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Abstract—Reconfigurable architectures, such as FPGAs, en-
able the execution of code at the electronics level, avoiding
the assumptions imposed by the general purpose black-box
micro-architectures of CPUs and GPUs. Such tailored execution
can result in increased performance and power efficiency, and
as the HPC community moves towards exascale an important
question is the role such hardware technologies can play in future
supercomputers.

In this paper we explore the porting of the PW advection
kernel, an important code component used in a variety of
atmospheric simulations and accounting for around 40% of the
runtime of the popular Met Office NERC Cloud model (MONC).
Building upon previous work which ported this kernel to an
older generation of Xilinx FPGA, we target latest generation
Xilinx Alveo U280 and Intel Stratix 10 FPGAs. Exploring the
development of a dataflow design which is performance portable
between vendors, we then describe implementation differences
between the tool chains and compare kernel performance between
FPGA hardware. This is followed by a more general performance
comparison, scaling up the number of kernels on the Xilinx Alveo
and Intel Stratix 10, against a 24 core Xeon Platinum Cascade
Lake CPU and NVIDIA Tesla V100 GPU. When overlapping
the transfer of data to and from the boards with compute, the
FPGA solutions considerably outperform the CPU and, whilst
falling short of the GPU in terms of performance, demonstrate
power usage benefits, with the Alveo being especially power
efficient. The result of this work is a comparison and set of
design techniques that apply both to this specific atmospheric
advection kernel on Xilinx and Intel FPGAs, and that are also
of interest more widely when looking to accelerate HPC codes
on a variety of reconfigurable architectures.

I. INTRODUCTION

Demand for more accurate, more ambitious scientific and
engineering simulations continues to place increasing pressure
on modern HPC. A key question raised by exascale is, in the
coming years, what mix of hardware is most appropriate for
future supercomputers. One such technology, popular in other
fields but yet to gain widespread adoption for HPC is that
of Field Programmable Gate Arrays (FPGAs) which provide
a large number of configurable logic blocks sitting within
a sea of configurable interconnect. Whilst limited hardware
capabilities and esoteric programming environments histori-
cally limited their update by scientific software developers,
recent years have seen very significant advances made by the
vendors. This covers both the hardware capability and also
the programming environments for FPGAs, now meaning that

this technology is more accessible to HPC developers than
ever before. Whilst such advances mean the physical act of
programming FPGAs is now becoming more a question of
software development rather than hardware design, there are
still many fundamental questions to answer around the types
of workloads that FPGAs can accelerate, the most appropriate
dataflow algorithmic techniques, and which specific FPGA
hardware is most suited to which workloads.

The Met Office NERC Cloud model (MONC) [1] is an
open source, high resolution, atmospheric modelling frame-
work that employs Large Eddy Simulation (LES) to study
the physics of turbulent flows and further develop and test
physical parametrisations and assumptions used in numerical
weather and climate prediction. This is used by scientists
for activities including the development and testing of the
Met Office Unified Model (UM) boundary layer scheme [2],
convection scheme [3] and cloud microphysics [4]. Advection,
computing the movement of quantities through the air due
to kinetic effects, is responsible for a significant amount of
the overall model runtime, approximately 40%, with one of
the main schemes being that of the Met Office’s Piacsek and
Williams (PW) [5]. It is therefore interesting to explore the
role of novel hardware in accelerating this kernel, as this not
only impacts the MONC model and its established user base,
but furthermore techniques and lessons learnt can be applied
to other HPC workloads too.

In previous work [6] [7] we ported the Met Office PW ad-
vection scheme to an ADM-PCIE-8K5 board, which contains
a Xilinx Kintex UltraScale KU115-2 FPGA, using High Level
Synthesis (HLS). Whilst this work demonstrated promise,
performing comparably to an 18-core Broadwell CPU, both
the FPGA hardware and software environment imposed a limit
on the performance that was delivered. Modern data centre
FPGAs, the Xilinx Alveo and Intel Stratix 10 families, are
a generation beyond the KU115-2, which itself is not really
designed for high performance workloads. Furthermore, the
previous work was conducted at a time prior to the release of
Xilinx’s Vitis programming environment, meaning that whilst
we were able to write the kernel in C++ and synthesise to the
underlying Hardware Description Language (HDL) via HLS,
there were a number of additional hardware oriented tasks
required such as manually developing the shell via Vivado



block design. Since then there have been significant devel-
opments in the field of FPGAs, with the release of Xilinx’s
Vitis framework, the wide spread availability of the Xilinx
Alveo range of FPGA boards, and growing maturity of Intel
Stratix 10 and the Quartus Prime Pro ecosystem. Therefore
it is instructive to revisit this kernel, from the perspective of
developing a design which is portable across the latest Xilinx
and Intel FPGA data-centre hardware via these more advanced
tool chains. This enables us to not only more accurately gauge
the benefits that FPGAs can deliver in accelerating this specific
atmospheric advection scheme compared to latest CPU and
GPU, but furthermore enables a comparison between vendors
to understand the portability of the underlying dataflow algo-
rithmic design and most appropriate techniques.

In this paper we explore the redesign of this advection kernel
with the aim of FPGA vendor portability and performance.
The paper is organised as follows; In Section II we provide a
technical overview of the kernel as well as describing previous
work in this area, and the hardware configurations utilised
throughout the rest of the paper. This is then followed by
Section III which focuses on developing a portable dataflow
design for FPGAs along with the specific implementation
details for both Xilinx and Intel technologies. This section
also provides a performance comparison of a single HLS
kernel on Intel and Xilinx FPGAs, with the CPU and GPU for
context. Section IV then expands the performance discussion
by scaling up the number of FPGA kernels, and comparing
not only the raw kernel performance but also considering the
overhead of data transfer to and from the device via PCIe.
This section compares the performance, power, and power
efficiency for our kernel against that of a 24-core Cascade
Lake Xeon Platinum CPU and NVIDIA Tesla V100 GPU. The
paper then draws to a close in Section V where we discuss
conclusions and identify further work based upon the vendor
technology road-maps.

II. BACKGROUND AND RELATED WORK

High Level Synthesis (HLS) has empowered programmers
to write C or C++ code for FPGAs and for this to be translated
into the underlying Hardware Description Language (HDL).
Not only does HLS avoid the need to write code at the
HDL level for FPGAs, significantly improving productivity
and opening up the programming of FPGAs to a much
wider community, but furthermore the tooling developed by
vendors also automates the process of integration with the
wider on-chip infrastructure such as memory controllers and
interconnects as well as making emulation and performance
profiling more convenient. With both the Xilinx Vitis and Intel
Quartus Prime Pro tool chains the programmer writes their
host code in OpenCL, which is the technology also used for
writing device side code for Intel FPGAs in Quartus Prime Pro.
However, whilst device side OpenCL is supported by Xilinx’s
Vitis framework, it is more common to leverage their bespoke
C++ HLS technology which involves the use of pragma style
hints to drive the tooling. These are the configurations used in

this paper, OpenCL on the host for both vendors, with OpenCL
on the device for Intel and HLS C++ on the device for Xilinx.

However, HLS is not a silver bullet and whilst the physical
act of programming FPGAs has become much easier, one
must still recast their Von-Neumann style algorithms into a
dataflow style [8] in order to obtain best performance. There
are numerous previous and on-going activities investigating
the role that FPGAs can play in accelerating HPC codes, such
as [9], [10], [11], and whilst there have been some successes,
many struggle to perform well against the latest CPUs and
GPUs. An important question is not only what are the most
appropriate dataflow techniques, but also whether both Xilinx
and Intel FPGA technologies can be effectively programmed
from a single dataflow algorithmic design. Of course the actual
code will look somewhat different, with different syntax and
potentially different pragmas, but fundamentally for a kernel
such as our advection scheme, are there the same general set
of concerns between the vendors that the programmer must
address for good performance?

A. The existing MONC advection FPGA kernel

Advection is the movement of grid values through the
atmosphere due to wind. At around 40% of the overall runtime,
advection is the single longest running piece of functionality
in the MONC model where the code loops over three fields;
U, V and W, representing wind velocity in the x, y and z
dimensions respectively. With the coordinate system oriented
with z in the vertical, y in the horizontal, and x in the diagonal,
this scheme is called each timestep of the model and calculates
advection results, otherwise known as source terms, of the
three fields. Processing each grid cell involves 63 double
precision operations, and this advection kernel is a stencil
based code, of depth one, requiring neighbouring values across
all the three dimensions per grid cell. Listing 1 illustrates a
sketch of the Fortran code for calculating the U field source
in a single timestep term.

1 do i=1, x size
2 do j=1, y size
3 do k=2, z size
4 su(k, j, i) = tcx * (u(k,j,i−1) * (u(k,j,i) + u(k,j,i

−1)) − u(k,j,i+1) * (u(k,j,i) + u(k,j,i+1)))
5
6 su(k, j, i) = su(k, j, i) + tcy * (u(k,j−1,i) * (v(k,j

−1,i) + v(k,j−1,i+1)) − u(k,j+1,i) * (v(k,j,i)
+ v(k,j,i+1)))

7
8 if (k .lt. z size) then
9 su(k, j, i) = su(k, j, i) + tzc1(k) * u(k−1,j,i) * (

w(k−1,j,i) + w(k−1,j,i+1)) − tzc2(k) * u(k
+1,j,i) * (w(k,j,i) + w(k,j,i+1))

10 else
11 su(k, j, i) = su(k, j, i) + tzc1(k) * u(k−1,j,i) * (

w(k−1,j,i) + w(k−1,j,i+1))
12 end if
13 end do



14 end do
15 end do

Listing 1. Illustration of the PW advection scheme for the u field only

In [6] and [7] where we ported the kernel to an ADM-PCIE-
8K5 board using HLS we first converted the Fortran code to
C++, then leveraging the dataflow HLS pragma to run four
components, loading data, stencil preparation, computation of
results, and writing results concurrently with data streaming
between these. This is illustrated in Figure 1, and whilst it
resulted in reasonable kernel level performance, the code was
very complicated, especially around the preparation of the
stencil where all required values were packaged together into
a single structure. Moreover, the overhead of data transfer to
and from the board via PCIe was found to be very significant,
and motivated by CUDA streams we adopted a bespoke data
chunking and streaming approach to overlap data transfer with
computation where possible. However, the specialised nature
of the Alpha Data host-side API meant that this was complex,
brittle, and lacked generality.

Fig. 1. Illustration of the dataflow design of the existing kernel from [7]

B. Hardware setup

For the runs contained in this paper we use a Xilinx Alveo
U280 and Intel Stratix 10. The Alveo U280 contains an FPGA
chip with 1.08 million LUTs, 4.5MB of on-chip BRAM,
30MB of on-chip URAM, and 9024 DSP slices. This PCIe
card also contains 8GB of High Bandwidth Memory (HBM)
and 32GB of DDR DRAM on the board. Codes for the Alveo
are built with Xilinx Vitis framework version 2020.2.

The Stratix 10 is mounted on a Bittware 520N card con-
taining a Stratix 10 GX 2800. This contains 933,120 Adaptive
Logic Modules (ALMs), 1.87MB of on-chip MLAB memory,
28.6MB of M20K memory, and 5760 DSP blocks. The card
also contains 32GB of DDR DRAM. Codes for the Stratix
10 are built with Intel’s Quartus Prime Pro version 20.4. Host
code is built using GCC version 8.3.

Throughout the experiments detailed in this paper we com-
pare against a 24-core Xeon Platinum (Cascade Lake) 8260M
CPU, and NVIDIA Tesla V100 GPU.

III. KERNEL DESIGN AND IMPLEMENTATION

Our objective for a single kernel is to calculate the advection
source terms for fields U, V, W of a grid cell each clock cycle.
The previous dataflow design of this kernel, as illustrated
in Figure 1 resulted in complex code, and we therefore
redesigned this, adopting a more generalised approach. Our
new dataflow design is illustrated in Figure 2, where each
box is an independent region that is running concurrently and
streaming data to other regions. After input data has been
read in this is then passed to the shift buffer stage which

implements a 3D shift buffer to provide the stencil values
needed for each individual grid cell calculation. Advection,
calculating each field’s source terms, requires all fields as
input values, hence the replicate stages in Figure 2 which
replicates the input stream values for each field advection. The
advection stages perform the double precision floating point
calculations before streaming out result values to be written
back to external memory. The design methodology here is
to view Figure 2 as a dataflow machine which is application
specific, where irrespective of how it is implemented on the
FPGA, to achieve best performance the programmer should
emphasise each stage running concurrently (e.g. not blocking
on previous stages), and continually streaming result data (e.g.
each cycle a new result is generated and streamed to the next
stage).

Fig. 2. Illustration of the dataflow redesign of our advection kernel

As was illustrated in Listing 1, in calculating source terms
the kernel requires neighbouring grid cell values. Typically
only 8 unique values of the 27 point 3D stencil are required for
each field advection, and to achieve the two dataflow aims of
no stalling and continued streaming of results, it is important
to avoid duplicate external memory reads. In previous work
we achieved this via a bespoke caching mechanism which
only stored the stencil values required and forwarded them
on. Whilst this increased code complexity significantly, it
maximised usage of the more limited resources of the Kin-
tex KU115-2 FPGA. Instead, in this work we adopted the
design of a general purpose 3D shift buffer. Whilst this does
increase overall resource usage, for instance we are storing
and forwarding all 27 stencil points to the advection kernels,
some of which are unused, this considerably simplifies the



code and we felt was best to ensure portability between vendor
technologies, at the cost of increasing overall resource usage.

Fig. 3. Illustration of the 3D shift buffer design, with main 3D array
containing three slices of domain in Y and Z dimension, and each slice has
associated two 2D arrays (only showing the first slices’s arrays for clarity)

An illustration of our new 3D shift buffer approach is
provided by Figure 3, where there are three key data structures
in use. Firstly, a three dimensional array (left most in Figure
3) which is of size X equals 3, Y is the grid size in Y, and Z is
the grid size in Z. Working upwards in a column (dimension
Z), effectively this shifts in the X dimension, where a new
data element is streamed in each cycle from the read data
stage and replaces the corresponding value in the current grid
cell in the top X dimension. This is the blue face in Figure 3,
where the value 3 is replacing the value 2, and this replaced
value then replaces the corresponding value in the next slice
(orange colour in Figure 3) which itself replaces the value in
the third slice (green colour).

Each slice of the 3D array in Figure 3 has an associated
2D rectangular array of size Z being the grid size in Z and
Y being 3. This can be imagined as sliding across, in the Y
dimension, its corresponding slice of the 3D array. This 2D
array is effectively shifting the data in the Y dimension, where
a value is read from the large 3D array slice and replaces the
value in the left most current line of the rectangular 2D array,
and the line itself shifts one place to the right. Lastly, each
2D array has a three by three array associated with it, each
cycle values from the 2D rectangular array are loaded into the
corresponding columns and these shifted down.

In Figure 3 a single example of the 2D arrays are provided
for the first (blue) slice, this is for clarity of presentation and
in reality these are array exist for each slice of the 3D buffer.
Therefore there are three 2D rectangular arrays (in yellow)
and three 3x3 boxes (in grey), one for each slice of the main
3D array. Each cycle the three, 3x3 arrays for this field in
question are streamed to the advection stage, representing the
required 27-point stencil.

Therefore, once filled, this 3D shift buffer means that per
clock cycle one input value is consumed and a complete 27-
point stencil generated for the advection stage. Furthermore,
given correct partitioning, there are never more than two
memory accesses per cycle on the 3D and 2D rectangular array
which is compatible with being able to handle these accesses
within a single cycle for dual ported on-chip memory. The

small 3x3 arrays are implemented by both Vitis and Quartus
Prime Pro as registers and-so do not require partitioning.

There are three of these shift buffers, one for each field, and
as such there is a resource limitation in terms of the amount of
on-chip memory being used hold the 3D and 2D arrays. The
memory required is bounded by the Y and Z dimensions only,
and therefore to decouple the grid size configuration from the
FPGA resources required we adopted a chunking approach
where the Y dimension is split up into chunks, as illustrated
by Figure 4. The code handles each 3D chunk, before moving
onto the next chunk in the Y dimension. The dotted line on
the front face illustrates that, due to the 1-depth halo there is
an overlap of two grid points in the Y dimension, one for the
right halo of the left chunk and the other for the left halo of
the right chunk.

Fig. 4. Illustration of chunking with overlap in the Y dimension. Also
illustrates the dimension system, with Z in the vertical, Y in the horizontal,
and X in the diagonal

In this manner the read data and write data stages load data
on a chunk by chunk basis. Whilst this enables the processing
of an unlimited domain size, the potential disadvantage is that
it results in smaller contiguous external memory accesses, of
chunk face size Y by Z, before having to move one grid point
in the X dimension for the next chunk’s Y-Z face. There is
an overhead in accessing external data in a non-contiguous
fashion [12], however in reality apart from a very small chunk
size of 8 or below, this has negligible performance impact.

Another advantage of considering our design from the view
point of a dataflow machine is to enable convenient reasoning
about the overall theoretical performance. Each advection
stage usually contains twenty one floating point operations.
Given an initiation interval of one, our design means that per
cycle there are usually 63 floating point operations that can run
concurrently (but for the column top grid cell this reduces to 55
operations). Multiplying the clock frequency by this number
provides a theoretical best performance in terms of Floating
Point Operations per Second (FLOPS) that kernels should be
looking to achieve. For instance, with a clock frequency of
300MHz, which is the default on the Alveo, and a column
height of 64 grid cells (the default for the MONC model),
the design illustrated in Figure 2 can theoretically deliver
a best performance of 18.86 GFLOPS. Quantifying how far
kernels fall short of this figure can determine how much more
opportunity there is for further kernel level optimisation.

Table I illustrates kernel-only performance, ignoring the
overhead of data transfer to or from the card via PCIe, of
our advection kernel with a medium problem size of 16



million grid cells. We compare the performance of the Xilinx
Alveo U280 and Intel Stratix 10 against a 24-core Xeon
Platinum Cascade Lake CPU and NVIDIA Tesla V100 GPU.
The major difference between the two FPGA kernels is that
the Intel kernel is running at 398MHz, whereas the Xilinx
kernel is running at 300MHz. Therefore the theoretical best
performance of the Intel kernel is 25.02 GFLOPS, and 18.86
GFLOPS for the Xilinx kernel. It can be seen from Table I
that, broadly, both kernels are reaching a similar level of actual
performance against their theoretical best.

The increased clock frequency provided by the Intel means
that a single advection kernel on the Stratix 10 outperforms
the 24 core Xeon Platinum Cascade Lake CPU, whereas the
lower frequency of the Xilinx means that it falls slightly short.
Comparing against previous work in [7], running this kernel
on a Xilinx Kintex UltraScale KU115-2, with eight kernels we
only achieved 18.8 GFLOPS. The fact that a single kernel on
the Alveo U280 achieves around 77% of this, and the Stratix
10 out performs it by approximately 10%, demonstrates the
significant advances that the latest hardware, new software
tooling, and redesign of our kernel have delivered.

The GPU implementation tested in Table I is from [13],
written in OpenACC, and compiled with the Portland Group
Compiler version 20.9. Whilst the performance of the GPU
is impressive, it should be highlighted that this is exploiting
the entirety of the GPU, whereas in Table I we are focusing
on single FPGA HLS kernels, with a considerable amount of
the chip unoccupied. Therefore whilst the GPU is a useful
comparison point, the experiments detailed in Section IV,
comparing against multiple FPGA kernels and considering the
overhead of data transfer provide a more complete comparison.

Description Performance
(GFLOPS)

% theoretical
performance

% CPU
performance

1 core of Xeon CPU 2.09 - -
24 core Xeon CPU 15.2 - -

NVIDIA V100 GPU 367.2 - 2400%
Xilinx Alveo U280 14.50 77% 95%

Intel Stratix 10 20.8 83% 137%
TABLE I

KERNEL-ONLY PERFORMANCE BETWEEN XEON PLATINUM CPU,
NVIDIA TESLA V100 GPU, AND A SINGLE FPGA KERNEL ON THE

XILINX ALVEO U280 AND INTEL STRATIX 10 FOR A PROBLEM SIZE OF 16
MILLION GRID POINTS

A. Xilinx specific implementation details

Each box of Figure 2 is implemented via a distinct function
called from within an HLS dataflow region, connected via HLS
streams. Following best practice [12] we pack external data
accesses to be 512 bits wide, and by default favour the high
bandwidth memory (HBM2) on the Alveo U280, connecting
our kernel data ports across all the HBM2 banks. At 8GB the
HBM2 is large enough to hold all but our two largest grid
size configurations considered in Section IV, for which we
must switch to using the 32GB DDR-DRAM instead. Table II
illustrates kernel only performance (i.e. ignoring the overhead
of data transfer to or from the board) when using the on-
chip HBM2 memory against the slower on-board DDR-DRAM

memory for a variety of grid cell problem sizes. It can be
seen that the high bandwidth memory delivers a significant
performance benefit throughout and as such should be the
preferred space when the data fits.

Grid points
HBM2

performance
(GFLOPS)

DDR-DRAM
performance
(GFLOPS)

DDR-DRAM
overhead

1M 12.98 8.98 45%
4M 14.94 10.21 46%

16M 14.52 10.43 39%
67M 14.68 10.55 39%

TABLE II
PERFORMANCE COMPARISON BETWEEN USING HBM2 AND DDR-DRAM

ON THE ALVEO U280

Internal to our HLS kernel, the arrays constituting the shift
buffer are partitioned using the HLS array partition pragma
and reside in on-chip BRAM. Whilst we experimented with
utilising the larger on-chip UltraRAM (URAM) for these
instead, the increased latency of URAM meant that there was
a dependency between an index’s read and write operation
because the write to memory must be completed in a single
cycle. Consequently using URAM imposed an access latency
of two cycles at 300MHz which increased the initiation
interval to two of our loop. Only processing a new iteration
every other cycle, effectively meaning that data would stream
out every other cycle, would half the performance and as such
we considered it unacceptable.

B. Intel specific implementation

Implementing our dataflow design in OpenCL is arguably
less convenient than Xilinx HLS due to having to make
each stage of Figure 2 an explicit OpenCL kernel connected
by OpenCL channels. These channels are an Intel specific
extension, and all the kernels are launched from the host. This
increases the verbosity of the code, but is offset by automatic
optimisations such as the tooling transparently optimising
external memory accesses which reduces code complexity.

A challenge was in ensuring that the 3D shift buffer had
been implemented effectively, with the tooling reporting via
the HTML report that there was a memory dependency issue
limiting the initiation interval (II). Whilst we initially looked
to solve this by banking the memory via the bankwidth and
numbanks qualifiers from the Intel best practice guide [14],
this did not solve the memory dependency issue. However it
was only on the smaller, dimension of three, of the arrays
illustrated in Figure 3 that we needed to split the arrays apart
in order to avoid dependencies on the dual-ported memory.
Therefore we did this manually in the code, which was not
ideal but solved the issue, reducing the II to one. This array
manipulation was the major specialisation required for the In-
tel implementation of this kernel, with the actual computation
component being unchanged between the two vendors.

C. Discussion

Based on our experiences of implementing the design for
both vendors it is worth considering the differences between



the tool chains and how readily programmers can switch from
one to another. It is our feeling that there is somewhat of
a philosophical difference between the Xilinx HLS C++ and
Intel OpenCL HLS approaches, where the Intel approach is
more automated, placing greater emphasis on the tooling to
convert the programmer’s code into efficient HDL. By contrast,
the Xilinx HLS approach requires more in-depth knowledge
and experience but provides more insight and configuration
options for tuning. External memory accesses are an example,
where not only did we not need to explicitly pack data to
a specific bit-width for the Stratix 10, but furthermore the
Intel tooling will select the most appropriate load-store units
including bursting and prefetching.

Conversely, the array partitioning pragmas provided by
Xilinx HLS felt more convenient and powerful for partitioning
the shift buffer arrays than those provided by Intel to avoid
memory dependency issues. Furthermore, whilst both tool
chains report the performance of each loop after synthesis, the
insights provided by the Xilinx HLS tooling in the analysis
pane around exactly what operations are scheduled when, and
how data flows between these, tends to deliver more detailed
information and aid in fully understanding the effectiveness of
the applied tuning pragmas.

When using HBM2 Xilinx Alveo U280 achieves 77% of
theoretical kernel performance, which drops to 55% when
switching to DDR-DRAM. By contrast, the Stratix 10 achieves
83% of theoretical performance using only DDR-DRAM,
therefore the Intel tooling is, through automatic optimisation,
ameliorate the lower performance of this memory technology.

To summarise, the Intel tooling feels like it is aimed at the
software developer, whereas the Xilinx tooling expects that
the developer will have a deeper understanding of the FPGA
technology and will tweak aspects to gain best performance.
Importantly, we have been able to produce a single kernel
dataflow design, illustrated in Figure 2, and implement this
in the tooling of both vendors with relative ease. Further-
more, with both versions achieving close to their theoretical
maximum performance, the implementations are efficient. We
believe that this demonstrates a wider point, that whilst there
are implementation differences between the vendor’s tool
chains, many of these are somewhat superficial, with numerous
underlying fundamentals shared between them and as such
performance portability is possible by adopting the correct
dataflow design.

IV. MULTI-KERNEL PERFORMANCE AND POWER

We focused on the design and implementation of a single
well performing HLS kernel in Section III. However this only
occupied around 15% of the Alveo or Stratix 10 resources, and
as such can be scaled up to multiple kernels. We were able to
fit six kernels on the Xilinx Alveo U280, and five kernels on
the Intel Stratix 10.

Figure 5 illustrates the performance, for a variety of grid
sizes, of six FPGA kernels on the Xilinx Alveo U280 and five
kernels on the Intel Stratix 10, against a 24-core Cascade Lake
Xeon Platinum and V100 GPU. Reported here is the overall

performance, including the overhead of data transfer to and
from the FPGA or GPU boards via PCIe. It can be seen that
this is significantly lower than the kernel-only results reported
in Table I. With a problem size of 16 million grid cells,
approximately 800MB of data must be transferred between
the host and board via PCIe, increasing to 3.2GB, 12.8GB
and 25.8GB for 67 million, 268 million, and 536 million grid
cell configurations respectively.

Clearly data transfer imposes a significant overhead on the
overall performance of these accelerators, where the NVIDIA
V100 GPU suffers especially compared to the raw perfor-
mance delivered by the kernel itself. Furthermore there are no
results for 536 million grid cells on the V100 GPU because
the board contains only 16GB of memory and as such can
not hold the entire 25.8GB data set required. The Intel Stratix
10 outperforms the Alveo U280 here, and this is due to a
smaller overhead of data transfer to and from the card, where
consistently data transfer takes approximately twice as long
on the U280 than it does on the Stratix 10.

Fig. 5. Performance comparison between hardware technologies without any
overlapping of data transfer and compute (higher is better).

We previously encountered this same data transfer overhead
issue with the ADM-PCIE-8K5 board in [7], and demon-
strated that performance could be considerably improved by
implementing a mechanism to overlap data transfer and kernel
compute. The benefit of both the Xilinx Vitis and Intel Quartus
Prime Pro tools chains is that, by writing the host code in
OpenCL, then we are able to achieve such overlapping in
a much more standardised, simpler manner compared to [7]
where we had to build upon the low-level Alpha Data bespoke
API. The approach we adopted was to chunk the data up
in the X dimension, where each chunk represents a smaller
data-set and shorter execution of the FPGA kernel on that
specific chunk. By bulk registering all data transfers to and
from the FPGA, and using OpenCL events to specify that
there are multiple executions of the same kernel, each with a
dependency upon small data transfers, then this means that,
whilst a kernel is running, input data is in-flight for subse-
quent kernels and result data being transferred for proceeding
kernels. Therefore, with the exception of the first kernel, given



a sensible chunk size then data will be present when a specific
kernel starts, and with the exception of the last kernel, then
the host need not block for result data transfer as these are all
running concurrently.

Fig. 6. Performance comparison between hardware technologies with over-
lapping of data transfer and compute (higher is better).

Performance with this overlapping of data transfer and
compute is illustrated in Figure 6, which significantly improves
the overall FPGA and GPU performance, and also makes
a difference to the relative performance of the technologies.
With this overlapping the V100 GPU (using CUDA streams
to overlap on the GPU) outperforms all other technologies,
especially at larger grid sizes. Furthermore, apart from 268
million and 536 million grid cell configurations, the Xilinx
Alveo U280 outperforms the Intel Stratix 10. There are three
reasons for this change in relative performance between the
FPGA technologies, firstly data transfer on the Alveo is more
time consuming than the Stratix 10, hence this overlapping
approach benefits the Alveo the most. Secondly, we were able
to fit six HLS kernels onto the Alveo U280 whereas only
five onto the Intel Stratix 10, and thirdly the Alveo is able to
run at 300MHz, whereas the clock frequency on the Statix-10
decreases significantly from 398MHz for a single kernel to
250MHz as the number of kernels are increased.

In Figures 6 and 5, it can be seen that the performance of the
Alveo U280 decreases sharply at 268 million and 536 million
grid cell compared with smaller domain sizes. This is because,
at this configuration, the data is too large to fit in the 8GB of
HBM2, and instead must use the 32GB of DDR-DRAM.

Figure 7 illustrates the power usage in Watts between
the four different hardware technologies running our advec-
tion kernel. Power was captured on the CPU using RAPL,
NVIDIA-SMI for the GPU, XRT for the Alveo, and the
aocl mmd card info fn API call on the Stratix 10. As to be
expected, in absolute terms both the CPU and GPU consume
significantly more power than the two FPGAs. However, there
is a difference between the Stratix 10 and Alveo U280,
where the Stratix 10 consumes around 50% more power than
the Alveo U280. This was unexpected, and we had initially
assumed it was entirely due to the use of generally more power
efficient HBM2 rather than DDR-DRAM. However reduced

power draw, albeit diminished, continued at our largest grid
configurations where the Alveo uses DDR-DRAM, and mov-
ing from HBM2 to DDR-DRAM saw an increase of only 12
Watts on the U280.

Fig. 7. Power usage comparison between hardware technologies with over-
lapping of data transfer and compute (lower is better).

Figure 8 illustrates the power efficiency of our experiments,
where it can be seen that the CPU’s low performance and high
power usage results in worst efficiency. Interesting the Stratix
10 and Alveo U280 are somewhat different here, with the
increased performance of the U280 and lower absolute power
draw resulting in approximately double the power efficiency
of the Stratix 10 until 256 million grid points. At that point the
lower performance delivered by the DDR-DRAM on the U280
results in a decrease in the power efficiency, bringing it closer
to the other technologies. Whilst the GPU draws significantly
more power, the higher performance delivered means that it
is competitive against the Stratix 10. Whilst the Stratix 10
is more power efficient than the V100 GPU for smaller grid
sizes, the V100 GPU is slightly better at larger configurations.

Fig. 8. Power efficiency comparison between hardware technologies with
overlapping of data transfer and compute (higher is better).

V. CONCLUSION

In this paper we have explored the porting of the Piacsek and
Williams (PW) atmospheric advection scheme to both Xilinx
Alveo U280 and Intel Stratix 10 FPGAs. This significantly



improves the performance of this kernel on a previous gener-
ation FPGA, and based upon a common dataflow design we
have developed implementations for both vendors which, at
the kernel level, perform close to their theoretical maximum
performance. This illustrates the benefit of designing dataflow
algorithms from the perspective of a dataflow machine and
using the theoretical performance value as a metric to under-
stand how well the implementation is performing. Whilst the
implementation of the kernel did require some implementation
specialisation between Xilinx’s Vitis and Intel’s Quartus Prime
Pro, this is largely driven by philosophical differences between
the two tool chains. Intel’s Quartus Prime Pro is generally
more advanced at handling automated transformations, and
ultimately able to achieve a higher clock frequency for a single
kernel. By contrast, Xilinx Vitis expects the programmer will
be more manually involved in code optimisation, and provides
to them the insight and tools required to achieve this.

When scaling to multi-kernel the performance picture be-
tween the Xilinx and Intel technologies changed, where the
Intel tooling struggled more to scale the number of kernels
whilst maintaining a reasonable clock frequency. For this
workload, the ability to overlap data transfer and compute is
crucial for performance, and we demonstrated that by adopting
OpenCL on the host this is easily implementable in both tool
chains and makes a significant impact on overall performance.
When comparing multi-kernel performance we found that the
NVIDIA Tesla V100 GPU outperforms all other hardware
convincingly, with the Xilinx Alveo U280 outperforming the
Intel Stratix 10 when it can leverage the high bandwidth
memory, but the Stratix 10 then out performs the Alveo when
DDR-DRAM must be used. As expected, the FPGAs draw
considerably less power than the CPU or GPU, however the
Alveo also draws around 50% less power than the Stratix 10,
meaning that the Alveo is overall most power efficient, with
the Statix 10 and GPU fairly similar for that metric.

In terms of further work, exploring the role of reduced
precision and fixed point arithmetic would be interesting. This
could reduce the amount of resource required for our shift
buffers and advection calculations, as such enabling more
kernels to be fitted onto the chip. Furthermore, FPGAs with AI
accelerators such as Xilinx’s Versal ACAP and Intel’s Stratix
10 NX look likely to dominate in the coming years and will
be especially suited for accelerating lower precision arithmetic.
Taking the Xilinx Versal as an example, there will be up to
400 AI engines which act as vector units clocked at around
1 GHz, each capable of performing eight single precision
floating point operations per cycle. This could considerably
accelerate the arithmetic component of our advection kernel,
and keeping the engines fed with data will be the key,
exploiting the reconfigurable fabric of the ACAP for our
shift buffer design. It will also be interesting to explore how
portable algorithmic techniques for exploiting these new AI
accelerators are between vendors.

We conclude that the work done in this paper demonstrates
that there has been considerable advances made in the previous
few years by the vendors on the hardware and software ecosys-

tems. It is now, more than ever before, realistic to port HPC
kernels to FPGAs and, if done correctly, this will convincingly
surpass a modern CPU, both in terms of performance and
power efficiency. Whilst the GPU is more of a challenging
contender for this workload, the fact that it is possible to create
performance portable dataflow designs between the two major
FPGA vendors is impressive, and the next generation FPGA
of technologies to be released later in 2021 will likely further
close the gap between FPGAs and GPUs.
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