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Abstract Contact orientation distributions are widely used
to describe the fabric of granular assemblies and its evolu-
tion under load. Different types of visualisations, mainly his-
tograms, are used in the literature to plot these distributions.
While there are different ways to create such histograms,
however, there is generally no discussion of how the cho-
sen way affects the visualisation of the distribution and its
interpretation.

We develop in this paper a novel, rigorous framework
for discussing contact orientations and their visualisation
through histograms. This allows presenting, for the first time,
in a unifiedway several existing visualisations and explaining
how they are computed. We identify first some issues in
how existing visualisations represent the main features of
the contact distribution. We then exploit the framework to
introduce new histogram types that avoid these issues and
provide a better insight into the granular fabric.

Keywords Fabric · contact orientation · granular media ·
histogram · graphical representation

1 Introduction

Fabric is a generic term that refers to characteristics of the
grain-scale microstructure of granular materials [29], for ex-
ample particle directions, inter-particle contact normal orien-
tations and void space geometry. It is a fundamental concept
in understanding, among others, stress induced anisotropy
[e.g. 9, 13, 27, 29, 30, 32, 37, 39] due to the continuous
formation and loss of force-transmitting contacts within the
soil skeleton.

We consider in this paper fabric in terms of contact nor-
mal orientations. Contact normals and contact forces are
Guoliang He · Zeynep Karatza · Stefanos-Aldo Papanicolopulos
School of Engineering, The University of Edinburgh, Edinburgh EH9
3JL, United Kingdom E-mail: S.Papanicolopulos@ed.ac.uk

directly obtained from discrete numerical simulations [e.g.
6, 10, 32, 38] and, more difficultly, from experiments [e.g.
7, 11, 14, 17, 21, 29, 30, 43].

A granular assembly will generally exhibit a high num-
ber of contacts, making it difficult to draw conclusions when
visualising all contacts. We are therefore interested in sta-
tistical representations of the distribution of contact vector
orientations. Several ways have been proposed in the litera-
ture to graphically represent such orientations. We provide
here a, necessarily limited, overview of some relevant works.

Oda [29] used a vertical bar histogram to plot the fre-
quency of contact normals, obtained experimentally through
thin sections. Later, Oda et al. [30] used polar histograms to
show contact orientations in a 2D analogue material; while
not explicitly stated, the histogram bars seem to be scaled
by bin angle and by the total number of contacts, so as to
be comparable to the contact probability density function
(PDF). Calvetti et al. [5] used vertical bar histograms to
plot the number of contacts in different directions in a 2D
material. Yimsiri and Soga [48] consider an analytical PDF
with axial symmetry, visualised using a polar plot. Madadi
et al. [27] and Bosko and Tordesillas [4] use a polar plot
for the PDF for 2D particle simulations, as done by Zhou
and Ooi [52] for a simulation of a single layer of spheres.
Fu and Dafalias [13] and Marteau and Andrade [28] use po-
lar histograms for contacts in 2D particle assemblies, while
Jiang et al. [19] use polar histograms for contact forces in 2D
assemblies.

Many authors [e.g. 12, 15, 25, 26, 33, 34, 49] use polar
histograms of the angle of the contact vector projected on
a plane, in most cases using three orthogonal planes. Zhao
et al. [51] use the same approach to plot the projected angle
PDF. Khalili et al. [23] use a scaled vertical bar histogram
to show the distribution of the magnitude of the vertical
component of contact vectors in a discrete-element study.
Khan et al. [24] show a polar histogram of the elevation angle
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for contacts in a 3D assembly. Wiącek et al. [47] similarly
show a polar histogram for a 3D simulation, though without
explicitly explaining if the quantity binned is the elevation
or some other angle.

Wei et al. [40] use a spherical histogram for contact
directions while Kawamoto et al. [22] and Zhao and Zhou
[50] use a similar plot for inter-particle forces; such plots
providemore information than polar histograms but aremuch
more difficult to visually evaluate, and necessarily hide some
of the data when in print. Jaquet et al. [18] andWiebicke et al.
[44] use point plots using a Lambert azimuthal equal-area
projection, which are then binned to give a heat-map plot.
Similar point plots are used in Wiebicke et al. [43] and heat-
map plots in Wiebicke et al. [45].

While some of the above visualisations use a contact
probability density function, the majority use histograms,
which are therefore the focus of the current paper. The in-
terpretation of these visualisations is not always straightfor-
ward, and often little explanation is provided on what exactly
a histogram shows and why, or on how the histogram is actu-
ally calculated. Importantly, there is usually little discussion
on how (possibly implicit) choices made when choosing the
visualisation type can affect the resulting plot and its inter-
pretation. For this reason we propose a new framework to
describe contact orientation distributions and their visuali-
sation using histograms. This framework allows us to exam-
ine existing visualisations, identify some issues encountered
when using them, and propose new visualisations that can
better represent the main features of the contact distribution.

It must be pointed out that any histogram representation
will necessary discard a large amount of detailed informa-
tion on contact orientations. In this paper we focus on the
need to have a clear, common understanding of the inter-
pretation of the information being retained and presented,
as histograms are widely used in the literature. We do not
consider, however, the separate issue of whether a histogram
representation is appropriate and/or sufficient to present all
fabric information of interest in a specific problem. It is clear
that often histograms will need to be complemented by more
detailed quantitative analyses, considering for example the
fabric tensor evolution.

Note that the term “histogram” is used in the literature
with three different meanings: a) binning, a procedure in
which a set of values is divided into bins (i.e. intervals) and
the number of elements in each bin is counted; b) a graphical
representation of the results of binning; and c) the specific
graphical representation of binning using adjacent rectangu-
lar bars (or circular sectors, for polar histograms). While it is
usual (including in the case of contact orientations) to con-
sider together the binning and its graphical representation,
we consider here separately the binning procedure, to better
understand existing and newly proposed visualisations.

Contact plane

Contact vector
Contact point

Fig. 1 Definitions for two spheres in contact

The structure of the paper is as follows: In section 2
we define contact vectors and their orientation. Section 3
presents the three sample data-sets used to demonstrate the
binning and visualisations used in the paper, specifically in
section 4 for one-component visualisations and in section 5
for two-component visualisations. Finally, the conclusions
are presented in section 6.

2 Contact vectors

Two rigid spheres in contact (Fig. 1) touch at a single contact
point, where they share a common tangent contact plane.
These concepts can be generalised for the case of deformable
and/or non-spherical particles, despite eventual multiple or
conforming contacts.We therefore consider that each contact
can be fully described by its contact point and contact plane.
This is the usual, tacit assumption in the literature.

As an additional major simplification, also widely im-
plied in the literature, we ignore the contact position (except
for the discussion in Appendix A). Each contact is therefore
represented only by its contact plane, usually described by a
unit contact vector n, normal to the plane. While a magni-
tude may be meaningfully assigned to the contact vector, e.g.
to indicate an assumed contact area for deformable particles,
this is not considered here.

A unit vector is defined by two independent components:
e.g. azimuthal angle q and polar angle \ in spherical coor-
dinates, or azimuthal angle q and altitude I in cylindrical
coordinates (see Figure 2). The elevation angle, complemen-
tary to the polar angle, is also frequently used in the literature;
as it leads to the same diagrams as the polar angle, only with
different labelling, it is not used in this paper.

A unit vector defines a point on the unit sphere, described
using the same two components. We choose here to repre-
sent unit vectors as points on the unit sphere, as this greatly
simplifies the discussion of concepts like binning.
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z

y

Φ

Fig. 2 Cartesian and spherical coordinates for a contact vector

Each contact plane has two contact vectors with the same
orientation (parallel) but with opposite sense (pointing in
opposite directions). Therefore, we only need to consider the
vector orientation, ignoring the vector sense. To do so, we
use only one hemisphere of the unit sphere, mapping points
from the other hemisphere to their anti-diametrical ones. The
choice of hemisphere is important, as it has a major effect on
both the binning and its visualisation. To demonstrate this
effect, for the coordinate system shown in Figure 2, we will
consider two choices: mapping to the northern hemisphere
(I ≥ 0) and mapping to the eastern hemisphere (H ≥ 0). No
contact information is lost by mapping to one hemisphere,
as anti-diametrical points correspond to the same contact.

Every hemisphere includes a single great circle, e.g. the
equator (at I = 0) for the northern hemisphere (I ≥ 0).
If a pair of contact vectors (i.e. anti-diametrical points) both
belong to the great circle, it is necessary to choose which one
will be considered. A robust implementation should consider
both points, each weighted by 0.5 (i.e. counting each as half
a contact); if only few such points exist, randomly choosing
one of the two points will however give reasonable results.

3 Data-sets

Three data-sets are used in this paper to study how to best
represent graphically the orientation of the contact normal
vectors, and to demonstrate how different visualisations of
the same data may lead to different conclusions. The data-
sets and the software to visualise them as described in this
paper are available online [31].

3.1 The uniform data-set

The uniform data-set contains 100,000 randomly generated,
uniformly distributed unit vectors. This data-set is used as a
first benchmark for the different visualisation methods in this
paper, as it shows no preferential orientations of the contacts.

-0.5

0.5

0

0.5

0.50
0

-0.5
-0.5

(a) Non-uniform distribution

-0.5

0.5

0

0.5

0.50
0

-0.5
-0.5

(b) Uniform distribution

Fig. 3 Distribution of points on a sphere: (a) non-uniform distribution
resulting from uniform distributions of azimuthal and polar angles,
and (b) uniform distribution resulting from uniform distributions of
azimuthal angle and altitude. For clarity, only 1,000 points are shown.

Generating uniformly distributed unit vectors is equiv-
alent to picking points uniformly on the unit sphere [42].
Using spherical coordinates with uniform distributions of
q ∈ [0, 2c) and \ ∈ [0, c] does not lead to uniform distribu-
tion of points on the unit sphere, resulting instead in a higher
density of points near the poles (Figure 3a). It is instead
necessary to use cylindrical coordinates, choosing uniform
distributions of q ∈ [0, 2c) and I ∈ [−1, 1] (Figure 3b).

3.2 The HCP data-set

The HCP data-set is a synthetic data-set representing the
contacts of 1,000 particles taken from a hexagonal close
packing. It is used to compare the different visualisations for
a corner case where only several discrete orientations exist.

The packing is obtained by alternating two layers (A and
B) of particles, as shown in Figure 4. Every particle has 12
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A

B

𝑦

𝑥

Fig. 4 Arrangement of particles in the hexagonal close packing

Fig. 5 Snapshot from the DEM simulation of the DEM data-set (the
cylindrical cell is not shown, to visualise the particles)

contacts, with azimuthal angle q and polar angle \ given by

q = 8c/3, \ = c/2 for 8 = 0, . . . , 5 (1a)

q = 8c/6, \ = c/2 ± U for 8 =

{
1, 5, 9 on layer A
3, 7, 11 on layer B

(1b)

where U = arctan
√

2 is the face-vertex-edge angle of the
regular tetrahedron.

3.3 The DEM data-set

The DEM data-set is taken from a Discrete-Element Method
(DEM) simulation of dry zeolite granules subjected to oe-
dometric (1D) compression. Details about the simulation
parameters can be found in [20]. A geometry of a rigid
cylindrical cell is created (diameter 15 mm and approximate
specimen height 15 mm), particles are randomly generated
simultaneously, within a predefined space (same diameter
but larger height) and are then left to settle in the cell before
being axially compressed. Experimental results were used
to validate the material parameters of the DEM model. The
narrow grading, number of particles and initial packing den-
sity (medium dense with a porosity of 45 %) of the specimen
are therefore modelled to match the respective values of the
experimental set-up [20, 21]. Figure 5 shows the DEM sim-
ulation timestep from which the data-set used here is taken.

The DEMdata-set represents a more realistic contact ori-
entation distribution, which can be encountered in a granular
medium. The particles are placed in an axisymmetric cell,
loaded axially and subjected to gravity in the same direc-
tion; they are also spherical and have a very uniform size
distribution. As it will be seen in the following, these aspects
have a major influence in the resulting contact distribution.
Additionally, the DEM data-set does not include the con-
tacts between the particles and the cylindrical cell, as these
are only exactly horizontal or vertical and would strongly
influence the distribution of the orientations.

There are 1,944 contacts in the DEM data-set. This will
affect visualisationswith larger numbers of bins, where small
differences in the data will be amplified due to the relatively
low number of contacts in each bin. While many DEM sim-
ulations of densely packed granular media would involve a
much higher number of contacts, it is often useful to extract
fabric information for specific regions within the granular
material. The choice of this specific DEM data-set allows
us to see how a relatively small number of contacts affects
the visualisation. An example with a much higher number of
contacts is provided in Appendix B.

TheDEMandHCPdata-sets include both contact vectors
for each contact. To simplify the binning code, both contacts
are considered and the contact counts are then halved. The
three data-sets (uniform,HCP,DEM) are used to demonstrate
the different visualisations presented in sections 4 and 5.

4 One-component representation

One-component visualisations plot the distribution of a sin-
gle component of the orientation (for spherical coordinates,
this is either the azimuthal or the polar angle).Wemay choose
to plot only a single component of the orientation when there
is no significant variation across the other component, for
simplicity of plotting and understanding the resulting plot,
or to increase the number of points per bin.

A crucial pointmade here is that, even for one-component
representations, considering the binning process in terms of
binning of contact orientations and not of individual compo-
nents is necessary to fully understand the resulting plot. We
use this viewpoint to discuss critically some visualisations
proposed in the literature, and propose new visualisations to
address the identified issues.

4.1 Distribution of azimuthal angles

In a 2D analysis, contact orientation is described by a single
component, usually an angle. Polar histograms (also known
as rose diagrams) are therefore widely used to observe trends
in the contact orientations [e.g. 13, 28, 52]. It is therefore
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(b) Eastern hemisphere

Fig. 6 Northern and eastern hemispheres for mapping of contact ori-
entations, with azimuthal-angle bins (lunes)

reasonable to use the same type of diagram to plot the distri-
bution of the azimuthal angle for contact vectors in 3D.

As in the 2D case, we use here bins of equal azimuthal
angle (i.e. spanning equal azimuthal angle intervals). This
generates bins on the surface of the unit sphere that are
spherical lunes (hereinafter simply “lunes”) of equal dihe-
dral angle, defined by two half great circles intersecting at
the two poles. To consider orientation only, as discussed in
section 2, it is necessary to map the contact vectors to a sin-
gle hemisphere. Figure 6 shows the resulting bins: for the
northern hemisphere the azimuthal angle is q ∈ [0, 2c) and
the bins are half-lunes (right spherical triangles), whereas
for the eastern hemisphere the azimuthal angle is q ∈ [0, c)
and the bins are lunes.

Figure 7 shows the results of the data-sets plotted for both
northern and eastern hemisphere mappings. Following usual
practice, angles in the figures are given in degrees, while
angles in the text are given in radians.

As expected, the uniform data-set shows an almost uni-
form distribution for the azimuthal angle, as no preferred
orientation exists. The slight deviations are due to the finite
number of contact orientations in the data-set.

The HCP data-set, when mapped to the northern hemi-
sphere, results in 12 equally spaced discrete azimuthal angles
with the same number of contacts for each angle. Using 36
bins for the corresponding polar histogram results in all the
discrete azimuthal angles falling on the edges of the bins.
Due to finite-precision floating-point calculations, this can
lead to all contactswith given azimuthal angle being assigned
to either the bin preceding the edge or the bin following the
edge. In the HCP data-set, minor adjustments (of the order
of magnitude of machine precision) were made where nec-
essary to ensure that contacts are always assigned to the bin
following the edge. This results in a regular distribution of
values in the polar histogram for both the north-mapped and
the east-mapped orientations. In the latter case, however, all
contacts in the G direction are assigned to the first bin (starting
at q = 0) rather than to the last one (ending at q = c).

The DEM data-set shows a relatively uniform distribu-
tion of azimuthal angle, a result of the macroscopic axial
symmetry of the problem being modelled and the relatively
narrow grading of the spherical particles. This does not in-
dicate a completely uniform contact fabric in the azimuthal
plane, but only one that is uniform with respect to the po-
lar axis (in this example the I axis, which is the axis of the
oedometer cell). This is further discussed in Appendix A.

The choice of the hemisphere on which contact orienta-
tions aremapped, and specifically its relation to the azimuthal
plane, affects the resulting plot. The “north-mapped” plots in
the left column of Figure 7 are not symmetric with respect to
the origin. Similar plots presented in the literature are gener-
ally symmetric [52], as they consider both contact vectors for
every contact point; in such a case, however, the plots become
completely equivalent to the “east-mapped” plots like in the
right column of Figure 7. While for the considered data-sets
the deviation from point symmetry is limited, in general the
north-mapped plot conveys more information on the contact
orientations than the east-mapped one. It may however be
difficult to describe the physical meaning of this additional
information. The north-mapped plot also shows a somewhat
higher deviation from the uniform distribution, compared to
the east-mapped one, but this is mainly due to it having twice
the number of bins and therefore half the number of contacts
per bin (54 vs 108).

4.2 Projection on a vertical plane

A common approach in the literature is to project the contact
vector on a reference plane and then measure the angle of
the projection with respect to a reference axis [12, 15, 25,
26, 33, 34, 49]. This projected angle is then plotted using
a polar histogram. In most cases, three orthogonal planes
are used, with the resulting three polar histograms giving
different views into the contact orientation.

Figure 8 shows the projected-angle plots for the three
data-sets, for north-mapped vectors projected on the GI plane.
The uniform data-set yields a uniform plot, as expected.
The HCP data-set plot correctly shows an equal number of
contacts in and out of the GH plane. It is easy however to
misread the plot as indicating that 1/6 of the contacts are
vertical, i.e. in the I direction, while in reality there are no
such contacts. The DEM data-set shows a somewhat uniform
distribution of orientations except for an increased number
of nearly horizontal contacts.

For the coordinate system in Figure 2, the angle obtained
by choosing GH as the reference plane and G as the reference
axis is, by definition, the azimuthal angle. The angle obtained
can span a range of either c or 2c, depending on the relation
between projection plane and hemisphere used for the map-
ping, as discussed in section 4.1. Though both angle ranges
appear in the literature, the relevant works do not include
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Fig. 7 Distribution of azimuthal angles for the three data-sets (one per row), mapping orientations on the northern (left column) and eastern (right
column) hemispheres. The radial axis shows number of contacts and the circumferential axis shows azimuthal angle.
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Fig. 8 Distribution of projected angles for the three data-sets

the detailed discussion on mapping presented here, which is
needed to explain the resulting plot.

Choosing a vertical reference plane (e.g. the HI or GI
plane) to project the contact vector does not yield the polar
angle, but an azimuthal angle with respect to a different
azimuthal plane. This is an important, yet overlooked, aspect:
such projected-angle plots must be considered in terms of
howmeaningful the specific vertical plane is as an azimuthal
plane, not in terms of how useful the out-of-plane angle with
respect to the horizontal plane is. In the latter case, a plot of
the distribution of the polar angle, as described in section 4.3,
should be used.

The contact orientation distribution for the uniform and
DEM data-sets used in this paper is (approximately) ax-
isymmetric with respect to the I axis. This is also true for
the common case of triaxial and uniaxial loading conditions,
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(a) Most horizontal half of contacts
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(b) Most vertical half of contacts

Fig. 9 Distribution of projected angles for the most horizontal half (a)
and most vertical half (b) of the uniform data-set

widely used in the literature to study fabric. In all these cases,
axisymmetry means that all vertical planes should give (ap-
proximately) the same projected-angle distribution.

Yet, projection to a vertical plane is not appropriate in
these cases, as shown in Figure 9. Here, the north-mapped
uniform data-set is split into two halves, one with the most
horizontal contacts (c/3 < \ ≤ c/2) and one with the most
vertical ones (0 ≤ \ ≤ c/3), and the projected angle distri-
bution for each half is plotted separately. In this case, approx-
imately 1/3 of the contacts in the most horizontal half have
a projected angle in the more vertical range. This happens
because even the most horizontal contacts, when at a small
angle from the H axis, will be projected to the IG plane as
more vertical (smaller angle from I in the IG plane). While
this effect cannot be directly identified in Figure 8c, it is still
present, as will be seen by comparing with polar angle plots
in section 4.3.

Axisymmetric contact orientation distributions should
therefore not be visualised by projection on a plane contain-
ing the symmetry axis, as it distorts the axisymmetric features
of the contact distribution. An appropriate plot of the polar
angle distribution should be used instead, as described next.
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Fig. 10 Binning of the northern hemisphere using spherical zones of
equal polar angle

4.3 Distribution of polar angles

4.3.1 Equal-polar-angle binning

Given their use to plot the distribution of azimuthal angles,
polar histograms have also been used to visualise the distri-
bution of polar (or elevation) angles [1, 24]. The simplest
approach in this case is to use equal-width bins for the polar
angle. The resulting bins on the sphere are spherical zones
of equal polar angle spans, delimited by circles parallel to
the azimuthal plane. The bins are shown in Figure 10 for
north-mapped contacts.

The first column in Figure 11 shows the corresponding
diagrams for the three data-sets. Like for azimuthal angle
plots, the choice of hemisphere is important, with mapping
to the eastern hemisphere conveying in this case more infor-
mation than mapping to the northern one. For the data-sets
considered, however, the east-mapped plot is quite symmet-
ric; therefore Figure 11 uses north-mapped data-sets, with
\ ∈ [0, c/2], resulting in more legible diagrams.

The uniform data-set shows how this binning method,
whilst mathematically correct, is clearly misleading, as it
seems to indicate a preferential orientation on the azimuthal
plane (\ = c/2). The reason for this is that these polar
histograms use bins that subtend equal polar angles, but these
do not correspond to equal subtended solid angles (unlike for
the azimuthal angle). This is easily seen in Figure 10, where
the northernmost bin covers a substantially smaller area of the
hemisphere compared to the southernmost one, and therefore
it will include fewer points of a uniform distribution.

By failing to represent a uniform distribution through
a uniform plot, this representation makes it difficult to un-
derstand how a given distribution deviates from uniformity,
therefore hindering the identification of preferential orien-
tations in the data-set. The vertical-plane projection used
in the literature does not have this issue, as it uses equal
solid-angle bins; it has however other issues for axisymmet-
ric contact distributions, as discussed in section 4.2. For this
reason, several new representations using the polar angle are
presented in the following sections. For ease of comparison,

all visualisations of the three data-sets for the polar angle are
shown together (as separate columns) in Figure 11.

4.3.2 Equal-solid-angle binning

To avoid the issues identified in the previous sections, we
propose an equal-solid-angle binning of the polar angle.
Here the polar angle is binned so that bins correspond to
equal solid angles. This approach adopts the positive aspects
of the previous two binning schemes (projection on a ver-
tical plane and equal-polar-angle binning), while avoiding
their negative aspects. On the sphere, the bins are equal-area
(therefore equal-solid-angle) spherical zones delimited by
circles parallel to the azimuthal plane. Figure 12 shows the
resulting bins for north-mapped contacts.

In this case the bins span different polar angles, so this
binning differs from the one in section 4.3.1. For azimuthal
angles, however, an equal-solid-angle binningwould be iden-
tical to the equal-azimuthal-angle binning in section 4.1,
since equal azimuthal angles subtend equal solid angles.

The solid angle �8 subtended between polar angles \8−1
and \8 (with 8 = 1 . . . = and \8−1 ≤ \8) is the area of the
corresponding spherical zone on the unit sphere, given by:

�8 = 2c (cos \8−1 − cos \8) (2)

Considering = histogram bins, setting \0 = 0, \= = c/2,
and requiring that all �8 are equal, we easily obtain the,
unequally-spaced, bin limits for the polar angle

\8 = arccos(1 − 8/=) with 8 = 0 . . . =. (3)

Switching from spherical to cylindrical coordinates, a point
on the unit sphere has altitude I = cos \. Equation (3) there-
fore becomes

I8 = 1 − 8/= (4)

It is therefore possible to obtain the equal-solid-angle bin-
ning for the polar angles by equal-width binning of the I
component of the (unit) orientation vectors.

The resulting polar histograms are shown in the sec-
ond column of Figure 11. The uniform data-set clearly cor-
responds to a (almost) uniform plot. For this reason, this
method is preferable to the two methods mentioned previ-
ously. The HCP data-set, however, shows a similar trend with
the equal-polar-angle binning method, due to the existence
of only two discrete values of the polar angle of the contacts.
The DEM data-set, finally, shows two preferential orienta-
tions (close to 30° and horizontal contacts), which were not
obvious in the equal-polar-angle binning.

One disadvantage of the proposed binning method is
that the bin size increases significantly towards the vertical
orientation (\ = 0). This can lead to some information being
hidden, for example a concentration of contacts in nearly
vertical orientation.
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Fig. 11 Polar angle distribution of the three data-sets using the presented visualisations

Fig. 12 Binning of the northern hemisphere using spherical zones of
equal solid angle

Another potential issue with this visualisation is that it
uses bars of different width (i.e. circular sectors of different
central angle), which may seem less intuitive than equal-
width polar histograms. Equation (4) shows that it is possible
to plot the same binning as a horizontal bar histogram for I
with equal bar widths. A somewhat similar binning approach

is used by Khalili et al. [23, Figure 7], though without a
detailed explanation of the plot; additionally, a vertical bar
histogram is used for visualisation, with the bar values being
scaled to be comparable to a probability density function.

Such bar histogram plots may also be difficult to inter-
pret. An alternative approach is therefore presented next, by
introducing contact intensity.

4.3.3 Contact intensity

For any binning scheme, it is possible to obtain a uniform
polar histogram plot for a uniform contact orientation distri-
bution, by normalising the number of contacts in each bin
by the solid angle subtended. We call the resulting quan-
tity contact intensity (number of contacts per solid angle) by
analogy with radiant intensity in radiometry (radiant flux per
solid angle) [e.g. 36].

The vertical-plane-projection and equal-solid-angle bin-
ning schemes described in sections 4.2 and 4.3.2 use bins
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that subtend equal solid angles, so plotting the contact in-
tensity just scales the corresponding plots for the number of
contacts. For the equal-polar-angle binning described in sec-
tion 4.3.1, however, plotting the contact intensity results in
a polar histogram with equal-width bars and with a uniform
plot for a uniform distribution of orientations. The resulting
plots are shown in the third column of Figure 11.

As expected, the uniform distribution results in an al-
most uniform plot. The HCP data-set results in a plot similar
to the ones for equal-polar-angle and equal-solid-angle bin-
ning, again due to the existence of only two discrete polar an-
gle values. Interestingly, the DEM data-set now shows three
preferential orientations instead of the two shown for equal-
solid-angle binning, due to the greater resolution of the plot
near the pole (i.e. for small polar angles). The DEM data-set
appears to have a higher contact intensity for near-vertical
contacts, yet it is important to consider that the near-vertical
bin of the intensity histogram corresponds to only 28 con-
tacts (over a small solid angle, hence the high value of the
contact intensity), while the near-horizontal bin corresponds
to 308 contacts. It is expected, therefore, that the intensity of
near-vertical contacts will be affected more by small varia-
tions in the data-set, making this method more sensitive to
such variations.

Note that the contact intensity is equal to the probability
density function (PDF) for contact orientations, multiplied
by the total number of contacts. Contact intensity histograms
can therefore be considered as discrete versions of PDF plots,
or PDF plots can be considered as smoothed versions of
the contact intensity histograms; while both plots require
binning of discrete contact data, the histogram plot has the
advantage of showing the binning used. Additionally, the
contact intensity distribution contains information on the
total number of contacts, which is missing from the PDF; this
is important when comparing contact distributions between
different particle assemblies.

4.3.4 Contact intensity using quantiles

In general, the number of contacts in each bin varies, pos-
sibly leading to issues with resolution like those described
in section 4.3.3. To avoid this issue of different resolution of
the bins depending on the polar angle, we can use contact
intensity in conjunction with bins containing equal numbers
of contacts (i.e. quantiles), as shown in the fourth column of
Figure 11 which uses 12-quantiles.

To calculate the =1-quantiles (which use =1 bins) we first
sort in ascending order the values of the polar angles of all
contacts (mapped to one hemisphere), obtaining a sorted list
of angles \ 9 with 9 = 1 . . . =2 . We then calculate the bin
edges as the average between the last polar angle value of
one bin and the first value of the next bin, that is

48 =
1
2
(
\ 98 + \ 98+1

)
with 8 = 1 . . . =1 − 1 (5)

where 98 = b=28/=1c is the index of the last value of bin 8.
The first and last edges are not the minimum and maximum
actual angle values, but are set to the limits of the possible
angle values, in this case 40 = 0 and 4=1 = c/2. The count
of contacts for bin 8 is easily computed as 28 = 98 − 98−1.

As expected, the uniform data-set results into an approx-
imately uniform plot. The resulting plot is essentially the
contact intensity plot with equal-solid-angle binning, i.e. a
scaled version of the equal-solid-angle plot. Very small dif-
ferences can be introduced by the specific way in which the
bin edges are computed for the quantiles.

There is no HCP data-set plot for this visualisation, as
the presence of only two discrete polar angle values leads to
a histogram with most bins having zero width. It is therefore
not possible to identify those bins on the plot, and of course
it is not possible to scale the relevant counts by the (zero) bin
solid angle. Visualisation of contact intensity using quantiles
does not therefore work for data-sets with few discrete values
of contact orientations.

For the DEM data-set, the bin edges obtained are not
very different from the ones for the equal-solid-angle bin-
ning. The main difference is for the nearly-horizontal bin
(the last 12-quantile in terms of polar angle), showing that it
has significantly higher intensity than the remaining vectors.
Indeed, while the equal-solid-angle, contact intensity, and
contact intensity with quantiles plots of the DEM data-set in
Figure 11 are equally valid representations of the underlying
data, a comparison between them shows that they highlight
different aspects of the data.

5 Two-component visualization

A two-component visualisation of contact orientations shows
the distribution of either number of contacts or contact inten-
sity as a function of two components, e.g. both azimuthal and
polar angle. It therefore requires an appropriate binning on
a unit hemisphere (the northern hemisphere, in this section).
The visualization presented here has already been proposed
in the literature [e.g. 22, 46], though it has not been widely
adopted. It is however presented here in greater detail, and
it is explained in terms of the framework already introduced
for the one-component visualisations, thus allowing direct
comparison of the underlying concepts.

5.1 Equal-area subdivision of the hemisphere

There are different reasonable ways to divide the hemisphere
into bins. We use equal-area (therefore equal-solid-angle)
bins which, as for one-component visualisations, result in
uniform binning of a uniform contact orientation distribu-
tion. More specifically, we follow the approach by Beckers
and Beckers [3], due to its relatively simple implementation.
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We first divide the hemisphere into = zones using paral-
lels (circles of constant altitude), and then we subdivide each
zone 8 into<8 equal bins using equally-spaced meridian arcs.

In this way the binning is performed initially by altitude
I (or polar angle \) and then by azimuthal angle q, but with
different edges for q in each zone, since each zone has a
different number of bins.

We must therefore define the altitude I8 of each parallel,
with 8 = 1 . . . = − 1 and (starting from the north pole) I0 = 1
and I= = 0. Each zone 8 (with 8 = 1 . . . =) from I8 to I8−1 has
a surface area:

�8 = 2c (I8−1 − I8) (6)

and each of the <8 equal bins in the zone 8 has the same area
�∗, which we require to be independent of 8, given by:

�∗ =
�8
<8

= 2c
(I8−1 − I8)

<8

(7)

Equation (7), together with the values I0 = 1 and I= = 0,
easily yields:

I8 = 1 −

8∑
9=1
< 9

=∑
9=1
< 9

(8)

which gives the zone boundaries I8 for given number of zones
= and number of regions for each zone <8 .

The trivial case of a single bin per zone (<8 = 1) results
in the one-component equal-solid-angle binning described
in section 4.3.2, with equation (8) becoming equation (4).

Choosing <8 as a linear function of 8

<8 = 08 + 1 (9)

and substituting into equation (8), we get:

I8 = 1 −
8
(
0 (8 + 1) + 21

)
=
(
0 (= + 1) + 21

) (10)

For 0 = 20̄ and 1 = −0̄ we get the simple form:

<8 = 0̄ (28 − 1), I8 = 1 −
(
8

=

)2
(11)

The total number of bins in this case is given by:
=∑
9=1
< 9 = 0̄=

2 (12)

Figure 13 shows an example of a binned hemisphere.
Plotting directly on the hemisphere the binned results means
that half the hemisphere results are hidden. Indeed, though it
is possible to create a spherical histogram [8, 22], the result-
ing plots can be difficult to interpret. This is especially the
case for non-interactive representations of such spherical his-
tograms (e.g. in journal papers, reports, and presentations),
in which a large part of the data is obscured and it is also
very difficult to extract quantitative data from the plot.

Fig. 13 Northern hemisphere divided into equal area bins

5.2 Contact heat maps

To avoid the issues related to visualising results on the hemi-
sphere, we project the hemisphere to the azimuthal plane.We
use a Lambert azimuthal equal-area projection [35, 41], in
which a point on the unit sphere with cylindrical coordinates√

1 − I2, q and I is mapped to a point on the plane with polar
coordinates

√
2(1 − I) and q. This projects the hemisphere

into a circular disc, the individual zones into annuli defined
by the radii A8 =

√
2(1 − I8), and the individual bins on the

sphere into planar bins with the same area. For the zones
defined by equation (11), the corresponding annuli on the
plane have uniformly spaced radii given by:

A8 =
√

2
8

=
(13)

The factor
√

2 can be dropped, as the scale of the resulting
plot is arbitrary.

For small data-sets or data-sets with a very strong prefer-
ential direction, contact orientations may be directly plotted
onto the Lambert projection without having to bin the pro-
jection [e.g. 2], but in general binning is required. This can
be visualised using a three-dimensional histogram with ver-
tical bars starting from the Lambert projection by extending
each bin vertically relative to the number of contacts in each
bin, yet a heat-map plot is easier to interpret and present in a
publication. The resulting plot is a contact-orientation heat-
map using a Lambert projection, or simply contact heat-map.
Figure 14 shows the contact heat-maps for the data-sets con-
sidered, using the simple form in equation (11) with = = 5
zones and 0̄ = 4 bins in the northernmost zone, for a total of
100 bins. In the contact heat-maps each annulus corresponds
to a different polar angle range and each section in an annulus
to a different azimuthal angle range.

Figure 14a shows that the contact heat-map for the uni-
form data-set is approximately uniform. This is easier to no-
tice if the colour-map starts from zero (Figure 14b), in which
case the heat-map has almost uniform color. If the colour
scale of the heat-map only covers the actual range of number
of contacts per bin, then the heat-map shows strong random
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(a) Uniform data-set
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(b) uniform data-set, colour from zero
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(c) HCP data-set

0

30

60
90

120

150

180

210

240
270

300

330

0

16

33

50

69

0

100

200

300

400

500

nu
m

be
r 

of
 c

on
ta

ct
s

(d) HCP data-set, colour from zero
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(e) DEM data-set
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(f) DEM data-set, colour from zero

Fig. 14 Contact heat-map for the uniform (a,b), HCP (c,d) and DEM (e,f) data-sets. The right column shows the same data-sets as the left, but
with the colourmap starting from zero. The circumferential axis indicates the azimuth angle and the radial axis indicates the polar angle
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spatial variations, which however represent relatively small
deviations from the average of 1000 contacts per bin.

The heat-map for the HCP data-set clearly identifies the
twelve discrete contact orientations present in the data-set. As
most bins have a zero count of contacts, starting the colour
scale from zero yields the same plot as having the colour
scale cover only the range of values present in the plot.

The DEM data-set heat-map shows that the contact dis-
tribution is not uniform, however it is difficult to further
interpret the plot to extract useful information regarding the
main features of this distribution. This is because, as men-
tioned in section 4.1, the DEM data-set corresponds to a
problem with macroscopic axial symmetry; the main fea-
tures of the contact distribution are therefore expected to be
independent of the azimuthal angle. The variation of results
across azimuthal angles is therefore expected to be random,
with a relatively high magnitude because of the higher num-
ber of bins compared to the one-component visualisation,
that leads to a low average number of contacts per bin.

It is clear that the two-component visualisation, e.g. us-
ing a contact heat-map as described in this section, pre-
serves more information on the contact orientation distribu-
tion compared to using one or more one-component visual-
isations. At the same time, the two-component visualisation
weakens the visibility of features that depend specifically on
one component; in these cases, the one-component visuali-
sation can reduce the random variations in the data-set.

6 Conclusions

Contact orientation histograms are useful to visually describe
the fabric of a granular assembly and its evolution under load.
For this reason different types of such histograms are widely
used in the literature, yet mostly with little or no explanation
ofwhat is exactly being plotted andwhy. The interpretation of
these visualisations is therefore not always straightforward.

To provide more clarity, a rigorous framework is devel-
oped and presented in this paper for discussing contact orien-
tations and their visualisation through histograms. Original
aspects of this framework are a) the introduction of “map-
ping to a hemisphere” to discuss different ways of calcu-
lating orientation and how these affect the resulting plots;
b) the clear distinction between histograms as binning and
histograms as visualisation; and c) the identification of bins
on the hemisphere even for one-component visualisations, to
better understand the binning procedure.

This framework allows presenting in a unified way exist-
ing one-component visualisations, with a significant result
being the identification of issues with equal-polar-angle bin-
ning and, in the case of axisymmetric fabric, with the com-
monly used vertical-plane-projection plots. Additionally, the
framework allows the introduction of new histograms that
avoid these issues and provide a better insight into the fabric.

More specifically, we have proposed an equal-solid-angle
binning for the polar angle, and introduced the concept of
contact intensity, resulting in two additional histogram types
(equal-polar-angle polar histogram of intensity, and quantile
polar histogram of intensity).

We have also presented two-component binning and the
resulting contact-heat-map visualisation. Although already
used in the literature, we discuss this visualisation type in
greater detail, presenting its derivation and how it fits within
our general contact-orientation-histogram framework, high-
lighting also the relation with one-component histograms.

The histograms presented, for three data-sets, show the
relative advantages of each of our proposed visualisation
methods, while also making clear that the choice of an ap-
propriate reference system, binning method, and visualisa-
tion depends on the underlying data. As mentioned in the
introduction, contact orientation histograms may need to be
complemented bymore detailed quantitative analysis such as
a study of the fabric tensor evolution. This may be especially
the case for more complex cases, including for materials with
non-uniform particle size distribution.

The framework presented here for contact orientations
could be extended to describe histograms for more com-
plex quantities, such as particle directions (for particles for
which a direction can be uniquely defined) or inter-particle
forces. The latter case is simple when all forces are normal
and compressive, so that the force magnitude is used as a
weight during binning, but becomes more complicated in
the presence of tensile or shear forces.

A An example of position-dependent contact
visualisation

In Figure 15 we propose a new visualisation based on the deviation
from the positive radial direction. To calculate this, the contact vectors
are projected onto the GH plane, and an angle is calculated from the
positive radial direction at the contact point to the projected contact
vector. This is the only case in this paper where the contact position is
used, as it is needed to determine the positive radial direction.

Figure 15 shows that there is a concentration of contacts in the
circumferential direction. The nearly uniform distribution of azimuthal
angles shown for the DEM data-set in Figure 7 does not therefore
indicate a spatially constant uniformdistribution of contact orientations,
but only one that is (approximately) axisymmetric. Note that including
the contacts with the cylindrical cell would introduce a large number of
contacts in the radial direction.

B Evolution of contact orientation

We present here, as an additional example, the use of histograms to
track the evolution of the contact orientation distribution for a DEM
simulation containing a large number of contacts. The simulation is
described in detail by Hanley et al. [16] (specifically it is the third of six
simulations presented in Table 1 of that paper). The simulation consists
in a triaxial compression of a cuboidal sample of 101,623 particles
with a maximum-to-minimum particle diameter ratio of 20.6, resulting
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Fig. 15 Distribution of the angle between the positive radial direction
and the projection of the contact vector on the azimuthal plane for north-
mapped DEM data-sets. The circumferential axis shows this angle and
the radial axis shows the number of contacts.

in more than 180,000 contacts (the exact number varies with strain
level).

Figure 16 shows the evolution of the contact orientation polar
angle using three different visualisations. All three cases clearly show
the change from a uniform distribution to one with more vertical and
fewer horizontal contacts. We note that the three visualisations are
almost equivalent in this case, as there is a relatively smooth variation
of contact intensity with polar angle, without high concentration of
contacts in particular narrow regions. The main difference is in the
most vertical contacts, where binning by polar angle gives more bins
near the vertical direction. This provides more detail, but much of it is
random variation as the bins contain fewer points.

The contact heat-maps in Figure 17 show that the distribution of
contacts is mostly, but not completely, axisymmetric.
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quantile (right) bins
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Fig. 17 Contact maps showing the evolution of contact orientation at different strain levels (strain 0.0%, 10.2% and 40.0%, from left to right)
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47. Wiącek J, Parafiniuk P, Stasiak M (2017) Effect of particle size
ratio and contribution of particle size fractions on micromechanics
of uniaxially compressed binary sphere mixtures. Granular Matter
19(34), DOI 10.1007/s10035-017-0719-4

48. Yimsiri S, Soga K (2000) Micromechanics-based stress–strain be-
haviour of soils at small strains. Géotechnique 50(5):559–571,
DOI 10.1680/geot.2000.50.5.559

49. Zhang M, Yang Y, Zhang H, Yu HS (2019) Dem and experimental
study of bi-directional simple shear. Granular Matter 21(24), DOI
10.1007/s10035-019-0870-1

50. Zhao S, ZhouX (2017) Effects of particle asphericity on themacro-
and micro-mechanical behaviors of granular assemblies. Granular
Matter 19(38), DOI 10.1007/s10035-017-0725-6

51. Zhao S, ZhangN, ZhouX, Zhang L (2017) Particle shape effects on
fabric of granular random packing. Powder Technology 310:175–
186, DOI 10.1016/j.powtec.2016.12.094

52. Zhou C, Ooi JY (2009) Numerical investigation of progressive
development of granular pile with spherical and non-spherical
particles. Mechanics of Materials 41(6):707–714, DOI 10.1016/
j.mechmat.2009.01.017


