

theory can lead to unrealistic buckling estimates, while alternative ‘corner’ models, despite offering 

good predictions, have not been widely adopted for structural computations due to their complexity. 

The present work develops a new and efficient plasticity model for predicting the structural response 

of compressed metal shells. It combines the simplicity of the Von Mises yield surface, with a non-

associative flow rule, mimicking the effect of a yield surface corner. This allows for tracing the 

equilibrium path of the loaded shell and identifying consistently structural instability, employing a 

single constitutive model. A robust backward-Euler integration scheme, suitable for both three-

dimensional (solid) and shell elements is developed, along with the corresponding consistent 

algorithmic moduli for nonlinear isotropic hardening materials, accounting rigorously for the 

nonlinear dependence of plastic straining on the direction of strain increments. The model is 

implemented in ABAQUS as a user material subroutine. Simulations of thick-walled metal cylinders 

under compression predict structural instability in good agreement with experimental data.  
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1 Introduction 

Inelastic constitutive models based on associative plasticity can accurately simulate metal material 

behavior and are suitable for general-purpose analysis of metal components and structures. 

However, in problems of strain localization and plastic buckling, which occur well into the inelastic 

range of the material, the use of the J2 flow theory (J2FT) often results in bifurcation load predictions 

significantly higher than those observed experimentally. On the other hand, approaches that use the 

J2 deformation theory (J2DT) provide estimates more consistent with the experimental data e.g. 

(Batdorf, 1949; Gerard & Becker, 1957).  

In structural instability problems, it is quite difficult to identify accurately the onset of bifurcation, 

mainly because of its tangential (non-abrupt) character (Kyriakides & Corona, 2007). Furthermore, 

end support effects and, most importantly, the presence of small inevitable geometric imperfections 

do not allow for clear interpretation of experimental buckling results. In this perspective, the 

introduction of imperfections in modelling using J2FT may suffice to predict maximum buckling loads 

observed in buckling experiments  e.g. (Shamass et al., 2014). Nonetheless, to obtain good 

predictions in terms of bucking load and, more markedly, in terms of the corresponding deformation, 

the necessary imperfection amplitudes can become unrealistically high, particularly in thick-walled 

shells or materials with considerable hardening (Hutchinson & Budiansky, 1976). 

The documented superiority of J2DT in estimating the bifurcation point (Tuğcu, 1991; Blachut et al., 

1996; Wang, et al., 2001) can be explained by the material stiffness moduli that J2DT employs, which 

are less stiff compared to the J2FT. This more compliant material behavior can be attributed to the 

development of corners in the yield surface of real materials when abrupt changes in stress direction 

occur, which was investigated in the 60s (Hecker,1972) and was observed experimentally more 

recently (Kuroda & Tvergaard, 1999; Kuwabara et al., 2000) 
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Budiansky (1959) argued for the applicability of J2DT for a range of problems with load paths which 

do not involve unloading, as the J2DT does not have such a condition. However, in the post-buckling 

of compressed shells, parts of the shell may unload. A hybrid approach has been suggested to 

overcome this issue, using the J2FT for tracing the primary equilibrium path of the structures, and 

the J2DT material moduli for estimating bifurcation. This method has been suggested in early works 

(Bushnell, 1974; Gellin, 1979), and used successfully in problems of structural instability of tubes 

under compressive loads (Ju & Kyriakides, 1991, 1992; Bardi et al., 2006; Corona et al., 2006; Peek & 

Hilberink, 2013). Still, it requires the use of two distinct constitutive laws for the same material within 

the analysis, while it may not allow for tracing consistently the post-buckling behavior, as the 

approach does not allow instantaneous jump to the non-trivial branch. 

More advanced constitutive models have been proposed by (Christoffersen & Hutchinson, 1979; 

Gotoh, 1985; Goya & Ito, 1991) incorporating a yield surface with a vertex; a detailed overview is 

given in Schurig (2006). In particular, the J2 corner theory, developed by Christoffersen & Hutchinson 

(1979), employs the rate form of the J2DT for a range of strain rate directions, elastic unloading within 

a conical yield surface, and partial loading in between, and has been successfully employed in 

problems of shear band formation (Christoffersen & Hutchinson, 1979; Needleman & Tvergaard, 

1984), as well as in structural instability problems (Tvergaard, 1983a, 1983b; Giezen, 1988; Tvergaard 

& Needleman, 2000). However, the calibration and implementation of such models in an implicit 

finite element environment may become quite cumbersome, making their use unattractive for 

structural computations. 

To circumvent the complexity of corner models, flow rules were suggested which mimic the increased 

plastic flow caused by yield surface corners, while maintaining the smooth shape of Von Mises yield 

surfaces. Hughes & Shakib (1986) developed an associative flow rule with increased plastic flow, with 
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a hardening modulus dependent on the direction of the strain increment. Yet, it demands significant 

hardening and no application in structural stability problems has been identified by the authors. Simo 

(1987) presented a non-associative flow rule which mimics the effect of a yield surface corner, 

applicable independently of the level of hardening. However, the corresponding instantaneous and 

linearized stiffness moduli were not presented, nor the model implementation for nonlinear 

hardening materials. This model was used by Rønning et al. (2010) for modeling the buckling of 

cruciform columns, and it was the basis for the non-associative models by (Kuroda & Tvergaard, 2001; 

Yoshida, 2017). 

To inherit the effectiveness of J2DT in buckling predictions, some models were developed that 

employ its rate form, along with a smooth Von Mises yield surface. However, in this approach 

accounting for elastic unloading, creates a discontinuity in the production of plastic flow in directions 

tangent to the yield surface. To eliminate this discrepancy, Peek (2000) relaxed the demand for elastic 

unloading, allowing for some plastic deformation to take place for stress paths directed within the 

yield surface. In a different approach, Pappa & Karamanos (2016) maintained elastic unloading but 

modified the J2DT flow for a range of straining directions close to the yield-surface tangent so that 

plastic production is smoothly zeroed for tangent directions, but the ensuing strain-direction 

dependency was not fully incorporated in the formulation. These models were used to investigate 

the buckling response of metal tubes under compression. 

The complexities and shortcomings of the above approaches motivate the development of the 

present model. It is a simple and effective constitutive model, which allows for (a) tracing the 

equilibrium path and (b) estimating accurately the structural instability of thick-walled shells loaded 

into the inelastic range.  
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A non-associative model (J2NA) is developed adopting a smooth yield surface, due to its robustness, 

combined with a two-branch flow rule. The first branch, activated for moderate deviations from 

proportional loading, employs the rate form of the J2DT, to inherit its effectiveness in structural 

instability predictions. The second branch, activated for larger deviations from proportional loading, 

is used for strain increment directions approaching the yield-surface-tangent. It is an extension of the 

approach by Simo (1987), mimicking the effect of a yield surface corner of semi-angle denoted as 𝜃𝑐𝑟, 

and it is adopted for its effectiveness and natural geometric interpretation. Fully elastic unloading is 

accounted for in strain-increment directions tangent and inward to the yield surface.  

The capabilities of the constitutive model are demonstrated in the problem of instability of thick-

walled metal tubes under axial compression. A material subroutine (UMAT) is developed and has 

been employed in ABAQUS/Standard to simulate the structural response and instability of thick-

walled metal tubes under axial compression. Bifurcation estimates are compared with predictions 

from different constitutive models and with experimental results reported by Bardi & Kyriakides 

(2006). The model’s behavior is shown to vary between the one predicted by the J2FT and the one 

associated with the J2DT, based on the model’s material parameter (𝜃𝑐𝑟). The effect of the model’s 

features and of initial geometric imperfections on the simulated post-buckling behavior of thick-

walled tubes is demonstrated. 

 

 

2 Model formulation 

A framework is presented for developing non-associative metal plasticity models, employing a 

smooth Von Mises yield surface. Modifying the rate form of the J2DT and introducing a non-

associative hardening function ℎ̅ dependent on the loading history and the direction of the strain 
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rate, different amounts of allowable non-associative plastic straining can be implemented, resulting 

in stiffer or more compliant material behavior, without negating the requirement of elastic 

unloading.  

For simulating the structural behavior and instability of thick-walled metal shells, a two branched 

definition is proposed for ℎ̅, so that the model can reliably trace the equilibrium path of compressed 

shells and consistently estimate bifurcation. The rate form of the J2DT is employed for small 

deviations from proportional loading, to capitalize on the good bifurcation predictions of this model, 

which are in agreement with available experimental data. In addition, a branch following the 

approach by (Simo, 1987) is used to moderate the non-associative straining for more pronounced 

deviations from proportional loading, due to its simplicity and its geometric interpretation that 

mimics the development of a yield surface vertex. 

Preliminary calculations indicated that the direct use of either the J2DT or Simo’s model individually 

may not result in both: (a) estimating instability and (b) tracing post-buckling behavior of thick-walled 

cylinders. By combining both models, as presented in the following, their desirable attributes are 

transferred into the present model. 

2.1 A framework for non-associative plasticity models with a Von Mises yield surface 

In the framework of incremental small-strain metal plasticity, the rate of stress 𝛔̇ is related to the 

elastic strain rate 𝛆̇𝑒 as follows: 

 𝛔̇ = 𝐃𝛆̇𝑒 = 𝐃(𝛆̇ − 𝐞̇𝑝) = 𝐃𝛆̇ − 𝐃𝐞̇𝑝 (1) 

where 𝐃 is the fourth-order elastic stiffness tensor, 𝛆̇ is the rate of total strain, 𝛆̇𝑒 is the rate of elastic 

strain and 𝐞̇𝑝 is the (deviatoric) plastic strain rate. The elastic rigidity 𝐃 can be expressed as: 

 𝐃 = 2𝐺 𝐈𝑑𝑒𝑣 + 3𝐾 𝐈𝑣𝑜𝑙  (2) 
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where G is the shear modulus and K is the bulk modulus. 𝐈𝑑𝑒𝑣 , 𝐈𝑣𝑜𝑙  are the deviatoric and volumetric 

fourth-order unit tensors, whose Cartesian components are:  

 𝐼𝑖𝑗𝑘𝑙
𝑑𝑒𝑣 =

1

2
(𝛿𝑖𝑘𝛿𝑗𝑙 + 𝛿𝑖𝑙𝛿𝑗𝑘) −

1

3
𝛿𝑖𝑗𝛿𝑘𝑙 (3) 

 𝐼𝑖𝑗𝑘𝑙
𝑣𝑜𝑙 =

1

3
𝛿𝑖𝑗𝛿𝑘𝑙 (4) 

The rate of plastic strain 𝐞̇𝑝 of the J2DT, as reported by Chakrabarty (2006) is: 

 𝐞̇𝑝 =
3

2
(
𝜀𝑞̇

𝑞
−

𝜀𝑞𝑞̇

𝑞2
) 𝐬 +

3

2

𝜀𝑞

𝑞
𝐬̇ (5) 

where 𝐬 = 𝐈𝑑𝑒𝑣𝛔 is the deviatoric part of the stress tensor, 𝜀𝑞 is the (accumulated) equivalent plastic 

strain, 𝑞 = √3 2⁄ ‖𝐬‖ is the equivalent Von Mises stress, with ‖𝐬‖ = √𝐬 ⋅ 𝐬 being the norm of 𝐬, and 

their rates, indicated by a superimposed dot: 𝐬̇, 𝜀𝑞̇ and 𝑞̇. By further enforcing consistency with a Von 

Mises yield surface in (5), which implies (𝜀𝑞̇ = 𝑞̇/𝐻), the flow rule of the J2DT as presented by (Goya 

& Ito, 1991; Pappa & Karamanos, 2016) can be obtained.  

Considering these definitions, one may readily show that 𝑞̇ = √3 2⁄ 𝐬 ⋅ 𝐬̇/‖𝐬‖, and 𝐬̇ = 2𝐺(𝐞̇ − 𝐞̇𝑝) 

with 𝐞̇ = 𝐈𝑑𝑒𝑣𝛆̇. Inserting those in (5) and rearranging, the plastic strain rate adopted in the present 

formulation is obtained: 

 𝐞̇𝑝 = √3/2 𝜀𝑞̇𝐧 +
[𝚰𝑑𝑒𝑣 − 𝐧 ⊗ 𝐧]𝐞̇

1 + ℎ̅/3𝐺
 (6) 

where 𝐧 = 𝐬/‖𝐬‖  is the unit tensor in the direction of 𝐬. The plastic strain rate comprises two 

components: one in the direction of the tensor 𝐧 and one in the direction [𝚰𝑑𝑒𝑣 − 𝐧 ⊗ 𝐧]𝐞̇, which is 

perpendicular to 𝐧, in the direction defined by the strain rate. The function ℎ̅ is a non-associative-

hardening parameter, whose definition is discussed in subsection 2.2, that moderates the amount of 

plastic straining perpendicular to 𝐧. In (6), the rate of equivalent plastic strain is defined as 𝜀𝑞̇ =
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√2 3⁄ 𝐧 ⋅ 𝐞̇𝑝, a definition also adopted by Simo (1987), which for proportional loading is equivalent 

to its counterpart in J2FT (𝜀𝑞̇ = √2 3⁄ √𝐞̇𝑝 ⋅ 𝐞̇𝑝). The flow rule (6) can be rewritten in the following, 

more convenient, geometric form, which is used more extensively in the numerical integration of the 

model, described in section 3: 

 𝐞̇𝑝 = √3 2⁄ 𝜀𝑞̇ 𝐧 +
‖𝐞̇‖ sin 𝜃

1 + ℎ̅/3𝐺
𝐦 (7) 

In (7), 𝜃 is the angle defined by the strain rate 𝐞̇ and the tensor 𝐧, shown in Figure 1, analytically 

expressed as: 

 cos 𝜃 =
𝐧 ⋅ 𝐞̇

‖𝐞̇‖
 (8) 

and 𝐦 is the unit deviatoric tensor perpendicular to 𝐧, in the direction of the strain rate 

 𝐦 =
(𝐈𝑑𝑒𝑣 − 𝐧 ⊗ 𝐧)𝐞̇

‖(𝐈𝑑𝑒𝑣 − 𝐧 ⊗ 𝐧)𝐞̇‖
=

(𝐈𝑑𝑒𝑣 − 𝐧 ⊗ 𝐧)𝐞̇

‖𝐞̇‖ sin 𝜃
 (9) 

Yielding is defined with respect to a Von Mises yield function with nonlinear isotropic hardening: 

 𝐹(𝛔, 𝜀𝑞) =
√2 3⁄

2𝐺
[𝑞 − 𝑘(𝜀𝑞)] =

‖𝐬‖

2𝐺
−

√2 3⁄ 𝑘(𝜀𝑞)

2𝐺
   = 0 (10) 

where 𝑘(𝜀𝑞) is the material yield stress in uniaxial tension, that defines the size of the yield surface 

as a function of the (accumulated) equivalent plastic strain 𝜀𝑞. The above expression for the Von 

Mises yield criterion is chosen because it scales down the yield surface to the deviatoric strain space, 

so that all the strain components, the shape of the yield surface and their relative size and geometry 

can be presented in the same graph (e.g. Figures 1, 7, 8). Hence, tensors 𝐧, 𝐦 are the unit tensors 

normal and tangent to the Von Mises yield surface respectively, and eq. (7) demonstrates the non-

associative nature of the present model, with the increased plastic flow moderated by ℎ̅. 
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Figure 1 Schematic representation of key tensors in the deviatoric hyperplane and angles 𝜽, 𝜽𝒑.  

Enforcing consistency (𝐹̇ = 0), and using (1) and (7), the equivalent plastic strain rate is expressed 

similarly to the J2FT : 

 𝜀𝑞̇ = √2 3⁄
1

1 + 𝐻/3𝐺
(𝐧 ⋅ 𝐞̇) (11) 

where 𝐻 = 𝑑𝑘/𝑑𝜀𝑞 is the material isotropic hardening modulus. Using equations (1), (7) and (11), 

the instantaneous rigidity tensor for this model is readily calculated as  

 𝐃𝑒𝑝 = 3𝐾 𝐈𝑣𝑜𝑙 +
2𝐺

1 + 3𝐺/ℎ̅
 𝐈𝑑𝑒𝑣 − (

2𝐺

1 + 𝐻/3𝐺
−

2𝐺

1 + ℎ̅/3𝐺
) (𝐧 ⊗ 𝐧) (12) 

 

 

2.2 Definition of the function 𝒉̅ 

The choice of ℎ̅ is of key importance in this model, leading to stiffer or more compliant material 

behavior. Table 2 shows that the appropriate selection of ℎ̅, allows the model to mimic different 

material models available in the literature. 



 

Nasikas et al. (2020)   Page 11 of 57 

To incorporate elastic unloading together with the selected flow rule, continuity of the production of 

plastic strain must be assured (Figure 2), as noted by Peek (2000) and Pappa & Karamanos (2016). 

This implies that no plastic strain should be produced for strain rates directed tangent to the yield 

surface (𝜃 → 𝜋/2), which creates demand (13) for the function ℎ̅: 

 lim
𝜃→(𝜋 2⁄ )−

‖𝐞̇𝑝‖/‖𝐞̇‖ = 0  ⇒ lim
𝜃→(𝜋 2⁄ )−

ℎ̅ → +∞ (13) 

Therefore, ℎ̅ must depend on the direction of the strain rate (𝜃), which implies that the rigidity tensor 

(12) at a material point is not fully defined by its loading history, but the strain rate direction must 

also be known. This is a manifestation of the nonlinear dependence of the stress rate on the strain 

rate, characteristic in pseudo-corner models. 

Table 1 Summary of the elastoplastic constitutive model 

(1) Linear isotropic stress/strain relations 

 𝐬 = 2𝐺[𝐞 − 𝐞𝑝] 
𝑡𝑟 𝛔 = 3𝐾 𝑡𝑟 𝛆 

(2) Yield condition  
 

𝐹(𝛔, 𝜀𝑞) =
1

2𝐺
[‖𝐬‖ − √2 3⁄ 𝑘(𝜀𝑞)] 

𝜀𝑞̇ = √2/3 𝐧 ⋅ 𝐞̇𝑝 

𝐧 = 𝐬/‖𝐬‖ 
(3) Flow rule 

 
𝐞̇𝑝 = √3 2⁄ 𝜀𝑞̇ 𝐧 +

‖𝐞̇‖ sin 𝜃

1 + ℎ̅/3𝐺
𝐦 

𝐦 =
(𝐈𝑑𝑒𝑣 − 𝐧 ⊗ 𝐧)𝐞̇

‖(𝐈𝑑𝑒𝑣 − 𝐧 ⊗ 𝐧)𝐞̇‖
 

cos 𝜃 = 𝐧 ⋅ 𝐞̇/‖𝐞̇‖ 
cos 𝜃𝑝 = 𝐧 ⋅ 𝐞̇𝑝/‖𝐞̇𝑝‖ 

ℎ = 𝑘(𝜀𝑞) 𝜀𝑞⁄  

1st branch:   ℎ̅ = ℎ    &    𝜃𝑝(ℎ̅) ≤ 𝜃𝑐𝑟 
2nd branch: 𝜃𝑝 = 𝜃𝑐𝑟 → ℎ̅(𝜃𝑐𝑟) > ℎ  

(4) Kuhn-Tucker loading/unloading conditions 

 
𝜀𝑞̇ ≥ 0,        𝐹(𝛔, 𝜀𝑞) ≤ 0,       𝜀𝑞̇𝐹(𝛔, 𝜀𝑞) = 0 

(5)  Plastic consistency in loading (𝜀𝑞̇ > 0) 

 
𝜀𝑞̇ = √2 3⁄

1

1 + 𝐻/3𝐺
(𝐧 ⋅ 𝐞̇) 
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Figure 2 Discontinuity of plastic production for straining directions tangent to the yield surface 

The present model (J2NA) adopts a two-branch definition for the non-associate hardening parameter 

ℎ̅. For small deviations from proportional loading, ℎ̅ = ℎ = 𝑘(𝜀𝑞) 𝜀𝑞⁄ , and the model’s flow rule 

coincides with the J2DT, aspiring to inherit its superiority in estimating bifurcation. A second branch 

is necessary to comply with the limitations imposed by elastic unloading, so for larger deviations from 

proportional loading, up to loading tangent to the yield surface, the model is chosen to follow the 

flow proposed by  Simo (1987). This branch mimics the effect of a conical yield surface vertex of semi-

angle 𝜃𝑐𝑟 in the direction of the stress deviator: it constrains the plastic strain rate to lie within the 

forward cone of normals of the vertex, as shown in Figure 3. This is interpreted as (𝜃𝑝 ≤ 𝜃𝑐𝑟), where 

𝜃𝑝 is the angle formed by the yield surface normal and the plastic strain rate (Figure 1), analytically 

expressed as: 

 cos 𝜃𝑝 =
𝐧 ⋅ 𝐞̇𝑝

‖𝐞̇𝑝‖
 (14) 

From (7) and (14), it is deduced that 𝜃𝑝  is a decreasing function of ℎ̅, which allows for the two 

branches of the model to be reduced to the following definition.  

 {ℎ̅ ≥ ℎ =  𝑘(𝜀𝑞) 𝜀𝑞⁄        so that       𝜃𝑝 ≤ 𝜃𝑐𝑟} (15) 
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A summary of the model is given in Table 1. In the rate form, the present definition of ℎ̅ (eq. 15), can 

be expressed in the form presented in Table 2, which demonstrates the compliance with requirement 

for continuity of plastic production (eq.13).  

The value of parameter 𝜃𝑐𝑟 can be determined from experiments involving non-proportional loading, 

like the ones described by (Rønning et al., 2010; Yoshida & Tsuchimoto, 2018). In those experiments, 

tension is applied first to a tubular specimen beyond the yield point, followed by combined tension 

and torque load increments, producing a non-proportional stress path. The value of 𝜃𝑐𝑟 can then be 

obtained from the direction of the corresponding plastic strain increments, calculated using 

equations (14), (15). In an analogous manner, the parameter 𝜃𝑐𝑟 can also be calculated from biaxial 

experiments on cruciform specimens (Kuroda & Tvergaard, 1999; Kuwabara, et al., 2000), in which 

non-proportionality is induced in the second loading stage by applying load increments in different 

directions. 

 

Figure 3 Yield surface and directions of plastic strain rate in  

a) corner models and (b) non-associative model 
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Table 2 Expressing different models (in their rate form) by different definitions of 𝒉̅ 

J2 Flow – Associative model ℎ̅ → +∞ 
J2 Deformation Theory Rate Form ℎ̅ = ℎ = 𝑘(𝜀𝑞) 𝜀𝑞⁄  

Pappa & Karamanos (2016) ℎ̅ = [𝐸 sin𝑛 𝜃 + ℎ] [1 − sin𝑛 𝜃]⁄  
Simo (1987) ℎ̅ = 𝐻𝑐 + 3𝐺(𝑐 − 1), 𝑐 = tan 𝜃 𝛿⁄ (𝜃),   

𝛿(𝜃) = tan(max(𝜃, 𝜃𝑐𝑟)) 

Present model ℎ̅ = max {
𝑘(𝜀𝑞) 𝜀𝑞⁄

𝐻𝑐 + 3𝐺(𝑐 − 1)
} , 𝑐 = tan 𝜃 / tan 𝜃𝑐𝑟 

 

2.3 Plastic production ratio and comparison with other models 

A qualitative comparison between different corner and pseudo-corner models can be made using the 

plastic production 𝑤∗(𝜃, 𝜀𝑞) and the plastic angle 𝜃𝑝(𝜃, 𝜀𝑞) associated with each model. The former, 

introduced by Hughes & Shakib (1986), expresses the amount of plastic strain caused by a strain rate 

𝐞̇, depending on its direction (angle 𝜃), and is defined as: 

 𝑤∗(𝜃, 𝜀𝑞) =
‖𝐞̇𝑝‖

‖𝐞̇‖
1 + 𝐻/3𝐺

 
 (16) 

The plastic angle 𝜃𝑝 is an additional measure for describing the behavior of a model, stemming from 

the non-associative nature of the majority of the models and it expresses the angle the plastic strain 

rate forms with the yield surface normal, defined in (14) depending on the direction of the (total) 

strain rate. Analytical expressions for these measures, for several flow rules, can be found in Table 4. 

The behavior of the models depends on the loading history of the material; therefore, we consider 

here a specific material point, loaded proportionally to its current stress state, well into the inelastic 

range. The material properties and state variables of the material point under consideration are given 

in Table 3. 
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Table 3 Material properties and state variables 

 at current loading state 

Young’s Modulus  𝐸  = 194 𝐺𝑃𝑎 
Poisson’s Ratio 𝜈   = 0.3 
Equivalent plastic strain 𝜀𝑞  = 1.6%  

Von Mises Stress 𝑘   =   710 𝑀𝑃𝑎 
Hardening modulus 𝐻 𝐸⁄ = 2% 
Angle parameter 2 𝜃𝑐𝑟 = 𝜋/4 

In Figures 4 and 5 the plastic production and plastic angles are plotted with respect to the angle 𝜃 for 

the proposed model and several other models available in the literature. For the J2 corner theory two 

curves are plotted, each one representing a family of flow rules proposed by Christoffersen & 

Hutchinson (1979). For proportional loading (𝜃 = 0), all models predict the same plastic production 

as the J2FT, since all models must be able to replicate identically a proportional loading experiment, 

i.e., a uniaxial test. As non-proportionality increases, plastic production in all models is higher than 

the one predicted by the J2FT, corresponding to more compliant responses. All models that account 

for fully elastic unloading produce zero plastic strain for strain rates directed tangent to their 

respective yield surfaces. Those directions correspond to 𝜃 = 𝜋/2 for the models employing a Von 

Mises yield surface, and to 𝜃 = 𝜋 − 𝜃𝑐  for the models which employ a yield surface vertex, such as 

the J2 corner theory. The value of 𝜃𝑐  is given in Table 4.  

The J2 corner theory, the models by Peek (2000) and Pappa & Karamanos (2016) and the present 

model, all exhibit a response similar with the J2DT for a certain range of straining directions (𝜃). Each 

of them uses a second branch with the purpose of gradually suppressing plastic production for strain 

rate directions that approach the tangent to the yield surface. This is a major feature that 

differentiates each model with respect to the others. All models incorporate a maximum allowable 

                                                      
2 Applicable for the models by Simo (1987), Hughes & Shakib (1986) and the present model 
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angle 𝜃𝑝  which the plastic strain rate may not exceed, but its value and the range of straining 

directions 𝜃 for which this angle is activated is different for each model. 

Additionally, at first yield the J2DT has an essentially associative behavior, allowing for plastic 

straining only in the direction of the deviatoric stress. Progressively, as plastic strain accumulates, 

increasing amounts of non-associative plastic straining are produced for a given angle 𝜃, meaning 

that both plastic production and plastic angle increase (Figure 6). For large values of accumulated 

plastic strain 𝜀𝑞 this behavior becomes similar to the first branch of the model proposed by Simo 

(1987). This gradually more compliant behavior of the rate form of the J2DT leads to lower bifurcation 

estimates for thick-walled shells and justifies its use in several constitutive models which inherit its 

capability for providing reliable buckling predictions. 

 

Figure 4 Normalized plastic production ration with respect to 

 the direction of the strain rate (angle 𝜽) 
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Table 4 Plastic production and plastic angle for different models 

 
Plastic Production  

𝑤∗(𝜃, 𝜀𝑞) 
Plastic Angle 
tan 𝜃𝑝(𝜃, 𝜀𝑞) 

Details 

J2 Flow theory 
(associative) 

cos 𝜃 0  

Hughes and 
Shakib (1987) 

cos𝜓 0 𝜓 = max {0,
𝜋

2
 

(𝜃 − 𝜃𝑐𝑟)

(𝜋 2⁄ − 𝜃𝑐𝑟)
} 

Simo (1987) cos 𝜃 √1 + 𝛿2 𝛿(𝜃) 𝛿(𝜃) = tan(min{𝜃, 𝜃𝑐𝑟}) 

J2 Deform. Theory 
(Total Strain 

Theory) 
√cos2 𝜃 + 𝑐2 sin2 𝜃 𝑐 tan 𝜃 𝑐 = [1 + 𝐻 3𝐺⁄ ]  [1 + ℎ 3𝐺⁄ ]⁄  

Pappa & 
Karamanos (2016) 

√cos2 𝜃 + 𝑐2 sin2 𝜃 𝑐 tan 𝜃 
𝑐 = [1 + 𝐻 3𝐺⁄ ]  [1 + ℎ𝑃𝑛𝐾 3𝐺⁄ ]⁄  
ℎ𝑃𝑛𝐾 = [𝐸 sin𝑛 𝜃 + ℎ] [1 − sin𝑛 𝜃]⁄  

Peek (2000) √cos2(𝜃𝐼𝐶𝑈 ) + 𝑐2 sin2 𝜃 𝑐 tan 𝜃𝐼𝐶𝑈 
𝑐 = [1 + 𝐻 3𝐺⁄ ]  [1 + ℎ 3𝐺⁄ ]⁄  

𝜃𝐼𝐶𝑈 = 𝑚𝑖𝑛(𝜃, 𝜋/2) 

J2 Corner Theory 
√𝑥2 + (𝑦𝑧)2

√(1 + 𝑥)2 + [(1 + 𝑦)𝑧]2
 √𝐻 ℎ⁄ tan𝜙𝐶𝐻 𝑥 =

3𝐺

𝐻
𝑓(𝜃𝐶𝐻)[1 + 𝑘(𝜃𝐶𝐻) tan 𝜃𝐶𝐻] 

𝑦 =
3𝐺

ℎ
𝑓(𝜃𝐶𝐻)[1 − 𝑘(𝜃𝐶𝐻) cot 𝜃𝐶𝐻] 

𝑧 = √ℎ/𝐻 tan𝜃𝐶𝐻 

with 

tan 𝜃 =
1 + 𝑦

1 + 𝑥
√ℎ/𝐻 tan𝜃𝐶𝐻 

𝜙𝐶𝐻 = 𝜃𝐶𝐻 − tan−1[𝑘(𝜃𝐶𝐻)] 
 

tan 𝜃𝑐 = −√𝐻/ℎ
𝜎0

√𝜎𝑒
2 − 𝜎0

2 
 

where 𝜎0 is the yield stress of the 
material and 𝜎𝑒 is the current mises 
stress of the material 
and 𝜃0 ≤ 𝜃𝑐 − 𝜋 2⁄  is the angle 𝜃𝐶𝐻 
cutoff, following which the models 
cease to follow the deformation 
theory flow rule 

 

 

Family 1. 𝑓 = 𝑓(𝜃𝐶𝐻)

= {

1

cos2 [
𝜋

2
 
(𝜃𝐶𝐻 − 𝜃0)

(𝜃𝑐 − 𝜃0)
]

0

,   

0 ≤ 𝜃𝐶𝐻 ≤ 𝜃0

𝜃0 ≤ 𝜃𝐶𝐻 ≤ 𝜃𝑐

𝜃𝑐 ≤ 𝜃𝐶𝐻 ≤ 𝜋

 

𝑘(𝜃𝐶𝐻) = −𝑓′ (2𝑓)⁄  

 

Family 2. 

𝑓(𝜃𝐶𝐻) = [𝑔(𝜙𝐶𝐻)[1 + 𝑙(𝜙𝐶𝐻)]]
−1

          

𝑘(𝜃𝐶𝐻) = 𝑙(𝜙𝐶𝐻) 
with 

𝑔(𝜙𝐶𝐻) = {
1

(1 − 𝜙̅𝑚)−2,   
0 ≤ 𝜙𝐶𝐻 ≤ 𝜃0

𝜃0 ≤ 𝜙𝐶𝐻 ≤ 𝜃𝜋

 

𝑙(𝜙𝐶𝐻) = 𝑔′ (2𝑔)⁄  
And   𝜙̅ = (𝜙 − 𝜃0) (𝜃𝜋 − 𝜃0)⁄ , 𝑚 ≥ 2 

Present model √cos2 𝜃 + 𝑐2 sin2 𝜃 min{𝑐 tan 𝜃 , tan 𝜃𝑐𝑟} 𝑐 = [1 + 𝐻 3𝐺⁄ ]  [1 + ℎ 3𝐺⁄ ]⁄  
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3 Numerical implementation  

A stress update algorithm (or integration scheme) is developed accounting for the particular features 

of the present model. A geometric approach, similar to the one developed by Simo (1987), is adopted 

for the integration of the governing equations, while modifications are introduced intended to 

account for nonlinear material hardening, and for the dependence the model exhibits on the 

direction of the strain increment. Appropriate mathematical manipulations reduce the integration of 

the model to the solution of a single equation of a scalar unknown, irrespective of the material 

hardening rule, just as in the case of J2FT. This is in contrast to previous formulations which lead to 

more complicated iterative solutions (Rønning et al., 2010), some are confined to linear hardening 

(Hughes & Shakib, 1986; Simo, 1987) or do not fully account for the angle dependence (Pappa & 

Karamanos, 2016). Both the integration and linearization schemes fully account for the dependence 

on the strain direction angle 𝜃. 

3.1 Backward-Euler stress update algorithm 

For any material point at pseudo-time 𝑡𝑛  the stress 𝛔𝑛  and strain 𝛆𝑛  are known, as well as the 

equivalent plastic strain 𝜀𝑞|𝑛 (internal variable). At pseudo-time 𝑡𝑛+1 = 𝑡𝑛 + 𝛥𝑡, a strain increment 

𝛥𝛆 = 𝛆𝑛+1 − 𝛆𝑛 leads to changes in the material stress state 𝛔𝑛+1 and internal variable 𝜀𝑞|𝑛+1, which 

are calculated by integrating  the plasticity constitutive model in the pseudo-time increment 𝛥𝑡.  

An elastic predictor–plastic corrector scheme is adopted: an elastic-predictor step, leading to a stress 

state outside the yield surface, is followed by a plastic-corrector step, which enforces consistency 

and returns the stress to the updated yield surface. The elastic predictor 𝛔𝑒 assumes a purely elastic 

trial stress and is decomposed as follows: 

 𝛔𝑒 = 𝛔𝑛 + 𝐃𝛥𝛆 = 𝐬𝑒 − 𝑝𝑒𝐈 (17) 

where 
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 𝐬𝑒 = 𝐈𝑑𝑒𝑣𝛔𝑒 = 𝐬𝑛 + 2𝐺𝛥𝐞 (18) 

 𝑝𝑒 = −1 3⁄ (𝐈 ⋅ 𝛔𝑒) = 𝑝𝑛 − 𝐾(𝐈 ⋅ Δ𝛆) (19) 

Furthermore, 𝛥𝐞 = 𝐈𝑑𝑒𝑣𝛥𝛆 is the deviatoric part of the strain increment, 𝑝𝑛 and 𝐬𝑛 are respectively 

the hydrostatic pressure and the stress deviator at the beginning of the increment (𝛔𝑛 = 𝐬𝑛 − 𝑝𝑛𝐈). 

The Von Mises stress at the beginning of the strain increment (𝑞𝑛) and at the elastic predictor state 

(𝑞𝑒) are respectively defined as: 

 𝑞𝑛 = √3 2⁄ √𝐬𝑛 ⋅ 𝐬𝑛 = √3 2⁄ ‖𝐬𝑛‖ (20) 

 𝑞𝑒 = √3 2⁄ √𝐬𝑒 ⋅ 𝐬𝑒 = √3 2⁄ ‖𝐬𝑒‖ (21) 

If the trial stress violates the yield condition, elastic-plastic straining is accounted for, and the new 

stress state is calculated by including the plastic correction phase 

 𝛔𝑛+1 = 𝛔𝑛 + 𝐃 (𝛥𝛆 − 𝛥𝐞𝑝) = 𝛔𝑒 − 2𝐺𝛥𝐞𝑝 (22) 

The stress at pseudo-time 𝑡𝑛+1 is decomposed into  

 𝛔𝑛+1 = −𝑝𝑛+1𝐈 + 𝐬𝑛+1 (23) 

where −𝑝𝑛+1𝐈 and 𝐬𝑛+1 are the hydrostatic and deviatoric parts of the final stress 𝛔𝑛+1, with 

 𝑝𝑛+1 = −
1

3
(𝐈 ⋅ 𝛔𝑛+1) = 𝑝𝑒 (24) 

 𝐬𝑛+1 = 𝐈𝑑𝑒𝑣𝛔𝑛+1 = 𝐬𝑒 − 2G𝛥𝐞𝑝 (25) 

Enforcing the consistency condition (10) at the end of the increment (𝑡𝑛+1):  

 𝐹(𝛔𝑛+1, 𝛥𝜀𝑞) =
√𝐬𝑛+1 ⋅ 𝐬𝑛+1

2𝐺
−

√2 3⁄ 𝑘(𝜀𝑞|𝑛 + 𝛥𝜀𝑞)

2𝐺
= √2 3⁄

𝑞𝑛+1 − 𝑘𝑛+1

2𝐺
= 0 (26) 

where 𝛥𝜀𝑞 is the equivalent plastic strain increment. The corresponding plastic strain increment 𝛥𝐞𝑝 

is calculated using a backward-Euler integration of equation (7): 



 

Nasikas et al. (2020)   Page 21 of 57 

 𝛥𝐞𝑝 = √3 2⁄ 𝛥𝜀𝑞 𝐧𝑛+1 +
‖𝛥𝐞‖ sin 𝜃

1 + ℎ̅𝑛+1/3𝐺
𝐦𝑛+1 (27) 

where the direction angle 𝜃 = 𝜃𝑛+1  for simplicity. The unit deviatoric tensor normal to the yield 

surface and the one tangential to it, in the direction of the strain increment, at the beginning and the 

end of the increment (Figure 7) are respectively defined as: 

 𝐧𝑛 =
𝐬𝑛

‖𝐬𝑛‖
, 𝐦𝑛 =

[𝚰𝑑𝑒𝑣 − 𝐧𝑛 ⊗ 𝐧𝑛] 𝛥𝐞 

‖[𝚰𝑑𝑒𝑣 − 𝐧𝑛 ⊗ 𝐧𝑛] 𝛥𝐞 ‖
 (28) 

 𝐧𝑛+1 =
𝐬𝑛+1

‖𝐬𝑛+1‖
, 𝐦𝑛+1 =

[𝚰𝑑𝑒𝑣 − 𝐧𝑛+1 ⊗ 𝐧𝑛+1] 𝛥𝐞 

‖[𝚰𝑑𝑒𝑣 − 𝐧𝑛+1 ⊗ 𝐧𝑛+1] 𝛥𝐞 ‖
 (29) 

while the unknown tensors 𝐧𝑛+1, 𝐦𝑛+1 can be expressed in terms of 𝐧𝑛, 𝐦𝑛  using the following 

geometric relation identified by Simo (1987): 

 𝐧𝑛+1 =    cos 𝜁 𝐧𝑛 + sin 𝜁 𝐦𝑛 (30) 

 𝐦𝑛+1 = −sin 𝜁 𝐧𝑛 + cos 𝜁 𝐦𝑛 (31) 

In the above expression, the angle 𝜁 is represented geometrically in Figure 7, together with angles 

𝜁∗, 𝜁𝑒, 𝜃, 𝜃𝑛, 𝜃𝑒, 𝜃𝑝, that are formed by the key tensors and are involved in subsequent operations. 

Furthermore, geometry dictates: 

 𝜁 = 𝜁𝑒 − 𝜁∗ (32) 

 𝜃 = 𝜃𝑛+1 = 𝜃𝑒 + 𝜁∗ = 𝜃𝑛 − 𝜁 (33) 

where 

 cos 𝜁𝑒 =
𝐬𝑛 ⋅  𝐬𝑒

‖𝐬𝑛‖‖𝐬𝑒‖
,          cos 𝜃𝑒 =

𝛥𝐞 ⋅  𝐬𝑒

‖𝛥𝐞‖‖𝐬𝑒‖
 (34) 

Multiplying (25) by 𝐧𝑛+1 and 𝐦𝑛+1, the following relations are obtained: 

 𝑞𝑒cos 𝜁∗ = 𝑞𝑛+1 + 3𝐺𝛥𝜀𝑞 (35) 
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 𝑞𝑒sin 𝜁∗ = √2 3⁄
3𝐺‖𝛥𝐞‖ sin 𝜃

1 + ℎ̅𝑛+1 3𝐺⁄
 (36) 

Equations (26), (33), (35), (36) constitute a system of 4 equations with 5 unknowns: 𝑞𝑛+1, 𝛥𝜀𝑞, 𝜁∗, 𝜃, 

and ℎ̅𝑛+1. The extra equation necessary for the solution is the definition of ℎ̅, which is different in 

each branch of the present model. The solution procedure for the system is described in the next 

paragraphs for each branch. The implementation of the above formulation for an explicitly chosen 

function ℎ̅(𝜀𝑞 , 𝜃) which may be chosen to mimic the behavior of various models in the literature is 

further considered in Appendix I. An enhancement of this solution procedure for implementation in 

shell elements is included in Appendix II. 

 

Figure 7 Geometric representation of the return mapping of a non-associative model 
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3.2 First branch of the model 

In the first branch of the model, the parameter ℎ̅ = ℎ̅(𝛥𝜀𝑞) is defined as follows, independent of 𝜃:  

 ℎ̅𝑛+1 = 𝑘𝑛+1 𝜀𝑞|𝑛+1⁄  (37) 

Thus, equation (36) together with (37) can be used to express 𝜁∗(𝛥𝜀𝑞) as a function of the equivalent 

plastic strain 𝛥𝜀𝑞, as follows: 

 tan 𝜁∗ −
sin 𝜃𝑒

‖𝐬𝑒‖
2𝐺‖𝛥𝐞‖

[1 +
ℎ𝑛+1

3𝐺 ] − cos 𝜃𝑒

= 0 (38) 

Treating only 𝛥𝜀𝑞 as the primary unknown, equations (26) and (37) can be used to eliminate 𝑞𝑛+1, 𝜁∗ 

from (36) resulting in a single scalar equation (39) of the equivalent plastic strain increment 

𝐹𝑝1(Δ𝜀𝑞) = 0, as in the case of J2FT. 

 𝐹𝑝1(Δ𝜀𝑞) = 1 + [
sin 𝜃𝑒

‖𝐬𝑒‖
2𝐺‖𝛥𝐞‖

[1 +
ℎ𝑛+1

3𝐺
] − cos 𝜃𝑒

]

2

− [
𝑞𝑒

𝑘𝑛+1 + 3𝐺𝛥𝜀𝑞
]

2

= 0 (39) 

The above equation (39) can be solved using a local Newton scheme and all necessary derivatives are 

provided in Appendix I. When 𝛥𝜀𝑞  is found all remaining parameters are updated and the plastic 

corrector is computed from (27). At this stage, the plastic strain angle 𝜃𝑝 is compared to 𝜃𝑐𝑟: if 𝜃
𝑝 ≤

𝜃𝑐𝑟 the integration procedure is complete, else, the solution is discarded, and the integration scheme 

of the second branch is used. A summary of this integration procedure is given in Table 5. 

3.3 Second branch of the model 

In cases where the first branch of the model leads to plastic strain increment angle 𝜃𝑏𝑟1
𝑝  greater than 

the semi-angle 𝜃𝑐𝑟 of the simulated vertex (𝜃𝑏𝑟1
𝑝 > 𝜃𝑐𝑟), the second branch is activated. In this case, 

the plastic strain increment is constrained to form an angle 𝜃𝑝 = 𝜃𝑐𝑟 with the deviatoric stress in the 

converged state, so that: 
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 tan 𝜃𝑝 =
𝐦𝑛+1 ⋅ 𝛥𝐞𝑝

𝐧𝑛+1 ⋅ 𝛥𝐞𝑝
= tan𝜃𝑐𝑟 (40) 

Using (27), (36), the above provides an explicit expression for 𝜁∗(𝛥𝜀𝑞): 

 sin 𝜁∗ =
√3 2⁄ Δ𝜀𝑞 tan 𝜃𝑐𝑟

‖𝐬𝑒‖ 2𝐺⁄
=

3𝐺𝛥𝜀𝑞 tan 𝜃𝑐𝑟

𝑞𝑒
 (41) 

Equation (41) may be used to eliminate 𝜁∗ from (35), yielding a scalar equation of the equivalent 

plastic strain increment 𝛥𝜀𝑞: 

 𝐹𝑝2(𝛥𝜀𝑞) = [𝛥𝜀𝑞 +
𝑘𝑛+1(𝛥𝜀𝑞)

3𝐺
]

2

+ [𝛥𝜀𝑞 tan 𝜃𝑐𝑟]
2
− (

𝑞𝑒

3𝐺
)

2

= 0 (42) 

which can be solved numerically. For linear hardening, it reduces to a second-order polynomial of 

𝛥𝜀𝑞, with a single positive solution, which was obtained by Simo (1987). On obtainment of 𝛥𝜀𝑞, all 

remaining parameters are updated and ultimately the plastic strain increment 𝛥𝐞𝑝  and the new 

stress state 𝛔𝑛+1 are calculated using (27) and (22). In Figure 8 a qualitative comparison is made for 

the integration process using the classical associative model and the present model. For a given stress 

state 𝐬𝑛  and non-proportional strain increment 𝛥𝐞, the converged state of the associative model 

corresponds to the largest expansion of the yield surface, while the present model results to smaller 

expansion of the yield surface, denoting its comparatively less stiff behavior. 
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Table 5 Integration algorithm for three-dimensional element analysis 

(1) Compute trial elastic stress (elastic prediction) 
 𝛔𝑒 = 𝛔𝑛 + 𝐃𝛥𝛆   , 𝐬𝑒 = 𝐈𝑑𝑒𝑣𝛔𝑒   , 𝑝𝑒 = −1 3⁄ (𝐈 ⋅ 𝛔𝑒) 

𝑞𝑒 = √3 2⁄ ‖𝐬𝑒‖ , 𝑘𝑛 = 𝑘(𝜀𝑞|𝑛), 𝐹𝑛+1
𝑡𝑟𝑖𝑎𝑙 =

1

2𝐺
[‖𝐬𝑒‖ − √2 3⁄ 𝑘𝑛] 

(2) IF 𝐹𝑛+1
𝑡𝑟𝑖𝑎𝑙 ≤ 0 THEN   

 
𝛥𝐞𝑝 = 𝟎              , 𝛥𝜀𝑞 = 0 

ELSE  (𝐹𝑛+1
𝑡𝑟𝑖𝑎𝑙 > 0)   

 
𝐧𝑛 =

𝐬𝑛

‖𝐬𝑛‖
           , 𝐦𝑛 =

[𝚰𝑑𝑒𝑣 − 𝐧𝑛 ⊗ 𝐧𝑛] 𝛥𝐞

‖[𝚰𝑑𝑒𝑣 − 𝐧𝑛 ⊗ 𝐧𝑛] 𝛥𝐞 ‖
 

cos 𝜃𝑛 =
𝐧𝑛 ⋅ 𝛥𝐞

‖𝛥𝐞‖
, cos 𝜃𝑒 =

𝛥𝐞 ⋅  𝐬𝑒

‖𝛥𝐞‖‖𝐬𝑒‖
, cos 𝜁𝑒 =

𝐬𝑛 ⋅  𝐬𝑒

‖𝐬𝑛‖‖𝐬𝑒‖
 

      (2a)  Assume 1st branch is activated 
 To calculate 𝛥𝜀𝑞 solve: 

𝐹𝑝1(𝛥𝜀𝑞) = 1 + tan2 𝜁∗ − [
𝑞𝑒

𝑘𝑛+1 + 3𝐺𝛥𝜀𝑞
]

2

 

with 

𝜁∗(𝛥𝜀𝑞) = tan−1 [
sin 𝜃𝑒

‖𝐬𝑒‖
2𝐺‖𝛥𝐞‖

[1 +
ℎ𝑛+1

3𝐺 ] − cos 𝜃𝑒

] 

Compute: 

ℎ̅𝑛+1 = ℎ𝑛+1   , 𝜃 = 𝜃𝑒 + 𝜁∗   

𝜃𝑝 = tan−1

[
 
 
 

‖𝛥𝐞‖ sin 𝜃

1 + ℎ̅𝑛+1/3𝐺

√3 2⁄ 𝛥𝜀𝑞
]
 
 
 
 

      (2b)  If 𝜃𝑝 > 𝜃𝑐𝑟 :  the second branch is activated 
 To calculate 𝛥𝜀𝑞 solve: 

𝐹𝑝2(𝛥𝜀𝑞) = [𝛥𝜀𝑞 +
𝑘𝑛+1(𝛥𝜀𝑞)

3𝐺
]

2

+ [𝛥𝜀𝑞 tan 𝜃𝑐𝑟]
2
− (

𝑞𝑒

3𝐺
)

2

= 0 

Compute: 

𝜁∗(𝛥𝜀𝑞) = sin−1 [
3𝐺𝛥𝜀𝑞 tan 𝜃𝑐𝑟

𝑞𝑒
] , 𝜃 = 𝜃𝑒 + 𝜁∗, 𝜃𝑝 = 𝜃𝑐𝑟 

ℎ̅𝑛+1 = 3𝐺 (
‖𝛥𝐞‖ sin 𝜃

√3 2⁄ Δ𝜀𝑞 tan 𝜃𝑐𝑟

− 1) 

      (2c)  Calculate the plastic strain increment 
 𝜁 = 𝜁𝑒 − 𝜁∗ 

𝐧𝑛+1 =     cos 𝜁 𝐧𝑛 + sin 𝜁 𝐦𝑛, 𝐦𝑛+1 = −sin 𝜁 𝐧𝑛 + cos 𝜁 𝐦𝑛 

𝛥𝐞𝑝 = √3 2⁄ 𝛥𝜀𝑞 𝐧𝑛+1 +
‖𝛥𝐞‖ sin 𝜃

1 + ℎ̅𝑛+1/3𝐺
𝐦𝑛+1 

(3) Update stress tensor and state variables 
 𝛔𝑛+1 = 𝛔𝑒 − 2𝐺𝛥𝐞𝑝 

𝜀𝑞|𝑛+1 = 𝜀𝑞|𝑛 + 𝛥𝜀𝑞 
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Figure 8 Representation of the stress update algorithm for a given strain increment employing the 

associative model and the present model. 

3.4 Consistent algorithmic moduli 

To maintain quadratic convergence of the finite element solution, the material stiffness moduli 

consistent with the integration scheme are obtained and used in the iterative solution. These, are 

computed from the fundamental equation (43) (Simo & Taylor, 1985). For convenience the 

volumetric and the deviatoric part of stress and strain are isolated: 

 𝐃𝑒𝑝
𝑐 =

𝜕𝛔𝑛+1

𝜕𝛆𝑛+1
= 3𝐾 𝐈𝑣𝑜𝑙  +

𝜕𝐬𝑛+1

𝜕𝐞𝑛+1
 (43) 

The fourth-order tensor 𝜕𝐬𝑛+1/𝜕𝐞𝑛+1  is obtained for each model branch, by expressing the 

differential of the stress deviator as a function of the differential of the strain increment, accounting 

for the dependence of all internal variables to the strain increment. The stress deviator at the 

converged state is: 



 

Nasikas et al. (2020)   Page 27 of 57 

 𝐬𝑛+1(𝛥𝜀𝑞 , 𝜁
∗, 𝛥𝐞) = √2 3⁄ 𝑘𝑛+1[cos(𝜁𝑒 − 𝜁∗) 𝐧𝑛 + sin(𝜁𝑒 − 𝜁∗)𝐦𝑛] (44) 

Therefore, differentiating using the chain rule, one obtains:  

 𝑑𝐬𝑛+1 =
𝜕𝐬𝑛+1

𝜕𝐞𝑛+1
𝑑𝛥𝐞 = [𝐬𝑛+1,𝛥𝜀𝑞

⊗ 𝛥𝜀𝑞,𝛥𝐞 + 𝐬𝑛+1,𝜁∗ ⊗ 𝜁∗
,𝛥𝐞

+ 𝐬𝑛+1,𝛥𝐞] 𝑑𝛥𝐞 (45) 

where a (⋅),𝑥 implies partial derivative with respect to 𝑥. All referenced derivatives are offered in 

Appendix I. The terms 𝛥𝜀𝑞,𝛥𝐞 and 𝜁,𝛥𝐞
∗  are obtained from the differentials of the respective definition 

of the two internal variables, which generally take the form 

  𝐹1(𝛥𝜀𝑞 , 𝜁
∗, 𝛥𝐞) = 0 (46) 

 𝐹2(𝛥𝜀𝑞 , 𝜁
∗, 𝛥𝐞) = 0 (47) 

The functions 𝐹1, 𝐹2 are characteristic to each model/model branch and are summarized in Table 6. 

From their differentials it follows: 

 [
𝛥𝜀𝑞,𝛥𝐞

𝜁∗
,𝛥𝐞

] = − [
𝐹1,𝛥𝜀𝑞

𝐹1,𝜁∗

𝐹2,𝛥𝜀𝑞
𝐹2,𝜁∗

 ]

−1

[
𝐹1,𝛥𝐞

𝐹2,𝛥𝐞
] (48) 

Accounting for the direction angle dependence in the linearization is the key issue in obtaining the 

consistent moduli for this type of models, an issue not addressed in similar works. Finally, the tensor 

𝜕𝐬𝑛+1 𝜕𝐞𝑛+1⁄ may be expressed in terms of 𝐧𝑛+1,𝐦𝑛+1 as follows: 

 

𝜕𝐬𝑛+1

𝜕𝐞𝑛+1
= 𝐷𝑑𝑒𝑣𝐈𝑑𝑒𝑣 + 𝐷𝑛𝑛 (𝐧𝑛+1 ⊗ 𝐧𝑛+1)  + 𝐷𝑛𝑚 (𝐧𝑛+1 ⊗ 𝐦𝑛+1) 

                                    +𝐷𝑚𝑛 (𝐦𝑛+1 ⊗ 𝐧𝑛+1) + 𝐷𝑚𝑚 (𝐦𝑛+1 ⊗ 𝐦𝑛+1) 

(49) 

where  

 𝐷𝑑𝑒𝑣 = √2/3 𝑘𝑛+1

sin 𝜁

‖𝛥𝐞‖ sin 𝜃𝑛
,              𝐵 =

2𝐺‖𝛥𝐞‖ sin 𝜃𝑛

‖𝐬𝑒‖ sin 𝜁
  (50) 
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[
𝐷𝑛𝑛 𝐷𝑛𝑚

𝐷𝑚𝑛 𝐷𝑚𝑚 ] = 𝐷𝑑𝑒𝑣 [
−1 0

−𝐵 sin 𝜁∗ −1 + 𝐵 cos 𝜁∗ ]

− [
𝐬𝑛+1,𝛥𝜀𝑞

𝐧 𝐬𝑛+1,𝜁∗
𝐧

𝐬𝑛+1,𝛥𝜀𝑞

𝐦 𝐬𝑛+1,𝜁∗
𝐦  ] [

𝐹1,𝛥𝜀𝑞
𝐹1,𝜁∗

𝐹2,𝛥𝜀𝑞
𝐹2,𝜁∗

 ]

−1

[
𝐹1,𝛥𝐞

𝐧 𝐹1,𝛥𝐞
𝐦

𝐹2,𝛥𝐞
𝐧 𝐹2,𝛥𝐞

𝐦  ] 

(51) 

In the above 𝐅𝑖
𝐧 = 𝐧𝑛+1 ⋅ 𝐅𝑖, and 𝐅𝑖

𝐦 = 𝐦𝑛+1 ⋅ 𝐅𝑖, are the components of tensor 𝐅 in the directions 

of tensors 𝐧𝑛+1  and 𝐦𝑛+1 .The linearized moduli are non-symmetric, as the multipliers  𝐷𝑚𝑛 and 

𝐷𝑛𝑚of the non-symmetric terms 𝐦𝑛+1 ⊗ 𝐧𝑛+1 and 𝐧𝑛+1 ⊗ 𝐦𝑛+1 respectively, are not equal. Thus, 

𝐷𝑒𝑝(𝑖𝑗𝑘𝑙)
𝑐 ≠ 𝐷𝑒𝑝(𝑘𝑙𝑖𝑗)

𝑐 , while the symmetries 𝐷𝑒𝑝(𝑖𝑗𝑘𝑙)
𝑐 = 𝐷𝑒𝑝(𝑖𝑗𝑙𝑘)

𝑐 = 𝐷𝑒𝑝(𝑗𝑖𝑘𝑙)
𝑐 = 𝐷𝑒𝑝(𝑗𝑖𝑙𝑘)

𝑐  are 

preserved. In the limit ‖𝛥𝐞‖ → 0, the linearized moduli reduce to the material tangent moduli. 

Table 6 Functions necessary to define internal variables Δεq, ζ* 

model / branch 𝐹1 = 0 𝐹2 = 0 

1st branch     -      ℎ̅   = 𝑘(𝜀𝑞) 𝜀𝑞⁄  Eq. (39) Eq. (38) 

2nd branch    -      𝜃𝑝 = 𝜃𝑐𝑟 Eq. (42) Eq. (41) 

Explicit choice:   ℎ̅    = ℎ̅(𝜃, 𝛥𝜀𝑞) Eq. (36) Eq. (35) 
 

3.5 Accuracy Analysis - Iso-error Maps 

To test numerically the accuracy of the developed algorithm, iso-error maps are constructed for a 

material point under strain-controlled loading. The iso-error maps offer a schematic representation 

of the accuracy of the integration algorithm under a variety of loading paths. In the present study, 

the loading cases suggested by Simo & Taylor (1986) are used to test the accuracy of the developed 

non-associative model. The model is being tested for shell elements in plane stress loading conditions 

(𝜎33 = 𝜎13 = 𝜎23 = 0). 

Starting from a stress state on the yield surface (points A,B,C in Figure 9), the new stress state 𝛔(𝛥𝜺) 

is calculated for a range of strain increments (combinations of  𝛥𝜀11  and 𝛥𝜀22 ), employing the 

developed integration scheme. Subsequently, each strain increment 𝛥𝜺 is divided in increasingly 

smaller sub-increments and employing the developed integration scheme for each sub increment, 
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the ‘exact’ solution 𝛔∗ is obtained. The number of sub-increments is increased until convergence of 

𝛔∗. The error of the integration is estimated according to the expression: 

 𝑒(%) = 100 ⋅ ‖𝐬 − 𝐬∗‖ ‖𝐬∗‖⁄  (52) 

Three initial stress states are considered: (A) uniaxial, (B) biaxial and (C) pure shear loading, which 

represent a wide range of initial loading conditions. The strain increments are normalized with the 

yield strain parameter 𝜀𝑦 = 𝜎𝑦/𝐸 = 0.1%. In all iso-error maps the shear stress is taken as zero 

(𝜎12 = 0). The unfavorable case of rigid plasticity is considered, with the material properties in Table 

7 

Table 7 Material properties and state variables for Iso-Error Maps 

Poisson’s Ratio 𝜈  = 0.3 
Young’s Modulus  𝐸  =  207 𝐺𝑃𝑎 (30000 𝑘𝑠𝑖) 

Von Mises Stress 𝜎𝑦 =  207 𝑀𝑃𝑎( 30 𝑘𝑠𝑖) 
Hardening modulus 𝐻 = 0 𝐺𝑃𝑎 

The level of error for this model is similar to that reported previously in the literature and the J2FT, 

which is up to 8% for strain increments of the size of the yield strain. Increasing the hardening 

modulus leads to somewhat smaller error, because the denominator of equation (52) that expresses 

the size of the yield surface increases. The algorithm exhibits no error for the case of proportional 

loading, namely, along the line Δ𝜀22/ Δ𝜀11 = 0.5 in Figure 9(A), and lines Δ𝜀22/Δ𝜀11 = 1,  in Figure 

9(B, C).  
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4 Shell buckling calculations 

4.1 Implementation in a finite element environment 

Lower bound estimates of the bifurcation load from the pre-buckling equilibrium path can be 

obtained using Hill’s ‘comparison solid’ concept. Hutchinson (1974) described in detail its 

implementation and Tvergaard (1983a) discussed its application using the J2 corner theory proposed 

by Christoffersen and Hutchinson (1979), which employs material moduli dependent on the direction 

of the strain rate. The comparison solid concept introduces a quadratic functional, based on the 

virtual work principle, whose positiveness ensures stability, while the occurrence of non-positive 

values indicates bifurcation: 

 𝐹 = 𝚫𝐔𝑇  [𝐊′] 𝚫𝐔 (53) 

In the above, [𝐊′] is the global stiffness matrix that employs the tangent material moduli of the 

constitutive model, and 𝚫𝐔  is the vector with the unconstrained degrees of freedom. The 

elastoplastic tangent moduli are used for material points whose loading state is on the surface of 

their respective yield surfaces and the elastic moduli in all other cases. This expression implies that 

instability occurs when a non-positive eigenvalue of [𝐊′] is encountered. 

Using the implicit finite element environment in ABAQUS/Standard, the global stiffness matrix [𝐊′] 

can be extracted using a dedicated step and a material subroutine UMAT to apply the material 

elastoplastic tangent moduli. Eliminating the constrained degrees of freedom, the eigenvalues may 

be calculated externally, and bifurcation is identified at the first zero eigenvalue. Alternatively, using 

a linear perturbation step, the smallest eigenvalues and the respective eigenmodes can be obtained 

to detect bifurcation. In a static analysis, by default, ABAQUS identifies and records the occurrence 

of non-positive eigenvalues of the stiffness matrix, which is an alternative way of identifying 

bifurcation. Implicit analyses, however, employ the algorithmic moduli of the constitutive models in 
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their calculations, which differ from the tangent moduli. Therefore, they may lead to non-accurate 

bifurcation estimates, especially when large strain increments are used. Nonetheless, in all cases 

analyzed in the present study, the above methods yielded the same bifurcation estimates. 

For non-associative models, the material tangent moduli depend on the direction (angle 𝜃) of the 

subsequent strain increment at each material point, which is not known. Hence, the instantaneous 

moduli associated with the angle 𝜃  of the previous strain increment are used, assuming an 

‘alternative comparison solid’, a concept introduced by Tvergaard (1983a). 

 

4.2 Numerical results 

4.2.1 Axisymmetric buckling of axially compressed tubes 

The plastic buckling of thick-walled metal cylindrical shells under compression is briefly addressed to 

demonstrate the key features and capabilities of the developed framework. The pre-buckling path is 

characterized by proportional loading well into the plastic range of the material, until bifurcation into 

an axisymmetric buckling mode occurs, associated with the development of wrinkles, uniform along 

the cylinder (Gellin, 1979). The critical bifurcation stress (𝜎𝑐) and the corresponding half-wave length 

(𝜆𝑐), can be calculated analytically using the equations: 

 𝜎𝑐 = [
𝐷11𝐷22 − 𝐷12

2

3
]

1 2⁄

(
𝑡

𝑅
) (54) 

 
𝜆𝑐

𝑅
= [

𝐷11
2

12(𝐷11𝐷22 − 𝐷11
2 )

]

1 4⁄

(
𝑡

𝑅
)
1 2⁄

 (55) 

where 𝑅 is the radius of the tube, 𝑡 is its thickness and 𝐷𝛼𝛽 = 𝜕𝜎𝛼𝛽 𝜕𝜀𝛼𝛽⁄  (no summation on 𝛼, 𝛽) is 

the condensed material stiffness tensor 𝐷𝑒𝑝 (𝛼𝛽𝛼𝛽)
𝑐.𝑠ℎ𝑒𝑙𝑙 , 𝛼, 𝛽 = 1,2 presented in equation (II.3). In the 



 

Nasikas et al. (2020)   Page 33 of 57 

absence of initial geometric imperfection, the pre-buckling average stress-shortening response 

follows the material compression curve independently of the material model, while the use of 

different material stiffness moduli may provide significantly different bifurcation estimates. Key 

features of the presented methodology are demonstrated below in simulating numerically buckling 

of thick-walled duplex stainless steel tubes reported in (Bardi & Kyriakides, 2006; Bardi et al., 2006). 

Those experiments were designed to mitigate the influence of edge supports and represent the 

bifurcation behavior of long shells, as opposed to older investigations on axially-compressed cylinders 

(Lee, 1962; Batterman, 1965), where specimen length and support conditions prevented the clear 

identification of wrinkling onset, which may result in misleading comparisons between bifurcation 

and collapse loads.  

In Figure 10 (b,c,d), the axisymmetric bifurcation stress (𝜎𝑐), strain (𝜀𝑐) and the corresponding half-

wave length (𝜆𝑐) are displayed for tubes in terms of the diameter-to-thickness ratio (D/t). Bifurcation 

from the pre-buckling path is identified by solving expression (54) employing the material moduli for 

different constitutive models. The predictions for J2NA and J2DT are identical as the preloading is 

proportional leading to the same material moduli. The J2FT over-predicts by a significant amount the 

bifurcation stresses in the entire range considered, while J2NA provides predictions in better 

agreement in general. On the other hand, the non-associative model by Simo (1987) predicts 

bifurcation at significantly lower load than experiments indicate. The differences are more salient 

when the values of strain at bifurcation are considered in Figure 10(c). In that case, the J2FT grossly 

over-predicts bifurcation strains, whereas the present model is in better agreement with 

experiments. Finally, the model by Simo leads to significant underpredictions of the bifurcation strain, 

especially for larger values of D/t ratio. Experimental values by (Bardi & Kyriakides, 2006) are marked 

with circles and squares.  
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Bifurcation predictions were also obtained using finite element models via static analyses in ABAQUS, 

employing the user-material-subroutine (UMAT) for J2NA. Axisymmetric and three-dimensional shell 

models with different lengths were used, under a displacement-controlled analysis scheme. A series 

of analyses was performed to identify the earliest bifurcation and the length for which it occurs, 

which provided the three bifurcation parameters. The finite element results are included with 

triangular marks in Figure 10(b,c,d), and they are in very good agreement with the analytical 

predictions. 

 

4.2.2 Non-axisymmetric buckling modes 

To investigate the development of non-axisymmetric bifurcation modes, models of length 𝐿 =

2𝜅𝜆𝐻𝑊 (𝜅 is an integer) are used, following the argument by (Gellin, 1979). Models employ 12 S4 

elements per halfwave and 120 in the circumference, together with periodic symmetry support 

conditions. Shortening is imposed incrementally and at 0.1% strain increment, the eigenvalues of the 

stiffness matrix are monitored. The first zero eigenvalues represent an axisymmetric buckling mode 

and occur at stress, strain, and wavelength in agreement with the analytical solution. At increasing 

deformations, bifurcation into non-symmetric modes with two and tree circumferential waves was 

also recorded. 
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Figure 11 Bifurcation to non-axisymmetric bucking modes employing J2NA 

4.2.3 Wrinkling evolution and localization 

Initial geometric imperfection leads to non-uniform stress distribution along the tube and non-

proportionality arises, which surfaces the differences between the constitutive models. A 

demonstration of these differences is made by comparing the average stress (𝐹/𝐴) - normalized 

shortening (𝛥𝐿/𝐿) diagrams of initially uniformly-wrinkled tubes under compression (Figures 12-14).  

Displacement-controlled axisymmetric analyses were performed, employing 20 two-node 

axisymmetric shell elements, denoted as SAX1 in ABAQUS, simulating one half-wave length of the 

cylinder. Imperfection in the shape of the first (axisymmetric) eigenmode is included with amplitude 

𝜔𝑡, where parameter 𝜔 refers to the amplitude of the imperfection as a percentage of the shell 

thickness. The behavior of the imperfect cylinder is presented in Figure 12, using the present model 

with angle values θc𝑟  equal to 2°, 5°, 10°, 15°, 30° , as well as the J2FT and J2DT models for 
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comparison purposes. A small imperfection parameter 𝜔 = 10−4 is used, which enables the solution 

to follow the secondary path, without an abrupt transition at the bifurcation point. 

The J2FT follows the primary path, which is practically the material curve under compression for axial 

shortening up to 5% average strain, and develops a load maximum at about 6% average strain. On 

the contrary, the J2DT model develops a load maximum at the bifurcation point of the perfect system, 

followed by a decreasing branch. The behavior of the present non-associative model (J2NA) is 

bounded by these two models. At bifurcation, the cylinder starts diverging from the primary path 

with increasing load. The parameter 𝜃𝑐𝑟 influences the load maximum which the tube exhibits, with 

larger values of 𝜃𝑐𝑟 leading to lower load maxima. As the angle 𝜃𝑐𝑟 becomes very small, the present 

model response approaches that of the associative model. It is important to notice that a small value 

of angle 𝜃𝑐𝑟 e.g. 2°, can lead to a response which is quite different from that of J2FT (Figure 12). 

  

Figure 12 Effect of different constitutive models and model parameters in compressed tubes with 

small imperfection amplitude. 
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In Figure 13, when using the J2FT with a very small value of initial geometric imperfection (parameter 

𝜔 = 10−5), no maximum load is identified for average shortening up to 7%. On the other hand, using 

the J2NA with 𝜃𝑐𝑟 = 2𝑜  and the same initial imperfection profile, the tube’s response follows a 

secondary equilibrium path, leading to a limit load at shortening Δ𝐿 𝐿⁄ = 4.5%. The values of angle 

θ in the neighborhood of 2% strain exceed 40o, indicating significant non-proportionality on the 

loading path. Similarly, considering imperfection levels 𝜔 ≤ 0.01% this behavior remains practically 

unaffected. For larger values of imperfection parameter 𝜔 > 0.1% the equilibrium paths calculated 

using the two constitutive laws (J2FT and J2NA) become increasingly similar, while they are almost 

identical for 𝜔 = 10%.  
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Figure 13 (a)Effect of imperfection amplitude on uniform wrinkling, using the J2 flow and the non-

associative model 𝜽𝒄𝒓 = 𝟐°; (b) angle 𝜽 along a wavelength at 𝜺 = 𝟐%, 𝝎 = 𝟏𝟎−𝟓 

Similar behavior was found in the localization of wrinkling in 14-halfwave-long models with the same 

mesh density (Figure 14). The tube is found to maintain rigidity up until greater deformations when 

employing the J2FT. For both constitutive models, wrinkling was found to localize in an outward 

buckle, which is in agreement with observations by Tvergaard (1983a). In Figure 14 the increase in 

diameter along the tube is further given for different stages of the analysis, as well as the strain 

direction angle 𝜃 in an advanced stage of the post-buckling (Δ𝐿 𝐿⁄ = 6%). Great variations are seen 

in 𝜃, and values greater than 90𝑜in unloading parts of the tube.  
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Figure 14 (a)Post-buckling and deformation localization in the compressed shell;  

change in diameter along the tube segment at different strains;  

(b) strain direction angle 𝜽 in the post-buckling.  
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Conclusions 

A constitutive model has been developed and implemented for simulating the structural behavior of 

thick-walled metal shells under compressive loading, focusing on their structural instability and post-

buckling response. The model assumes a Von Mises yield surface and a non-associative flow rule, 

dependent on the direction of the strain rates. Fully elastic unloading is implemented for strain rates 

directed tangent to or inwards the yield surface. Care is taken to eliminate any discontinuity in the 

plastic strain production for strain rate directions near the yield surface tangent, by adopting a strain-

direction-dependent non-associative hardening parameter ℎ̅, which moderates the production of 

plastic strain. Upon proper selection of ℎ̅, the model’s formulation can represent several pseudo-

corner models proposed elsewhere, which allow for different amounts of production of plastic strain. 

A two-branch flow rule is presented for buckling of thick-walled shells: for small deviations from 

proportional loading, it employs the rate form of the J2 deformation theory to inherit its effectiveness 

in estimating bifurcation. For larger deviations from proportional loading, the flow mimics the effect 

of a corner in the yield surface, constraining the plastic strain increment to be directed within this 

‘vertex’. The non-associative hardening parameter ℎ̅  is used to implement the model’s pseudo-

corner-effect and enable a smooth transition to elastic unloading.  

A robust and efficient integration algorithm is developed for the constitutive model using a backward-

Euler scheme for three-dimensional solid elements, together with an enhanced version for shell 

element analysis. In both cases the consistent algorithmic moduli are derived. The present model is 

capable of representing more compliant mechanical behavior than the J2 flow model by adopting the 

beneficial aspects of J2 deformation theory, while overcoming the latter’s shortcomings in unloading.  

The model is implemented in a finite-element environment as a material user subroutine, and it is 

used for predicting the structural response and instability of thick-walled metal cylindrical shells 



 

Nasikas et al. (2020)   Page 42 of 57 

under axial compression. Bifurcation estimates are obtained for axisymmetric and non-axisymmetric 

modes, and good agreement is found with available experimental data, while the non-associative 

flow by Simo (1987) produces unrealistically low bifurcation predictions for axially-compressed 

cylinders. Furthermore, the present model is capable of simulating the post-buckling behavior of 

axially compressed shells, which is characterized by significantly non-proportional strain paths. 

The constitutive model accounts for different amounts of non-associative straining in the context of 

pseudo-corner plasticity, and its numerical implementation offers a framework for implementing 

efficiently pseudo-corner plasticity models in a finite element environment. The developed numerical 

approach can be used as an effective tool for performing numerical calculations in shell instability 

problems and is capable of predicting the maximum load, the corresponding deformation, and the 

post-buckling behavior, in good agreement with available experimental data. 

 

Acknowledgements  

The present work was supported by a Ph.D. studentship offered to the first author from the School 

of Engineering, The University of Edinburgh, Scotland, UK.

  



 

Nasikas et al. (2020)   Page 43 of 57 

Appendix Ι - Details of numerical implementation 

According to (44), the deviatoric stress tensor at the converged state is expressed as: 

 
𝐬𝑛+1(𝛥𝜀𝑞 , ζ

∗ , 𝛥𝐞) = √2 3⁄ 𝑘𝑛+1 𝐧𝑛+1 

                     = √2 3⁄ 𝑘𝑛+1(𝛥𝜀𝑞) [cos(𝜁𝑒(𝛥𝐞) − 𝜁∗) 𝐧𝑛 + sin(𝜁𝑒(𝛥𝐞) − 𝜁∗)𝐦𝑛(𝛥𝐞)] 

(Ι.1) 

From equation (Ι.1), the following derivatives are obtained, which are used in the calculation of 

linearized moduli: 

 𝐬𝑛+1,Δ𝜀𝑞
= √2 3⁄ 𝐻𝑛+1 𝐧𝑛+1  (Ι.2) 

 𝐬𝑛+1,ζ∗    = −√2 3⁄ 𝑘𝑛+1𝐦𝑛+1 (Ι.3) 

 𝐬𝑛+1,𝛥𝐞   = √2 3⁄ 𝑘𝑛+1 [𝐦𝑛+1 ⊗
𝜕𝜁𝑒

𝜕𝛥𝐞
+ sin(𝜁𝑒 − 𝜁∗)

𝜕𝐦𝑛

𝜕𝛥𝐞
] (Ι.4) 

where 

 𝜁,𝛥𝐞
𝑒    =

2𝐺

‖𝐬𝑒‖
[− sin 𝜁𝑒 𝐧𝑛 + cos 𝜁𝑒 𝐦𝑛] (Ι.5) 

 
𝜕𝐦𝑛

𝜕𝛥𝐞
=

1

‖𝛥𝐞‖ sin 𝜃𝑛

[𝐈𝑑𝑒𝑣 − 𝐧𝑛 ⊗ 𝐧𝑛 − 𝐦𝑛 ⊗ 𝐦𝑛] (Ι.6) 

Equations (Ι.5) and (Ι.6) are obtained by differentiating the definitions in equations (34) and (28) 

respectively. Additionally, since 𝜃𝑒 = 𝜃𝑛 − 𝜁𝑒, the following expressions can be derived: 

 𝜃,𝛥𝐞
𝑒 = 

1

‖𝛥𝐞‖
[−sin 𝜃𝑛 𝐧𝑛 + cos 𝜃𝑛 𝐦𝑛] −

2𝐺

‖𝐬𝑒‖
[− sin 𝜁𝑒 𝐧𝑛 + cos 𝜁𝑒 𝐦𝑛] (Ι.7) 

Expressions (Ι.1-Ι.7) are applicable for the integration algorithm and its linearization,  irrespective of 

the definition of ℎ̅, and refer to both three-dimensional and shell elements. 

I.1 First branch of the model (𝜽𝒑 ≤ 𝜽𝒄𝒓) 

For the first branch of the model, the algorithm reduces to the system of equations (Ι.8) and (Ι.9), 

which is solved numerically, employing a local Newton scheme. 
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 𝐹1(𝛥𝜀𝑞 , 𝜁
∗, 𝛥𝐞) = 𝐹𝑝1 = 1 + tan2 𝜁∗ − [

𝑞𝑒

𝑘𝑛+1 + 3𝐺𝛥𝜀𝑞
]

2

= 0 (Ι.8) 

 𝐹2(𝛥𝜀𝑞 , 𝜁
∗, 𝛥𝐞) = tan 𝜁∗ −

tan𝜃𝑒

𝑐 − 1
= 0 (Ι.9) 

where 

 𝑐 =
‖𝐬𝑒‖

2𝐺‖𝛥𝐞‖ cos 𝜃𝑒
[1 +

ℎ𝑛+1

3𝐺
] =

𝐬𝑒 ⋅ 𝐬𝑒

2𝐺𝛥𝐞 ⋅ 𝐬𝑒
[1 +

ℎ𝑛+1

3𝐺
] (Ι.10) 

The derivatives, used in the Newton scheme are: 

 𝐹𝑝1,𝛥𝜀𝑞  = 2 [
𝑞𝑒

𝑘𝑛+1 + 3𝐺𝛥𝜀𝑞
]

2
𝐻𝑛+1 + 3𝐺

𝑘𝑛+1 + 3𝐺𝛥𝜀𝑞
 (Ι.11) 

 𝐹𝑝1,𝜁∗ = 2 tan 𝜁∗ (1 + tan2 𝜁∗) (Ι.12) 

 𝐹𝑝1,𝛥𝐞 = −2
3𝐺 𝐬𝑒

[𝑘𝑛+1 + 3𝐺𝛥𝜀𝑞]
2 (Ι.13) 

 𝐹2,𝛥𝜀𝑞
=

tan𝜃𝑒

(𝑐 − 1)2
 

‖𝐬𝑒‖

2𝐺‖𝛥𝐞‖ cos 𝜃𝑒

𝜕ℎ𝑛+1 𝜕𝛥𝜀𝑞⁄

3𝐺
 (Ι.14) 

 𝐹2,𝜁∗ = 1 + tan2 𝜁∗ (Ι.15) 

 

𝐹2,𝛥𝐞
= −

1 + tan2 𝜃𝑒

𝑐 − 1
𝜃,𝛥𝐞

𝑒  

                        +
tan 𝜃𝑒

(𝑐 − 1)2
 

1

‖𝛥𝐞‖ cos 𝜃𝑒
[2

𝐬𝑒

‖𝐬𝑒‖
−

‖𝐬𝑒‖

‖𝛥𝐞‖ cos 𝜃𝑒
[
𝐬𝑒

2𝐺
+ 𝛥𝐞]] [1 +

ℎ𝑛+1

3𝐺
] 

(Ι.16) 

Those derivatives are also employed in the linearization of the model. 

Alternatively, as equation (Ι.9) offers an explicit expression for 𝜁∗, it can be used to eliminate it from 

(Ι.8), leading to : 

 𝐹̅𝑝1(𝛥𝜀𝑞 , 𝛥𝐞) = 𝐹𝑝1(𝛥𝜀𝑞 , 𝜁
∗(𝛥𝜀𝑞 , 𝛥𝐞), 𝛥𝐞) = (Ι.17) 
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1 + [
sin 𝜃𝑒

‖𝐬𝑒‖
2𝐺‖𝛥𝐞‖

[1 +
ℎ𝑛+1

3𝐺 ] − cos 𝜃𝑒

]

2

− [
𝑞𝑒

𝑘𝑛+1 + 3𝐺𝛥𝜀𝑞
]

2

 

For the three-dimensional formulation, equation (Ι.17) can be solved for 𝛥𝜀𝑞  which is next 

substituted into (Ι.9) to provide 𝜁∗. Therefore, single variable equations need to be solved to define 

each of the unknowns. The derivatives used in this alternative expression of the problem and the 

subsequent linearization are: 

 𝐹̅𝑝1,𝛥𝜀𝑞
= 𝐹𝑝1,𝛥𝜀𝑞  + 𝐹𝑝1,𝜁∗𝜁,𝛥𝜀𝑞

∗ = 𝐹𝑝1,𝛥𝜀𝑞
+ 𝐹𝑝1,𝜁∗ (−

𝐹𝑝2,𝛥𝜀𝑞

𝐹𝑝2,𝜁∗
) (Ι.18) 

 𝐹̅𝑝1,𝜁∗ = 0 (Ι.19) 

 𝐹̅𝑝1,𝛥𝐞 = 𝐹𝑝1,𝛥𝐞 + 𝐹𝑝1,𝜁∗𝜁,𝛥𝐞
∗ = 𝐹𝑝1,𝛥𝐞

+ 𝐹𝑝1,𝜁∗ (−
𝐹𝑝2,𝛥𝐞

𝐹𝑝2,𝜁∗
) (Ι.20) 

Remark: Either version: 𝐹1 = 𝐹𝑝1 or 𝐹1 = 𝐹̅𝑝1 can be used in solving for 𝛥𝜀𝑞, 𝜁∗  and either may be 

used in the subsequent linearization of the model, leading to identical results. 

 

I.2 Second branch of the model (𝜽𝒑 = 𝜽𝒄𝒓) 

For the second branch of the present model, equations (Ι.21) and (Ι.22) are solved numerically. 

 𝐹1 = 𝐹𝑝2(𝛥𝜀𝑞 , 𝛥𝐞) = [𝛥𝜀𝑞 +
𝑘𝑛+1

3𝐺
]
2

+ [𝛥𝜀𝑞 tan 𝜃𝑐𝑟]
2
− (

𝑞𝑒

3𝐺
)

2

= 0 (Ι.21) 

 𝐹2 = sin 𝜁∗ −
3𝐺𝛥𝜀𝑞 tan 𝜃𝑐𝑟

𝑞𝑒
= 0 (Ι.22) 

Using only (Ι.21), the equivalent plastic strain increment 𝛥𝜀𝑞 can be obtained directly. Subsequently, 

(Ι.22) may then be solved to find 𝜁∗. The derivatives necessary for the solution of the two equations, 

also used in the consistent linearization, are: 
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 𝐹𝑝2,𝛥𝜀𝑞
= 2 [𝛥𝜀𝑞 +

𝑘𝑛+1

3𝐺
] [1 +

𝐻𝑛+1

3𝐺
] + 2𝛥𝜀𝑞 tan2 𝜃𝑐𝑟 (Ι.23) 

 𝐹𝑝2,𝜁∗ = 0 (Ι.24) 

 𝐹𝑝2,𝛥𝐞 = −6𝐺 𝐬𝑒/(3𝐺)2 (Ι.25) 

and 

 𝐹2,𝛥𝜀𝑞
= −

3𝐺 tan 𝜃𝑐𝑟

𝑞𝑒
 (Ι.26) 

 𝐹2,𝜁∗ = cos 𝜁∗ (Ι.27) 

 𝐹2,𝛥𝐞 = −
3𝐺𝛥𝜀𝑞 tan 𝜃𝑐𝑟

𝑞𝑒
 
3𝐺𝒔𝑒

(𝑞𝑒)2
 (Ι.28) 

 

I.3 Explicit definition of 𝒉̅(𝜟𝜺𝒒, 𝜽) 

A similar methodology can be applied in the case where a function ℎ̅(𝛥𝜀𝑞 , 𝜃) is defined explicitly. 

Adopting such an approach, the model by Pappa & Karamanos (2016) could be integrated and 

linearized, with ℎ̅ defined as reported Table 2. The system of equations (Ι.29) and (Ι.30) can be solved 

in terms of (𝛥𝜀𝑞 , 𝜁
∗) with 𝜃 = 𝜃𝑒 + 𝜁∗, and it can be written as follows: 

 𝐹𝑝ℎ̅(𝛥𝜀𝑞 , 𝜁
∗, 𝛥𝐞) = 𝑞𝑒 cos 𝜁∗ − [𝑘𝑛+1 + 3𝐺𝛥𝜀𝑞] = 0 (Ι.29) 

 𝐿𝑝ℎ̅(Δ𝜀𝑞, 𝜁
∗, 𝛥𝐞) = 𝑞𝑒 sin 𝜁∗ − √2 3⁄

3𝐺‖𝛥𝐞‖ sin(𝜃𝑒 + 𝜁∗)

1 + ℎ̅𝑛+1 3𝐺⁄
= 0 (Ι.30) 

with 

 ℎ̅𝑛+1 = ℎ̅𝑛+1(𝛥𝜀𝑞 , 𝜃 = 𝜃𝑒 + 𝜁∗) (Ι.31) 

The derivatives used in the integration and the linearized moduli of the model are: 

 𝐹𝑝ℎ̅,Δ𝜀𝑞
= −[𝐻𝑛+1 + 3𝐺] (Ι.32) 

 𝐹𝑝ℎ̅,𝜁∗ = −𝑞𝑒 sin 𝜁∗ (Ι.33) 



 

Nasikas et al. (2020)   Page 47 of 57 

 𝐹𝑝ℎ̅,𝛥𝐞 =
3𝐺𝐬𝑒

𝑞𝑒
cos 𝜁∗ (Ι.34) 

and 

 𝐿𝑝ℎ̅,Δ𝜀𝑞
= +√2 3⁄

3𝐺‖𝛥𝐞‖ sin(𝜃𝑒 + 𝜁∗)

[1 + ℎ̅𝑛+1 3𝐺⁄ ]
2

ℎ̅𝑛+1,Δ𝜀𝑞 

3𝐺
 (Ι.35) 

 

𝐿𝑝ℎ̅,𝜁∗ = 𝑞𝑒 cos 𝜁∗ 

                       − [√2 3⁄
3𝐺‖𝛥𝐞‖ cos(𝜃𝑒 + 𝜁∗)

1 + ℎ̅𝑛+1 3𝐺⁄
− √2 3⁄

3𝐺‖𝛥𝐞‖ sin(𝜃𝑒 + 𝜁∗)

[1 + ℎ̅𝑛+1 3𝐺⁄ ]
2

ℎ̅𝑛+1,𝜃 

3𝐺
] 

(Ι.36) 

 

𝐿𝑝ℎ̅,𝛥𝐞 =
3𝐺𝐬𝑒

𝑞𝑒
sin 𝜁∗ 

                  − [√2 3⁄
3𝐺 sin(𝜃𝑒 + 𝜁∗)

1 + ℎ̅𝑛+1 3𝐺⁄
− √2 3⁄

3𝐺‖𝛥𝐞‖ sin(𝜃𝑒 + 𝜁∗)

[1 + ℎ̅𝑛+1 3𝐺⁄ ]
2

ℎ̅𝑛+1,‖𝛥𝐞‖ 

3𝐺
]

𝛥𝐞

‖𝛥𝐞‖
 

                − [√2 3⁄
3𝐺‖𝛥𝐞‖ cos(𝜃𝑒 + 𝜁∗)

1 + ℎ̅𝑛+1 3𝐺⁄
− √2 3⁄

3𝐺‖𝛥𝐞‖ sin(𝜃𝑒 + 𝜁∗)

[1 + ℎ̅𝑛+1 3𝐺⁄ ]
2

ℎ̅𝑛+1,𝜃 

3𝐺
] 𝜃,𝛥𝐞

𝑒  

(Ι.37) 
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Appendix II- Algorithm for shell element analysis  

In shell element analysis, for a given strain increment 𝛥𝛆̅ (which has no 𝛥𝜀33 component), the stress 

at the converged state 𝛔̅𝑛+1 (which has no 𝜎𝑛+1(33) component) must be calculated, accounting for 

the traction component perpendicular to the shell lamina (assumed to be direction 𝒆̂3) to vanish 

throughout the analysis: 

 𝜎𝑛+1(33) = 0 (II.1) 

The strain increment 𝛥𝛆  is decomposed as 𝛥𝛆 = 𝛥𝛆̅ + 𝛥𝜀33𝐚 , where 𝛥𝜀33  is the unknown 

component of the strain increment component perpendicular to the shell lamina, and  𝐚 = 𝒆̂3 ⊗ 𝒆̂3 

The constraint (II.1) is used to calculate 𝛥𝜀33 and, accounting for (44), it takes the form: 

 

𝐹𝑠ℎ𝑒𝑙𝑙(𝛥𝜀𝑞 , 𝜁
∗, 𝛥𝜀33) = 𝐚 ⋅ 𝐬𝑛+1 − 𝑝𝑛+1

= √2 3⁄ 𝑘𝑛+1[cos(𝜁𝑒 − 𝜁∗) 𝑛𝑛(33) + sin(𝜁𝑒 − 𝜁∗)𝑚𝑛(33)] − 𝑝𝑛+1 = 0 
(II.2) 

The internal variables (𝛥𝜀𝑞 , 𝜁
∗, 𝛥𝜀33) are computed by solving the system of three equations (46), 

(47), (II.2) (defined in Table 6 depending on the model branch). This system can be reduced to a 2x2 

system since for either model branch, equation (47) can easily be rewritten as an explicit expression 

𝜁∗(𝛥𝜀𝑞 , 𝛥𝜀33) and used for eliminating 𝜁∗ from the remaining two equations. This results in a system 

of nonlinear equations 𝐹̂1(𝛥𝜀𝑞 , 𝛥𝜀33) = 0 and 𝐹̂𝑠ℎ𝑒𝑙𝑙(𝛥𝜀𝑞 , 𝛥𝜀33) = 0. More details on the solution of 

this system are given in Table 8. The above formulation can be easily adjusted to account for plane 

stress conditions by additionally demanding  𝜎13 = 𝜎23 = 0,  which directly translates to 𝛥𝜀13 =

𝛥𝜀23 = 0. Under those conditions, the above algorithm is directly applicable. 

For shell elements, the consistent material moduli 𝐷𝑒𝑝
𝑐

𝜅𝜆33
as developed in section 3 for 𝛥𝛆(𝛥𝜀33) 

can be used, following static condensation to account for constraint (II.1). The condensed material 

moduli for shell analyses can be calculated as:  
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Table 8 Integration algorithm for shell element analysis - 𝝈𝟑𝟑 = 𝟎 

(1) Compute trial elastic stress (elastic prediction) 
 𝛔𝑒 = 𝛔𝑛 + 𝐃𝑐𝑜𝑛𝛥𝛆̅, 𝐬𝑒 = 𝐈𝑑𝑒𝑣𝛔𝑒  , 𝑝𝑒 = −1 3⁄ (𝐈 ⋅ 𝛔𝑒) 

𝑞𝑒 = √3 2⁄ ‖𝐬𝑒‖    , 𝑘𝑛 = 𝑘(𝜀𝑞|𝑛) ,         𝐹𝑛+1
𝑡𝑟𝑖𝑎𝑙 =

1

2𝐺
[‖𝐬𝑒‖ − √2 3⁄ 𝑘𝑛] 

(2) IF 𝐹𝑛+1
𝑡𝑟𝑖𝑎𝑙 ≤ 0 THEN  

 𝛥𝐞𝑝 = 𝟎                 , 𝛥𝜀𝑞 = 0 

ELSE  (𝐹𝑛+1
𝑡𝑟𝑖𝑎𝑙 > 0)   

 𝐧𝑛 = 𝐬𝑛/‖𝐬𝑛‖  
      (2a)  Assume 1st branch is activated 
 To find 𝛥𝜀𝑞 , 𝛥𝜀33 solve the following two equations: 

𝐹̂1(𝛥𝜀𝑞 , 𝛥𝜀33)       = 𝐹𝑝1(𝛥𝜀𝑞 , 𝜁
∗, 𝛥𝜀33)     = 0 

𝐹̂𝑠ℎ𝑒𝑙𝑙(𝛥𝜀𝑞 , 𝛥𝜀33) = 𝐹𝑠ℎ𝑒𝑙𝑙(𝛥𝜀𝑞 , 𝜁
∗, 𝛥𝜀33) = 0 

with 

tan 𝜁∗(𝛥𝜀𝑞 , 𝛥𝜀33) =
sin 𝜃𝑒

‖𝐬𝑒‖
2𝐺‖𝛥𝐞‖

[1 +
ℎ𝑛+1

3𝐺 ] − cos 𝜃𝑒

 

Calculate: 
𝛥𝛆 = 𝛥𝛆̅ + 𝛥𝜀33𝐚, 𝛔𝑒 = 𝛔𝑛 + 𝐃𝛥𝛆, 𝐬𝑒 = 𝐈𝑑𝑒𝑣𝛔𝑒 = 𝐬𝑛 + 2𝐺𝛥𝐞 

cos 𝜃𝑒 =
𝛥𝐞 ⋅  𝐬𝑒

‖𝛥𝐞‖‖𝐬𝑒‖
, ℎ̅𝑛+1 = ℎ𝑛+1, 𝜃 = 𝜃𝑒 + 𝜁∗   

tan 𝜃𝑝 =
‖𝛥𝐞‖ sin 𝜃

1 + ℎ̅𝑛+1 3𝐺⁄
√3 2⁄ 𝛥𝜀𝑞⁄  

      (2b)  If 𝜃𝑝 > 𝜃𝑐𝑟 :  the second branch is activated 
 To find 𝛥𝜀𝑞 , 𝛥𝜀33 solve the following two equations: 

𝐹̂1(𝛥𝜀𝑞 , 𝛥𝜀33)       = 𝐹𝑝2(𝛥𝜀𝑞 , 𝜁
∗, 𝛥𝜀33)       = 0 

𝐹̂𝑠ℎ𝑒𝑙𝑙(𝛥𝜀𝑞 , 𝛥𝜀33) = 𝐹𝑠ℎ𝑒𝑙𝑙(𝛥𝜀𝑞 , 𝜁
∗, 𝛥𝜀33) = 0 

with 

sin 𝜁∗(𝛥𝜀𝑞 , 𝛥𝜀33) =
3𝐺𝛥𝜀𝑞 tan 𝜃𝑐𝑟

𝑞𝑒
 

Calculate: 
𝛥𝛆 = 𝛥𝛆̅ + 𝛥𝜀33𝐚, 𝛔𝑒 = 𝛔𝑛 + 𝐃𝛥𝛆, 𝐬𝑒 = 𝐈𝑑𝑒𝑣𝛔𝑒 = 𝐬𝑛 + 2𝐺𝛥𝐞 

cos 𝜃𝑒 =
𝛥𝐞 ⋅  𝐬𝑒

‖𝛥𝐞‖‖𝐬𝑒‖
,    𝜃 = 𝜃𝑒 + 𝜁∗   

ℎ̅𝑛+1 = 3𝐺 (
‖𝛥𝐞‖ sin 𝜃

√3 2⁄ Δ𝜀𝑞 tan 𝜃𝑐𝑟

− 1) 

      (2c)  Calculate the plastic strain increment 
 

𝐦𝑛 =
[𝚰𝑑𝑒𝑣 − 𝐧𝑛 ⊗ 𝐧𝑛] 𝛥𝐞

‖[𝚰𝑑𝑒𝑣 − 𝐧𝑛 ⊗ 𝐧𝑛] 𝛥𝐞 ‖
, cos 𝜁𝑒 =

𝐬𝑛 ⋅  𝐬𝑒

‖𝐬𝑛‖‖𝐬𝑒‖
, 𝜁 = 𝜁𝑒 − 𝜁∗ 

𝐧𝑛+1 =     cos 𝜁 𝐧𝑛 + sin 𝜁 𝐦𝑛, 𝐦𝑛+1 = −sin 𝜁 𝐧𝑛 + cos 𝜁 𝐦𝑛 

𝛥𝐞𝑝 = √3 2⁄ 𝛥𝜀𝑞 𝐧𝑛+1 +
‖𝛥𝐞‖ sin 𝜃

1 + ℎ̅𝑛+1/3𝐺
𝐦𝑛+1 

(3) Update stress tensor and state variables: 
 𝛔𝑛+1 = 𝛔𝑒 − 2𝐺𝛥𝐞𝑝                    Note: at this stage it should be 𝜎𝑛+1(33) = 0 

𝜀𝑞|𝑛+1 = 𝜀𝑞|𝑛 + 𝛥𝜀𝑞 
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𝐷𝑒𝑝

𝑐,𝑠ℎ𝑒𝑙𝑙|
𝜅𝜆𝜇𝜈

= 𝐷𝑒𝑝
𝑐

𝜅𝜆𝜇𝜈
−

𝐷𝑒𝑝
𝑐

𝜅𝜆33
𝐷𝑒𝑝

𝑐

33𝜇𝜈

𝐷𝑒𝑝
𝑐

3333

 (II.3) 

where 𝜅, 𝜆, 𝜇, 𝜈 = 1,2,3  but not 𝜅 = 𝜆 = 3  or 𝜇 = 𝜈 = 3 . The components 𝐷𝑒𝑝
𝑐

𝜅𝜆𝜇𝜈
≠ 𝐷𝑒𝑝

𝑐
𝜇𝜈𝜅𝜆

 so 

that the algorithmic moduli for shells are non-symmetric. Expression (II.3) provides the rigidity moduli 

for plane stress elements for  𝜅, 𝜆, 𝜇, 𝜈 = 1,2. 

 

II.1 Implementation 

For shell element, the extra unknown strain increment component 𝛥𝜀33 needs to be calculated using 

the additional condition (II.1), to define the plastic corrector. Its derivatives used to solve the 3x3 

system are: 

 𝐹𝑠ℎ𝑒𝑙𝑙,𝛥𝜀𝑞
 = 𝐚 ⋅ 𝐬𝑛+1,𝛥𝜀𝑞

 (II.4) 

 𝐹𝑠ℎ𝑒𝑙𝑙,𝜁∗    = 𝐚 ⋅ 𝐬𝑛+1,𝜁∗ (II.5) 

 𝐹𝑠ℎ𝑒𝑙𝑙,𝛥𝜀33
= 𝐚 ⋅ 𝐬𝑛+1,𝛥𝐞 − 𝐾 (II.6) 

For the two branches of the proposed model, 𝐹2 can be easily rewritten as an explicit expression of 

angle 𝜁∗(𝛥𝜀𝑞 , 𝛥𝐞(𝛥𝜀33)) . This allows for the system to reduce to a single equation of a scalar 

unknown 𝛥𝜀𝑞 , for three-dimensional elements. Similarly, for shell element implementation, the 

explicit expression for 𝜁∗ allows for the solution of a simpler system of two unknowns (𝛥𝜀𝑞 , 𝛥𝜀33), 

expressed as follows: 

 𝐹̂1(𝛥𝜀𝑞 , 𝛥𝜀33)       = 𝐹1(𝛥𝜀𝑞 , 𝜁
∗(𝛥𝜀𝑞 , 𝛥𝜀33), 𝛥𝜀33)       = 0 (II.7) 

 𝐹̂𝑠ℎ𝑒𝑙𝑙(𝛥𝜀𝑞 , 𝛥𝜀33) = 𝐹𝑠ℎ𝑒𝑙𝑙(𝛥𝜀𝑞 , 𝜁
∗(𝛥𝜀𝑞 , 𝛥𝜀33), 𝛥𝜀33) = 0 (II.8) 

To solve the system of equations (II.7) and (II.8), a local Newton scheme is used; assuming from some 

trial values (𝛥𝜀𝑞 , 𝛥𝜀33), functions 𝐹̂1, 𝐹̂𝑠ℎ𝑒𝑙𝑙 and their derivatives are calculated. A correction to these 

trial values (𝛿(𝛥𝜀𝑞), 𝛿(𝛥𝜀33)) is obtained as follows: 
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 [
𝛢11 𝛢12

𝛢21 𝛢22
] ⋅ [ 

𝛿(𝛥𝜀𝑞)

𝛿(𝛥𝜀33)
 ] = [ 

𝑏1

𝑏2
 ] (II.9) 

or 

 [ 
𝛿(𝛥𝜀𝑞)

𝛿(𝛥𝜀33)
 ] =

1

𝐴11𝐴22 − 𝐴12𝐴21
 [

   𝛢22 −𝛢12

−𝛢21    𝛢11
] ⋅ [ 

𝑏1

𝑏2
 ] (II.10) 

In the above equations, 𝐴𝑖𝑗 and 𝑏𝑖 are obtained by the following expressions: 

 𝐴11 =
𝜕𝐹̂1

𝜕𝛥𝜀𝑞 
= 𝐹1,𝛥𝜀𝑞

+ 𝐹1,𝜁∗𝜁,𝛥𝜀𝑞

∗  (II.11) 

 𝐴12 =
𝜕𝐹̂1

𝜕𝛥𝜀33
= 𝐚 ⋅ [𝐹1,𝛥𝐞 + 𝐹1,𝜁∗𝜁,𝛥𝐞

∗ ] (II.12) 

 𝐴21 =
𝜕𝐹̂𝑠ℎ𝑒𝑙𝑙

𝜕𝛥𝜀𝑞
= 𝐚 ⋅ [𝐬𝑛+1,𝛥𝜀𝑞

+ 𝐬𝑛+1,𝜁∗𝜁,𝛥𝜀𝑞

∗ ] (II.13) 

 𝐴22 =
𝜕𝐹̂𝑠ℎ𝑒𝑙𝑙

𝜕𝛥𝜀33
= 𝐚 ⋅ [𝐚 ⋅ 𝐬𝑛+1,𝛥𝐞 + 𝐚 ⋅ 𝐬𝑛+1,𝜁∗𝜁,𝛥𝐞

∗ ] − 𝐾 (II.14) 

and 

 𝑏1 = −𝐹̂1(𝛥𝜀𝑞 , 𝛥𝜀33) = −𝐹1(𝛥𝜀𝑞 , 𝜁
∗(𝛥𝜀𝑞 , 𝛥𝜀33), 𝛥𝜀33) (II.15) 

 𝑏2 = −𝐹̂𝑠ℎ𝑒𝑙𝑙(𝛥𝜀𝑞 , 𝛥𝜀33) = −𝐹𝑠ℎ𝑒𝑙𝑙(𝛥𝜀𝑞 , 𝜁
∗(𝛥𝜀𝑞 , 𝛥𝜀33), 𝛥𝜀33) (II.16) 

The derivatives 𝜁,𝛥𝜀𝑞

∗  , 𝜁,𝛥𝐞
∗  can be calculated by differentiating 𝜁∗(𝛥𝜀𝑞 , 𝛥𝐞(𝛥𝜀33)), or equivalently, 

directly from 𝐹2: 

 𝜁,𝛥𝜀𝑞

∗ = −𝐹2,𝛥𝜀𝑞
∕ 𝐹2,𝜁∗  (II.17) 

 𝜁,𝛥𝐞
∗ = −𝐹2,𝛥𝒆 𝐹2,𝜁∗⁄  (II.18) 

Derivatives 𝐬𝑛+1,𝛥𝜀𝑞
, 𝐬𝑛+1,𝜁∗ , 𝐬𝑛+1,𝛥𝐞, 𝐹1,𝛥𝜀𝑞

, 𝐹1,𝜁∗, 𝐹1,𝛥𝐞, 𝐹1,𝜁∗, 𝐹2,𝛥𝜀𝑞
, 𝐹2,𝜁∗ , 𝐹2,𝛥𝒆 have been presented 

earlier in this Appendix, and are summed up in Table 9. The trial values of 𝛥𝜀𝑞 and 𝛥𝜀33 are updated 

as in (II.19) and the iterative process continues until both 𝑏1 and 𝑏2 vanish, as indicated in Table 9. 

 
𝛥𝜀𝑞  ←   𝛥𝜀𝑞 + 𝛿(𝛥𝜀𝑞 )

𝛥𝜀33 ←  𝛥𝜀33 + 𝛿(𝛥𝜀33)
 (II.19) 
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Table 9 Newton scheme for solving the system of 𝑭̂𝟏 and 𝑭̂𝒔𝒉𝒆𝒍𝒍 for shell elements 

 𝐧𝑛 = 𝐬𝑛/‖𝐬𝑛‖, 𝑘𝑛 = 𝑘(𝜀𝑞|𝑛) 

 𝛥𝜀𝑞 = 0,    𝛿(𝛥𝜀𝑞) = 0 , 𝐹̂1 = 1𝐸 + 032 

𝛥𝜀33 = 0,  𝛿(𝛥𝜀33) = 0, 𝐹̂𝑠ℎ𝑒𝑙𝑙 = 1𝐸 + 032 

WHILE  max{|𝐹̂1|, |𝐹̂𝑠ℎ𝑒𝑙𝑙|} > 𝑇𝑂𝐿 

 𝛥𝜀𝑞 = 𝛥𝜀𝑞 + 𝛿(𝛥𝜀𝑞), 𝛥𝜀33 = 𝛥𝜀33 + 𝛿(𝛥𝜀33) 
 

𝛥𝛆 = 𝛥𝛆̅ + 𝛥𝜀33𝐚 
𝛔𝑒 = 𝛔𝑛 + 𝐃𝛥𝛆        , 𝐬𝑒 = 𝐈𝑑𝑒𝑣𝛔𝑒 = 𝐬𝑛 + 2𝐺𝛥𝐞   

𝑝𝑒 = −1 3⁄ (𝐈 ⋅ 𝛔𝑒) , 𝑞𝑒 = √3 2⁄ ‖𝐬𝑒‖ 
 

𝐦𝑛 =
[𝚰𝑑𝑒𝑣 − 𝐧𝑛 ⊗ 𝐧𝑛] 𝛥𝐞

‖[𝚰𝑑𝑒𝑣 − 𝐧𝑛 ⊗ 𝐧𝑛] 𝛥𝐞 ‖
, 𝐦𝑛,𝛥𝐞(I. 6) 

cos 𝜁𝑒 = 𝐬𝑛 ⋅ 𝐬𝑒 ‖𝐬𝑛‖‖𝐬𝑒‖⁄  , 𝜁,𝛥𝐞
𝑒 (I. 5) 

cos 𝜃𝑒 = 𝛥𝐞 ⋅ 𝐬𝑒 ‖𝛥𝐞‖‖𝐬𝑒‖⁄ , 𝜃,𝛥𝐞
𝑒 (I. 7) 

cos 𝜃𝑛 = 𝐬𝑛 ⋅ 𝛥𝐞 ‖𝐬𝑛‖‖𝛥𝐞‖⁄  
 1st branch 2nd branch  

𝜁∗ 
tan 𝜁∗ =

sin 𝜃𝑒

‖𝐬𝑒‖
2𝐺‖𝛥𝐞‖

[1 +
ℎ𝑛+1

3𝐺 ] − cos 𝜃𝑒

 
sin 𝜁∗ =

3𝐺𝛥𝜀𝑞 tan 𝜃𝑐𝑟

𝑞𝑒
 

 𝜃 = 𝜃𝑒 + 𝜁∗ 
𝜁 = 𝜁𝑒 − 𝜁∗ 
𝐧𝑛+1 =     cos 𝜁 𝐧𝑛 + sin 𝜁 𝐦𝑛   
𝐦𝑛+1 = −sin 𝜁 𝐧𝑛 + cos 𝜁 𝐦𝑛 

𝐬𝑛+1 = √2 3⁄ 𝑘𝑛+1 𝐧𝑛+1(I. 1) 
𝐬𝑛+1,𝛥𝜀𝑞

(I. 2), 𝐬𝑛+1,𝜁∗(I. 3), 𝐬𝑛+1,𝛥𝐞(I. 4) 

 1st branch 2nd branch 

𝐹1 & 𝐹2    (I.8) &   (I.9) (I.21) & (I.22) 
𝐹1,𝛥𝜀𝑞

 & 𝐹2,𝛥𝜀𝑞
  (I.11) & (I.14) (I.23) & (I.26) 

𝐹1,𝜁∗  & 𝐹2,𝜁∗ (I.12) & (I.15) (I.24) & (I.27) 

𝐹1,𝛥𝐞 & 𝐹2 𝛥𝐞
 (I.13) & (I.16) (I.25) & (I.28) 

 𝐹̂1       = 𝐹1(𝛥𝜀𝑞 , 𝜁
∗, 𝛥𝜀33) 

𝐹̂𝑠ℎ𝑒𝑙𝑙 = 𝐹𝑠ℎ𝑒𝑙𝑙(𝛥𝜀𝑞 , 𝜁
∗, 𝛥𝜀33)(I.38) 

 Calculate 𝐴11, 𝐴12, 𝐴21, 𝐴22 and the corrections 𝛿(𝛥𝜀𝑞), 𝛿(𝛥𝜀33) 

 𝐴11 = 𝐹1,𝛥𝜀𝑞
+ 𝐹1,𝜁∗𝜁,𝛥𝜀𝑞

∗                    ,  𝐴12 = 𝐚 ⋅ [𝐹1,𝛥𝐞 + 𝐹1,𝜁∗𝜁,𝛥𝐞
∗ ] 

𝐴21 = 𝐚 ⋅ [𝐬𝑛+1,𝛥𝜀𝑞
+ 𝐬𝑛+1,𝜁∗𝜁,𝛥𝜀𝑞

∗ ] ,  𝐴22 = 𝐚 ⋅ [𝐚 ⋅ 𝐬𝑛+1,𝛥𝐞 + 𝐚 ⋅ 𝐬𝑛+1,𝜁∗𝜁,𝛥𝐞
∗ ] − 𝐾 

 where  𝜁,𝛥𝜀𝑞

∗ = −𝐹2,𝛥𝜀𝑞
/𝐹2,𝜁∗ , 𝜁,𝛥𝐞

∗ = −𝐹2,𝛥𝒆/𝐹2,𝜁∗  

 
[ 

𝛿(𝛥𝜀𝑞)

𝛿(𝛥𝜀33)
 ] =

1

𝐴11𝐴22 − 𝐴12𝐴21
 [

   𝛢22 −𝛢12

−𝛢21    𝛢11
] ⋅ [ 

−𝐹̂1      

−𝐹̂𝑠ℎ𝑒𝑙𝑙

 ] 

END 
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