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Abstract 

Speech signal analysis is a powerful tool that facilitates the monitoring and tracking of 

symptom deterioration caused by neurodegenerative disorders, typically achieved using 

either sustained vowels, diadochokinetic exercises or running speech. This study expands 

our previous work on the study of the movement produced by the jaw-tongue 

biomechanical system. The aim is to further investigate the effects of neuromotor activity 

during muscular exertion that translates formant acoustics into speech articulatory 

movements affected by hypokinetic dysarthria in Parkinson’s Disease (PD). The 

objective of this study is to estimate the parameters of an inverse acoustic-to-kinematic 

projection model that takes as an input the variations of the first and second formants and 

estimates as output the spatial variation of the jaw-tongue biomechanical system. The 

spatial variations have been extracted from 3D accelerometry (3DAcc). These serve as 

ground truth for comparison with the estimated activity projected from speech kinematics, 

as a measure of fitness of the inverse model. The estimation method is a two step process: 

first initial weight values are produced using multiple regression between each of the 

formant dynamic signals (acoustical analysis) and the estimated spatial variations 

(accelerometry). The second step uses a weight refinement method based on gradient-

descent. Additionally, a time-realignment study has been carried out on the acoustic-to-

kinematic projection model, based on the estimation of relative time displacements as to 

maximize the cross-correlation between signals. The study is complemented with an 

estimation of the model weights on a dataset from PD participants and Healthy Controls 

(HC). This methodology opens up new ways to investigate the underlying physiological 

voice production mechanism which may offer new insights into PD symptoms. 

Keywords: Neuromotor diseases, speech articulation biomechanics, speech kinematics, 

speech neuromotor degeneration, remote monitoring, hypokinetic dysarthria. 

1 Introduction 

The influence of neurological and cognitive processes on speech is a well-established and 

recognized fact [1], [2], [3]. Many studies in the last decade have explored diverse signals  

such as EEG, MEG, fMRI and other non-invasive methods to provide new insights into 

the vocal production process [4], [5]. This is of particular interest when investigating 



 

 

neurological diseases (cognitive and neuromotor) such as Alzheimer, PD, Amyotrophic 

Lateral Sclerosis (ALS), Huntington’s Chorea, and others related [6]. Speech allows the 

contactless remote recording on smart terminals, as phones, tablets or laptop computers. 

Speech offers the added value of mapping acoustic estimates to neuromuscular activity, 

providing an advantage in the detection and monitoring of diseases dependent on 

neuromotor pathway transmission remotely [7]. A comprehensive study on the effects of 

PD on speech [8], [9] could provide insights into the underlying physiology, associating 

speech characteristics to the physical manifestations of the disease. This can be achieved 

through the study of phonation, articulation, prosody and fluency [10] which would offer 

valuable information on the activity of specific brain areas involved in speech production, 

such as motor planning, premotor and motor, and working memory. There is an unmet 

need to establish a robust and reliable methodology to map estimates extracted from the 

speech acoustics to motor actions in certain muscles involved in speech articulation and 

production. One such example is the masseter muscle, responsible of raising the lower 

jaw. Such a projection methodology is proposed in this research work to transform speech 

formant dynamics to articulatory kinematics [11], [12]. First proposals of an inverse 

model (relating formant dynamics and articulation) were presented; as a result several 

indicators were developed to encompass articulatory movements from speech alone (e.g. 

Absolute Kinematic Velocity, AKV) [13], [14]. The problem with this first attempts was 

the lack of a robust model parameter estimation. This led to further exploratory work, 

were the relationships between sEMG, accelerometry and Speech were investigated [15]. 

After an in-depth study of the affectations of PD on these biometric signals [16], the 

conclusions were applied to the characterization of PD hypokinetic dysarthria [17], [18]. 

The aim of the present study is to provide an insight into acoustic-to-kinematic projection, 

which could eventually allow to extract and transfer acoustically relevant articulation 

features to neuromotor actions, to be used in the characterization and monitoring 

neuromotor activity in specific diseases such as PD which is used as testbed in this study, 

this being the objective of future research already in progress. This approach can provide 

new insights into the physiological voice production mechanism and tentatively assign 

any effects of PD on specific vocal production model components. Such a model would 

add new semantic value over other standard approaches in the state of the art. In this 

regard, the previously proposed mapping model is reformulated in terms of time and 

space variables to allow a dynamic description of the model coefficients to be used in 

further mapping processes in remotely monitoring PD. This description includes also 

estimations from HCs. 

The paper is structured as follows. In Section 2 the acoustic-mechanical model proposed 

is reformulated in the time-space domain to allow a more robust estimation of its 

coefficients. Section 3 is devoted to describe the data acquisition framework, platform 

and protocols, the biometrical data of participants, and the estimation methodology for 

the model coefficients in the space-time domain. The results derived from the PD and HC 

subsets are presented and described in Section 0. Section 5 is devoted to discuss the 

robustness of the methodology considering the results, and to analyze their impact and 

limitations in possible online applications. The study’s key findings are summarized in 

Section 6.    

2 The Neuromechanical Model of the Lower Jaw Articulation 

The present study is based on a simplified jaw-tongue articulation model [16] which is 

known to be representative of PD dysarthria [18]. It allows to create a relationship 

between acoustic and kinematic variables relating the first two formants F={F1, F2} to 

the horizontal and vertical coordinates S={xr, yr} of the joint Jaw-Tongue Reference Point 



 

 

(PrJT) in the sagittal plane This point represents the center of moments of the 

biomechanical system integrated by the maxillary bone, tongue and facial tissues 

associated [17] (see Figure 1). 

 

 . Jaw-tongue biomechanical model. The kinematic variables S = {s1, s2} = {xr, yr} are the 

horizontal and vertical PrJT coordinates. Their relative displacements with respect to the origin will be 

ΔS = {Δs1, Δs2} = {Δx, Δy}, represented as vectors in the time domain. Similarly {xa, ya} are the 

tangential and normal components of acceleration in the sagittal plane referred to the accelerometer 

coordinates, also vectors in the time domain. F: condylomaxillary joint, J: mandible bone, T: Tongue, 

H: hyoid bone. 

The model assumes that a Linear Time-Invariant (LTI) relationship  may be established 

between the PrJT sagittal coordinates and the first two formant relative displacements, 

which may be summarized as 

∆𝐒 = 𝐖 × ∆𝐅;  

𝐖 = {𝑤𝑖𝑗}
𝑖=1,2

𝑗=1,2
 

(1)   

where ΔS = {Δs1, Δs2} is the vector of the horizontal and vertical displacements of PrJT 

in the time domain, which may be obtained from the rotation and integration of the 

tangential and normal acceleration components {xa, ya} on the participant’s chin, W in 

(1) is a 2x2 matrix expressing the LTI projection model, which will be referred to as the 

acoustic-to-kinematic projection, and ΔF is the relative displacement in frequency of the 

first two formants with respect to their means in the time domain, as the first two formants 

are strongly associated with articulation kinematics [17], defined as 

∆𝐅 = {𝐅1 − 𝑚𝑒𝑎𝑛(𝐅1), 𝐅2 − 𝑚𝑒𝑎𝑛(𝐅2)} (2)   

3 Materials and Methods 

3.1 Data Acquisition framework 

The study cohort comprises 8 PD participants (four male, four female, all Spanish native 

speakers, stage 2 in H&Y scale) who were recruited from a PD patient association in the 

metropolitan area of Madrid (Asociación de Pacientes de Parkinson de Alcorcón y 

Móstoles, APARKAM). For comparison purposes four male and four female healthy 

control participants have been included in the study. The biometrical data of participants 

are given in Table 1. 



 

 

Table 1 Biometrical Description of the participants included in the study. 

Label Age Gender H&Y State Label Age Gender H&Y State 

CM1 69 M - - CF1 66 F - - 

CM2 70 M - - CF2 62 F - - 

CM3 61 M - - CF3 65 F - - 

CM4 68 M - - CF4 65 F - - 

PM1 73 M 2 on PF1 69 F 2 on 

PM2 71 M 2 on PF2 73 F 2 on 

PM3 73 M 2 on PF3 71 F 2 on 

PM4 69 M 2 on PF4 70 F 2 on 

The study was approved by the Ethical Committee of UPM (MonParLoc, 18/06/2018). 

The voluntary participants were informed about the experiments to be conducted, the 

protection of their personal data and provided informed consent. The methodology was 

strictly aligned with the Declaration of Helsinki. Figure 2 presents an example of the 

process of multiple signal recording from PD patients.  

 

 . Signal acquisition set-up. Two sEMG electrodes are placed on the longitudinal ends of 

the masseter (differential pair: d1, d2) and one on the forehead (reference: r). The 3D accelerometer 

is fixed to the chin (a). A cardioid clip microphone is attached to the collar (m). 

The equipment used allows the simultaneous and synchronous recording of surface 

electromyography (sEMG), 3DAcc, and speech, as illustrated in Figure 2. The sEMG is 

taken by the two attachments of the masseter complex to the jaw and skull, and the 3DAcc 

signals are obtained from an accelerometer attached to the chin. These signals were 



 

 

digitized and collected with a Biopac MP150 EMG100 at 2 kHz and 16 bits. A Sennheiser 

cardioid wireless microphone (ew320 g2) on a MOTU Traveler MK1 sound card was 

used to record speech at 40 kHz with 32 bit resolution. Speech was latter down-sampled 

to 8 kHz for the analysis of the first and second formants, since the ranges for both 

formants are below 4 kHz [19]. The formant estimation is based on adaptive lattice filters 

[20] estimating a formant pair every 2 ms. Consequently, sEMG and 3D accelerometer 

signals were down-sampled to 500 Hz to match this time resolution. Recordings were 

carried out following a protocol that comprises the sustained vowels [a: e: i: o: u:], the 

fast repetition of the syllables [pa], [ta] and [ka], the three connected syllables [pataka] 

and [pakata] and the diphthong […aja…]. In the present study only the recordings from 

this last exercise were used in the estimation of W by multiple regression, because this 

diphthong produces the widest sweeps of formant dynamical patterns associated to the 

high-low and forward-backward displacement of PrJT. 

3.2 Formant estimation 

The accurate estimation of the first two formants considered in Error! Reference source 

not found. is essential to the study. The procedures used in formant estimation are based 

on adaptive linear prediction [20], building on a previous in-depth study [16]. The details 

of formant estimation are briefly described as follows: 

• The speech signal x(n) was bandlimited (low-pass filtered) to 4 kHz by a 4-th order 

Butterworth filter. 

• Speech was divided in consecutive segment windows of 64 ms separated by a 2 ms 

stride (62 ms overlap). A Hamming window was used.  

• A radiation-compensation first-order high-pass filter with a drop-off coefficient of 0.6 

was used to remove radiation effects. 

• The glottal formant was eliminated by a first-order inverse lattice filter [20]. 

• A 9-order inverse lattice filter estimated the error-predictor polynomial Hk(z). 

• The roots zk of the error predictor polynomial Hk(z= zk)=0 were estimated. 

• The formants were obtained from the positive angles of zk: Fk=fs.φk/π, φk>0 (fs: 

sampling frequency). 

• The root modules were used as a quality factor for formant selection: rk=|zk|>qf. 

3.3 Data Processing Methods 

The purpose of the model described in (1) is to allow an indirect estimation of the spatial 

oscillations ΔS solely from the dynamics of the recorded signal and the acoustic formants 

ΔF by an acoustic-to-kinematic model described by its weight matrix W which will be 

the main objective of this study 

𝐖 = [
𝑤11 𝑤12

𝑤21 𝑤22
] (3)   

The individual weight values 𝑤ij are to be estimated from healthy controls and PD 

participants, to establish possible regression models on the kinematic variables associated 

to the reference point PrJT exclusively from acoustic estimates (ΔF), in other words, to 

establish a methodology for estimating articulatory kinematic features solely from the 

speech signal. The methodology proposed is based on solving for the model weights W 

using standard optimization methods to establish the relationship between the observed 

variables ΔS and ΔF. The problem is stated as the minimization of a cost function C 

𝐶 = ‖∆𝐒 − 𝐖 × ∆𝐅‖2 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝐖𝑒𝑠𝑡 = 𝑎𝑟𝑔𝑚𝑖𝑛𝐖{𝐶} (4)   



 

 

where ‖∙‖2 denotes the module of a vector. Given the structural properties of C, the 

estimation of W may be decomposed in the independent minimization of each of its 

separate components (C=C1+C2) 

𝐶i(𝑤i1, 𝑤i2) = ‖∆𝐬i − 𝑤i1∆𝐅1 − 𝑤i2∆𝐅2‖2; 𝑖 = 1, 2  (5)   

If expression (4) is expanded, it can be easily observed that the partial cost functions 

depend only on a single row of the matrix W (3). Therefore the error minimization 

problem can be split into minimizing each of the partial error functions Ci(wi1,wi2) for the 

weights wi1 and wi2. 

[𝑤i1, 𝑤i2] = 𝑎𝑟𝑔𝑚𝑖𝑛[𝑤i1,𝑤i2]{𝐶i} (6)   

The minimization methodology is based on an iteration using gradient descent with a 

variable step size to estimate each individual weight as 

𝑤ij
k = 𝑤ij

k−1 − 𝛾i
k−1𝛁i𝐶i

k−1;  𝑖, 𝑗 = 1, 2 (7)   

where k is the iteration step which can be estimated by the Barzilai–Borwein method [21] 

𝛾ik =
〈𝐰i

k − 𝐰i
k−1, 𝛁i𝐶i

k − 𝛁i𝐶i
k−1〉

‖𝛁i𝐶i
k − 𝛁i𝐶i

k−1‖
𝟐  (8)   

the weight and the gradient vectors being defined as 

𝐰i
k = [𝑤i1

k , 𝑤i2
k ] 

𝛁i = [
∂

∂𝑤i1
,

∂

∂𝑤i2
] 

(9)   

Practical convergence is typically reached after a few iteration steps as shown in the next 

Section. The initial estimation (step k=0) for the weights W0 is achieved using simple 

linear regression [22] between the input and output signals of the inverse model 

𝐖0 = [
𝐰1

0

𝐰2
0] = [

𝑤11
0 𝑤12

0

𝑤21
0 𝑤22

0 ] (10)   

𝑤ij
0 = 𝑅𝑖𝑗(∆𝐬i, ∆𝐅j) =

∆𝐬i∆𝐅j
T

∆𝐅j∆𝐅j
T

;  𝑖, 𝑗 = 1, 2 (11)   

This estimation process is represented in the regression plots shown in Section 0. It has 

been observed while estimating the initial values of the weights that there seems to be a 

misalignment between Δsi and ΔFj. To improve the estimation of the model matrix W it 

may be interesting to reduce this misalignment by maximizing the correlation function Rij 

after introducing a shift. The relative misalignment may be a consequence of formant 

insertion dynamics associated to resonance in tubes with losses (this assumption needing 

further study), and it results in a non-optimal estimation of W. To compensate it, each 

weight may be re-estimated after the realignment of signals derived from the following 

optimization problem 



 

 

𝐶i(𝑧) = ‖∆𝐬i(𝑧) − 𝑤i1∆𝐅1(𝑧)𝑧−𝑛i1 − 𝑤i2∆𝐅2(𝑧)𝑧−𝑛i2‖2;  𝑖 = 1, 2 (12)   

where Δsi(z) and ΔFi(z) are the z-transforms of Δsi, and ΔFi [20], and ni1, and ni2, are the 

relative misalignments between each of the components of ΔS and ΔF, given in numbers 

of samples, assumed to be independent with each other. Similarly to the problem in (5), 

a solution is sought as 

[𝑛i1, 𝑛i2]𝑚𝑖𝑛 = 𝑎𝑟𝑔𝑚𝑖𝑛[𝑛i1,𝑛i2]{𝐶i(𝑧)}; 𝑖 = 1,2 (13)   

   The independent minimization of C1(z) and C2(z) allows estimating the misalignments 

on ensuring that 

𝑛ij = 𝑎𝑟𝑔𝑚𝑎𝑥𝑛ij
{|∆𝐬i(𝑛 − 𝑛ij)∆𝐅j(𝑛)|} (14)    

The alignment fitness may be evaluated by means of the root mean square error between 

the real displacement and the value predicted from regression for each weight wij as 

𝜀ij =
‖𝐞ij‖

‖∆𝐬i‖
; 𝐞ij = ∆𝐬i − 𝑤ij∆𝐅j;  𝑖, 𝑗 = 1, 2 (15)   

4 Results 

4.1 Data recording examples 

The speech signal, the sEMG and the 3 acceleration channels from two repetitions of the 

[…aja…] by a female HC participant (CF1) are shown in Figure 3 as an illustrative 

example. The sEMG signal has been included in the plots (channel b) with the purpose 

of witnessing that the acceleration and speech signals are concordant with the action of 

the masseter.   

 

 . Signal acquisition example from the repetition of the phonetic sequence […ajajaj…] for 

a female control participant (CF1): a) speech signal; b) surface electromyographic signal on the 

masseter; c) channel X accelerometer signal; d) channel Y accelerometer signal; e) channel Z 

accelerometer signal. 



 

 

Similarly, the same set of recordings from one of the PD female participants included in 

the study (PF1) are shown in Figure 4. 

 

 . Signal acquisition example from the repetition of the phonetic sequence […ajajaj…] for 

a female PD participant PF1: a) speech signal; b) surface electromyographic signal; c) channel X 

(Acc); d) channel Y (Acc); e) channel Z (Acc). 

The repetition of […ajajaj…] as fast as possible has been used in the present study to 

estimate the model parameters of matrix W in kinematic terms. It may be seen from 

Figure 3 and Figure 4 that the  selection of the diadochokinetic repetition of […ajajaj…] 

presents the advantage of being mainly controlled by the action of the masseter, a 

powerful muscle producing good sEMG records, as it may be observed. The data used in 

this study are the first two formants derived from the speech recording produced by the 

fast repetition of the exercise. The unbiased and smoothened formants are to be compared 

with the jaw-tongue reference displacements obtained after rotation and integration of the 

acceleration signals [15]. As an example, the estimations of ΔS and ΔF from CF1 are 

given in Figure 5. 



 

 

 

 . Formant deviations and reference point displacements obtained from CM1, corresponding to a HC 

participant: a) formants F1 and F2; b) formant deviations ΔF; c) reference point displacements ΔS. 

The estimations of ΔS and ΔF corresponding to PF1 are shown in Figure 6. 

 

 . Formant deviations and reference point displacements obtained from PF1, corresponding to a 

PD participant: a) formants F1 and F2; b) formant deviations ΔF; c) reference point displacements ΔS. 

4.2 Weight estimation from linear regression 

The initial estimation of W0 is illustrated using a healthy control participant (CF1) in 

Figure 7. The scatter plots show the distribution patterns of each pair of Δsi, related to 

each pair of ΔFi. A a regression line is fitted to each of these distributions with structure 

Δsi = wij ΔFi + bij, as printed within each scatterplot. The slope of the regression line is 

the respective initial weight wij of matrix W0. 

  



 

 

 

 . Scatter plots and regression results from CF1. The regression analysis is carried out for each pair 

of input signals (ΔFi) and output signals (Δsj): a) 𝑤11
0 =-2.84.10-6 m.Hz-1; b) 𝑤12

0 =1.64.10-6 m.Hz-1; c) 𝑤21
0 =-

8.43.10-6 m.Hz-1; d) 𝑤22
0 =4.90.10-6 m.Hz-1. 

This initial analysis shows what was expected from the hypothesized dynamic relation 

between formant dynamics (ΔFi) and the kinematic outcome (Δsj); the first formant (ΔF1) 

increases with a descent and retraction of the PrJT, whereas the value of the second formant 

is assumed to descend under the same movement conditions [16]. This is shown in the 

negative sign of the weights w11 and w21, while in the case of w12 and w22 a positive sign 

is obtained. This method is applied to the signals from all male participants in the cohort 

and the healthy control (see Error! Reference source not found. for details), producing 

the initial results of the acoustic to kinematic projection given in Table 2, allowing for an 

initial inter-participant comparison. 

  



 

 

Table 2 Male cases: Model weights and correlation coefficients per participant (P: 

Pearson; p-values <0.001); *x10-6 cm.Hz-1. 

Participant Labels w11* w12* w21* w22* PΔxΔF1 PΔxΔF2 PΔyΔF1 PΔyΔF2 

CM1 -6.08 3.77 -9.90 6.31 -0.61 0.71 -0.57 0.68 

CM2 -2.44 1.47 -2.71 1.56 -0.52 0.42 -0.43 0.33 

CM3 -4.04 4.92 -3.45 4.34 -0.42 0.43 -0.36 0.38 

CM4 -4.37 3.63 -5.65 4.71 -0.60 0.63 -0.63 0.66 

PM1 -1.26 0.97 -4.56 3.45 -0.35 0.38 -0.36 0.38 

PM2 -2.12 0.78 -1.05 0.45 -0.14 0.10 -0.23 0.19 

PM3 -1.41 1.29 -3.17 2.88 -0.71 0.72 -0.84 0.85 

PM4 -1.04 0.24 -1.13 -0.18 -0.30 0.09 -0.18 -0.04 

The values of the model weights are accompanied by the correlation coefficients 

(Pearson) between each pair of signals, confirming the correlation relationships expected 

from the acoustic-to-kinematic projection properties (see further comments in Section 5). 

The same study has been conducted on the set of female participants (one HC and four 

PD participants) summarized in Error! Reference source not found.. 

Table 3 Female cases: Model weights and correlation coefficients per participant (P: 

Pearson; p-values <0.001); *x10-6 cm.Hz-1. 

Participant Labels w11* w12* w21* w22* PΔxΔF1 PΔxΔF2 PΔyΔF1 PΔyΔF2 

CF1 -2.84 1.64 -8.43 4.90 -0.51 0.56 -0.50 0.55 

CF2 -3.78 2.15 -5.39 3.17 -0.47 0.68 -0.44 0.65 

CF3 -2.15 1.19 -7.70 4.51 -0.72 0.73 -0.68 0.72 

CF4 -0.28 0.30 -0.67 0.67 -0.32 0.37 -0.49 0.53 

PF1 -2.09 1.56 -5.24 4.03 -0.81 0.75 -0.81 0.77 

PF2 -1.46 1.15 -1.22 0.91 -0.54 0.52 -0.37 0.33 

PF3 -1.88 1.75 -6.54 6.73 -0.24 0.17 -0.32 0.25 

PF4 -1.52 0.95 -2.90 1.81 -0.54 0.55 -0.51 0.51 

The values of the model weights are accompanied by the respective correlation 

coefficients (Pearson) between each pair of signals as before (more comments in Section 

5). 

4.3 Weight estimation from regression iteration (adaptive step = 0.5) 

Following the initial weight estimation of W0, an iterative adjustment has been carried 

out. The procedure is based on the aforementioned iterative gradient-descent with 

variable step size (as described in (7) and (8)). This process aims to find a minimum of 

the error surfaces corresponding to the partial cost functions Ci(wi1,wi2). The plots given 

in Figure 8 show this process illustrated for the control participant CF1. The trend of the 

descent for the pair of weights 𝐰i
k = (𝑤i1

k , 𝑤i2
k ) can be observed, as the estimation for the 

k-iteration can be represented as a point on the surface Ci. 



 

 

 

 . Error surfaces C1(w11, w12) and C2(w21, w22) corresponding to the iteration process on participant 

CF1. Left: C1(w11, w12). Right: C2(w21, w22). The starting position (in red) shows the values of the weights 

obtained from linear regression {𝑤11
0 , 𝑤12

0 } and {𝑤21
0 , 𝑤22

0 }, whereas the stop position (in yellow) 

corresponds to the values of the weights after the iteration refinement. 

It may be seen that although the error surfaces show a similar behavior to Rosenbrock’s 

function [23], displaying a kind of wadi–shaped shallow valley, the variable step tracker 

based on the Barzilai–Borwein method is capable of reaching the minimum point of the 

curve in a reasonable number of iteration steps (in this case 110). The new weights after 

iteration refinement are given in Table 4.  

Table 4 Male cases: model weights, number of iterations,  and error reduction (ΔE, in 

percent), *x10-6 cm.Hz-1. 

Participant Labels w11* w12* w21* w22* No. Ite. ΔE (%) 

CM1 -0.71 -4.11 2.44 7.46 142 23.7 

CM2 3.86 1.16 -4.85 -1.74 142 10.68 

CM3 1.49 -3.32 -0.70 3.59 123 7.37 

CM4 1.07 -2.83 -1.17 3.84 142 21.67 

PM1 -0.25 0.82 -1.30 2.63 111 6.05 

PM2 -6.24 -2.31 -2.13 -0.61 193 1.37 

PM3 -0.55 0.84 -1.37 1.75 140 41.58 

PM4 -2.37 -1.20 -4.09 -2.68 101 5.05 

The results of the iteration refinement from the female participants are given in Table 51. 

Table 5 Female cases: model weights, number of iterations and error reduction (ΔE, 

in percent), *x10-6 cm.Hz-1. 

Participant Labels w11* w12* w21* w22* No. Ite. ΔE (%) 

CF1 -0.82 1.28 -2.27 3.89 110 12.82 

CF2 -0.03 2.14 0.31 3.25 108 14.45 

CF3 -1.26 0.71 -3.85 3.06 88 22.75 

CF4 -0.15 -0.43 0.09 0.75 153 11.55 

PF1 -1.94 0.14 -4.08 1.03 132 38.47 

PF2 -0.97 0.47 -1.03 0.19 111 8.07 

PF3 -1.80 0.17 -5.69 1.73 77 2.34 

PF4 -0.70 0.55 -1.36 1.04 163 13.00 

 
1The iterative process stops once the gradient change becomes negligible (<10-6).  



 

 

The values of these weights would be the basis of a study towards a definition of a 

possible unified weight model for HC and PD participants, which is left as a future line. 

4.4 Time realignment 

When comparing the signals it was observed that the input ΔF and output ΔS showed 

similar patterns (number of cycles and periods), but there appeared to be a misalignment 

between them. The realignment method is based on maximizing correlations between ΔS 

and ΔF following (12)-(14). This process has been performed on the same female HC 

participant, the resulting changes from the initial estimation (Error! Reference source 

not found.) in the scatter plots and regression analysis can be observed in Figure 9.  

 

 . Scatter plots and regression results from CF1 after signal realignment denoted as R’(ΔFi,Δsj): a) 

R’(ΔF1,Δs1;): w11 =-4.88.10-6; b) R’(ΔF2,Δs1): w12=2.70.10-6; c) R’(ΔF1,Δs2): w21=-1.51.10-5; d) R’(ΔF2,Δs2): 

w22=8.39.10-6. The size of the realignment time shift is given as Δt in seconds (Δt11=26 ms, Δt12=26 ms, 

Δt21=28 ms, Δt22=28 ms). The coefficients wij are given in cm.Hz-1. 

As it may be seen the realignment has reduced sensibly the dispersion of data in the new 

scatter plots, making the relationship between ΔF and ΔS more linear, as the dispersion 

along the perpendicular dimension to the regression line has been reduced (see the relative 



 

 

quadratic errors after realignment in Table 6 and Table 7). The scatter plots and regression 

analysis from a male PD participant (PF1) are given in Figure 10 as a complementary 

example to be contrasted with Figure 9 of the HC participant. 

 

 . Scatter plots and regression results from PF1 after realignment: a) R’(ΔF1,Δx); b) R’(ΔF2,Δx); 

c) R’(ΔF1,Δy); d) R’(ΔF2,Δy). The size of the realignment time shift is given as Δt in seconds (Δt11=8 ms, 

Δt12=4 ms, Δt21=12 ms, Δt22=10 ms). 

After realignment the same cross-correlation analysis (as in the one shown in Table 2 and 

Error! Reference source not found.) is then carried out for the male and female datasets. 

The results are shown in Error! Reference source not found. and Error! Reference 

source not found.. 

  



 

 

Table 6 Male cases: Model weights, correlation coefficients and relative rms errors after realignment per 

participant (P: Pearson; p-values <0.001; εr: relative rms error in %); *x10-6 cm.Hz-1. 

Participant Labels w11* w12* w21* w22* PΔxΔF1 PΔxΔF2 PΔyΔF1 PΔyΔF2 εrΔxΔF1 εrΔxΔF2 εrΔyΔF1 εrΔyΔF2 

CM1 -8.27 4.51 -14.53 7.97 -0.83 0.85 -0.84 0.86 0.56 0.53 0.54 0.51 

CM2 -4.19 3.08 -5.75 4.20 -0.89 0.87 -0.90 0.89 0.46 0.49 0.43 0.47 

CM3 -8.90 9.83 -9.12 10.12 -0.92 0.86 -0.94 0.88 0.38 0.51 0.34 0.47 

CM4 -6.42 4.81 -8.23 6.21 -0.89 0.83 -0.92 0.87 0.46 0.56 0.39 0.50 

PM1 -3.15 2.04 -11.08 7.08 -0.87 0.80 -0.87 0.78 0.49 0.61 0.50 0.63 

PM2 -14.30 7.24 -4.08 2.05 -0.93 0.89 -0.90 0.85 0.38 0.46 0.45 0.52 

PM3 -1.62 1.43 -3.40 3.02 -0.81 0.80 -0.90 0.89 0.59 0.60 0.44 0.45 

PM4 -2.81 1.96 -5.15 -3.47 -0.81 0.76 -0.80 -0.73 0.59 0.65 0.60 0.69 

 

Table 7 Female cases: Model weights, correlation coefficients and relative rms errors after realignment per 

participant (P: Pearson; p-values <0.001; εr: relative rms error in %); *x10-6 cm.Hz-1. 

Participant Labels w11* w12* w21* w22* PΔxΔF1 PΔxΔF2 PΔyΔF1 PΔyΔF2 εrΔxΔF1 εrΔxΔF2 εrΔyΔF1 εrΔyΔF2 

CF1 -4.88 2.70 -15.05 8.40 -0.88 0.92 -0.90 0.94 0.48 0.40 0.44 0.33 

CF2 -6.34 2.65 -9.86 4.16 -0.79 0.84 -0.80 0.85 0.61 0.55 0.60 0.52 

CF3 -2.24 1.20 -9.00 4.94 -0.75 0.73 -0.79 0.79 0.66 0.68 0.61 0.61 

CF4 -0.65 0.63 -1.07 1.03 -0.75 0.78 -0.79 0.82 0.67 0.63 0.61 0.57 

PF1 -2.19 1.59 -5.88 4.34 -0.85 0.76 -0.91 0.83 0.53 0.65 0.41 0.56 

PF2 -2.12 1.75 -2.62 2.14 -0.79 0.79 -0.78 0.78 0.62 0.61 0.62 0.63 

PF3 -5.39 7.75 -14.04 19.95 -0.68 0.74 -0.70 0.74 0.73 0.68 0.72 0.67 

PF4 -2.31 1.44 -4.86 3.04 -0.82 0.83 -0.85 0.86 0.58 0.73 0.58 0.72 

A further comparison between the model weights may be carried on normalizing each 

weight set wij to its vector norm as ŵij=wij/|wij|. The results of the normalization are shown 

in Error! Reference source not found.. 

Table 8 Weight normalization results. A scale factor of 10-6 cm.Hz-1 is to be assumed. 

Male Set ŵ11 ŵ12 ŵ21 ŵ22 Female Set ŵ11 ŵ12 ŵ21 ŵ22 

CM1 -0.43 0.24 -0.76 0.42 CF1 -0.27 0.15 -0.83 0.46 

CM2 -0.48 0.35 -0.65 0.48 CF2 -0.50 0.21 -0.78 0.33 

CM3 -0.47 0.52 -0.48 0.53 CF3 -0.21 0.11 -0.85 0.47 

CM4 -0.49 0.37 -0.63 0.48 CF4 -0.38 0.36 -0.62 0.59 

PM1 -0.23 0.15 -0.81 0.52 PF1 -0.28 0.20 -0.75 0.56 

PM2 -0.86 0.43 -0.24 0.12 PF2 -0.49 0.40 -0.60 0.49 

PM3 -0.32 0.28 -0.68 0.60 PF3 -0.21 0.30 -0.54 0.76 

PM4 -0.40 0.28 -0.73 -0.49 PF4 -0.36 0.23 -0.77 0.48 

Mann-Whitney tests between the normalized weights from the HC and the PD samples 

failed to reject the null hypothesis of equal means μ(ŵij) with a p-value of 0.965. A similar 

test between the normalized weights from the male and female participants failed to reject 

the null hypothesis of equal means with a p-value of 0.904. These results indicate that a 

general model may be built independently of gender and alteration condition, pending on 

a generalization relying on a larger sample database. The medians of the normalized 

weights may serve as a robust estimation of the model weight matrix {ŵ11=-0.39, 

ŵ12=0.28, ŵ21=-0.70, ŵ22=0.48}x10-6 cm.Hz-1. 



 

 

The realignment sample shifts (nij) expressed as time shifts (in ms) are given in Table 9. 

Table 9 Realignment time shifts between ΔS and ΔF per participant in ms. Delays under 24 ms are 

marked in bold. 

Male Set Δt11 Δt12 Δt21 Δt22 Female Set Δt11 Δt12 Δt21 Δt22 

CM1 18 14 20 16 CF1 26 26 28 28 

CM2 26 28 28 32 CF2 20 14 22 16 

CM3 28 26 30 28 CF3 8 4 14 10 

CM4 30 26 30 24 CF4 28 26 22 20 

PM1 28 26 28 26 PF1 8 4 12 10 

PM2 34 36 32 32 PF2 26 28 36 38 

PM3 16 14 12 10 PF3 28 32 26 30 

PM4 32 38 36 -40 PF4 26 26 28 28 

4.5 Formant Dynamics and Articulation Kinematics 

From the regression study results it may be observed how the different magnitudes (ΔS 

and ΔF) relate to each other. Based on these observations a transformation function is 

defined by W, projecting formant dynamics to spatial displacements. An interesting 

indicator to compare between speakers is to observe the ranges that they are able to 

produce in these spaces. Table 10 shows the range of variation covered by ΔS and ΔF. 

The ranges are estimated by the 0.05 to 0.095 interquartile distance. 

Table 10 Formant (Hz) and displacement (mm) ranges per participant r(·).  

Males r(Δx) r(Δy) r(ΔF1) r(ΔF2) Females r(Δx) r(Δy) r(ΔF1) r(ΔF2) 

CM1 1.37 2.27 115 203 CF1 0.97 2.88 178 307 

CM2 0.74 0.81 163 239 CF2 1.34 1.96 169 435 

CM3 1.90 1.65 229 187 CF3 0.63 2.33 180 282 

CM4 2.60 3.37 308 380 CF4 0.13 0.29 213 225 

PM1 0.78 2.8 284 360 PF1 1.00 2.55 246 309 

PM2 1.11 0.58 276 495 PF2 1.52 1.24 521 725 

PM3 0.84 1.88 255 314 PF3 0.43 1.56 156 118 

PM4 0.28 0.22 213 279 PF4 0.99 1.89 324 586 

It may be observed that the size of the ranges shows a broad direct relationship between 

the formant and displacement oscillation ranges. Whether this observation could be the 

basis to define markers of hypokinetic dysarthria is subject to further study.  

5 Discussion 

In Section 3 an inverse linear model based on an acoustic to kinematic projection has 

been presented. This model has been validated by the results shown in Section 0, 

consequently the following findings may be highlighted: 

• The relationship between acoustic to kinematic variables (ΔF to ΔS) has been 

established and may be explained using the inverse model described in expression (1). 

• The initial estimation of the model weights has been carried out using least squares 

linear regression. 

• A gradient-descent method usign a variable step size has been used in the iterative 

refinement of model weights to minimize the error cost function implicit in the inverse 

model.    



 

 

• In order to linearize the relationship between the acoustic and kinematic estimates in 

the time domain a realignment procedure has been introduced with a considerable 

improvement of correlation results. 

Figure 3 and Figure 4 present the speech, surface electromyography and X, Y and Z 

accelerations in the accelerometer system of coordinates, which is projected onto the one 

of the sagittal plane shown in Figure 1 (the X in the accelerometer system corresponds to 

the coordinate normal to the sagittal plane, the accelerometer Y corresponds with the 

sagittal y (s2), and the accelerometer Z corresponds to the sagittal x (s1)). It may be seen 

that each sEMG burst (channel b) is followed with an abrupt spike-like in the 

accelerometer axes Y and Z (channels d and e), whereas the accelerometer X (channel c) 

shows a much slower activity. Correspondingly the amplitude of the speech signal 

(channel a) shows a strong reduction immediately after each sEMG burst, as the activity 

of the masseter reduces the opening of the radiation end, and less energy is projected 

outwards, this observation being aligned with what it could be expected. The main 

difference found between both figures is that the interval cadence and the amplitude and 

pattern of the sEMG and X, Y and Z accelerometer signals are more regular in Figure 3 

(corresponding to an HC female participant) that those in Figure 4 (corresponding to a 

PD female participant). The behavior presented in both figures cannot be generalized, but 

it may give a graphical view of what is being measured. We had described sEMG as part 

of the battery of signals that have been collected. It is true that sEMG is not used for the 

construction of the model, however it is useful to visualize it along with the speech signal 

and accelerometer data to provide an overview of this multimodal representation. For 

example, we present sEMG in Figures 3 and 4 as an illustration of how the raw data 

appear. We believe there is value in presenting this information here, even though we are 

not formally proceeding in full exploratory analysis of the use of sEMG further in this 

study; we plan to investigate this area further in future work. 

Figure 5 and Figure 6 present the results from estimating the acoustic and kinematic 

variables in the sagittal plane (ΔF to ΔS) from the same participants. Interestingly, more 

regularity may be observed in the estimates from the HC participant than in those from 

the PD participant. A closer observation to the relationship between acoustic to kinematic 

variables from the HC participant (CM1) is presented as scatter plots in Figure 7, from 

the regression association of the signals in Figure 5 (b and c). It may be observed that all 

the plots show a loop-like pattern associated to phase shifts between each pair of acoustic 

and kinematic variables. This is due to time misalignments resulting from formant 

dynamics, and explains the modest values of Pearson’s correlation coefficients given in 

the four rightmost columns of Table 2 and Table 3.   

The relationship between acoustic to kinematic variables (ΔF to ΔS) given in both tables, 

expressed by the weights obtained from least squares linear regression requires a detailed 

analysis. The weights w11 and w12, relate the first and second formant increments ΔF1 and 

ΔF2 with the horizontal displacement Δs1. Weights w11 are negative and weights w12 are 

positive, relating a forward horizontal displacement of the jaw-tongue reference point 

with a descent of F1 and with an ascent of F2. Similar relationships may be observed on 

weights w21 and w22, with respect to the first and second formant increments ΔF1 and ΔF2 

regarding the vertical displacement Δs2. In this case, w21 is always negative, and w22 is 

always positive, the upwards movement of the jaw-tongue reference point is related to a 

descent of F1 and to an ascent of F2. This behavior is aligned with the prediction of the 

acoustic-to-kinematic projection in the sense that increments of the first formant and 

decrements in the second formant are associated with the vertical pull up action of the 

masseter (negative values of w21 and positive values of w22). A reflection is due at this 



 

 

point in respect to the classical convention under the assumption of independent 

movements of jaw and tongue in static vowel positions. The underlying phenomenon is a 

bit more complicated when studying dynamic diphthong movements, as jaw and tongue 

cannot be considered moving independently. This is particularly relevant regarding the 

diadochokinetic exercise used in the study. As examples of non-independent movement, 

it must be considered that depending on the position of the tongue (back or front), the sole 

movement of the jaw may produce the diphthong [wa] as in /wah-wah/ when the position 

of the tongue is back (static), or the diphthong [jeə] as in /yeah/ when the tongue position 

is front (static). In the first case both F1 and F2 ascend to higher values when the jaw 

descends, whereas in the second case F1 ascends and F2 descends when the jaw descends. 

In both cases the tongue has not changed its position, but both formants move, as the jaw 

per se may modify completely the oral cavity, conditioning the movement of both 

formants. Conversely, should the jaw be kept in a stable medial position, the tongue per 

se could produce the diphthong [jʊ] like in /you/, where both formants descend from high 

to low values without the intervention of the jaw. These observations question the 

conventional view of independent relationships among dynamic formant movements and 

tongue and jaw positions, showing that the whole configuration of jaw and tongue is 

responsible for the production of important changes in formant positions, each system 

independently. In the present study no independent movement of jaw and tongue has been 

assumed. 

It may be said about the gradient-descent iteration dynamics expressed in Figure 8 that 

the patterns shown by the error surfaces of E1 and E2 are quite similar, and correspond 

to a convex surface with a single minimum, in the shape of a wadi producing a large 

descent at the beginning followed by shorter descent steps once the bottom of the wadi is 

approached. This effect may produce some unstable predictions of the step size in (8). 

The shape of this narrow valley distorts the space of solutions, as their geometrical place 

is the set of possible values of the pairs of coefficients {w11, w12} and {w21, w22}. Slight 

variations in the estimation conditions may lead to different numerical solutions, all of 

them sharing the property of producing a quasi-optimal approximation. The shape of this 

geometrical place is a kind of narrow ellipse, approaching in the limit a straight line: 

w12=m1.w11+b1; w22=m2.w21+b2. The results of the estimation refinements in the model 

weights after the iteration process, given in Table 4 and Table 5 are modest, as expressed 

by the relative error reduction in percent given in the rightmost columns. Reductions 

larger than 20% have been highlighted in bold. 

The realignment process, exemplified in Figure 9 and Figure 10 from a female HC 

participant (CF1) and a female PD participant (PF1), produces a substantial increment in 

the correlation coefficients at the cost of introducing a delay, which in the case of the HC 

participant is around 26-28 ms, whereas in the case of the PD participant it is much shorter 

(between 4-12 ms). In this second case substantial increments in the correlation 

coefficients are also observed. This different behavior may be explained by resonance 

dynamics in  non-rigid tubes with losses. It may be said that realignment improves 

correlation in all the HC and PD cases studied. 

Regarding the model weights after realignment, as given in Error! Reference source not 

found. and Error! Reference source not found. compared to those before realignment 

in Table 2 and Error! Reference source not found., it may be seen that realignment does 

not change acoustic-to-kinematic projection properties of the model, as displacements 

and formant oscillations maintain the relative concordance observed before the 

realignment. A quadratic relative error between the horizontal and vertical reference point 

displacements estimated from accelerometry, and the regression-predicted values as 



 

 

obtained from expression (15) has been calculated for each model weight after signal 

realignment. These errors are reported in the rightmost columns of Error! Reference 

source not found. and Error! Reference source not found.. These errors are larger for 

the cases where the distribution of ΔS is more dispersed with respect to the regression 

line wijΔF, and therefore they serve as an indication of the goodness of fit. The best case 

corresponds to the prediction of ΔS2 relative to ΔF1 from CF1 (0.33), and the worst case 

(0.73) corresponds to PF3 and PF4 (ΔS1 vs ΔF1 and ΔS1 vs ΔF2, respectively). The HC 

subset behaves slightly better (0.52 ± 0.09) than the PD subset (0.58 ± 0.10), although 

given the small sample sizes this observation needs to be further verified on an external 

larger cohort. 

An important remark comes from the observation that no relevant differences may be 

observed in the general pattern of the normalized model weights between HC and PD 

subsets given in Table 8, which allows for the definition of an overall average model, as 

shown in Section 4.4.  

The realignment shifts (Δt11, Δt12, Δt21 and Δt22) associated to pair-wise weights {w11, 

w12} and {w21, w22} shown in Table 9 are in most cases within the range from 24-40 ms 

with some exceptions marked in bold (CM1, PM3, CF2, CF3 and PF1), and do not show 

relevant intra-speaker differences. All of them are multiples of the formant estimation 

time sampling rate of 2 ms. Their origin may be a consequence of algorithmic delays 

introduced in the insertion of formants as a result of resonance effects in non-rigid tubes 

with losses. The narrower the pole bandwidth associated to the formant, the shorter the 

time interval for the resonance format to grow in amplitude. As pole bandwidths are 

associated with the viscoelastic properties of the resonant cavities (oro-pharyngeal tract) 

more rigid and less viscid tissues would produce sharper poles and faster formant 

insertion, in opposition to more elastic and viscid tissues, producing duller poles and 

slower formant insertion, explaining the differences found in Table 9. It is known that the 

alterations in the viscoelastic properties of mucosal tissues are due to aging and living 

style (loss of elastin and collagen, irritating agents, respiratory diseases, etc.), among 

other factors [24]. Should this hypothesis be confirmed in further work, these delays could 

serve as features of tissue aging and decay [25].  

The estimations of formant ascents and jaw-tongue reference point displacements (ΔS 

and ΔF) are given in Table 10. There is not a clear tendency of displacements regarding 

gender, but it seems that PD participants produced larger displacements compared to HC 

participants in the average. It may also be seen that PD participants produced larger 

reference point displacements than HC participants on the average. Whether these results 

might be associated with hypokinetic dysarthria is a question which requires also further 

study, in the sense that a large weight magnitude means that small sweeps in formants are 

associated with large displacements in the reference point, otherwise, small weight 

magnitudes mean that small displacements in the reference point may produce large 

sweeps in formants. In this case, it may be hypothesized that if the effective oral cavity is 

reduced by hypokinetic dysarthria, small changes in its cross-section could produce a 

substantial change in the formants.  

The down-sampling procedure, as mentioned in Section 3.1, has the added benefit of 

making the methodology presented in this work compatible with telephonic recordings 

not necessarily reliant on high quality data,. This is possible due to the characteristics of 

the first and second formant ranges being below 3kHz [19], the bandwidth of the 

telephonic channel not being an issue as its restricted to 4kHz (sampling frequency of 

8kHz), allowing for enough spectral resolution. With this in mind a future line of study 

would be to explore the characterization of PD dysarthria on data collected remotely, such 



 

 

as the database taken within the project Teca-Park [26][27]. It contains recordings taken 

for the eight diadochokinetic exercises mentioned in Section 3.1, including data from 45 

PD participants of both genders with the collaboration of PD associations of Spain and 

Portugal, containing 696 valid utterances (by males) and 637 (by females) from 

diadochokinetic analysis. This platform is to be adapted to monitor also patients from  

respiratory diseases, including covid-19, as this technology allows contact-free testing. 

As a general comment derived from the overall perspective of the study, it must be 

highlighted that time realignment is a more relevant procedure than iteration refinement 

to reduce the estimation error, although a combination of both techniques could improve 

the estimation accuracy. This is an area we aim to pursue in further work. 

The limitations of the present study are the low number of participants included, which 

does not allow the generalization of results. The intrinsic non-linear behavior of the model 

needs further study, and its time variance evidenced by the correlation modelling reported 

needs a specific modelling effort out of the limits of the present study. The dependence 

of time alignment shifts on formant estimation is also an important issue. An effort in this 

sense is done to establish reliable relationships between formant bandwidths and delay 

estimations. Some difficulties arise from the data acquisition procedures, which demand 

direct physical contact with participants. Besides, data gathering is complicated by the 

difficulty found on participants perceiving and correctly implementing data acquisition 

protocols. This issue may become a source of variability affecting the robustness of the 

methodology and deserves a specific treatment in itself. 

6 Conclusions 

The present study has been conceived to provide further insights into the acoustic-to-

kinematic model of the jaw-tongue articulation joint, based on preliminary approaches. 

In summary, the key findings derived from this study are: 

• An acoustic-to-kinematic model to predict the jaw-tongue joint kinematics from 

acoustic dynamics expressed in formants has been examined in depth, with special 

emphasis on weight estimation procedures. 

• A weight estimation refinement method based on an iterative gradient algorithm has 

been explored. It has been found that a reduction in the estimation error functions is 

always possible at a reasonable number of iteration steps, although its benefit in terms 

of error reduction is not uniform, depending on specific participant data. 

• A complementary correlation optimization study based on signal realignment has 

been also proposed, and a method to estimate the relative time displacements to be 

included eventually in the acoustic-to-kinematic projection model has also been 

defined. Time delays from the male and female datasets used in the study have been 

estimated and discussed. 

• A comparative study on the common characteristics of the estimated projection 

weights has also been carried on. An average gender-independent model has been 

estimated on the dataset available, valid for both the HC and PD datasets.  

As a summarizing reflection, although many questions still remain open and will require 

a deeper study in future work, it is essential that progress on these methodologies allowing 

a remote monitoring of different diseases using convenient and cost-effective technology. 
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